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Preface 

This report has been done in the public research project ALL-IN for Plastics Recycling, 
funded by Business Finland 2020-2022 as part of the co-innovation ecosystem with the same 
name. The report is part of a deliverable to task 2.3. Enabling technologies, and outlines the 
state-of-the-art survey of technological solutions related to plastic sorting, as well as their 
capabilities and restrictions. Moreover, novel solutions that may be used to reach gaps in the 
existing framework are reviewed and their technology readiness levels estimated. As an 
introduction, a brief overview of the recycling and sorting system in Finland as well as 
examples from other countries are also given. 
 
The authors have held a workshop with the consortium partners regarding the state-of-the-
art, based on which clarifications on the status quo have been updated to the document, and 
relevant changes have been made. The authors are grateful for the consortium for their 
valuable comments and improvements on the report. 
 
 
 
Oulu 22.6.2021 
 
Tuomas Sormunen, Sari Järvinen 
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1. Introduction 

Around the world, the consumption of plastics is steadily rising. In 2018, according to 
PlasticsEurope (PlasticsEurope, 2019a), the total demand for plastics in Europe (EU28 + 
NO/CH) was 51.2 megatonnes, of which 39.9% (20.4 Mt) was for packaging among all 
segments; for example, plastic for building and construction, the second largest segment, 
had a demand of 19.8%. As such, the target (Europarl News, 2017) by the European 
Commission for member countries to recycle 65% of all packaging waste and specifically 
50% of all packaging plastic waste by 2025 seems more than relevant. The target for 2030 is 
70% and 55%, respectively. 

Given that such a large amount of packaging plastic is produced for consumption each year, 
some countries are performing rather poorly in relation to the set EU target. Even if the 
percentage of plastic packaging collected for recycling was an average of 41.8% in 2018 
(Eurostat, 2020b), work needs to be done to reach the target. For instance, contrasting the 
recycling rate 26.9% of France to the 69.3% of Lithuania, there are great differences 
between the member states. Finland’s recycling rate of 31.1% is quite far from the average.  

For consumers in EU, packaging plastic constitutes around 61% of the 29.1 million tonnes of 

collected post-consumer plastic waste, and of this, 48% ended up in separate waste 

collection, and 52% in mixed waste (PlasticsEurope, 2019b). What is important to note is the 

actual amount of material in these fractions that ends up into the reprocessing phase: in the 

former case, 62% of plastic is reprocessed, 27% incinerated and 11% landfilled, whereas the 

percentages in the latter case are 6%, 57% and 37%, respectively. The alternatives to 

recycling or reuse may yield manifold issues ranging from the release of CO and CO2 

emissions and carcinogenic pollutants in incineration (Nagy & Kuti, 2016) to leaching of 

microplastics and harmful additives (e.g. plasticizers and heavy metals) in landfilling (Alabi, 

Ologbonjaye, Awosolu, & Alalade, 2019), although these two routes are heavily regulated on 

European scale, and are more relevant to other types of plastic waste. 

What the EU constitutes as recycling is “any recovery operation by which waste materials are 

reprocessed into products, materials or substances whether for the original or other 

purposes”, and “does not include energy recovery and the reprocessing into materials that 

are to be used as fuels or for backfilling operations”  (Directive 2008/98/EC). This definition 

applies for packaging and more specifically packaging plastics as well. However, the 

calculation point of what constitutes as recycling for these materials has recently shifted: the 

previous directive on packaging and packaging waste (Directive 94/62/EC) took into account 

the amount of plastic coming into the plastic reprocessing plant, whereas the amended 

directive (Directive 2018/852), obliged to be followed as of 5 July 2020, weighs only what 

goes into recyclate production. As such, all the residues and rejects from treatment phase 

that currently fall under calculation will not do so in the future. According to estimates by 

PlasticsEurope (PlasticsEurope, 2019b), this change would have reduced the average 

recycling rate of 2018 from 41.8% to 29%. Thus, it is clear that there is an urgent need to 

both increase the efficacy of collected waste, whether it be in source-separated collection or 

mixed municipal solid waste (MSW), as well as finding new applications for recycled plastics 

and valorising rejects in all steps of the way. 

This report outlines the work done in the Business Finland project PLASTin – ALL‐IN for 

Plastics Recycling, in task 2.3. The purpose of the task is to provide a synthesis of needed 

pre‐sorting technologies supporting EU’s ambition to reach the set recycling goal of 55% of 

packaging plastics, focusing on the post-consumer segment. The report outlines the state of 

the art in plastic pre-sorting, treatment, separation and sorting, novel and future solutions for 

existing challenges thereof, as well as technical and business requirements for technology 

development and deployment. 
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Since there currently are no single repository for definitions for all relevant terminology, for 
the purpose of this report we define some terms below. 

 Pre-sorting: partitioning of waste to different fractions after consumption by 

consumers or businesses. Most pre-sorting is done according to the material 

composition of the waste in varying degrees of subdivision (e.g. packaging, 

packaging plastic, PET bottles etc.), but also several different mixed waste fraction 

options exist. 

 Collection: “the gathering of waste, including the preliminary sorting and preliminary 

storage of waste for the purposes of transport to a waste treatment facility” (Directive 

2008/98/EC) 

 Treatment: “recovery or disposal operations, including preparation prior to recovery or 

disposal”. This can also include “include preliminary operations prior to disposal 

including pre-processing such as, inter alia, sorting, crushing, compacting, pelletising, 

drying, shredding, conditioning or separating” (Directive 2008/98/EC) 

 Separation: partitioning of waste based on the physical and mechanical attributes of 

the material. Includes ballistic, magnetic and sink-float separation. 

 Sorting: partitioning of individual solid objects according to their material composition, 

regardless of size, in material or plastic recovery facilities. Here, varying subdivisions 

also play a role. Sorting may be manual or automatic. In this report, we focus on 

optical sorting technologies. 

 Reprocessing: the generation of secondary raw material from waste. In the case of 

mechanical recycling, the material is usually granulates obtained from compounding 

waste plastic. In chemical recycling, the material can be feedstock, monomers or 

polymers, depending on the used method. The material generated through 

reprocessing has to fulfil End-of-Waste status as defined in (Directive 2008/98/EC) 

before it can be used in plastic production in European Union 

 Plastic production: processing polymer material to manufacture a plastic product. The 

source of the material can be crude oil, waste plastic however treated or converted, 

or a combination of the two. 

A relevant detail is that several intermediate storage phases exist between different steps of 

the recycling chain. This plays a role in the operational logistics as well as the output quality 

of the final reprocessed material. 

Since this report is about packaging plastic, we focus on the most relevant polymer types 

therein. According to PlasticsEurope (PlasticsEurope, 2019a), polyethylene (LDPE, LLDPE, 

MDPE, HDPE), polypropylene (PP) and polyethylene terephthalate (PET) constitute the 

majority of the packaging plastic, with smaller amounts of polystyrene (PS, expanded 

polystyrene EPS) and polyvinyl chloride (PVC). These polymers do not solely exist as 

monomaterials in the waste stream, as there are many applications where multilayer 

materials are used. For example, multi-material flexible films for food packaging constitute 

approximately up to 20% of the total produced flexible film mass (Grant, Lugal, & Cordle, 

2020). 
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2. Goal 

The purpose of this report is to review the state-of-the-art in plastic sorting and their 

performance in each use case. Moreover, the existing bottlenecks and possible solutions to 

these challenges are considered. The goal of post-consumer plastic packaging sorting is to 

separate the incoming mixed plastic waste according to their polymer type as accurately as 

possible. The ultimate target is 100% homogeneous fractions of each polymer; in some 

cases, a mixed plastic fraction with defined polymer types may also be aimed at. In reality, 

100% target is not feasible, as the sorting performance is imperfect and depends on many 

factors: the accuracy of identification, performance of the actuation, previous treatment steps 

as well as the material composition of the incoming waste. 

For sorting facilities, four variables are most relevant for evaluating sorting performance of a 

sorting system: purity, yield, throughput and recovery. Purity is the amount of target material 

in the output relative to the total amount of the output. Yield is the amount of target material 

in the output relative to the amount of target material in the input. Throughput is total amount 

of output per time unit. Recovery is the total amount of output relative to the total amount of 

input. The amount in the definitions is usually characterised by mass or volume. To note is 

that purity is not a measure of the cleanliness of the output in terms of dirt, food residues or 

moisture, but rather in terms of presence of solid objects that are not the target. 

As the 100% purity is not realised in practice, the Green Dot (Der Grüne Punkt) and 

Deutsche Gesellschaft für Kreislaufwirtschaft und Rohstoffe mbH in Germany have 

established realistic and realisable quality standards for sorting of plastic waste. The so-

called DKR standards include for each polymer type (including all the commonly used 

packaging plastic for consumer use) as well as for mixed plastics the maximum amount of 

e.g. metal items, PVC, and other plastic particles that are allowed in the sorted stream that is 

output from the sorting facilities. For example, the strictest purity is established for PET 

bottles, in which under 2% of total mass can be residues (see Table 1). These standards are 

reflected throughout this report. 

Table 1. Examples of DKR standards for sorted plastic wastes for recycling. Adapted from 
(IUT, 2019) and (Der Grüne Punkt). 

Sorted plastic 

wastes 

Metal 

items 

[w%] 

Other 

plastic 

particle

s [w%] 

Other 

residue

s*  [w%] 

DS** 

PE 

articles 

[w%] 

Foamed 

plastics 

*** [w%] 

Plastic 

foils 

[w%] 

PVC 

[w%] 

DS** 

PP 

[w%] 

Min.  

purity 

[w%] 

Plastic foils  

(mostly LDPE) < 0.5 < 4 < 4 - - - - - 92% 

Plastic hollow 

body  

(mostly HDPE) < 0.5 < 3 < 3 - - - - - 94% 

PP < 0.5 - < 3 < 1 < 0.5 < 2 - - 96% 

PET bottles 

(transparent) < 0.5 < 2 < 2 - - - < 0.1 - 98% 

PE < 0.5 - < 3 - < 0.5 < 5.0 - < 3 94% 
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PS < 0.5 < 4 < 2 - < 1 - - - 94% 

 
*Compostable waste (foods, garden rubbish) 

**Dimensionally stable 

***including EPS 

3. State-of-the-art in plastics sorting 

As the treatment chain of the post-consumer packaging waste material is invariably tied to 
the utilized collection schemes, the available solutions are manifold and differ between the 
EU countries. The report outlines first the system in Finland, and then focuses on a number 
of examples from different European countries with different systems. The analysis of waste 
logistic and collection and how to optimize it is done in a different task, namely task 2.1. 

