
This document is downloaded from the
VTT’s Research Information Portal
https://cris.vtt.fi

VTT
http://www.vtt.fi
P.O. box 1000FI-02044 VTT
Finland

By using VTT’s Research Information Portal you are bound by the
following Terms & Conditions.

I have read and I understand the following statement:

This document is protected by copyright and other intellectual
property rights, and duplication or sale of all or part of any of this
document is not permitted, except duplication for research use or
educational purposes in electronic or print form. You must obtain
permission for any other use. Electronic or print copies may not be
offered for sale.

VTT Technical Research Centre of Finland

Constrained Thermochemistry for Process Digitalization
Nappa, Marja; Koukkari, Pertti; Pajarre, Risto; Penttilä, Karri; Nappa, Marja; Blomberg, Peter;
Roth, Andreas; Kangas, Petteri; Koukkari, Pertti

Published: 15/06/2021

Document Version
Publisher's final version

Link to publication

Please cite the original version:
Nappa, M. (Ed.), Koukkari, P. (Ed.), Pajarre, R., Penttilä, K., Nappa, M., Blomberg, P., Roth, A., Kangas, P., &
Koukkari, P. (2021). Constrained Thermochemistry for Process Digitalization. VTT Technical Research Centre of
Finland. VTT Research Report No. VTT-R-01210-20

Download date: 06. Jul. 2022

https://cris.vtt.fi/en/publications/30c2d11f-1ace-4836-992f-beba4f1ee317


RESEARCH REPORT VTT-R-01210-20

Constrained Thermochemistry for
Process Digitalization
Editors: Marja Nappa, Pertti Koukkari

Authors: Risto Pajarre, Karri Penttilä, Marja Nappa, Peter Blomberg,
Andreas Roth, Petteri Kangas†, Pertti Koukkari

Confidentiality: Public

0.650.7
0.75

0.8

H
2S

O
4,

 m
ol



RESEARCH REPORT VTT-R-01210-20
1 (83)

Report’s title
Constrained Thermochemistry for Process Digitalization
Customer, contact person, address Order reference
Janne Viemerö, Business Finland; Antti Roine, Outotec; Matias
Hultgren, Outotec; Camilla Karlemo, Valmet; Sonja Enestam,
Valmet; Kaisa Kiipula, Suomen malminjalostus; Jani Kiuru,
Suomen Malmijalostus; Teuvo Kekko, Sulfator; Risto Aurola,
Sulfator; Erkki Räsänen, Langis; Eero Antikainen, Savonia
Project name Project number/Short name
DeepCleanTech 118887 DeepCleanTech
Author(s) Pages
Risto Pajarre, Karri Penttilä, Marja Nappa, Peter Blomberg,
Andreas Roth, Petteri Kangas†, Pertti Koukkari

83/

Keywords Report identification code
ChemSheet, constraint free energy (CFE), thermodynamics,
multi-phase chemistry, sulphate reducing bacteria, reaction
constraints, Gibbs energy minimization, affinity, extent of
reaction (EOR), phase diagrams, partial equilibria,
supersaturation, oxidation-reduction potentials, lime kiln,
LIFAC, neural networks

VTT-R-01210-20

Summary
The report summaries a set of computational studies applying process digitalization in terms
of thermodynamics, biological modelling and artificial intelligence. The approach is based on
computational chemical thermodynamics with special emphasis on advanced applications of
VTT's unique Constrained Free Energy (CFE) method, the use of which in VTT’s ChemSheet
and KilnSimu software is shortly reviewed.

The present work introduces systematic and automated method to add several reaction
constraints to thermodynamic multicomponent system and thus widens the applicability of
CFE in e.g. biochemical systems, which often have multiple reactions to be constrained. The
developed methodology can be applied also inversely to the addition of equilibrium reactions
to kinetic reaction systems. In addition, the tools of modelling bioprocesses combined with
CFE modelling have been tested using Sulphate Reducing Bacteria (SRB) reactor as an
example process. Moreover, a CFE related constraint deduced from the saturation index is
used to calculate supersaturation conditions in aqueous solutions. The reaction constraint is
further applied for computing oxidation-reduction potentials in non-equilibrium redox systems.

An additional new development of CFE method is its usage to produce phase diagrams for
time-dependent reactive systems using extents of reaction as diagram axis. Applying such
diagrams, the dynamic reaction conditions can be analysed graphically without doing
elaborate and time-consuming kinetic experiments. Moreover, the simulation of time
dependent features related to VTT’s KilnSimu has been advanced with an application
example for lime kiln in kraft recovery process.

Several new thermodynamic mixing models have been implemented to VTT’s ChemSheet
software. These include LIQUAQ and LIFAC electrolyte models to allow for coupling of
electrolyte modelling with various vapour-liquid-liquid and solid phase systems. In addition, a
new approach for computing highly concentrated aqueous solutions is presented by
connecting the Pitzer activity model with the adsorption theory to enable modelling of
aqueous multiphase multicomponent systems covering the range from dilute solutions to the
hydrated salt instead of earlier applicability on diluted or medium concentrated solutions.

Machine learning (two-layer feed-forward neural network model) are applied for predicting
mean activity coefficients for ion pairs in concentrated aqueous solutions. Further, the
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Preface

This report contains the results from Constrained Thermochemistry for Process Digitalization
research at VTT (DeepCleanTech Project 2018-2020). The focus of the study has been in
process digitalization by applying means of computational thermodynamics, biological
modelling and artificial intelligence. The technological approach is based on VTT’s long term
experience in multiphase chemical thermodynamics with special emphasis on new
applications of the internationally awarded Constrained Free Energy method. The report
contains 7 chapters and multiple subchapters which all share the common goal of using
advanced modelling methods to support process industry in deep tech digitalization and
further on to support development of fossil free, environmentally friendly processes with
resilient practices in raw material and energy use. The authors acknowledge Business
Finland – the Finnish Funding Agency for Innovation, the VTT Technical Research Centre of
Finland, Outotec, and Valmet for funding and support this DeepCleanTech project. In
addition, authors would like to acknowledge the support within the steering group from
Finnish Minerals Group, Savonia, Sulfator and Langis.

Espoo 15.6.2021
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Petteri Kangas (1976-2019) in memoriam

This report is dedicated to our beloved colleague Petteri Kangas. We miss you.

Petteri Kangas had a long and prosperous career at VTT in different positions: Senior
Scientist, Team leader and most recently Research Manager. He experienced great respect
amongst his colleagues. Petteri was widely known, and he was valued within VTT as well as

outside of VTT. We miss Petteri and his professionalism and friendliness, his sense of
humour as well his supportive and warm attitude toward others.
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1. Introduction

Process digitalization is central to today’s industrial strategy. In most Finnish industrial
companies’ computational expert systems, such as process advisers, digital twins, training
simulators and extended databases are progressively advanced and used. As a key part of
this development chemical modelling is increasingly utilised for technology improvement,
process operation, customer services and marketing. 

Cleantech business boosts the need to create methods for chemical recycling, management
of non-process elements in process streams and response to the tightening environmental
conditions. During the last two decades a great number of new elements (e.g. technology
metals in the ICT sector) have been introduced in both industry and in consumer products
while the material property data of their compounds and mixtures is missing or inadequate.
At the same time the exponential growth of computer power has introduced new possibilities
for data processing and generation by using means of computational science.

The research hypothesis in DeepCleanTech project was that by combining the deep
understanding of first principle chemical thermodynamic models and modern computational
techniques one can create new hybrid approaches which entails the benefits from both
systems. The investigated research challenges included among the others the development
of advanced methods for modelling aqueous systems for industrial and mining waters to
cover concentration ranges from dilute solutions to precipitation limits; applying dynamic
features in multiphase process modelling systems to exploit the delays in varying time
scales; exploration of biochemical phenomena as a part of thermodynamic system; and
investigate how the novel artificial intelligence techniques can be utilised in process
modelling.

The report consists of seven chapters describing the adopted methods, based on advanced
computational thermodynamics with key focus on contemporary problems in multiphase
process chemistry. In the background chapter, the development history of the advanced
thermodynamic algorithms and software of VTT is briefly reviewed. In Chapter 3 dynamic
chemical systems are considered with three new applications of the Constrained Free
Energy (CFE) technique. Use of CFE to reduction-oxidation (REDOX) potentials in time
dependent systems is introduced and the saturation index (SI) is used as a new constraint in
CFE modelling. It also implies the method to produce phase diagrams for time dependent
reactive systems using the extent of reaction and the non-equilibrium driving force as
diagram axis. In addition, the chapter includes a dynamic lime kiln model as an extension to
the steady-state rotary drum simulator KilnSimu.

Chapter 4 considers modelling of highly concentrated aqueous solutions and brines with new
added data in VTT’s advanced aqueous database. It introduces the combination of
adsorption models (BET, GAB) and Pitzer technique, which enables the modelling of
aqueous solutions from infinitely diluted conditions to highly concentrated (precipitating)
systems. It also presents the coupling of electrolyte models (LIQUAQ and LIFAC) and
thermochemical multicomponent system, which can be utilized to solve vapour/liquid/liquid
equilibrium (VLLE) including complex chemical reactions, solids dissolution and precipitation.

In Chapter 5 biochemical systems in thermodynamic calculations are considered. An
optimization-based algorithm for accelerating the systematic generation of sparse constraints
method is introduced, particularly valuable in biochemistry where multiple reactions need to
be constrained. In addition, the modelling of sulphate reducing bacteria process with its pre-
treatments has been addressed. Finally, Chapter 6 bestows the usage of artificial intelligence
combined with thermodynamic modelling. The prediction of unknown elemental properties by
means of machine learning is suggested and the usage of surrogate models in flowsheet
simulation is presented as a case study.
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2. Background

Mastering of complex chemical and physical interactions is a continuing challenge in process
and materials technology. For the process industries, optimal functionality, saving raw
materials and energy and reducing the environmental impacts are the pertinent goals. In
materials development, their physical and chemical relations are utilised for the purposes of
developing the appropriate structural and operational properties and controlling the durability
under various conditions.

The complexity of contemporary process and materials development is most efficiently
managed by computational technologies. The systematic structure and firm mathematical
basis of chemical thermodynamics is well suited for the computer and data processing, while
the extensive databases of thermochemical and -physical properties of materials offer a first
principles basis for the digitalization. Reliable in-scale models of the real process, often also
called digital twins, can be created by using modern computational thermodynamics.

Conventionally thermodynamic calculation methods are focused on phase changes and on
products of chemical reactions as function of temperature and pressure. The methods in
wide international use are specifically suited for predicting multiphase chemical equilibrium
compositions and for drawing diagrams describing multicomponent phase equilibria. Both
approaches have been extensively used for several decades in chemical technology and
materials science.

In practical processes full equilibria are, however, seldom attained. On the other hand, the
composition of the material being processed is often affected also by other than purely
chemical factors. VTT has developed new breaching algorithms which make use of the
constrained Gibbs free energy (CFE) method and allow for the time dynamics of the
chemical reactions and inclusion of various physical preconditions while performing the
multiphase thermodynamic calculation (Koukkari and Pajarre, 2006; Pajarre et al., 2016).

2.1 Ratemix-algorithm

The coupled kinetic-thermodynamic simulation method provides a unique approach for
quantification of the behaviour of chemical processes in multiphase systems. Its
characteristic feature is the ability to make use of the thermochemical state functions during
the (time) course of a multiphase process by applying dynamic constraints in the free energy
minimizing procedure. In a single algorithm one may deal with all significant factors of the
thermodynamic natural process, describing the dynamic behaviour of a multi-component
system with its complete extensive and intensive state properties. Thus, the virtues of
reaction kinetic methods are combined with those of multicomponent thermodynamics, which
conventionally had been applied but to static (equilibrium) conditions.

With the coupled method, chemical reactors are simulated as time-dependent
thermochemical systems by using sequential constrained minimization of Gibbs free energy,
which combines the known reaction kinetics, reactor-specific mass and heat transfer and
thermodynamic data of the multicomponent reaction mixture. As the first industrial
application, a reactor scale-up at the Kemira Inc titanium dioxide pigment plant, located in
Savannah, United States was performed and the respective algorithm was published
(Koukkari, 1993).

The novel simulation technique was further presented by Koukkari, (1995) as doctoral thesis.
The general applicability of the method presented in the thesis lead to its registration as a
trademark by Kemira Oy, which was enlisted in Finland as Ratemix® (Reg,nr. 129743) and
as computer code copyright in the United States (Reg.nr TXu000603111 / 1993-06-03.
Kemira Inc.).
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Since 1995 the development work continued in VTT, leading soon to publishing and
commercialisation of ChemSheet and KilnSimu software, both of which may apply the
Ratemix algorithm, see Figure 1, (Ketonen et al., 1997; Koukkari et al., 2000). In 1997, the
rights of Ratemix® were transferred from Kemira to VTT Chemical Technology.

Figure 1. Flowsheet of the Ratemix® algorithm

2.2 The thermochemical simulation method

The use of the Gibbs energy approach gives a possibility to utilise the driving force of a
chemical system towards equilibrium in dynamic process models. In Figure 2, a volume
element of a continuous reaction system, interacting with its surroundings is shown. The
system is affected by its thermal conditions (temperature and pressure) as well as by the
chemical processes, which take place within the volume element. In addition, for an inclusive
thermochemical treatment of the system, the heat and mass transfer across the boundaries
of the volume element need to be considered. The governing equations of the continuous
thermochemical system are concisely presented in the Figure 2.

When the process simulation is performed in terms of the chemical potentials of the
constituents of the system (i.e., in terms of minimum Gibbs energy), the obvious advantage
of the method is that one receives the results of the calculation in the form of the
thermochemical state properties. Thus, instead of concentration-volume data, which is
characteristic to conventional equation-of-state or mechanistic models, one gets as a result
consisting of the comprehensive set of state properties, by which the volume element
becomes characterised. Thus, one may follow e.g. the amounts of minor and non-process
compounds or a measurable property such as the oxygen potential in terms of time or in
terms of some other intensive variable, such as temperature or pH value. The state
properties, being scalable homogeneous functions of 1st degree, also allow for robust in-
scale variation when using the model.
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Result Option Unit

Activity

Amount e.g. mol

Chemical potential e.g. J/mol-K

Enthalpy e.g. J

Entropy e.g. J

Gibbs energy e.g. J/K

Heat capacity e.g. J/K

Volume change e.g. dm3

Enthalpy/amount e.g. J/mol

Entropy/amount e.g. J/mol-K

Gibbs
energy/amount

e.g. J/mol

Heat
capacity/amount

e.g. J/mol-K

Incoming amount e.g. mol

Pressure e.g. bar

Temperature e.g. K

Volume e.g. dm3

Figure 2. The volume element of a thermochemical system with its governing equations. The
table gives a list of the state properties, which can be calculated in ChemSheet and KilnSimu
software (Koukkari, 2009).

2.3 Generalisation to other complex systems

The continued research on the Ratemix algorithm soon led to more general approach with
the dynamic constraints applied to other than purely chemical factors, which often have a
major influence on chemical and phase changes (Koukkari and Pajarre, 2006; Pajarre et al.,
2016). The Constrained Free Energy (CFE) method makes use of the Ratemix approach by
generalizing the thermodynamic free energy calculation for systems subdued to different
physical or dynamic work factors (Pajarre, 2016). The incorporation of reaction constraints
into the free energy minimization procedure was also mathematically formalised (Blomberg
and Koukkari, 2011). With CFE it then became possible to handle both time-dependent
kinetics and various physical constraints in the classical thermodynamic calculation routines,
and thus significantly expand the scope of their applications. The published CFE applications
already cover largely the wide field of chemical thermodynamics, ranging from supercritical
and high temperature processes to ambient and sublime conditions and from nanoscale
phenomena to complex industrial systems.

In 2007, Professor Koukkari and Senior Scientist Risto Pajarre were given the Best Paper
Award of the CAPLHAD Journal for publication of the constrained Gibbs energy minimization
method. In 2002, the trademark ChemEner (Reg,nr. 225151) was adapted to cover the
usage of the method in industrial applications.
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Customers for VTT’s advanced thermochemical modelling represent a wide range of
industrial fields including energy and power production, pulp and paper manufacturing,
chemical, metallurgical and steel industries. Many of the technologies have been designed at
a time when advanced computer techniques were not yet available. Modelling has been
found to be a tool of paramount importance when developing new Best Available level
Technologies (BAT) and pursuing for maximum efficiency with minimal environmental and
climate impacts. The unique in-scale features of the Ratemix approach effectively support
both performance improvement of existing processes, refurbishing operational strategies and
development of entirely new process concepts.

The usage of CFE methods has also produced several new openings in material sciences. In
materials technology, the challenge is in most cases the mastering of the structure-property-
performance chain. Advanced thermodynamics often helps to reach practical solutions by its
predictions of work functions in various material combinations, which now can effectively be
simulated by using the generalised Ratemix algorithm.

The computational programs (see Table 1), ChemSheet, KilnSimu and ChemBalas,
developed by VTT have been commercialised in collaboration with the German SME GTT
Technologies GmbH, which markets and distributes thermodynamic calculation software
and databases worldwide. VTT’s ChemSheet software has been a part of this product family
since 1999 with the latest release of ChemSheet2 at 20201. ChemSheet and the simulation
tool for industrial rotary kiln systems (KilnSimu) are being used in more than 20 countries by
both research and industry. In Japan the programs are represented by the Tokyo-based
SME Research Center of Calculational Mechanics, RCCM. In addition, VTT steady state
process simulation software Balas®, developed at VTT over the last 20 years and which
many paper mills, engineering companies and equipment manufacturers currently use, is
featured with multiphase chemical calculations possibilities.

Table 1. Multi-phase thermodynamic software from VTT

Program /
Application

Publishing
year

Main field of application Co-operation
partner

ChemSheet 1998 Generic thermodynamic
software as Ms-Excel Add-in

GTT Technologies
RCCM

KilnSimu 1996 Dynamic and steady state
simulation of counter-current
and co-current rotary kilns

RCCM
GTT Technologies
Elomatic*

ChemBalas 2005 Steady state flowsheet
simulation software Balas®,
supplemented with add on for
multiphase chemical
calculations

GTT Technologies
Kemira

CROM-Simulator 2017 Dynamic and steady state
simulation of smelting furnaces
and shafts

GTT Technologies

*Successor of Process Flow Ltd with the specific coupling of CFD-technology (Fluent-KilnSimu)

1 The use of the dynamic CFE constraints has been implemented into the latest release of FactSage
(version 8.1, May 2021, see www-factsage.com). The program now permits constrained free energy
calculations in its modules EQUILIB, PHASE DIAGRAM, COMPOUND and SOLUTION.
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3. Dynamic and Constrained Thermochemical Systems

3.1 Oxidation - reduction potentials in multicomponent non-
equilibrium free energy models

Risto Pajarre, Pertti Koukkari, Marja Nappa

The oxidation-reduction potential (ORP) is the measurable variable that is frequently used for
follow-up of the conditions in aqueous systems. ORP is dependent on the redox state of the
system and thus a function of e.g. gas composition and temperature. ORP is an intensive
variable that, alongside with solution pH can be locally measured and typically is also
followed during the time course of the chemical and phase changes occurring in the solution.
Conventionally the equilibrium state ORP is defined in terms of the activities (partial
pressures) of oxygen, hydrogen and the solvent water and calculated for a known redox pair
with the Nernst equation, while there has not been a thermodynamically consistent approach
to define the ORP during the time dependent dynamic conditions. By using the constrained
Gibbs energy method, it is however possible to formulate the Nernst equation to include the
contribution from the extent of the known redox reaction so that the ORP can be calculated.
In the following the CFE theory for the time dependent redox system is briefly outlined with a
schematic calculation example.