3.1 Common technologies for separation and sorting 

Around the world, certain technologies are commonly used in the separation and sorting of 
separately collected plastic waste or other collected plastic rich waste fractions. A brief 
review on each of them is given below. 

3.1.1  Separation 

Separation techniques, as explained previously, consists of partitioning input material based 
upon its physical and mechanical attributes. Commonly used technologies for plastic 
packaging waste separation are listed next. 

3.1.1.1 Sieving or screening 

Sieving is used for separating incoming solid material according to size, as determined by 
the design of the sieve. Commonly used screen types are the drum and disc screens. A 
drum screen is a large metallic cylinder with different size perforations around the surface 
that separate the material into different sizes whilst rotating. A disc screen consists of 
multiple solid parallel cylinders on top of which the waste material is input. Smaller size 
objects fall between the rotating cylinders while larger objects pass through. (Arina & Orupe, 
2013) 

3.1.1.2 Ballistic separation 

Ballistic separation in essence separates 2D and 3D objects from one another. The 
separator consists of a long parallel plate screen deck that is inclined. Staggered mechanical 
vibration motion of the plates drive the light 2D material upward and heavier 3D objects 
downward. The separator may also include perforations in the decks to allow simultaneous 
sieving of fine particles. (Bilitewski, 2010) 

3.1.1.3 Magnetic separation 

Magnetic separation is used to get rid of ferrous metals, especially any material containing 
iron, such as steel. This can be done in various ways, but a simple approach is by applying a 
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magnetic field on top of the conveyor belt carrying the waste material. Ferrous material is 
lifted and transferred to another stream while non-ferrous particles continue forward. 
(Gundupalli, Hait, & Thakur, 2017) 

3.1.1.4 Eddy current separation 

Eddy current is used for separating non-ferrous metals, such as aluminium and copper, from 

the stream. A rotating drum with a series of magnets with alternating polarity below a 

conveyor belt induce eddy electrical currents in conductive particles. The induced current 

results in the particles being repulsed from the drum, while non-induced particles remain in 

their trajectory. Moreover, ferrous particles are attracted towards the drum, allowing for 

separation into three fractions. (Amir, Karim, Mourad, & Amar, 2016) 

3.1.1.5 Flotation  

Flotation, also called sink-float separation, utilizes a liquid with known density (often water) to 

separate the waste material to fraction with greater and lesser density than the liquid. The 

method can be used to separate plastic flakes with differing densities from one another by 

submerging them in the liquid; one fraction sinks and the other floats. A difficulty in 

actualizing a very fine-grained separation is that many plastics, rather than having a single 

density, have a density distribution. However, for example PET, having a density greater 

than water, can be easily separated from common polyolefins (PE and PP) that have a 

density lower than water (Ragaert, Delva, & Geem, 2017). 

3.1.2 Sorting techniques 

Sorting units require a technology that probes the incoming material characteristics, often 

using a sensor. Sensor-based sorting usually utilizes the response of a material to 

transmitted electromagnetic radiation that is captured and analyzed. The response is 

dependent on the chemical composition of the material. Many different technologies exist, 

utilizing different spectrum of electromagnetic radiation. Commonly used techniques are 

listed next. The actual sorting units are reviewed in Section 3.7. 

3.1.2.1 Near-infrared (NIR) spectroscopy 

As the name suggests, NIR spectroscopy utilizes the near-infrared spectrum of optical 
radiation, namely the wavelength range 750 – 2500 nanometers (the exact wavelength range 
depends upon the definition). The sample is illuminated with suitable lighting, e.g. continuous 
spectrum halogen or wavelength-scanned laser, and the reflected (or transmitted) NIR 
spectrum is collected by e.g. an InGaAs sensor. The chemical bonds in the material absorb 
certain wavelengths of light by differing degrees and cause vibrations of the bonds, 
effectively modulating the spectrum of light scattered from the sample surface. This 
modulation is dependent on the bonds in the material, and as such enable distinguishing 
different materials. As plastic materials have many different carbon-hydrogen bonds, which 
readily absorb light in the NIR range, it is well suited for distinguishing different polymers 
from one another. (Scott, 1995) 

In waste sorting facilities, in order to classify objects on a wide conveyor belt, line scanning is 
needed. Tomra utilizes a polygon mirror that rotates perpendicular to and above the belt. The 
polygon mirror reflects light from the source to the conveyor and due to rotation only 
illuminates a part of the belt surface at a time. Simultaneously, the scattered light is collected 
to the NIR sensor, effectively performing a line scan of the whole belt.  (Van Dyk Recycling 
Solutions, 2020) 
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In addition to plastics, NIR has been demonstrated to be promising for discriminating 
between gypsum, , wood, foamed plastics, other plastics and bricks (Serranti, Palmieri, & 
Bonifazi, 2015) as well as different cellulosic materials such as cardboard, paper and pulp 
(Tatzer, Wolf, & Panner, 2005).  

3.1.2.2 Ultraviolet (UV) and visible (VIS) spectroscopy 

The operating principle of UV and VIS spectroscopy is similar to NIR, except the light utilized 
is in the ultraviolet (100 – 400 nm) and visible (400 – 700 nm) range. Sensors may use either 
or both (UV-VIS) of these ranges. In the VIS range, the colour of the sample is the most 
relevant feature for waste recycling, and with VIS spectroscopy it can be very accurately 
measured. UV-VIS can be used in applications where the phenomenon of fluorescence is of 
relevance. (Wu, et al., 2012) 

A study from 2011 estimated that, using VIS spectroscopy sorter in the identification of clear 

PET bottles from a stream of clear, light blue and light green bottles, the method could reach 

purity and efficiency rates of 96.5% and 91.7%, respectively. Using an RGB-camera, the 

respective numbers were 86.5% and 77%, indicating a clear benefit in this case. 

3.1.2.3 RGB camera 

RGB cameras, i.e. photographic or linear CCD cameras, are used in applications where the 

visual features of the object are of relevance. The visual data is processed using computer 

vision algorithms that have been custom trained for a specific purpose. Computer vision for 

waste sorting is an emergent technology, and has been demonstrated to be usable in the 

laboratory for the detection of intricately different plastic granules (Peršak, Viltužnik, Hernavs, 

& Klančnik, 2020), for distinguishing several classes of waste (paper, cardboard, plastic, 

glass, metal and ”trash”) from each other (Ziouzios, Tsiktsiris, Baras, & Dasygenis, 2020), as 

well as by start-up companies for on-line waste sorting robots (Lukka, Tossavainen, Kujala, & 

Raiko, 2014). Some commercial solutions are available utilizing RGB cameras, such as 

REDWAVE C and UniSort C that can be used to sort plastic by colour. (4R Sustainability 

Inc., 2011) 

As mentioned, RGB cameras coupled with machine learning have been demonstrated to be 
usable highly efficient in distinguishing different coloured granulates from each other, with an 
average accuracy of 90.5% using 9 classes with 150 distinct samples per class (Peršak, 
Viltužnik, Hernavs, & Klančnik, 2020). Similar study showed that training an AI model using 
photographs of paper, plastic, glass, cardboard, metal and trash could reach an average 
accuracy of 96.57% (Ziouzios, Tsiktsiris, Baras, & Dasygenis, 2020). 

Studies have also been made to see whether adjacent and overlapping objects in an RGB 
camera image could be segmented using image analysis (Wang, Peng, Huang, & Sun, 
2019). It was found that the image analysis algorithms worked only on adjacent objects, i.e. 
objects in contact but not overlapping. Moreover, it was demonstrated that RGB camera -
based colour classification of PET bottles could reach accuracies of 94.7% with 1446 bottles 
and 7 different colours. 

3.1.2.4 Hyperspectral imaging (HSI) 

Hyperspectral imaging extends the principles of spectroscopy to include spatial dimension(s). 

In essence, it can be viewed as a combination of an RGB camera and a spectroscope; 

instead of collecting three colours, it collects a wide spectrum for each pixel. HSI can be 

done in a variety of different wavelengths, much like spectroscopy. For plastic recycling, NIR 

HSI is of most relevance. Hyperspectral cameras usually operate as line scanners in a push-

broom mode: the camera constitutes of multiple parallel NIR spectroscopes, which can 
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simultaneously scan points in a line. An actuator, for example a conveyor belt moving the 

material under the scanner, then generates the third dimension, resulting in a 2D image with 

each pixel having a spectral dimension as well. HSI requires a light source much like 

spectroscopy, and in the NIR range a halogen light or broad-spectrum LEDs are suitable. 

(Karaca, Ertürk, Güllü, Elmas, & Ertürk, 2013) HSI is a very novel solution that has seen 

some usage in recycling facilities. 

3.1.2.5 X-ray fluorescence spectroscopy (XRF) 

X-ray fluorescence is a phenomenon in which atoms of a material, when coming in contact 

with X-rays, are ionized, i.e. its electrons displaced from its ground energy state to a higher 

energy (excited) state. Another electron may replace the vacancy in the ground state from a 

higher energy state, which results in secondary X-rays being emitted; further, the now-vacant 

higher energy state may be filled by one above that, resulting in a cascade of X-ray 

emissions. As these emissions are quantized, and the energy levels of different atoms vary, 

they can be used to accurately determine the atoms the material consists of. Thus, 

bombarding material with X-rays generated in an X-ray tube and gathering the scattered 

spectrum to e.g. a CMOS detector, the intensity peaks corresponding to different elements 

can be distinguished (Jenkins, 1999). 

As X-rays have a very high energy, they can be used to distinguish elements with high 

atomic weight, such as chromium, lead and copper. It is also suitable for distinguishing 

bromine, which is an element in brominated flame retardants, often used in e.g. WEEE 

plastics (Guzzonato, Puype, & Harrad, 2016).  Moreover, it can also be used to screen for 

PVC in waste material, as it can detect the chlorine present in the polymer (Turner & Solman, 

2016). 

XRF has been reviewed to be capable of distinguishing elemental bromine and chlorine in 

concentrations as low as 100 - 200 ppm (Beccagutti, et al., 2016). A comprehensive study 

evaluated a handheld XRF device, Niton XL 2 by Thermo Scientific, and found that the limit 

of detection for bromine in WEEE plastics for this device was 300 ppm (Aldrian, Ledersteger, 

& Pomberger, 2015).  

3.2 Recycling in Finland - overview 

According to Eurostat, 135 kilotonnes of waste plastic packaging was generated in Finland 
during 2018 (Eurostat, 2020a). As mentioned in section 1, the collection rate of Finland in 
that year was 31.1%. Thus, approximately 42 kilotonnes of waste was collected. As Finland 
has established a landfill ban for plastics, the remainder was utilized in energy recovery 
along with the rejects. 

In Finland, municipalities are obliged by law to organize the management of municipal solid 
waste (MSW) (Waste Act 646/2011, Section 32). The extended producer responsibility 
applies to most consumer plastic packaging (i.e. plastic packaging that surrounds consumer 
packaged goods) and post-consumer plastic packaging waste. Consumer packaging means 
the packaging of goods that a consumer consumes. The pre-sorting fractions in households 
and housing companies are varied; the waste can be sorted according to their material 
composition to biowaste, paper, glass, metal, cardboard and mixed MSW. Beginning from 
2016, in many cases also the separate collection of plastic packaging is provided. 

It is expected that the national Waste Act reform will oblige municipalities to provide housing 
companies with more than four housing units in urban areas bins for collecting plastic 
packaging (Kauppila, 2020). This has previously been obligatory only for housing companies 
with over 20 housing units. At the moment, source-separated collection for packaging plastic 
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is managed by Suomen Uusiomuovi, with the contract service provider Rinki that has over 
600 bring points around the country (Rinki, 2021). Suomen Uusiomuovi also maintains the 
transportation terminals to which the collected plastic packaging waste is transported and is 
responsible for the recycling of the collected volume. 

Additionally, a deposit system for beverage containers made from glass, aluminium and PET 

is in place. Consumers bring the containers to reverse vending machines in stores after 

consumption to get remuneration. In 2018, it was estimated that 90% of all the sold PET 

bottles were recovered with the deposit system. This amounted to 13.9 kt of PET (Palpa, 

2019), of which half was reprocessed in Finland and half shipped abroad (Helsingin 

Sanomat, 2018). To note is that the retail company Lidl has their own deposit system for PET 

bottles sold in their stores. 

There is currently only one industrial-scale reprocessing facility for separately collected post-

consumer plastic packaging in Finland, namely the plastic refinery in Riihimäki by Fortum 

Waste Solutions. This facility, contracted by Suomen Uusiomuovi, handles most of the waste 

fraction; a segment of this is shipped abroad for reprocessing (in 2020, 33% was transported 

abroad). In 2018, approximately 11.4 kilotonnes of plastic packaging were brought to the 

facility. In 2019, the number had grown to 20.4 kilotonnes. (Uusiouutiset, 2020) The amounts 

of plastic packaging generated and brought to Fortum by the business sector were 14.8 kt in 

2018 and 19.7 kt in 2019. According to YLE in 2019, the reprocessing rate of this material 

was reported to be around 75% by Fortum; the rest was utilized as recovered fuel (YLE, 

2019). However, according to a very recent news article, in the last few years the 

reprocessing rate has actually been half of that, 37%, (YLE, 2021). The main reason for this, 

according to Fortum, is that there is not enough market demand for the increased amount of 

mixed packaging that are reprocessed. (Fortum, 2021) 

When it comes to the mixed MSW from post-consumers, according to studies from 2016 

(Liikanen, et al., 2019) and 2018 (Dahlbo, Poliakova, Mylläri, Sahimaa, & Anderson, 2018), 

plastic may represent around 15% of its total mass. By studying mixed MSW waste from 

post-consumers in Uusimaa and Southwest of Finland, it was found that 6.8% was hard and 

7.6% was soft packaging plastic by mass (Dahlbo, Poliakova, Mylläri, Sahimaa, & Anderson, 

2018). Moreover, in an experiment performed in 2015, out of a sample of 130 kg of plastics 

recovered from mixed MSW, up to 87.3% would have been recyclable (Poliakova, 2018). 

According to Statistics Finland, in 2018 Finnish municipalities produced 1.5 megatonnes of 

mixed MSW, of which material 12.7 kt were reprocessed and reused (Suomen virallinen 

tilasto, 2018). It is not defined how much of this material is plastic, but what is clear is that 

massive amounts of material, including plastic is incinerated each year. 

Calculating the collected amounts of waste from each of these known streams in 2018, i.e. 

PET bottles and separately collected packaging plastics from consumers and businesses, we 

get 40.1 kt, a number very close to one reported by Eurostat (42 kt). It can be assumed that 

the rest, 1.9 kt, was plastics recovered from the mixed MSW fraction. 

3.3 Treatment, separation and sorting in materials recovery facilities 
in Finland 

In this section, the three identified tracks for post-consumer plastic collection are looked into 
from the viewpoint of sorting. 
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3.3.1 Closed loop - PET bottles 

Pet bottles collected with reverse vending machines are baled and sent to the single 

reprocessing facility in Finland, Pramia Plastic (Salminen, Turunen, & Fjäder, 2020). The 

sorting process (Pramia Oy, 2020) is as follows. The bottle label sleeves are removed and 

sent to energy recovery as briquettes. Two optical sorters sort the bottles to clear and 

coloured PET. Manual quality assurance is used in the case of clear PET bottle stream. 

Metals and aluminium are removed from the stream after shredding. The material is washed, 

cleansed and dried several times. Density-based (sink-float) separation fractionates the 

material of the bottle (PET) from the bottle cap (PP and HDPE). Further colour separation is 

done to the clear PET flakes to remove possible coloured particles as well as aluminium. The 

final sorted fractions are coloured PET, clear PET and mixed-colour bottle caps (around 50% 

HDPE and 50% PP) (Fråne, et al., 2014). What is significant is that Pramia is able to provide 

food contact approved granulates from some of the waste PET, and also to reprocess them 

into clear bottle preforms for new beverage container manufacturing (Suomen Uusiomuovi 

Oy, n.d.). 

The colour sorters used are the SPEKTRUM range sorters by Sesotec (formerly known as 

S+S Separation and Sorting Technology GmbH), suitable for glass and plastic sorting 

(Sesotec). The range utilizes high performance colour or monochrome CCD cameras, with 

higher end sorters also having metal detection and NIR spectroscopy as an option (Sesotec). 

The sorters can output the material into two streams. 

3.3.2 Separately collected plastics 

In the Fortum refinery, the plastic packaging waste material undergoes several steps of 

sorting and treatment (Fortum Waste Solutions Oy, 2020). Ballistic separation is used for 

separating 2D and 3D materials (namely, film from rigid plastic); rotating drum sieve for 

separating objects by size; NIR sorting for fractionating into polymer types; and metal 

detection for separating magnetic and non-magnetic metals from plastics after shredding. 

Polymer sorting is accomplished using 11 NIR sorters (apparently all) by REDWAVE 

(Uusiouutiset, 2016) that fractionate the material to LDPE, HDPE, PP, PET and plastic mix 

(Fortum Recycling and Waste Solutions, 2018). LDPE, HDPE and PP are reprocessed in-

house. 

REDWAVE has a range of sorters for many applications, such as plastics sorting, electronic 

waste and waste glass processing. For plastic sorting, the REDWAVE 2i is the most optimal. 

It combines NIR sensors, inductive metal detector and high-resolution RGB cameras in order 

to sort e.g. MSW, paper, glass, and plastics (REDWAVE (a), n.d.). The polymers it can 

recognize are different colours of PET, HDPE + LDPE, PP/PS and PVC. The sorter can 

output two or three different streams. REDWAVE also has sensor technologies for X-ray 

fluorescence spectrometry, which can be used for detecting brominated flame retardants in 

WEEE streams, as well as hyperspectral imaging (REDWAVE (b), n.d.). The company uses 

machine learning and AI for classification of detected objects. 

In a report from 2019, the material composition of a single 11 kilogram batch from the reject 

fraction from this facility was studied and quantified according to DKR standards (Briedis & 

Syversen, 2019). The results are shown in Figure 1; as can be seen, the batch consisted of 

mostly category other waste/residues, which apparently includes “glass, liquid packaging 

boards, aluminised plastic, rubber, wood, nappies, food, garden waste, stones”. However, 

the 11 kilogram sample is very small, and cannot be generalized as universal reject output; a 

more in-depth study should be conducted, as there are little studies available in this domain. 
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Figure 1. Material composition of a single 11-kilogram batch from the reject fraction of the 

Fortum plastic refinery. 

3.3.3 Mixed municipal solid waste (MSW) and waste-to-energy 

In 2016, Finland only had two materials recovery facilities for managing mixed waste, namely 

Fortum’s Eco Refinery (Fortum, 2020) and Päijät-Hämeen Jätehuolto’s mechanical sorting 

facility LATE (Laaksonen, Merilehto, Pietarinen, & Salmenperä, 2017). These facilities 

handle post- consumer waste-to-energy fraction as well as wastes from businesses and 

industry (Kauppalehti, 2016; STT, 2016) and are currently in operation. Recently, a third such 

facility was built in Oulu by Oulun Energia: however, the Rusko waste sorting facility does not 

sort mixed MSW from consumers (Oulun Energia Oy, 2021); the recovered plastic material, 

along with e.g. cardboard and wood, is used as refuse-derived fuel (RDF). 

Both facilities, the Eco Refinery and LATE, sort plastic material and previously also 

transported it to the Fortum plastic refinery for reprocessing. However, according to Fortum, 

this is not the case as of present; the MSW fraction brought to the Eco Refinery generally 

consisted of very little plastic (approximately 3 - 4 %) and a lot of biowaste, which 

contaminated the batches such that only hard plastics could be reprocessed. The amounts 

were not large enough for economically feasible operation, and reprocessing of this material 

was discontinued. 