Consider a typical redox reaction for a metal cation 𝑀𝑒𝑧+ in aqueous media, such as

𝑀𝑒3+ + 𝑒− → 𝑀𝑒2+ (1)

The respective redox potential as function of composition is received with the Nernst
equation

𝐸 = 𝐸0 +
𝑅𝑇
𝑛𝐹

𝑙𝑛 ൬
𝑎𝑀𝑒3+

𝑎𝑀𝑒2+
൰ (2)

where (𝑛 = 1):

𝐸° = −
∆𝐺°

𝐹
(3)

with

Δ𝐺0 = 𝜇0(𝑀𝑒2+(𝑎𝑞)) − 𝜇0(𝑀𝑒3+(𝑎𝑞)) − 𝜇0(𝑒−(𝑎𝑞)) (4)

where 𝜇0(𝑒−(𝑎𝑞)) follows from the hydrogen ion convention

The Gibbs energy of the redox reaction is:

∆𝐺 = 𝜇𝑀𝑒2+ − 𝜇𝑀𝑒3+ − 𝜇𝑒− (5)

Using activities and formally assuming electron as an aqueous species

∆𝐺 = ∆𝐺0 + 𝑅𝑇𝑙𝑛 ൬
𝑎𝑀𝑒2+

𝑎𝑀𝑒3+𝑎𝑒−
൰ (6)
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∆𝐺 = ∆𝐺0 + 𝑅𝑇𝑙𝑛 ൬
𝑎𝑀𝑒2+

𝑎𝑀𝑒3+
൰ − 𝑅𝑇𝑙𝑛𝑎𝑒− = −𝐸 ∙ 𝐹 − 𝑅𝑇𝑙𝑛𝑎𝑒− (7)

At equilibrium ∆𝐺 = 0 and thus

𝐸 = −
𝑅𝑇
𝐹

𝑙𝑛𝑎𝑒− (𝑒𝑞𝑢𝑖𝑙𝑖𝑏𝑟𝑖𝑢𝑚) (8)

For the non-equilibrium condition, one has respectively

𝐸 =
−∆𝐺

𝐹
−

𝑅𝑇
𝐹

𝑙𝑛𝑎𝑒− (𝑛𝑜𝑛_𝑒𝑞. ) (9)

Now, the ∆𝐺 equals the affinity (driving force) of the redox process and becomes computed
as the respective constraint potential 𝜋𝑅. Using component potentials (𝜋𝑗 for each component
j) for ∆𝐺 there is:

∆𝐺 = 𝜋𝐹𝑒 − 2𝜋𝑒− + 𝜋𝑅 − ( 𝜋𝐹𝑒 − 3𝜋𝑒− + 𝜋𝑒−) = 𝜋𝑅 (10)

The constraining component R has thus been applied onto the 𝑀𝑒2+ species (actually on all
respective species containing divalent 𝑀𝑒 in the multicomponent system) and appears as
one component in its chemical potential. At equilibrium 𝜋𝑅 equals zero.

Finally, the redox potential from the constrained Gibbs energy calculation then is

𝐸 =
−𝜋𝑅

𝐹
−

𝑅𝑇
𝐹

𝑙𝑛𝑎𝑒− (𝑛𝑜𝑛_𝑒𝑞. ) (11)

One should note that the activity of aqueous electrons also depends on the changing internal
state of the system during the redox process and thus corresponds the constant ORP-value
determined for each intermediate state in the constrained Gibbs energy calculation. As both
terms for such intermediate states become calculated in the CFE method it becomes viable
to predict non-equilibrium redox potentials and produce respective (phase) diagrams by
using appropriate Gibbs energy minimization routines.

By using the concurrent phase diagram software, such as FactSage, equilibrium diagrams
for the multicomponent aqueous systems can be drawn. In such diagrams the constant
values of pH and ORP as Eh can be presented in the form of iso-pH and iso-Eh lines. The
redox potential as Eh is calculated by using the convention that E(H+H2) = 0 at all
temperatures (e.g. Pelton & al 2018):

𝐸ℎ = −
𝑅𝑇
𝐹

𝑙𝑛𝑎𝑒− = ൬
2.303𝑅𝑇

𝐹
൰ ൫0.25𝑙𝑜𝑔𝑃(𝑂2) − 𝑝𝐻 − 0.5 𝑙𝑜𝑔𝐾 + 𝑙𝑜𝑔𝑎(𝐻2𝑂)൯ (12)

where

𝐾 = 𝑃(𝐻2)𝑃(𝑂2)½/𝑎(𝐻2𝑂) (13)

The respective nonequilibrium redox potential can further be received by using equations
(11) and (12). The solution allows for e.g. contour 𝑇, 𝑥 -diagrams with E or pH as parameter
( being the extent of the redox reaction, see Figure 3). Respectively, the aqueous phase
diagrams can be presented with  as the axis variable as shown in Figure 4. The schematic
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diagram is calculated by using the phase diagram module of FactSage software. While the
thermodynamic data available for the new CFE calculations in FactSage is not fully
consistent, the Y-axis (partial pressure of oxygen) is normalised to present an arbitrary range
−1.5 < 𝑦 < 1. However, the schematic diagram shows both the iso-Eh lines calculated by
equation (12) and the isoactivities of the reduction component (R). As the potential 𝜋𝑅 can
directly be deduced from the latter, the diagram could also be used to present the ORP-
values as iso-E lines when superposing the two iso-factors by equation (11). Practical
introduction of such diagrams will yet require appropriate databases to be developed for the
present day phase diagram software, so that the said ORP variables may be included in the
calculation as a typical conjugate pair of the intensive and extensive properties (Pajarre et
al., 2021, to be published).

Figure 3. Aqueous phase: Scheme calculation of ORP (A) and pH values (B) in a
𝑀𝑒3+ , 𝑀𝑒2+-redox system as function of temperature and extent of the redox-reaction. EOR
related to equilibrium reduction.
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Figure 4. Aqueous phase diagram (50 °C; schematic) drawn for a constrained 𝐹𝑒3+, 𝐹𝑒2+

redox system in 1.5 mol/kgH2O sulfuric acid with extent of the reduction reaction as X-axis, Y-
axis normalised not-to-scale. Content of Fe ca. 0.09 mol/kgH2O and Na2SO4 0.05 mol/kgH2O.
Iso-Eh-lines calculated by FactSage, iso-activities of the constraining reduction component
are also shown. The continuous red line indicates the phase boundaries at redox equilibrium
with the condition 𝑎(𝑅𝑛)  =  1, 𝑎(𝑅𝑛) being the activity of the virtual reduction component.
The red line also limits the physical range of the diagram set by the requirement that
𝑎(𝑅𝑛)  ≤  1.
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3.2 SI as constraint in thermodynamic modelling – supersaturation
in respect to gypsum

Marja Nappa, Pertti Koukkari, Risto Pajarre, Petteri Kangas†

Undesired scaling on equipment surfaces and heat exchangers is often a persistent problem
in industrial water systems, such as petroleum production line or cooling water systems
(Abd-El-Khalek et al., 2019). Fouling and scaling is the most serious challenge for
widespread implementation of membrane processes, desalination processes as well on
membrane treatment of mine water (Guo et al., 2012; Kyllönen et al., 2016) causing higher
operating and membrane replacing costs. Calcium forming CaCO3 or CaSO4 scale is one of
the cations that account for most of the precipitates (Guo et al., 2012). Scaling is a general
problem in NF and RO filtration, but it is especially a problem at metal sulphide mines where
the amount of sulphate in downstream processes is high (Kyllönen et al., 2016).

The understanding of fouling phenomena is the key to control and solve the fouling
problems. The fouling is affected by aqueous solution characteristics, such as temperature,
pH and composition. One successful method for handling scales is pH control, but not for the
control of gypsum scaling due to weak pH dependence of gypsum solubility. Scale inhibitors,
i.e. antiscalants have been used widely to control gypsum scaling (Kyllönen et al., 2016).
Commonly used antiscalants, such as organic polymers, surface active reagents, organic
phosphonates and phosphates, interfere with the kinetics of crystal nucleation, formation and
growth (Shenvi et al., 2015).

In contact with water three phases of calcium sulphate can crystallise: gypsum, anhydrite,
and hemihydrate. Solubility curves modelled with Chemsheet of these three phases are
shown in Figure 5. At the given temperature the solid phase with lowest solubility represents
the stable phase. However, due to slow crystallization kinetics the solubility of a certain
phase can be extended into the metastable temperature, when there are no nuclei of stable
phase present (Freyer and Voigt, 2003).

Thermodynamic equilibrium calculations, generally, allow the calculation of thermodynamic
equilibrium based on minimization of Gibbs energy. In calculation programs (e.g.
ChemSheet, FactSage) phases can be excluded from calculations, which can be used to
prevent certain solid phase to form. The constrained Gibbs free energy method enables the
reaction to proceed upto certain desired extent. CFE method makes use of complementary
conservation conditions for selected immaterial properties in addition to the conservation of
molar amounts of the physical system components (Koukkari et al., 2018; Pajarre et al., 
2018).