For the case of LATE, Fortum ran some tests with their output plastic fraction, but the sorting 

was deemed incomplete, as different plastics were mixed together. Due to huge growth in 

the collection of source-separated plastics, Fortum could not find capacity to further sort the 

material from LATE, and the input from this facility was discontinued. 
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The Eco Refinery managed 100 kt of mixed MSW, of which 4 kt was estimated to be 

separable plastics in 2017 (Fortum, 2017). The LATE facility managed around 66 kt of waste 

(Laaksonen, Merilehto, Pietarinen, & Salmenperä, 2017), of which 1.5 kt was plastic in 2019 

(Salpakierto Oy, 2019). Assuming that these numbers were similar in 2018, the calculated 

recycled fraction of 1.9 kt would indicate that around 66% of the sorted plastic was 

incinerated. 

The facilities follow roughly the same set of sorting and separation steps. Following the 

procedure of the LATE facility (Ramboll, 2020), the incoming waste-to-energy material is first 

crushed, and ran through a rotary drum sieve, after which the larger objects undergo ballistic 

separation. Magnetic metals and aluminium are removed. Wind sorter is used to separate 

heavy material, such as glass, concrete and ceramics from the stream. An optical sorter is 

used for sorting the remaining light material into different fractions, most likely plastics and 

non-plastics. 

The used optical sorters are Mistral Dual Vision by Pellenc ST. According to Pellenc (Pellenc 

ST), it can sort hard plastics, plastic films, fibers, wood and organic material, and account for 

colour. It utilizes a single scanner for both NIR and VIS spectroscopy. Apparently, it can 

output the material up to three different streams, and is able to recognize different colours of 

PET, HDPE and PP, as well as PVC, PS and plastic film (Innovations Report, 2012). 

3.4 Examples from other countries 

3.4.1 Belgium 

In Belgium, a separate kerbside collection scheme is established for plastic packaging, metal 

packaging and drink cartons, so-called PMD collection; more recently, this scheme was 

extended to all packaging instead of only hard packaging. The sorting process for this 

fraction by the company Indaver, apparently in the community recycling centre in Willebroek 

(Indaver), is rather similar to the mixed MSW outlined in Section 3.3.3. Some differences are 

that after magnetic and non-ferrous separation, drink cartons are separated via optical 

sorters. Furthermore, ballistic separation is done only for the mixed plastic fraction. 

Shredding is not done in any phase. The plastic fraction is sorted by 5 optical separators into 

PE, 3 colours of PET and PP. (Ragaert, Delva, & Geem, 2017) The facility treats 60 kt of 

PMD waste annually. 

Belgium also manages some source separated mixed plastic packaging waste from the 

Netherlands and Germany. An SME company Eco-oh! manages some of this material. As 

the collection scheme accepts all plastics, many contaminants for the most reprocessable 

materials, namely HDPE, PET and PE, exist. The utilized treatment includes a coarse 

shredder, a rotating drum washer, friction washers, fine shredder and float-sink separation. 

The sink fraction is collected, and the float fraction (made of PP and PE) is further separated 

using a wind shifter that separates the material into hard and soft mixed polyolefin fractions, 

i.e. HDPE + PP, and LDPE + some PP, respectively. (Ragaert, Delva, & Geem, 2017) 

3.4.2 Austria 

According to a report from the EU project PlasticZero, in the Graz region in Austria, waste 

contractor Saubermacher has a central sorting facility for packaging waste (Plastic ZERO, 

2014). The plant outputs sorted paper, cardboard, plastics and RDF. In 2013, only certified 

packaging was sorted; Austria had implemented a take back program that mandates "all 
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manufacturers, distributors and importers that place packaging or packaged goods on the 

Austrian market to take these packaging materials back free of charge and ensure their 

recovery or reuse”. (Municipal Waste Europe, 2015) Alternatively, they may “participate in a 

collection and recycling system subject to a licence fee”. (Reclay Group, n.d.) 

One of the collection schemes for most households in Austria, including the Graz region, is 

the so-called "yellow bag” scheme, in which all packaging made of plastic, composite, wood, 

textiles or ceramics are commingled (Plastic ZERO, 2012). This is the fraction that 

Saubermacher handles. In 2013, the facility reported to have high quality requirements for 

the output: HDPE bottles and LDPE film have a minimum purity of 95%, and white, light blue 

and green PET bottles the percentage is 98%; the output purity requirements in Austria in 

2013 were 96 – 99% depending on the polymer. The treatment process involves a drum 

screen, magnetic separation, air classifier, ballistic separator, NIR sorter and manual quality 

control before baling. In 2018, the facility was updated, and now also sorts aluminium cans 

and beverage cartons. Novel REDWAVE sorters are used in the plant. The facility can sort 

32 kt of material annually. (Recovery, 2018) 

3.4.3 Sweden 

Recently in Motala, Sweden, a fully automated plastic sorting facility was opened. It sorts 

source separated plastic packaging with 22 NIR sorters, capable of sorting the material into 

PE film, PET bottles, PET trays, white/transparent HDPE, mixed colour HDPE, PP, mixed 

plastics, and metals. (TOMRA Sorting Solutions, 2019) Before NIR sorting, the material is 

separated using magnets, drum screen, wind shifting and air ballistics. The facility can sort 

120 kt of material annually. The reject of the sorting process is approximately 45% of the 

input. This reject consists mainly of non-recyclable packaging, non-packaging plastic, 

moisture and non-plastics. (Larsson, 2018) Non-recyclable in this context means black 

plastics and polymers that cannot be profited from as recycled material. 

3.5 NIR spectroscopy – review 

3.5.1 Accuracy 

Evaluating the NIR sorting units’ accuracies in the plastic or material sorting facilities is not a 

trivial task. The waste fraction undergoes many different separation phases before reaching 

the sorter unit that is calibrated to deal with a plastic-related sorting task. As a result, the 

sorter, not calibrated for e.g. residual metals or paper, may not work as expected, leading to 

lower purities not due to the NIR sorter itself, but rather due to the imperfections in the 

previous sorting phases. 

Nonetheless, the accuracies of NIR sorters have been evaluated in MRFs and PRFs in the 

UK and mainland Europe a decade ago (Axion Consulting, 2010). Example MRFs 

demonstrated product purities in 3 different cases, and in PRFs two cases were evaluated. 

The lowest purity was established for PET, with purities of 65%, 73% and 88% in the cases. 

For HDPE and PP, the purities were around 90%. The purities of the fractions were improved 

with post-NIR manual sorting. 

In PRFs, a finer sorting was done also according to colour for PET and HDPE. However, 

since NIR does not operate in the visible spectrum, this kind of characterization is not robust 

and can only detect proxy effects (e.g. higher or lower reflectivity in the NIR spectrum), not 

the actual visual colour. Nonetheless, the classification to coloured / non-coloured plastic 
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was rather poor for the coloured PET; in this fraction, 53% of the material was coloured PET, 

40% clear PET, with the remainder material being other polymers (total polymer purity 93%). 

In the other example case, with coloured PET class, the percentages were 33% coloured 

PET and 62% clear PET (total polymer purity 95%). As such, the colour sorting efficiency is 

very poor. Utilizing VIS-range spectroscopes would clearly benefit these facilities. In general, 

the report outlines that typical NIR sorter system accuracy is in the range 80 – 95%, while 

well-adjusted systems can reach purities of over 95%.  

A more recent study looked at the output fraction purities of materials recovery facilities in 

two countries, Norway and Finland (Briedis & Syversen, 2019). The facility in Norway, by 

Romerike Avfallsforedling IKS (RoAF), is a fully automatic sorting facility that handles organic 

waste, metals, plastics, paper and cardboard (ROAF, 2015). Plastic sorting is done using 13 

optical sorting units, VIS and NIR (TOMRA, 2016). The facility in Finland is the 

aforementioned Fortum plastic refinery, using 11 NIR sorters. 

The tested fractions and purity calculations were generated according to DKR standards. 

The findings of the study are shown in Table 2. The findings between the two facilities, 

however, are not directly comparable due to lower amount of collected material for testing. 

Moreover, in the RoAF facility, two different batches were collected, and their weighted 

average was used in the final result. The two facilities are also running with different 

capacities; Fortum is currently running on rather full throughput (around 30 kt per year), while 

RoAF has a throughput capacity of over 30 tons per hour but sorted only a total of 40 kilotons 

in 2016 (Eule, n.d.). Nonetheless, these numbers give some indication about the 

performance of modern NIR sorters. 

Table 2. Output fraction purities of the two facilities and the collected test amount. 

 
ROAF Fortum 

Fraction Collected 
amount [kg] 

Purity [%] Collected 
amount [kg] 

Purity [%] 

PP 61.0 96.8 15.13 87.3 

HDPE 77.6 91.5 14.21 87.2 

LDPE 40.0 95.6 6.49 86.9 

Mixed plastics 92.2 62.4 27.05 80.2 

 

Another study conducted in 2011 compared automatic optical sorting systems for recycling 

plastic containers by different manufacturers (4R Sustainability Inc., 2011). In the report, the 

accuracies of the devices were also listed in some specific use cases, apparently defined by 

the companies themselves. Nonetheless, it outlined 27 different units for sorting whole plastic 

containers and 27 units for sorting shredded plastic flakes. The sorters’ primary application 

and what plastics it sorts, as well as the throughput were listed. 

For the 20 listed whole container sorters using NIR, the reported accuracies were very high, 

with most units reported as being capable of achieving up to 99% sorting accuracy. The 

sorters are listed according to whether they operate on commingled, contaminated single-

resin or mixed plastic streams. Colour sorters also reach very high accuracies, and the X-ray 

based VinylCycle can reach 99% accuracy in sorting out PVC from PET. , Less NIR units 

seem to be available for plastic flake sorters, as only 8 were listed. Nonetheless, the reported 

accuracies range from 80% to 99%. Colour sorting via RGB or linear CCD cameras 

reportedly reach accuracies of over 95%, and XRF-based methods can sort plastics 

containing brominated flame retardants (BFR) with up to 99% accuracies. 
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Unfortunately, the manufacturing companies rarely share the technical specification of their 

sensor units openly. As such, the effect of the NIR wavelength range used were not 

evaluated. However, in a study conducted in 2018 (Yan & Siesler, 2018), four different hand-

held NIR spectroscopes were evaluated based on their performance to distinguish different 

plastics, namely PE, PET, PP, PS and PVC. The wavelength ranges of these devices were 

very different; the narrowest range was 1550 – 1950 nm, and the widest 1298 – 2606 nm. As 

expected, the best results were obtained with the latter, and the poorest with the former. The 

type of detector also has an effect; the two other spectrometers had a similar range to each 

other (908 – 1676 nm and 900 – 1701 nm), but the Viavi MicroNIR has an array detector, 

whilst the DLP NIRscan has a grating and a single-element detector. The single-element 

detector could distinguish the polymers much better. 

3.5.2 Limitations of NIR 

Several problems are associated with using NIR spectroscopy that hinder its all-around 

performance. These include black and dark plastics: colorants may absorb all the radiation, 

giving no reflective signal; multilayer films: conventional NIR sorters identify the material 

according to which side of the film happens to align with the detector; incorrect prediction due 

to e.g. sleeves, dirt and overlapping objects (Ragaert, Delva, & Geem, 2017). Moreover, 

there is no feasible way to distinguish between food grade and non-food grade packaging. 

Given that novel bio-based plastics and biocomposites gain traction, NIR or some other 

technique has to be demonstrated to work for these materials as well. 

The results on the discrimination between HDPE and LDPE with NIR HSI or spectroscopy 

have been conflicting. Using a multiclass PLS-DA based algorithm for classifying different 

plastic pieces, namely PP, PS, HDPE and LDPE, one study found that HDPE and LDPE 

were indistinguishable (Vidal, Gowen, & Amigo, 2012). Using a hierarchical classifier, i.e. 

multiple cascaded PLS-DA algorithms, another study found that LDPE and HDPE can indeed 

be distinguished, even if their spectra are very similar (Bonifazi, Capobianco, & Serranti, 

2018). However, only single-coloured samples were considered, and the effect of colorants 

may have an effect on the classification accuracy. On-line validation is needed. 

3.5.3 Penetration depth of optical radiation 

Several studies have been conducted to determine the penetrability of light into polymers. A 
very early study conducted quantified the so-called wavelength-dependent information depth 
of 60-% crystalline LDPE (Haanstra, et al., 1998). The information depth is defined as the 
thickness of the sample with which 50% of the radiation is lost in terms of intensity reaching 
the sensor. Two modes of measurements were considered in the VIS and NIR range: 
reflectance and transmittance, using apparently a continuous-spectrum light source. In the 
transmittance mode, the information depth ranged from 100 - 830 micrometers. In the 
reflectance mode, which is more relevant to NIR plastic sorting, the depth ranged from 0 mm 
to 2.5 mm; in the most strong absorption band at 1730 nm, no radiation is reflected, while for 
most of the VIS-NIR spectrum the depth was over 0.5 mm. 

The study above did not consider how a spectrum of a sample below a polymer film would 
show in either mode. A more recent study has looked into reconstructing the reflectance 
spectrum of a sample below different thicknesses of PE film (Pomerantsev, Rodionova, & 
Skvortsov, Diffuse Reflectance Spectroscopy of Hidden Objects. Part II: Recovery of a 
Target Spectrum, 2017a). Basing on their previously developed phenomenological approach 
(Pomerantsev, Rodionova, & Skvortsov, 2017b) it was determined that the signal could be 
quite accurately reconstructed up to 0.7 mm PE layer thickness. The study looked into the 
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NIR spectrum in the range 1100 - 2500 nm, and, as they utilized diffuse reflectance 
spectroscopy, most probably a continuous light source was used. 

Other studies have considered the wavelength-dependent transmittance of different 
polymers with constant thicknesses in the VIS-NIR range (Wang, Chang, & Hsu, 2018). In 
these cases, PP, PC and PMMA with 2 mm thicknesses were considered in pure form as 
well as doped with additives. Strong absorption bands notwithstanding, the transmittance of 
pure plastics were over 50% in most wavebands in the NIR range. In the VIS range, the 
transmission of all pure plastics was over 90%. 

In the case of laser radiation, a similar study has been conducted (Genna, Leone, & 
Tagliaferri, 2017). In the study, the signal characteristics of a 975 nm laser beam through a 
3-mm thick HDPE plate was investigated. It was found that the loss of laser power was as 
follows: 8.7% directly reflected at the surface, 48.6% transmitted through, 39% scattered and 
2.4% absorbed. Compared to (assumedly) halogen light source (Haanstra, et al., 1998), 
where the transmittance of about 0.45 mm thick HDPE plate is around 50%, the benefits of 
laser radiation is clearly seen.  

What needs to be considered is that even though the penetration depth could be in the 
millimeter range, actual detection based on the spectrum is not as clear cut. As such, for 
example in identifying multi-layer films, the reflected signal from the layers beyond the 
surface polymer needs to be strong enough to reach the detector when measuring in the 
reflectance mode. In the next section, research into multi-layer material recognition is 
considered as well. 

3.6 Novel solutions 

Some novel solutions that have been demonstrated to be applicable to the sorting of plastics 

are enumerated next. Most of them have seen use in actual sorting units, while some are as 

of yet only have been demonstrated in the lab scale. 

3.6.1 NIR hyperspectral imaging 

Hyperspectral imaging (HSI), is a natural extension to NIR spectroscopy that allows for both 

the usage of computer vision as well as spectroscopy-based classification algorithms. The 

benefit of fusing these two is illustrated in Figure 2. Instead of identifying, on the PRF 

conveyor belt, single measurement pixels like the regular NIR spectroscope, an image is also 

gathered. From this image, it can be deduced if the object is made of multiple materials, for 

example, a PET bottle with a cap made of PE. Furthermore, if the bottle were surrounded 

with a label sleeve, the computer vision algorithm could be trained to disregard the sleeve 

material and only take into account the underlying bottle material, for example based on the 

total area of the object. 
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Figure 2. Example of hyperspectral image classification. On the left, a false-colour greyscale 

image is shown of the object that was imaged with Specim SWIR (1000 - 2500 nm) 
hyperspectral camera. The spectrum of the area marked with red square is shown on the 
graph at the bottom. On the right, the pixel-wise classification results based on the spectra 
are displayed, with the colour representations given in the legend on the top of the image. As 
can be seen, the bottle is correctly deduced to be made of PET with a PE bottle cap. Image 
courtesy of VTT. 

When it comes to detecting multimaterial objects, HSI has been demonstrated in laboratory 
conditions to be able to distinguish biocomposite materials from plastics and biomaterials 
(Sormunen, et al., 2019). Moreover, the NIR spectrum of the bio-based polymer PLA can be 
used in distinguishing it from 8 other plastics. 

In another study, the classification of multilayer films made of LDPE and PP based on NIR-
HSI was studied (Chen X. , Kroell, Feil, & & Pretz, 2020). The results were promising; the 
spectrum analysis –based algorithm could classify most pixels correctly as belonging to 
either LDPE, PP, or as PP+LDPE. Building on the results, more samples with several layers 
were studied, and the pixel-wise classification accuracy was, on average, 96.3% and 80% for 
two- and three-layer transparent samples, respectively (Chen, Kroell, Wickel, & Feil, 2021). 
Opaque samples were studied as well: for these, the accuracies were quite similar except for 
black coloured patches. Using a highly reflective background increased the accuracy of 
transparent samples by about 6%. However, a drawback in these two studies is that the 
training and test pixels in the hyperspectral images came from the same plastic samples; the 
models should be further validated with an external sample set. 

Some companies manufacture units that utilize HSI instead of the conventional NIR sensor. 
For example, the STEINERT Unisort PR utilizes a line scanning hyperspectral camera, 
allowing for both spectral and spatial data processing. The unit also contains a high-
resolution RGB camera, allowing for efficient computer vision algorithms for object 
recognition (STEINERT). 
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3.6.2 Laser-induced breakdown (or plasma) spectroscopy (LIBS / LIPS) 

LIBS is a rather novel technique in the study of plastics, but recently there has been a huge 
increase in the number of related publications (Liu, et al., 2019), especially in the WEEE 
domain (Costa, et al., 2018). In LIBS, a highly energetic laser is focused on sample surface; 
the material of the illuminated point forms a plasma, and the atoms are excited. As the 
excitation state is relaxed, the excited ions and electrons return to ground state, releasing 
photons whose energy are characteristic to each atom and ion. These photons are captured 
via a detector and a spectrum is formed, from which each individual element can in theory be 
deduced. An advantage of LIBS is that it is not simply a surface probe; as it generates 
plasma, it also ablates the material, allowing for seeing the spectra of material beyond the 
surface. 

The operation of LIBS is quite similar to XRF. However, as XRF can only distinguish heavier 
atoms, LIBS can analyze much lighter elements in addition to the heavy ones. For example, 
LIBS has been demonstrated to be able to distinguish PET, PE, PP and PS from each other 
with an average class accuracy of 91.5% using 30 different plastic samples per class 
(Unnikrishnan, 2013). In another study, accuracies of 91 - 100% was reached for identifying 
ABS & PS, PE, PC, PP and PA classes (Costa, Aquino, Paranhos, & Pereira-Filho, 2017). 
LIBS has also been demonstrated to distinguish dark PVC samples on-line by the means of 
detecting the chlorine peak, correlating very well with the XRF validation measurements 
(Huber, et al., 2014). It shows potential to discriminate between LDPE and HDPE (Costa & 
Pereira, 2020). 

LIBS has also been used in the domain of WEEE sorting, with distinguishing e.g. different 
BFRs and more significantly samples with different concentration of the same BFR from each 
other, with an average accuracy of 100% using principal component analysis and linear 
discriminant analysis (Stefas, Gyftokostas, Bellou, & Couris, 2019); however, the number of 
samples in the test set was rather low, 72 samples in 12 classes. Thus, more data is needed 
to validate the results. 

The Stena Recycling facility in Sweden is the first facility in the world that utilizes LIBS in a 
waste sorting line; they use it for high-speed detection of aluminium (Stena Recycling, n.d.). 
A few companies exist that offer LIBS devices for on-line sorting use, for example Bertin 
Instruments (Bertin Instruments, n.d.), SECOPTA (SECOPTA analytics GmbH, n.d.) and 
STEINERT (Recycling Product News, 2018). 

3.6.3 Raman spectroscopy 

Raman spectroscopy is a method similar to NIR, but instead of a continuous spectrum light 
source, it utilizes a high-intensity laser on a single wavelength. As the sample is illuminated, 
some light is inelastically scattered, resulting in the scattered photons having a lower energy 
than the incoming laser. This shift in energy, called the Stokes shift, is dependent on the 
molecular structure, and shifts occur in varying degrees, producing a spectrum that when 
collected is characteristic of each molecule. Similar to NIR, Raman is a surface probe, and is 
hindered with the same challenges. 