The methodology to utilise the reaction affinities of constraining reaction as part of the
constrained thermodynamic model is presented by (Koukkari et al., 2018) and applied
successfully on methanation process by (Kangas et al., 2017). In aqueous solutions, a typical
measure of deviation from equilibrium is saturation index (SI). The aim of this study is to
provide a practical approach to model supersaturation of minerals in industrial waters by
using the similar approach for supersaturation of calcium sulphate than (Kangas et al., 2017)
uses in high temperature problems. Simultaneously, the study illustrates the methodology for
utilizing SI (saturation index) as part of constrained thermodynamic model.

3.2.1 Methods

The modelling approach is based on the constrained free energy technique (CFE), which is
extending the calculation of thermodynamic equilibria by introducing additional virtual
constraints to the chemical system. Saturation index (SI) is used as a basis for constraints
with similar approach than presented for thermodynamic affinity (Kangas et al., 2017;
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Koukkari et al., 2018). CFE method is used within ChemSheet to calculate the local
equilibrium state. The equilibrium data is based on VTT’s advanced aqueous database
(Pajarre et al., 2018).

Reaction equations of precipitation of gypsum and anhydrite formation are as follows:

𝐶𝑎2+ + 𝑆𝑂4
2− + 2𝐻2𝑂 ↔ 𝐶𝑎𝑆𝑂4 ∙ 2𝐻2𝑂 (r1)

𝐶𝑎2+ + 𝑆𝑂4
2− ↔ 𝐶𝑎𝑆𝑂4 (r2)

Thermodynamic equilibrium is defined by equilibrium constant K. For gypsum dissolution that
is

𝐾 =
𝑎𝑒𝑞,𝐶𝑎+𝑎𝑒𝑞,𝑆𝑂4

2−൫𝑎𝑒𝑞,𝐻2𝑂൯2

𝑎𝑒𝑞,𝐶𝑎𝑆𝑂4∙2𝐻2𝑂
(14)

Where a indicate activity in saturation state. Thus, the activity of solid phase is one, the
solubility product can be written:

𝐾𝑆𝑃,𝑔𝑦𝑝𝑠𝑢𝑚 = 𝑎𝑒𝑞,𝐶𝑎+𝑎𝑒𝑞,𝑆𝑂4
2−൫𝑎𝑒𝑞,𝐻2𝑂൯2 (15)

When the solution is not in equilibrium, ion activity product can be calculated respectively to
solubility product.

𝐼𝐴𝑃𝑔𝑦𝑝𝑠𝑢𝑚 = 𝑎𝐶𝑎+𝑎𝑆𝑂4
2−൫𝑎𝐻2𝑂൯2 (16)

Saturation Index (SI) is a criterion to see if the solution is unsaturated SI < 0, saturated SI =0
or supersaturated SI > 0. Saturation ratio (SR) is the ratio of ion activity product to solubility
product. Solubility product is obtained in the saturation state of system and ion activity
product in the real state of system. (Doubra et al., 2017)

𝑆𝐼 = 𝑙𝑜𝑔 𝑆𝑅 = 𝑙𝑜𝑔
𝐼𝐴𝑃
𝐾𝑆𝑃

(17)

To the anhydrite KSP and IAP are following

𝐾𝑆𝑃,𝑎𝑛ℎ𝑦𝑑𝑟𝑖𝑡𝑒 = 𝑎𝑒𝑞,𝐶𝑎+𝑎𝑒𝑞,𝑆𝑂4
2− (18)

𝐼𝐴𝑃𝑎𝑛ℎ𝑦𝑑𝑟𝑖𝑡𝑒 = 𝑎𝐶𝑎+𝑎𝑆𝑂4
2− (19)

The constrained gypsum formation is elaborated here in more detail. The main species
included in the modelled system are H2O, CaSO4, Ca2+(aq), SO4

2-(aq), CaSO4∙2H2O and
CaSO4, hemihydrate is set dormant. This simplified chemical system is then expressed in a
form of a stoichiometric matrix, A. However, the system is not in equilibrium, and thus an
additional constraint is added to the matrix. This enables the calculation of local equilibrium
and resulting as the extended stoichiometric matrix shown in equation (20). The system
components (Ca, S, O, H) and virtual component (constraint) c1 and the applied constituents
and virtual phase (reaction of gypsum formation) rG are illustrated beside the matrix for
clarity.
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𝑨 =

𝐶𝑎2+ 𝑆𝑂4
2− 𝐻2𝑂 𝐶𝑎𝑆𝑂4 ∙ 2𝐻2𝑂 𝐶𝑎𝑆𝑂4 𝑟𝐺

𝐶𝑎
𝑆
𝑂
𝐻
𝑐1 ⎣

⎢
⎢
⎢
⎡

1 0 0
  0           1           0
  0           4           1

1 1 0
          1           1           0
          6           4           0

0 0 2
0 0 0

4 0 0
1 0 1 ⎦

⎥
⎥
⎥
⎤

(20)

The Gibbs energy change of reaction r can be written

∆𝑟𝐺 = ∆𝐺° + 𝑅𝑇 𝑙𝑛(𝑄𝑟) (21)

or for aqueous solution

∆𝑟𝐺 = ∆𝐺° + 𝑅𝑇 𝑙𝑛(𝐼𝐴𝑃) (22)

where ΔrG, ΔG°, R, T and Qr are Gibb’s energy change due to reaction, molar gas constant
8.314 JK-1mol-1, temperature, and reaction quotient, respectively.

In equilibrium Gibbs energy change ∆𝑟𝐺 = 0 and 𝐼𝐴𝑃 = 𝐾𝑆𝑃, and thus ∆𝐺° = −𝑅𝑇 𝑙𝑛 𝐾𝑆𝑃

∆𝑟𝐺 = −𝑅𝑇 𝑙𝑛(𝐾𝑆𝑃) + 𝑅𝑇 𝑙𝑛(𝐼𝐴𝑃) = 𝑅𝑇 𝑙𝑛(𝐼𝐴𝑃 𝐾𝑆𝑃⁄ ) (23)

The reactions r1 and r2 were defined in opposite direction to the solubility and ion activity
product, thus Gibbs energy change for precipitation reaction is

∆𝑟𝐺 = 𝑅𝑇 𝑙𝑛 ൬
1

𝐼𝐴𝑃
1

𝐾𝑆𝑃
൘ ൰ = 𝑅𝑇 𝑙𝑛(𝐾𝑆𝑃 𝐼𝐴𝑃⁄ ) (24)

Affinity of a reaction is given with opposite sign of the Gibbs energy change.

𝔸 = −∆𝑟𝐺 = 𝑅𝑇 𝑙𝑛(𝐼𝐴𝑃 𝐾𝑆𝑃⁄ ) = 𝑅𝑇 𝑙𝑛(𝑆𝑅) (25)

Affinity can be also defined based on chemical potentials of components and chemical
potentials of the virtual components.

𝔸 = 𝜋𝐶𝑎 + 𝜋𝑆 + 4𝜋0 + 4𝜋𝐻 + 2𝜋𝑂 − 𝜋𝑐 − 𝜋𝐶𝑎 − (𝜋𝑆 + 4𝜋0) − (4𝜋𝐻 + 2𝜋𝑂) = −𝜋𝑐
= −∆𝑟𝐺 (26)

Using the minimization of Gibb’s energy to solve πc and defining the virtual constituents to
have zero standard chemical potential at all temperatures (𝜇𝑟

𝑜0),  it follows that  the affinity
and saturation index  of particular reaction is connected to chemical activity ar of virtual
phase for respective constrained reaction r,

𝔸 = −𝑅𝑇 𝑙𝑛(𝑎𝑟) = 𝑅𝑇 𝑙𝑛(𝑆𝑅) ; 𝑎𝑟 = 1 10𝑆𝐼⁄ (27)

The chemical activity of virtual phases defined above can conveniently be used as an input
parameter of ChemSheet models (Kangas et al., 2017) where constraints are applied for
calculating the constrained local thermodynamic equilibrium.

3.2.2 Results and Discussion

As the first example for the calculation of SI to be used as constraint in thermodynamic
calculation the metastable state of anhydrite and gypsum were studied. The solubility of
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gypsum and anhydrite is shown in Figure 5. Above the transition temperature (~45°C)
gypsum is metastable and its solubility is higher than that of anhydrite. Below the transition
temperature anhydrite is metastable and its solubility is higher than that of gypsum. The
system is also illustrated by using true aqueous phase diagram produced using the
methodology presented in (Pelton et al., 2018). In this example it is assumed that there is no
precipitation between the solubility lines and SI for stabile phase is calculated from equations
(15), (16) and (17) using VTT:s aqueous database. The calculated SIG values for gypsum
below transition temperature and SIA values for anhydrite above transition temperature are
shown in Figure 7. Similar procedure is performed for above transition temperature where
the anhydrite is assumed to be in metastabile state and not precipitate before gypsum
solubility line. The linear model is fitted for SI = a T [°C] + b with good agreement. R value is
over 0.99 for both SIG and SIA. Table 2 illustrates the SI model parameters.

Figure 5. Gypsum, anhydrite and hemihydrate solubilities between 0 and 120 °C.
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Figure 6. Phase diagrams of CaSO4-water system. Solid lines: the equilibrium conditions
including gypsum-phase and dashed lines: the metastable solubility limit of CaSO4 anhydrite
(no gypsum-phase).

Figure 7. Saturation index (SI) as a function of temperature.
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Figure 8. Saturation index as a function of different antisclant dose. (data from Zeino et al.,
2018)

Table 2. Applied constraints and their model parameters.

Model
equation

a b c R2-value

ChemSheet SIG = ax + b -0.00744 0.3230 - 0.991
ChemSheet SIA = ax + b 0.00781 -0.3687 - 0.999
Zeino et al. mix 1 SIG = ax 0.0219 - - 0.971
Zeino et al. mix 2 SIG = ax 0.0645 - - 0.828
Zeino et al. mix 3 SIG = ax 0.0996 - - 0.996
Zeino et al. mix 4 SIG = ax 0.0378 - - 0.992
Zeino et al. mix 5 SIG = ax 0.0580 - - 0.950
ChemSheet SIG2 = ax2 +

bx + c
5.65E-5 -9.98E-3 0.342 0.999

When comparing the predicted values by the SI-models and experimental values from the
literature and those generated by ChemSheet, there were good agreement for the aqueous
Ca. The relative error of measured vs. modelled points is in all cases under 10%, as
illustrated in Figure 9

The first model for SI was a simple linear fit, however for more accurate results the more
detailed model may be used. E.g. by using polynomial fit for SIG (SIG2, Table 2) the results
are more accurate (see Figure 9), R2 value is 0.999 compared to earlier 0.991, however also
a new model parameter is introduced.

The Ca2+ molality as a function of temperature is printed in Figure 10, while using produced
SIG as a constraint. The curve agrees well with results which can be calculated by setting
gypsum as dormant phase in ChemSheet. Experimental data for the figure is taken from
(Møller, 1988). Illustration of the use of SIA is also shown in Figure 10 producing the curve
corresponding situation where anhydrite is set as dormant.

The data related to different antiscalant usage are often hidden information measured by
antiscalant manufacturers, however with a wider dataset the SI model could take into
account both temperature changes and the antiscalant addition would be possible to fit.
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Figure 9. Aqueous Ca2+, ChemSheet calculation of solubility of metastabile form (CaSO4 or
CaSO4∙2H2O) or measured value vs. SI modelled value.
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Figure 10. Dissolution of gypsum (blue) and anhydrite (red). Dashed lined SI-model results,
solid lines ChemSheet results while other forms of calcium sulphate are set dormant.
Experimental data is obtained from (Møller, 1988). Polynomial fit for SIG2 is used.

3.2.3 Conclusions

The applicability of methodology presented for modelling supersaturation in aqueous
solutions is evaluated against theoretic data and literature data. The usage of saturation
index SI as constraint in CFE calculations for modelling the supersaturation of aqueous
solutions process seems feasible. When comparing the predicted values by the SI-
constrained models and experimental values from the literature or values calculated with
ChemSheet, relatively good agreement for dissolved calcium is obtained.

The developed method may provide a practical and relative straightforward method to model
e.g. mine waters, where there are some natural inhibitors for scale formation or when
commercial antiscalants are used. If the certain mine water SI is known or modelled as
function of e.g. antiscalant dose the composition of the solution can be calculated using the
presented methodology.
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3.3 Dynamic lime kiln model

Karri Penttilä

Rotary kilns are used in several industries. The rotary kiln provides an efficient means for
both heat and mass transfer in the processing of slurries and other condensed mixtures.
Pigment and cement manufacturing industries among others are using rotary kilns for the
thermal treatments of various materials. In the chemical recovery of Kraft pulping rotary kilns
are applied for lime recycling.

A steady-state rotary drum simulator KilnSimu developed in VTT has been successfully used
for these and other chemical systems (Meyer et al., 2016). KilnSimu is a versatile simulation
software that can handle several different kinds of rotary kiln applications with chemical
systems consisting of hundreds of phases and species. Optimization of rotary kilns will
benefit from appropriate simulation models, which include accurate description of the
chemical and physical processes inside.

As a steady-state simulator, KilnSimu is suitable tool for solving energy and mass balances
of the kiln for known feed rates and compositions to find out the distribution of elements
between the outgoing bed and gas flows. For example, it can be used to study how switching
from traditional fossil fuel to alternative fuel would affect the internal chemical reactions as
additional alkali elements in the new fuel can and in many cases will cause unwanted
accumulation and enrichment of alkali sulphates and chlorides into the process. However,
there is also a demand to study the delay between the changes in the model inputs and
outputs. Residence times of the bed in kilns are typically from tens of minutes to several
hours and longer time-delay in a process increases the difficulty of controlling it. Controlling
such processes with high order dynamics and large time constants and time-delays might
require a predictive control strategy using an accurate model of the process. Ultimately, a
dynamic version of KilnSimu could be used for such a model. It could also be used as a
teaching tool for the process operators.

3.3.1 Model

In KilnSimu, heat and mass transfer are assumed to occur in radial direction. An axial plug
flow model is used for both the bed and gas flows. The unknown variables are the
temperatures of the bed, gas, inner and outer wall, and the flow rates of the bed and gas
species. The volume elements of the bed and gas are described as open thermochemical
systems, which transform heat and mass with each other. The equilibrium states of the
volume elements are calculated by minimizing their Gibbs energy and by taking into account
the heat and mass transfer between the elements and their surroundings. The time-
dependent reactions in the bed and the gas flow are considered in the Gibbs energy
minimization by constraining the fractions of phases taking part in the equilibrium calculation
(e.g. inert and reactive parts). The Gibbs energy minimization is done by calling routines in
the ChemApp library (Petersen and Hack, 2007).

The unknown variables are determined at discrete reference points called calculation cells or
nodes. Each cell represents a certain volume, and its temperature and composition are a
measure of the average properties of that volume. The counter-current flow system in the kiln
comprises a so-called two-point boundary value problem with a fixed boundary. It is solved
iteratively until the composition and the temperature profiles of the bed and gas flows
converge within a given tolerance.
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Figure 11. General KilnSimu flowsheet.

The dynamic version of KilnSimu uses similar approach and same set of heat transfer
equations as the steady-state version (Meyer et al., 2016). The main difference being the
switch from steady-state solver to a dynamic one. Also, the kinetic model have been updated
and a new particle model has been added in order to include several potentially different raw
materials represented as discrete particles not being able to interact with each other until
reaching higher temperatures and formation of melt phase.

3.3.1.1 Kinetic Model
Kinetics controls how fast individual phases are allowed to react to products and equilibrium
calculation determines what these products are. In KilnSimu, for each time step reaction
kinetics is used to determine the fractions of each phase that are allowed to react (reactive
part). These are then taken into equilibrium calculation to determine the reaction products.
Other part of phases are kept inert (inert part). After the equilibrium calculation, reactive and
inert parts are combined again as one. General differential equation for the conversion is
given as:

𝑑𝛼
𝑑𝑡

= 𝑘𝑓(𝛼) = 𝐴0𝑒−𝐸𝑎 𝑅𝑇⁄ 𝑓(𝛼) (28)

where k is the reaction rate coefficient calculated with Arrhenius equation and  is the
conversion of the reactant/phase:

𝛼 = 1 −
𝑐𝑡

𝑐0
(29)

where c0 is the initial/maximum mass of the reactant/phase and ct is its current/local mass.
Several kinetic models are supported (see Table 3).
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Table 3. Examples of supported kinetic models.

3.3.1.2 Particle Model
The particle simulation model can include one or more particles (1 to 5), all of which have
same set of size classes (1 to 15). Size class refers to particle size between fixed minimum
and maximum diameters (average being the value in the middle). Particle size distribution
(PSD) is then represented as mass fractions of these particle size classes. Furthermore,
each particle can contain any set of phases and compositions. Constrained equilibrium is
calculated separately for each particle including interaction with the surrounding gas.
Growing and shrinking models allows changes in the particle size distribution. Sintering
model allows particles to interact with each. For example, formation of clinker nodules out of
lime, silica and oxide melt in the cement production.

3.3.1.3 Dynamic Algorithm
Rotary kiln is divided axially into calculation nodes for the bed and gas sides - one node for
both the bed and the gas in any axial position.

A. At start the kiln is filled with charge with given composition and temperature, for
example at room temperature for simulating a cold start of the kiln.

B. For each subsequent time step (optimally same as bed residence time in node):

1. Starting from gas feed end: bed, gas and wall temperatures and bed and gas
compositions are solved iteratively. Solved gas outlet flow from the node is taken
as inlet to the gas side in the next node so effectively gas side is assumed to
obtain steady state during each time step. This simplification can be justified as

 Contracting area R2

 Contracting volume R3

 1-D diffusion D1

 2-D diffusion D2

 3-D diffusion D3

 First-Order F1

 Second-order F2

 Third-order F3

 Kinetic Model

 Power law P2

 Power law P3

 Power law P4

 Avrami-Erofeyev A2

 Avrami-Erofeyev A3

 Avrami-Erofeyev A4
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the residence time of the gas inside the node is normally more than 100 times
less than that of the bed.

2. Only after all nodes are solved, bed is moved forward to the next node (and last
node is moved out of the kiln.)

3. Go to next time step (B.1) until end time / maximum number of time steps has
been reached.

3.3.2 Lime Kiln Application

Recausticizing is part of the recovery process in a kraft pulp mill. In the recovery process,
cooking chemicals NaOH and Na2S are regenerated. The process involves a reaction turning
CaCO3 to CaO, which occurs in the lime kiln. The reaction is endothermic and requires a
significant amount of energy. To provide this energy, a fuel must be burned in the kiln.

Figure 12. Chemical recovery process and lime kiln.

Lime kilns are often the last place in a pulp mill where fossil fuels are used, but recently, it
has become more common to use fossil-free options in the lime kilns as well, making pulp
mills completely fossil-free. Some alternatives to methane and fuel oil are wood powder,
biomass-based oil and biomass-based gas (Francey et al., 2009).