Saimu Corporation in Japan has a demonstration facility that utilizes Raman in on-line 
measurements. They have demonstrated to be able to distinguish between different 
polymers in shredded form, and have shown promise in detecting flame retardants inside the 
polymer matrix as well as identifying black plastics (Kawazumi, Tsuchida, Yoshida, & 
Tsuchida, 2014). The reached sorting purity in the facility is 95%, with a recovery rate of 80% 
(Saimu Corporation, n.d.). Saimu Corporation seems to be the only company that has 
developed an exclusively Raman based sorter for industrial use. 
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Unisensor also has their own sorting units, Powersort 200 and Powersort 360, that utilize 
Raman in tandem with absorption and fluorescence spectroscopy in UV-VIS-NIR range 
(Unisensor, 2017). In the study outlined in section 3.5.2, the Unisensor Powersort 200 was 
also reviewed (4R Sustainability Inc., 2011). The reported accuracy was 98% or higher, and 
the unit can be used for sorting flakes of all polymers. Moreover, it can be used to distinguish 
certain additives, e.g. titanium dioxide inside PET matrix (Unisensor, 2017), as well as able 
to identify some carbon-black plastics (PET and PS but not PP) in the flake form (WRAP, 
2011). 

Raman spectroscopy has been demonstrated to be able to distinguish HDPE-LDPE blend 
concentrations in the laboratory (Silva & Wiebeck, 2019). Moreover, it has been used to 
study a case similar to multilayer material identification. In the study (Nicolson, et al., 2017), 
the maximum thicknesses of transparent PET and opaque PP layers covering a sample of 
liquid ethanol such that the ethanol could still be determined from the spectrum were 
investigated. It was found that using conventional Raman with excitation wavelength 785 nm, 
the maximum thicknesses were 9 mm and 2 mm, respectively. Using spatially offset Raman, 
the maximum thicknesses increased to 21 mm and 9 mm. 

3.6.4 Mid-wavelength infrared (MIR) spectroscopy and MIR HSI 

MIR spectroscopy operates on the same principles as NIR, but with higher wavelengths, 
namely in the range 3000 – 8000 nm. Recently, many different studies have been conducted 
on the applicability of MIR spectroscopy in identifying different black-coloured plastics. 
(Signoret, Caro-Bretelle, Lopez-Cuesta, Ienny, & Perrin, 2020; Becker, Sachsenheimer, & 
Klemenz, 2017; Rozenstein, Puckrin, & Adamowski, 2017) In the studies, several spectral 
features are identified that may be used in identifying different polymers that are dyed with 
carbon black. 

However, only one study provided comprehensive testing via developing a calibration or 
machine learning model with an exclusive validation set. In that study, 280 waste plastic 
fragments containing ABS, HIPS, PE and PP were studied; the gathered MIR hyperspectral 
imaging data of half of them were used for training the algorithm and half for testing the 
developed model. Each class contained around 3000 spectra in training and testing. The F1-
score, i.e. the harmonic mean of precision and recall which is often used to denote model 
performance, was 0.92, indicating a highly accurate model. The tests were conducted using 
lab-based online prototype measurements. (Jacquin, Imoussaten, Trousset, Perrin, & 
Montmain, 2020)  

Apparently, at least one company, Satake USA, manufactures strictly MIR-based sorter units 
(Satake USA, n.d.). 

3.6.5 Tracer-based sorting 

Polymer tracing, or injecting polymers with a tracer material during their processing that can 
later be identified with a sensor, seems to be an emerging technology in the area of waste 
sorting. In a very early study from 2000 (Ahmad, 2000), different polymers (PVC, PP, PET 
and PE) were doped with different UV-fluorescent marker materials. The engineered sorting 
system consisted of a mercury-arc lamp and four wavelength-selective optical units. The 
system could reach a 95% purity; according to the researchers, the 5% error rate is due to 
irregularities in the singulation and air ejection performance, but not the sensor system itself. 

More recent studies have demonstrated that the UV-fluorescent tracers work even with black 
PP plastic, and that some interactions between the polymer and the tracer material may 
result in quenching of the tracer signal. Moreover, it was demonstrated that using pigments 
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with concentrations below 250 ppm does not result in degradation of mechanical 
performance. (Maris, Aoussat, Naffrechoux, & Froelich, 2012) 

A comprehensive study from 2015 (Brunner, Fomin, & Kargel, 2015) studied 4 UV-
fluorescent markers that have an emission signal in the VIS range, on different wavelengths. 
Different coloured technical plastic (polyoxymethylene, acrylonitrile styrene acrylate and 
polybutylene terephthalate) flakes that were doped with a combination of markers were used, 
generating a sample set of 11 different tracer combinations with 1 non-tracer polymer. Each 
of the 12 classes consisted of 5000 – 10000 plastic flakes that were classified according to 
the emitted tracer signal using a linear spectral unmixing algorithm. The results were 
extremely good; average sensitivity and precision were 99.4% and 99.5%, respectively. A 
continuation study utilized 16 classes (15 tracer combinations and 1 non-tracer polymer) with 
around 10000 plastic flakes in each class. The average sensitivity and precision with a more 
advanced classification algorithm were 99.867% and 99.8725%, respectively. (Brunner & 
Kargel, 2016) 

Tracers operating on other wavelengths are available as well. A study from 2020 showed 
that NIR-active materials that fluoresce on the visible wavelengths (so-called up-conversion 
fluorescence) could be detected in HDPE matrix even in concentrations as low as 10 ppm 
when using a highly energetic NIR laser. However, dyeing of the polymer had a crucial effect; 
carbon black quenches the signal, resulting in no detected emission. (Woidasky, et al., 2020) 

XRF has also seen use in tracer-based sorting research. In a study from 2010, PP samples 
were doped with seven different rare earth oxide tracers. Since these tracers contain 
elements of high atomic weight, XRF should be able to distinguish them. It was found that 5 
out of 7 of these materials could be distinguished; the detection limit was 1000 ppm for 1 
minute acquisition time, and 250 ppm for 4 minute measurement. 

Recently, a project called HolyGrail focused on providing a proof-of-concept for of using 
tracer materials in waste sorting facilities. (The New Plastics Economy) Nextek, a company 
in the project consortium, had previously demonstrated the use of UV-fluorescent tracer 
materials on the sleeves of plastic packaging. (Packaging Europe, 2020a) Two different 
tracers were used, one that fluoresced on red and one on blue colour wavelengths. Plastic 
bottles were equipped with the tracer-imbued sleeve and ran through a sorter accompanying 
along with non-tracer bottles. The purity and yield of the red tracer fraction was 98% and 
93%, whereas for the blue tracer fraction the respective percentages were 100% and 88%. 

None of the aforementioned studies have considered the effects and suitability of these 
tracers on food-grade plastics. As such, the safety of these chemicals, particularly ones 
containing heavy elements, should be studied. 

3.6.6 Digital watermarking 

Digital watermarking was also demonstrated in the HolyGrail project. The watermark utilizes 
subtle variations in the packaging, either by embossing the surface of the polymer itself, or in 
slight colour modification of the design of the packaging label. Neither of these features are 
visible to the human eye, but a camera system, equipped with a trained computer vision 
algorithm, can detect the coded information in these slight variations. As such, these 
watermarks were demonstrated on the sorting line to be capable of distinguishing 
watermarked and non-watermarked objects from one another without the use of additional 
tracers or special dyes or colorants. The distinct benefit of the watermark is that the amount 
of information can be huge; polymer type, possible additives, food-grade or non-food-grade 
plastic, bio-based and biodegradability of plastic, the manufacturer, and much more can be 
encoded in the packaging, enabling an IoT-based (Internet of Things) system. (Digimarc, 
2019) However, no accuracies were reported at this stage; a continuation project launched in 
2020, HolyGrail 2.0, aims at developing these methods further. (Packaging Europe, 2020b) 
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3.6.7 Magnetic density separation (MDS) 

As the name suggests, MDS utilizes a magnetic field to distinguish between materials of 
different density. It involves submerging the material to be separated into a liquid containing 
submicron-sized magnetic particles that, under a magnetic field, generate a density gradient. 
Materials with different density are submerged at different levels and thus can be separated. 
MDS has been demonstrated to be rather accurate in separating PE and PP particulates, 
even if their density slightly overlaps (Ragaert, Delva, & Geem, 2017). The method was used 
to separate household PP and PE waste flakes into 3 categories based on their density: 1) < 
920 kg/m3, 2) 920 kg/m3 - 930 kg/m3, and 3) > 930 g/m3. It was found that class 3) contained 
only PE, class 2) approximately 95% PE and 5% PP, and class approximately 1) 6.5 % PE 
and 93.5% PP. (Serranti, Luciani, Bonifazi, Hu, & Rem, 2015) The method may be used to 
further separate the sink-float-fractions in conventional flotation separation. 

There are some commercial separation units available that utilize MDS, for example Liquisort 
(Liquisort, n.d.) and Umincorp (Umincorp, n.d.). Umincorp purports to be able to produce 
streams of HDPE, PP and PET with 99% purity in their facility in Amsterdam. 

3.6.8 Experimental techniques 

Some experimental techniques that have been tested in small scale for plastic sorting and 
separation are listed here. 

3.6.8.1 Magnetic levitation 

Magneto-Archimedes levitation is a relatively novel invention, as the effect was invented in 
1998 (Ikezoe, Hirota, Nakagawa, & Kitazawa, 1998). It was demonstrated to be able to 
separate PS, PET and PMMA two years later (Tsunehisa, Shogo, & Masafumi, 2000). Very 
recently, a more comprehensive study was conducted for waste plastics, namely for 
separating PP, ABS, PA6, PC, PET and PTFE (Zhao, et al., 2018). These plastics were 
shredded to different sized flakes and mixed together. Two-staged separation procedure was 
followed, with two different solvents; the separation results were validated with FTIR. The 
separation purity was 100%, regardless of particle size. 