NPEs are elements not directly associated with the recovery reactions. In a pulp mill, most of
the NPEs originate from the wood raw material, but a part of these elements may also
originate from the alternative fuel as the bark gasification gas. Especially phosphorus,
magnesium, and silicon are suspected to increase in burned lime if a bark-based product gas
is fired in the lime kiln, although some of the ash in bark is removed from the gasifier through
its bottom ash. The NPEs are unwanted, because they may enrich in the recausticizing cycle
and cause different problems, such as a decrease in causticizing efficiency and lime mud dry
solids content.

This first version of the dynamic model is used for solving the temperatures and reactions for
the main components in the lime mud feed. However, in the future the dynamic algorithm will
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be improved so that also number of minor NPEs could be included (without increasing the
overall simulation time too much) so that their enrichment could also be studied as function
of time (for period of several days). Moreover, other low temperature, aqueous processes in
the recovery cycle such as smelt dissolving, slaker and causticizer could be included.

3.3.3 Simulation Results

Simulations have been made for a general lime kiln. The selected lime mud composition
contains only the main components to make the simulations faster. Altogether nine elements
are included. Thermodynamic data-file contains 83 chemical species composed of these nine
elements (60 in gas phase and 33 pure condensed phases). Table 4 shows the used input
parameters.

Table 4. Model input parameters

Figure 13 shows the calculated bed temperatures as function of axial position of the kiln and
time step number (time step numbers cover period from zero to eight hours).
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Figure 13. Bed temperature as function of position [m] and time step number (from zero to
eight hours).

Figure 14 shows the calculated temperature profiles in axial direction at eight hours (at the
end of the simulation).

Figure 14. Calculated temperature profiles in axial direction at eight hours.

Figure 15 shows the calculated bed composition profiles for the main phases in axial
direction at eight hours (at the end of the simulation). Lighter green curve is limestone in lime
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mud and dark green curve is the formed the lime. Water (yellow curve) in the lime feed is
vaporised in the first three nodes. Residual limestone in the product is 6 mass-%.

Figure 15. Calculated bed composition profiles for the major phases in axial direction at eight
hours.

Figure 16 shows the calculated bed composition profiles for the minor phases in axial
direction at eight hours (at the end of the simulation).

Figure 16. Calculated bed composition profiles for the minor phases in axial direction at eight
hours.
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Hydroxyapatite (dark grey curve) is the most prominent of the minor phases and it is
practically stable throughout the kiln. Magnesite (blue curve) is decomposed to magnesium
oxide (dark blue curve) and carbon dioxide gas. Sodium sulphide (red brown curve) and
sodium hydroxide (yellow brown curve) seem first to react to solid and then to liquid sodium
carbonate (light green and orange brown curves) and finally to sodium sulphate (dark red
brown curve) as the temperature is increased. In addition, some calcium sulphide is formed
(dark yellow brown curve) but this may be incorrect, and it can be prevented by eliminating it
from the set of stable phases. The thermodynamic model did not contain any liquid slag or
salt solution phases, and this could have affected the formation of liquids.

Figure 17 shows temperature and limestone/lime profiles calculated with the steady-state
version of KilnSimu as a reference for a similar case also using natural gas as fuel.

Figure 17. Temperature and limestone/lime profiles calculated with the steady-state version
of KilnSimu.

3.3.4 Conclusions

Dynamic version of the KilnSimu has been made and used to simulate a general lime kiln in
the chemical recovery of the Kraft process. This first version of the dynamic model was
primarily used to solve the temperatures and reactions for the main components in the lime
mud feed. However, in the future the dynamic algorithm will be improved so that also large
number of minor NPEs could be included so that their enrichment in the process could be
studied as function of time. Moreover, other low temperature, aqueous processes in the
recovery cycle such as the smelt dissolver, the slaker and the causticizer will be included.
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3.4 Phase diagrams using affinity and extent of reaction as axis
variables

Pertti Koukkari and Risto Pajarre

A method where conjugate pair of the driving force (affinity, 𝐷) and extent of reaction (EOR,
) are used as axis variables to present non-equilibrium conditions of multiphase systems as
phase diagrams is introduced. An aqueous sorption-precipitation system is given as an
example, yet the method is fully generic and can be applied in typical non-equilibrium
systems where the major constraining reaction(s) can be identified.
For non-equilibrium systems with internal entropy producing processes the combined first
and second law of thermodynamics includes the driving force (𝐷) as an intensive state
variable, in conjunction with the advancement of the internal change (), which is then the
respective extensive property (Hillert, 2007; Liu and Wang, 2016). As for chemical reactions,
the terms Affinity for 𝐷 and Extent of Reaction for  are customarily used, such as they were
introduced by De Donder. (De Donder and Van Rysselberghe, 1936). While both Liu & Wang
and Hillert insinuate that there is a possibility of utilizing the correspondence of 𝐷 and  with
the equilibrium properties in Gibbs’ian (phase diagram) calculations for non-equilibrium
systems, an appropriate methodology for this has not been presented. On the other hand, in
the Constrained Gibbs Free energy minimization (CFE) method (Koukkari & Pajarre, 2006a)
the conjugate pair of D,  appears as one key concept for the calculation procedure. In the
non-equilibrium applications of the CFE method the driving force may be either given as a
target input or is received as the non-equilibrium ‘constraint potential’ - i.e. the affinity of the
internal change - as the result of the calculation. The advancement of the internal process is
then either given as an external constraint, being an independent variable of the non-
equilibrium system or becomes defined from the internal conditions of a metastable state and
acts as a dependent variable of the system. Then, it is obvious that these features of CFE
method together with the conjugate properties 𝐷 and  can be used to construct phase
diagrams for such systems, where partial equilibria exist during a relatively slow chemical or
phase change.

3.4.1 Theory

Following Hillert, there is for the energy, entropy and volume scheme:

𝑑𝑈 = 𝑇𝑑𝑆 − 𝑃𝑑𝑉 + ෍ µ𝑗𝑑𝑁𝑗 − 𝐷𝑑𝜉 (30)

−𝑑𝑆 = − ൬
1
𝑇

൰ 𝑑𝑈 − ൬
𝑃
𝑇

൰ 𝑑𝑉 + ෍ ቀ
µ𝑗

𝑇
ቁ 𝑑𝑁𝑗 − ൬

𝐷
𝑇

൰ 𝑑𝜉 (31)

𝑑𝑉 = ൬
𝑇
𝑃

൰ 𝑑𝑆 − ൬
1
𝑃

൰ 𝑑𝑈 + ෍ ቀ
µ𝑗

𝑃
ቁ 𝑑𝑁𝑗 − ൬

𝐷
𝑃

൰ 𝑑𝜉 (32)

where 𝑁𝑗 refers to the amounts of components in the thermodynamic system. The conjugate
pair variables become as listed in the Table 5 (see e.g. Hillert, 2007, p. 54):

Table 5. Typical sets of conjugate pairs of state variables.

𝑈 𝑇, 𝑆 −𝑃, 𝑉 µ𝑗 , 𝑁𝑗 −𝐷, 𝜉
−𝑆 −1/𝑇, 𝑈 −𝑃/𝑇, 𝑉 (µ𝑗/𝑇), 𝑁𝑗 −𝐷/𝑇, 𝜉
𝑉 𝑇/𝑃, 𝑆 −1/𝑃, 𝑈 (µ𝑗/𝑃), 𝑁𝑗 −𝐷/𝑃, 𝜉
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where −𝐷 and  are also regarded as a pair of conjugate properties, −𝐷 being a potential
which is obtained as

−𝐷 = ൬
𝜕𝑈
𝜕𝜉

൰
𝑋𝑎

(33)

where 𝑋𝑎 represents all conjugate 𝑋 −variables in equations (1-3). The extent of reaction is
then regarded as an independent variable and the respective conjugate potentials are
defined for the frozen-in state (HIllert p 22-23).

The Gibbs energy is then respectively

𝑑𝐺 = −𝑆𝑑𝑇 + 𝑉𝑑𝑃 + ෍ µ𝑗𝑑𝑁𝑗 − 𝐷𝑑𝜉 (34)

In equations 1-2 and 5 the last term 𝐷𝑑𝜉 drops off at equilibrium (𝐷 = 0 or 𝑑𝜉 = 0) and  is a
dependent variable of the system, determined by the equilibrium conditions and mass
balance. With 𝑑𝑥 = 0  and 𝐷 > 0 the system is under constrained state or ‘frozen-in-
condition’ and  remains an independent variable. In the latter case, the 𝑚𝑖𝑛(𝐺) calculation
provides the composition and state properties of the ‘frozen-in’ system at given conditions
defined by the mass balance, 𝑇, 𝑃 and 𝜉 , (Liu & Wang, 2016 p 4-5).

In general, for 𝑚𝑖𝑛(𝐺)  problems there is conservation of system components 𝑏𝑗

𝑏𝑗 − 𝑏𝑗
° = 0 ; 𝑗 = 1, … 𝑁𝐶 (35)

The amounts of components 𝑏𝑗 are connected with the amounts of chemical constituents 𝑛𝑘
via the stoichiometric conservation matrix, the elements of which are denoted as 𝑐𝑘𝑗:

𝑏𝑗 = ෍ 𝑐𝑘𝑗𝑛𝑘

𝑁

𝑘=1

(36)

Similarly, using immaterial reaction constraints for extents of reaction (r) there is

ξ𝑟 − ξ𝑟
𝑡 = 0 ; 𝑟 = 1, … 𝑁𝑅 (37)

where superscript 𝑡 relates to incremental time and subscript 𝑟 to each reaction (total number
of reactions is 𝑁𝑅). The extent of reaction obviously is deduced from the molar amounts of
constituents participating in each reaction. Thus:

𝜉𝑟 = ෍ 𝑐𝑘𝑟𝑛𝑘𝑟

𝑁

𝑘=1

(38)

The constraints related to the advancement of the internal processes must be incorporated
into the conservation matrix of the Gibbs’ian system as massless (virtual) system
components and respective virtual phases. Accordingly, e.g. for paraequilibrium solidification
systems the constraints are deduced from the ratio of substitutional components in the
mother phase and defined along this ratio as virtual components affecting each
stoichiometric phase that may be appear stable in the Gibbs energy minimization calculation
(Pelton et al., 2014). For systems with chemical reactions, the reaction matrix is transformed
into an enlarged conservation matrix that includes both mass balance and reaction
constraints, where the latter apply to explicit (kinetically slow) reactions. The driving force is
inherently solved by the Gibbs’ian procedure as the chemical potential of the introduced
virtual component, typically assigned for a single slow reaction.
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Using the Lagrange method of undetermined multipliers the objective function to be
minimised includes in addition to the 𝑁𝐶 conventional mass balance constraints (equations
6-7), the 𝑁𝑅 new constraints (equations 8-9) as follows:

𝐿 = 𝐺 − ෍ 𝜆𝑗൫𝑏𝑗 − 𝑏𝑗
° ൯

𝑁𝐶

𝑗=1

+ ෍ λ𝑗(ξ𝑟 − ξ𝑟
𝑡 )

𝑁𝐶+𝑁𝑅

𝑗=𝑁𝐶+1

(39)

The solution gives the chemical potentials of the system components in terms of the
Lagrange multipliers

𝜆𝑗 = ቆ
𝜕𝐺
𝜕𝑏𝑗

ቇ ≡ µ𝑗 ; 𝑗 = 1, … 𝑁𝐶 (40)

in analogy with the definition of the component potentials, one obtains then:

𝜆𝑗 = ൬
𝜕𝐺
𝜕ξ𝑟

൰ ≡ 𝐴𝑟 ; 𝑗 = 𝑁𝐶 + 1, … 𝑁𝐶 + 𝑁𝑅 (41)

where 𝐴𝑟 = 𝐷𝑟 is the affinity (driving force) of each constrained reaction in the system.   Note
that from (39) and (41) it is obvious that each reaction constraint represents another
immaterial component in the Gibbs’ian system and thus subscripts 𝑗 and r could formally be
replaced by just one index symbol (Pajarre et al., 2016). It is yet often practical to distinguish
between the two entities and follow number of components and reactions separately.

With the virtual constraints incorporated into a phase diagram software, such as FactSage
(Bale et al., 2002), the corresponding diagrams for non-equilibrium conditions can be
produced in terms of 𝐷 and . The conjugate properties applicable for potential diagrams
listed in Table 5 indicate that the driving force is then equivalently comparable with the
component potentials (µ𝑗). As for molar phase diagrams, the conditions analogous to
conventional equilibrium phase diagrams apply. Non-equilibrium affinity (𝐷 = 𝐴𝑟) will appear
as a potential,  as an extensive variable that must be related to some other quantity. The
latter condition is in conformance with the conventional tradition of chemical reaction kinetics,
where a proportional figure (0 ≤  ≤ 1) for the advancement of a given reaction is commonly
used, e.g. representing the fraction of a reactant consumed. Using such premises, examples
of diagrams constructed for some non-equilibrium reactive systems are introduced below.

The virtual components and virtual species have been used e.g. in ChemSheet software for
quite some time (Koukkari et al., 2001, 2000). The min(𝐺) algorithm for ChemSheet is
provided by the well-known ChemApp library (Petersen and Hack, 2007) in which it is
possible to use arbitrary names for both the virtual components and constituents. However,
in FactSage, which was here used for calculating and drawing the phase diagrams, such
freedom in its nomenclature is currently not available. This technical problem was
circumvented by using the idents of chemically inert elements (such as noble metals of
gases) for the virtual components with the input data files prepared for ChemSheet. To avoid
any confusion, the variable names 𝑟𝑖  for species and 𝑣𝑗  for components were however
used in the graphs that were produced. Reactions were indexed as 𝑖 = 1,2 and used
repeatedly for each case as there are no odds for confusion.

3.4.2 Absorption of carbon dioxide to the aqueous Na2CO3 solution

As recently shown by Hack (Hack, 2008) and published in detail by Pelton et al., (2018), true
phase diagram sections for aqueous systems can be calculated thermodynamically with
currently available software and databases. In FactSage, the aqueous phase diagrams can
be calculated with various axis variables under a wide variety of constraints for real (i.e. non-
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ideal) solutions and for any number of components. Iso-Eh and iso-pH lines may optionally
be plotted in the diagrams. Use of affinity-extent of reaction approach for axis variables then
provides an interesting technique to analyse the conditions in aqueous solutions, which often
appear in near-equilibrium or metastable (‘freezing-in’) conditions, for which however e.g.
temperature and pH can be measured with reasonable accuracy. To illustrate this approach,
the chemistry of carbon dioxide absorption to caustic soda solution is here briefly considered
in terms of the aqueous phase diagrams, presented both for equilibrium and non-equilibrium
conditions.

The immersion of carbon dioxide to solutions with elevated pH is well-known and applied for
several practical purposes. Most applications deal with gas sorption to carbonate solutions of
moderate concentrations in two-phase gas-liquid systems e.g. (Cents et al., 2005; Ghosh et
al., 2009) where precipitation of solid carbonates is avoided. The example chosen here is
however the absorption of carbon dioxide to concentrated 𝑁𝑎2𝐶𝑂3 solutions, applied in
commercial sodium bicarbonate 𝑁𝑎𝐻𝐶𝑂3 production, studied experimentally e.g. by Wylock
et al., (2008), who also constructed a mechanistic reaction model to calculate time-
dependent pH-development in the brine absorbing carbon dioxide at atmospheric conditions.
Another bulk application of the 𝑁𝑎2𝐶𝑂3 -absorption is natural gas purification where
dissolving 𝐶𝑂2 to a carbonate brine also allows for the simultaneous removal of acid gas
impurities, typically 𝐻2𝑆 (Wallin and Olausson, 1993). In the latter application both 𝐶𝑂2 and
the 𝐻2𝑆 impurity will remain in the brine solution, methane is recovered as gaseous product
and can be deported to further use. Gas purification is concurrently gaining new interest e.g.
for biogas cleaning. The leftover bicarbonate solution can be regenerated (to produce pure
𝐶𝑂2) and recycled in such process (Melin, 2009). The capacity of the technique is affected
both by the overall rate of 𝐶𝑂2 absorption and the solubility of sodium bicarbonate, which is
the precipitating solid in the sorption system.

The solubility of 𝑁𝑎𝐻𝐶𝑂3 increases with temperature and e.g. Knuutila et al., (2010) have
recently performed vapour–liquid equilibrium (VLE) measurements of the carbon dioxide
loaded sodium carbonate– water system in the temperature range 40–80 °C and for sodium
carbonate concentrations 8-12 wt% (Knuutila et al., 2010). Equation-of-state (VLE)
calculations were also performed by using the electrolyte-NRTL model. In Figure 18 the
results published by Knuutila et al., (2010) (40 and 60 °C) are compared with respective
ChemSheet equilibrium calculations for temperatures 40-80C, with one result (40 °C) from
the e-NRTL model. In ChemSheet, temperature-dependent Pitzer parameters are typically
used (Pajarre et al., 2018); in this case both models agree reasonably well with each other
and with measurements.

A respective aqueous phase diagram for the equilibrium system is shown in Figure 19 in
terms of the partial pressure of 𝐶𝑂2 and 𝑁𝑎2𝐶𝑂3 molality. In such diagram, the temperature
dependent solubility of 𝑁𝑎𝐻𝐶𝑂3 becomes clearly visible and the iso-pH-lines (only shown for
32 °C) will serve as an additional guideline e.g. when used to support practical purposes.
The multicomponent diagram calculation may, of course, also comprise impurities, here
included as hydrogen disulphide, 𝐻2𝑆, the equilibrium distribution of which between gas and
liquid may directly be read from the data at each point of the diagram.
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Figure 18. The partial pressure of 𝐶𝑂2  as function of 𝑁𝑎2𝐶𝑂3  conversion to bicarbonate in
12 𝑁𝑎2𝐶𝑂3 % ￼   solution. The lines show ChemSheet equilibrium results, measured data
and NRTL-model points are from Knuutila et al., (2010).

Figure 19. Aqueous phase diagram for the 𝐻2𝑂 − 𝑁𝑎2𝐶𝑂3 − 𝐻2𝑆-𝑁2-  –system. 𝐻2𝑆 /𝐻2𝑂
(mol/kg)=3.0e-8, 𝑁2 /𝐻2𝑂 (mol/kg)=1.2; 32-60 °C, 1 atm. Superimposing of three
temperatures shows the increasing solubility of 𝑁𝑎𝐻𝐶𝑂3 with increase of temperature. Iso-pH
curves shown merely for 𝑇= 32 °C.
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To illustrate the usage of affinity- extent of reaction -diagrams for such aqueous system the
constraints were set for the absorption of 𝐶𝑂2 and precipitation of bicarbonate, as shown in
Table 6.