3.6.8.2 Terahertz imaging & spectroscopy 

Terahertz is a term applied to non-ionizing electromagnetic radiation between the infrared 
and the microwave range; the exact frequency range is debatable, but in the broadest terms 
it can encompass a range of 100 gigahertz to 30 terahertz (3000 - 1 micrometers) . Terahertz 
waves can be used for both spectroscopic and imaging modalities, and has been applied e.g. 
in medical and biological uses (Humphreys, et al., 2004). It has also been applied to the 
study of plastics; for example, it has been demonstrated in the lab to be able to distinguish 
different additives in polypropylene (Wietzke, Jansen, Rutz, Mittleman, & Koch, 2007) and 
identify black-coloured polymers (Nüßler, Pohl, Küls, Hein, & Stein, 2017). There are even 
commercial equipment available for the latter case (Hailu & Saeedkia, 2016). 

3.6.8.3 Fluorescence-based methods 

Innovative demonstrations have been recently done via leveraging the fluorescence patterns 
of plastics. A comprehensive study done in 2019 (Gruber, Grählert, Wollmann, & Kaskel, 
2019) utilized a combination of a UV laser and NIR LED illumination to study 12 different 
plastics, with roughly 400 flakes in each class. The reflectance spectra were captured with a 
hyperspectral camera, and a convolutional neural network was trained based upon the data. 
The study found that the plastics could be classified with an average accuracy of 93.5% 
using support vector machine and convolutional neural network -based algorithms. 
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The decay of fluorescence seems to be also usable in distinguishing polymers from each 
other. For example, using time-resolved fluorescence spectroscopy, it was found that PP, 
PTFE, PA6 and PVDF have a distinct pattern from each other (Gies, Schömann, Prume, & 
Koch, 2020). Fluorescence lifetime can also be used: detecting the nanosecond range, PA, 
PET, PP and PVC show clear differences in their respective lifetimes (Wohlschläger, Holst, & 
Versen, 2020). 

3.6.8.4 RFID tagging 

Radio-frequency identification (RFID) is a well-established technology that has been 
considered for the use of waste plastic sorting as well. In a thorough report (Schindler, et al., 
2012), the use of RFID was reviewed from many different viewpoints, including the potential 
effects to sorting of plastics. In order to be implemented to waste sorting framework, the 
(passive) tags are embedded or printed to the plastic objects, a radio-frequency antenna is 
used to read the tag e.g. in the sorting facility, and the information in the tag with 
standardized format is acquired from a database. As the cost-benefit of embedding RFID 
tags to consumer-use plastic packages is arguably quite poor, the technology has more 
prospects in other areas, such as electronic devices and automotive components. 

 

3.7 Sensor-based sorting units 

Sensor-based sorting is usually done by capturing the response of a material to an 
electromagnetic signal. In addition to this capture, sensor-based sorting units have different 
components to execute the whole separation process. This section compacts the information 
from (Wotruba & Harbeck, 2010) about sensor-based sorting.  

In general, sensor-based sorting consists of four steps: presentation, detection, data 
processing and separation. Presentation means bringing the material stream onto the 
detector field of view such that individual objects can be subjected to the signal. Detection 
consists of emitting the signal from the electromagnetic source and capturing the response 
via the sensor. Data processing is done via computer; in this part, the captured signal is 
digitized and processed by an algorithm that deduces which material it most resembles on its 
reference library which it has been calibrated or trained on. Finally, separation is the process 
of actuating the sorting of individual objects based on the data processing step. Separation 
can be done e.g. with compressed air; the individual particles are blown to different 
chambers.  

Two types of sensor-based sorting units are most popular: the chute type and the belt type. 
In belt type sorters, the sensor is located above a conveyor belt upon which the material to 
be sorted is moving horizontally. In order to actuate the separation, the end of the conveyor 
belt is equipped with air nozzles that span the width of the belt. The sensor usually divides 
the material into two, the eject and the reject. The eject material, when identified by the 
sensor, is blasted with compressed air by the nozzle such that the objects end up in a 
separate receptacle than the reject, which is not blown by air and consequently drops to its 
own receptacle. Belt type sorters have been applied for both whole packaging as well as 
shredded particles. 

In chute type sorters, the material is brought down to fall inside a chute, usually via a 
vibrating conveyor. The sensor is located perpendicular to the chute, and the material is 
detected as it falls down an incline. After the sensor, the chute splits usually into two 
chambers, corresponding to the eject and reject fractions; ejection is actuated by air nozzles. 
Chute type sorters can generally be applied for waste that has been shredded. 
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As is apparent, the timing of separation by compressed air must be calibrated very 
accurately based on either the speed of the conveyor belt or the fall down the chute. The 
spatial accuracy is also key; only the air nozzles on the exact location of the identified object 
must be discharged so as to prevent the ejection of adjacent items. 

In addition to compressed air-based separators, there are also sorters that employ paddles 
to mechanically move the input material to different fractions, or solutions with water jets. 
These solutions are slow and inaccurate compared to pneumatic sorters. Moreover, there 
exist multi-way sorters (sorting into more than two fractions simultaneously) but no research 
seems to have been conducted on evaluating their performance.  

3.7.1 Actuation 

Not only do the sensor and the algorithm affect the sorting material purity and yield in sensor-

based sorting, but actuating the separation also plays a crucial part. Occupation density, i.e. 

how much material is covering the sensor detection zone in the conveyor of the sorter also 

has a great significance. Occupation density and throughput are very highly correlated with 

each other. In the study by (Küppers, Seidler, Koinig, Pomberger, & Vollprecht, 2020), this 

feature was manipulated, and the detection performance based on classifying different 

compositions of 1000 red (reject) and white (eject) LDPE chips with sizes of around 30 mm x 

61 mm was evaluated. The VIS-sensor based sorter utilized a conveyor feeding the material 

down a steep incline, resembling more closely the chute-type sorter than the traditional belt 

type sorting system. Depending on the composition of the 1000 chips, the eject purity 

decreased from 100% to 95% with the high-purity (95% white) case as the occupational 

density increases from 5% to 100%, and with the extremely low purity case (20% white) the 

performance degraded from 95% to 75%. The effect on eject yield was that, on average, 

increasing the occupation density from 5% to 95% caused a dramatic drop from 98% to 25%. 

The performance degradation was due to the errors in the sensor and accompanying 

algorithm (overlapping particles), as well as due to errors in the mechanical actuation 

system. 

A more recent study by the same research group looked into similar effects on a case more 

relevant for plastic sorting: classifying PET and polyolefin (PO) particles with NIR 

hyperspectral imaging using the same chute sorter system. PET was the eject and PO the 

reject, and 18500 - 34500 such particles from a shredder (< 30 mm) were used. The ground 

truth of these particles was known beforehand, and they were first brought to the NIR-HSI 

system to be classified several times (apparently all incorrectly classified particles were 

removed from the sample set) in order to account only for the effects of mechanical 

actuation. Several cases were studied, but an interesting finding was related to the effect of 

input composition to the amount of misclassified reject in the eject stream. The maximum 

throughput of reject PO in the eject fraction was at input PET composition of 30%, and at 

50% the amount was slightly lower than at 20% or 40%. The incorrect classification is 

explained by eject particles (or the compressed) air entraining reject particles as they are 

ejected. The purest fraction, on average, was obtained with 50% PET input composition, and 

the lowest with 5%. As expected from the previous study, the throughput rate had a great 

impact on both the purity and the yield; the higher the throughput rate and percentage of 

reject in the input stream, the lower both. The faster the conveyor runs and the more eject 

there is in the input fraction, the more of the reject there is in the output eject fraction relative 

to the input reject amount, although a saturation seems to be reached at some point. 

(Küppers, et al., 2021) 

Comparing the two studies, what is clear is that the size of the particles seems to have a 

great effect. In the former, the particles (were roughly two times larger than in the latter. With 
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the lowest throughput rate (around 175 kg/h) and different input compositions, the eject 

purities were over 95% with a yield of approximately 98% in all cases in the former study. In 

the latter, with the lowest throughput rate (15 - 20 kg/h), the purity and yield varied from 67 - 

83% and 91 - 99%, respectively, with different input compositions. This would indicate that 

perhaps with whole containers entraining is not a significant factor of impurities. The 

numbers of particles, however, were very different, and as such the results are not directly 

comparable (1000 particles in the former, over 18500 particles in the latter). 

Another study by some of the same researchers looked at the effect of surface roughness 

and moisture of plastic particles on NIR hyperspectral image classification accuracy. They 

used the same sorting unit but a different sensor. It was found that generally the effect of 

these features are very small; increased surface roughness lead to very slight increase in 

classification accuracy due to increased amount of diffused reflectance (thus higher signal-

to-noise ratio on the sensor), while increased surface moisture lead to slightly worse 

classification accuracy. However, increasing the surface roughness lead to some decrease in 

the sliding speed down of low-softening plastics down the incline, leading to errors due to 

wrongly timed discharge of compressed air. (Küppers, Schloegl, Oreski, Pomberger, & 

Vollprecht, 2019) 

In a very recent study, the effect of individual object tracking via computer vision on sorting 

performance was studied. The experimental setup consisted of a chute type sorter with an 

RGB camera. An object tracking algorithm was used to predict the location of each particle 

on the air nozzle bar based on acquired high-speed video of the particles falling down the 

chute. Two tests were conducted: one with two differently coloured wooden plates, and one 

with two differently coloured lentils. The researchers also compared their method to the 

baseline, i.e. using a line scanner with no object tracking, in two configurations: one with a 

small detection window (i.e. only one air nozzle, the one closest to the prediction is 

discharged) or a large detection window (i.e. also adjacent air nozzles are discharged). The 

extended window was used also in the tracking phase by enlarging the bounding box of each 

object. The percentage of particles to be ejected in the 200 gram input stream was 5% in all 

cases, and a throughput rate of around 5 grams / second was used. It was found that, for 

lentils, sorting efficiency increased by 20.19 and 7.11 percentage points, and for wooden 

plates by 11.02 and 1.98 percentage points in the small and large detection window case, 

respectively. (Maier, et al., 2021)  

Similar studies have been conducted for a belt type sorter as well (Pieper, et al., 2016). As 

compared to a line scanner, an area scanner (i.e. a camera) was used to predict the 

movement of different shaped particles (spheres, cuboids and cylinders) on a belt before air 

nozzle separation. The method was based on numerical discrete element modelling, and 

they found that using an area scanner was vastly better in terms of the percentage of false 

positives and false negatives for all shapes. The simulation results were later compared to 

real-life experimental measurements using peppercorns, maize grains and coffee beans; the 

experiments agreed with the modelling quite well. However, simulating these more complex 

particles, the number of true positives and false negatives were slightly higher in the case of 

an area scanner as compared to a line scanner. (Pieper, et al., 2018) 

As all of these studies employed small particles, it is unclear how much movement whole 

containers make, and whether or not this has an effect on the sorting performance. In one 

study, it was recognized that rolling of cylindrical objects on the conveyor belt can degrade 

the sorting performance (Kleinhans, et al., 2021). Flattening of the plastic containers before 

sorting can be used to counter this. 
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As mentioned above for chute sorters, the effects of increasing throughput and input eject 

percentage leading to decreased separation efficiency have been found for particles on belt 

sorters in the domain of mining (Pascoe, Udoudo, & Glass, 2010). Moreover, in this study, it 

was found that the size of particles matters as well: decreasing the particle size leads to 

worse separation efficiency due to increased possibility of reject particle agglomeration to 

and overlapping with eject particles, consequently leading to co-ejection. The effect of 

increased throughput leading to increased probability of overlapping and consequent 

incorrect ejections had been studied before (De Jong & Harbeck, 2005).  

The benefits of computer vision can be significant. The sensor position, of course, plays a 

role; if the sensor is close to the air nozzle separator, the errors due to line scan movement 

predictions are most likely smaller. However, the speed of data processing restricts the 

location; more complex algorithmic operations require more time. In these cases, object 

tracking and motion prediction based on it can be used to increase the performance.  

The pre-processing steps prior to sensor-based sorting has a direct effect downstream. In a 

recent study using the Redwave 2i NIR sorter in a sorting facility, it was found that the yield 

of separated 3D plastics (LDPE, HDPE, PET, PU, PS and PVC) from non-plastics and black 

plastics in streams of mixed municipal and mixed commercial waste increased by 3 - 5 % 

when drum screen and ballistic separation are used in combination before sensor-based 

sorting (Möllnitz, Küppers, Curtis, Khodier, & Sarc, 2021). According to the researchers, this 

is due to the effect of increased friction in the aforementioned pre-processing steps, resulting 

in a decrease of adhesive fines from material surfaces which facilitates sorting due to cleaner 

surfaces of plastic. The sorting purity, however, remained the same. 

3.7.2 Technology readiness level of the solutions 

In the above sections, the state-of-the-art and novel technology solutions for waste sorting 
were listed. Moreover, the actuation performance of sorting units and their bottlenecks have 
been studied as well. In Table 3, a review of sorting units with the aforementioned 
technologies are given. The use cases, the technology readiness levels (TRL) of each 
solution as well as implementation requirements and throughput rate in commercial sorting 
units are listed. As the sorting units are tailored for either whole containers or flakes, the 
throughput rate of both solutions are listed where available. The TRL levels are estimates by 
the authors based on openly available data, and are based on the scale by the European 
Union (European Union, n.d.): 

 TRL 1 – basic principles observed 

 TRL 2 – technology concept formulated 

 TRL 3 – experimental proof of concept 

 TRL 4 – technology validated in lab 

 TRL 5 – technology validated in relevant environment (industrially relevant 
environment in the case of key enabling technologies) 

 TRL 6 – technology demonstrated in relevant environment (industrially relevant 
environment in the case of key enabling technologies) 

 TRL 7 – system prototype demonstration in operational environment 

 TRL 8 – system complete and qualified 
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 TRL 9 – actual system proven in operational environment (competitive manufacturing 
in the case of key enabling technologies; or in space). 

Table 3. Estimated technology readiness levels of each solution in waste sorting units. The 

use cases as well as restrictions, implementation requirements and throughput rates are 
listed as well. The TRL scale is in the range 1- 9. 

Method Use case Restrictions Implemen-
tation 
require-
ments 

TRL Throughput rate 

NIR 
spectro-
scopy 

polymer 
sorting 

not 
applicable to 
black plastics 

already 
available 

9 whole containers: 0.5 
- 10 t/h 
flakes: 0.2 - 9 t/h1 

VIS 
spectro-
scopy 

colour 
sorting 

- already 
available 

9 whole containers: 0.8 
- 10 t/h 
flakes: 0.6 - 6 t/h1 

CCD 
camera 

colour and 
shape 
sorting 

- already 
available 

9 whole containers: 0.5 
- 9 t/h 
flakes: 0.2 - 9 t/h1 

XRF 
spectro-
scopy 

screening of 
heavy 
elements 

requires 
shielding 

already 
available 

9 flakes: for glass, 28 
t/h2 

NIR-HSI polymer 
sorting 

not 
applicable to 
black plastics 

already 
available 

8 whole containers: 15 
t/h3, 10 t/h4 

MIR 
spectro-
scopy 

polymer 
sorting; also 
black 
plastics 

- - 7 purely MIR based 
sorter data not 
available 

MIR-HSI polymer 
sorting; also 
black 
plastics 

- - 7 for sorter units, 
data unavailable;  
flakes (2 x 2 cm): 18 
t/h5  

MDS polymer 
sorting 
based on 
density 

requires 
shredding 
plastics 

requires 
flotation & 
magnetic 
particles 

6 1.5 t/h6 

tracer polymer 
sorting, BRF 
vs no BFR, 
foodgrade 

requires 
redesigning 
packaging 

requires 
VIS or 

6 N/A; same as VIS or 
CCD camera 

                                                
1 (4R Sustainability Inc., 2011) 
2 (REDWAVE (c), n.d.) 
3 (Machinex) 
4 (GreenEye, 2020) 
5 (Specim, 2019) 
6 (Umincorp, n.d.) 
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vs. non-
foodgrade… 

CCD 
camera 

Raman 
spectro-
scopy 

polymer 
sorting 

accurate 
focusing 
needed 

- 6 whole containers: 0.1 
- 0.4 t/h7 
flakes (conventional 
Raman based 
sorters not 
available): 2.4 - 3 t/h 

(Powersort 200), up 
to 10 t/h (Powersort 
360)8 

LIBS polymer 
sorting, 
screening of 
heavy / light 
elements 

accurate 
focusing 
needed; point 
measurement 
only at the 
moment 

- 4 data for plastics 
unavailable;  

for metals: 5 t/h9, 
several t/h10 

water-
marking 

polymer 
sorting, BRF 
vs no BFR, 
foodgrade 
vs. non-
foodgrade… 

requires 
redesigning 
packaging 

requires 
CCD 
camera 

unknown; 
estimation: 
4 

N/A; same as CCD 
camera 

4. Summary 

This report gave an overview of the recycling scheme existing in Finland from the viewpoint of 

post-consumer plastic packaging sorting, a brief review of the state-of-the-art, and a survey on 

novel technologies that potentially can be used to bridge the gaps in the existing sorting 

framework. Moreover, the performance of sensor-based sorting units have been evaluated and 

bottlenecks therein established. 

The limitations of NIR spectroscopy, arguably the most commonly used technique in sensor-

based sorting units in material and plastic recovery facilities, include the inability to identify 

black and multilayer plastics, and the high possibility of false identifications due to label sleeves 

or other materials overlapping the target object. These problems have been shown to be 

solvable using different sensor technologies: the spectrum from black plastics are not 

quenched in the MIR range; multilayer materials can potentially be distinguished using laser-

based methods such as LIBS and Raman spectroscopy; the probability of false identification 

decreases vastly when an imaging-based tool, such as NIR HSI, is used, as the identification 

is not based on a single point spectrum but rather an area of individual spectra spanning the 

whole object. 

                                                
7 (Saimu Corporation, n.d.) 
8 (Unisensor, 2017) 
9 (Toratecnica, 2019) 
10 (Steinert, 2016) 
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On top of problems with the sensor, the actuation performance in sensor-based sorting units 

is also imperfect. The composition of material input to the sorter has a complex effect on the 

separation performance: the yield and purities are very dependent on what percentage of the 

input material is to be ejected by the sorter, as the ejection by pneumatic air may entrain reject 

objects together with the eject. Moreover, the granularity of the material matters as well: the 

smaller the objects, the greater the amount of impurities in the eject fraction. In some cases, 

computer vision may be used to increase the sorting performance: smaller particles may move 

around during the transportation on the conveyor or chute after sensor-based detection and 

localization, triggering the air ejection in incorrect location. Tracking each individual particle 

and predicting their motion has been shown to increase the purity and yield of the output. 

The use of AI methods in classification tasks has been shown to yield great benefits, 

particularly in the case of RGB camera data. Instead of utilizing spectral information, wastes 

of different material can quite accurately be identified based on photographic images using 

convolutional neural networks. The same approach can also be used for sorting based on 

colour. Artificial neural network and machine learning -based models have also been applied 

to spectral data, facilitating better performance as compared to traditional chemometric 

techniques. The use of neural networks, however, requires vast amounts of data for training 

the algorithm, which is often a bottleneck in implementing these solutions. 

For economically feasible performance, the sorting facilities should be able to produce output 

on a rather high rate; the largest facilities in Europe have an annual throughput rate of 80 - 120 

kt. However, as the sorters’ throughput rate are increased, the purity and yield of the sorters 

decrease. As such, it is clear that a compromise has to be made between the output purity and 

the throughput. However, very little research seems to have been conducted in evaluating the 

output and reject fractions of material and plastic recovery facilities around Europe. Conducting 

comprehensive studies in this domain would be beneficial in order to more clearly see where 

and why the current sorting and separation technologies fail. Nonetheless, increasing the 

number of sorters and performing treatments that clean the surface of the individual objects 

are ways to increase the sensor-based sorting performance and ultimately the output of 

recovery facilities in terms of purity and yield, respectively. 

What comes to the sensor solutions, NIR HSI and RGB cameras seem to be the most potential 

in facilitating sorting of post-consumer plastic packaging, as they also allow for high throughput 

in sensor-based sorting units. In addition to the previously mentioned sorting tasks, when 

coupled with tracer or watermarking of plastic objects, RGB cameras can be used for e.g. 

distinguishing between foodgrade and non-foodgrade plastic packaging. NIR HSI can be used 

to expand upon the performance of NIR spectroscopy by tackling some of its inherent 

challenges. The laser-based techniques Raman spectroscopy and particularly LIBS still 

require development in order to be feasible in sensor-based sorting units for plastics, even if 

their benefits in allowing for deeper probing of the object are established. 
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