Table 6. Extended matrix for the aqueous carbon dioxide - sodium carbonate absorption
system

      N   O     C  H Na   EA 𝑣(CO2) 𝑣(NaHCO3)

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
2 0   0 0  0    0       0             0
0 2   0 0  0    0       0             0
0 2   1 0  0    0      1             0
0 1   0 2  0    0      0             0
0 1   0 2  0    0      0             0
0 0   0 1  0 −1      0             0
0 1   0 1  0    1      0             0
0 2   1 0  0    0      0             0
0 3   1 1  0    1      0             0
0 3   1 0  0    2      0             0
0 0   0 0  1 −1      0             0
0 3   1 0  2    0      0             0
0 1   0 1  1    0      0             0
0 3   1 1  1    0      0              1
0 0   0 0  0    0      1              0
0 0   0 0  0    0   −1              0
0 0   0 0  0    0      0              1
0 0   0 0  0    0      0           −1⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

N2(g)
O2(g)
CO2(g)
H2O(g)
H2O
H+

OH−

CO2(𝑎𝑞)
HCO3

−

CO3
2−

Na+

Na2CO3
°

NaOH
NaHCO3

𝑟1
+

𝑟1
−

𝑟2
+

𝑟2
−

Constraints set for  the reactions:

𝐶𝑂2(𝑔) → 𝐶𝑂2(𝑎𝑞) (𝑟1
+)

𝑁𝑎+ + 𝐻𝐶𝑂3
− → 𝑁𝑎𝐻𝐶𝑂3 (𝑟2

+)

In Figure 20 (left), the equilibrium diagram is presented in using molalities of 𝐶𝑂2 and
𝑁𝑎2𝐶𝑂3 as axis variables. Then in Figure 20 (right) the affinity of reaction 𝑟2

+ has been used
for the Y-axis, while the reaction 𝑟1

+ is assumed to be in equilibrium. The effect of
temperature on the solubility of sodium bicarbonate is shown equally when compared with
Figure 19. The affinity of 𝑁𝑎𝐻𝐶𝑂3 precipitation is positive at 32 C in the region where the
molality of 𝑁𝑎2𝐶𝑂3 exceeds 0.442 𝑚, while the same limit for the precipitation equilibrium at
60 C is observed at 0.732 𝑚. The zero phase fraction line crosses the zero affinity line at
these points, equally recognised in the left equilibrium diagram when following 1 𝑚 𝐶𝑂2
dashed line.
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Figure 20. Aqueous phase diagram for the 𝐻2𝑂 − 𝑁𝑎2𝐶𝑂3 − 𝐶𝑂2- 𝑁2- –equilibrium system
(left) compared with the potential diagram where the affinity of 𝐶𝑂2 absorption is assumed to
be zero and Y-axis shows the driving force of 𝑁𝑎𝐻𝐶𝑂3 precipitation (right). 𝑁2/𝐻2𝑂 (mol/kg) =
4; pH colour code: olive dash-dot-dot – 32 C; red dash-dot - 60 °C. The corresponding
equilibrium points at 1.0  mol 𝐶𝑂2 / 𝑘𝑔 𝐻2𝑂 are marked with dotted (32 °C) and solid (60 °C)
arrows.

In Figure 21 the affinity of 𝑁𝑎𝐻𝐶𝑂3 precipitation is assumed to be zero and, instead the
extent of reaction 𝑟1

+  has been used for the x-axis variable.  For the time being FactSage
only allows the use of positive integers as virtual constraints and thus the constraint was
actually set for all carbonaceous species in the aqueous solution as well as in condensed
phases - i.e. regarding all these as products of constrained 𝐶𝑂2 absorption, yet in mutual
equilibrium with each other.  Then, the zero point for the EOR-X-axis must be set for the
amount of constraint (𝑟1

+  phase) in the feed, while FACTSAGE, of course, performs the
calculation using the total amount of this component. In Figure 21 the amount of feed
𝑁𝑎2𝐶𝑂3 is 0.3435 𝑚 and a system containing 0.4027 𝑚 of 𝑟1

+ gives a condition of 0.283 𝑚
𝑁𝑎2𝐶𝑂3 and 0.226 𝑚 𝑁𝑎𝐻𝐶𝑂3 in the solution, corresponding the condition in the experiment
of Wylock et al., (2008). , performed at 293 K, 1 atm (𝑚 used here as the symbol of molality,
mol/kg 𝐻2𝑂).

The T,-diagram maps the reaction process, indicating the also conditions for 𝑁𝑎𝐻𝐶𝑂3 -
precipitation and the equilibrium limit for 𝐶𝑂2 absorption. As the work of Wylock et al., (2008)
was entirely based on concentration variables, their reported pH-values were adjusted to
correspond the respective hydrogen ion activities to compare with the iso-pH-lines in the
FactSage diagram at 293 K, shown in the diagram on this isotherm. The respective
ChemSheet model associated with the same experimental data is shown in the insert of
Figure 21. One must keep in mind that no kinetic rate parameters are involved and thus while
the pH values for the initial condition and the final equilibrium in each temperature are well
defined, the intermediate region is subject to the assumption of local chemical equilibrium, as
the EOR-constraint by necessity does not include any mechanistic assumptions. Thus, the
iso-pH lines in the intermediate region remain somewhat approximate. The graphs yet
indicate that the EOR- diagram method allows for a robust approach to foresee the reaction
conditions within a relevant pH range, including pH-dependent formation of solids which
often is omitted when using kinetic modelling procedures (e.g. Wylock et al., 2008).
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Figure 21. Temperature – extent of reaction diagram for the 𝐻2𝑂 − 𝑁𝑎2𝐶𝑂3 − 𝐶𝑂2 − 𝑁2-
system at 1 atm. Affinity of NaHCO3 precipitation is set to zero.  Extent of the absorption
reaction is assumed to follow the constraint set for carbonaceous species in the liquid and
solid phases. Experimental points of Wylock et al (2008) as adjusted to the FactSage activity
scale shown at the ‘isotherm’ of 293K, each value shows measured pH of the nearest
calculated iso-pH line at given EOR (end points with their pH -values shown
separately). 𝑁𝑎2𝐶𝑂3  0.3425 𝑚; 𝑟1

+  0.4027 𝑚; 𝐶𝑂2 1.0 mol/kg 𝐻2O.   The insert shows the
respective ChemSheet model result at 20 °C.

3.4.3 Conclusions

The driving force (affinity, 𝐷) and extent of reaction (EOR, ) were used as axis variables to
produce phase diagrams for non-equilibrium conditions by using the Calphad multiphase
method. Particular focus was in studying the thermodynamic validity of the suggested
technique, which is pursued to be consistent with the methodology that is used for
conventional equilibrium phase diagrams. An aqueous system absorbing 𝐶𝑂2 into a 𝑁𝑎2𝐶𝑂3
solution with possible precipitation of 𝑁𝑎𝐻𝐶𝑂3 was used as an example.

The results indicate that the proposed affinity-EOR-diagrams are generically applicable for
various multiphase problems. The new method can be applied for ‘mapping’ reaction
conditions in terms of thermodynamic potentials and concentration variables.

Aqueous processes often appear in non-equilibrium states that involve slow reaction kinetics
or in metastable conditions, for which however e.g. temperature, pH and redox potential (Eh)
as well as molar amounts of given ionic species can be measured with relative ease and with
reasonable accuracy. It may be anticipated that computational studies of the ‘freezing-in-
conditions’ for these systems will have practical significance both in model-based design of
experiments as well as in interpreting measured results.
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The thermodynamics-based diagrams also provide a practicable technique to approximate
reaction conditions when/if no kinetic data is available, being thus related with techniques
extensively used in materials technology e.g. for Scheil solidification and paraequilibrium
studies (Koukkari and Pajarre, 2021). While the use of D,  -diagrams is by necessity
restricted with the limited number of assumptions, the respective CFE approach of course
can further be developed to kinetic-thermodynamic process models, which then include the
necessary mechanistic assumptions as well as time-dependent rate parameters
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4. Concentrates and Brines

4.1 Multicomponent aqueous solution model based on BET / GAB
approach

Risto Pajarre

Aqueous solutions are one of the main application areas of equilibrium thermodynamics.
However, when it comes to highly concentrated solutions the most widely used non-ideal
solution model, the Pitzer model (Pitzer, 1991), is typically valid only up to concentrations
about 6 mol/kg. Model extensions are possible (Pajarre et al., 2018), but usually require
significant number of additional fitting parameters.

An alternative to traditional solution models for highly concentrated aqueous solutions are the
Brunauer–Emmett–Teller (BET) and the related Guggenheim–Anderson–De Boer (GAB)
models (Stokes and Robinson, 1948). They both are based on the idea that the highly
concentrated solution could be modelled as water adsorbing on the solute salt. They have
been shown to work in solutions that are beyond the validity range of the Pitzer model but do
not work in dilute and moderately dilute solutions. Purpose of this study was to extend the
earlier work (Pajarre and Koukkari, 2018) on the application of BET / GAB model within a
multiphase equilibrium solvers and test its usage with a number of highly soluble salts in a
combination with the standard Pitzer model to create a model that would be valid from dilute
solutions to the solubility limit.

4.1.1 Methodology

For the general model framework of the highly concentrated solutions the GAB model with
the model specific parameter K having a value less unity was chosen. This makes a phase
applying the model thermodynamically unstable in the dilute range compared to e.g. Pitzer
model (Figure 22). Therefore, it becomes  feasible to use a free energy minimiser with a
combined thermodynamic model so, that the equilibrium description is always the one
suitable for the concentration range, Pitzer model in dilute and moderately concentrated
solutions and the GAB adsorption model in the highly concentrated range (Figure 23)

Figure 22. Higher osmotic coefficient (Pajarre and Koukkari, 2018) (left) and the
corresponding Free energy (Pajarre and Koukkari, to be published) (right) shown with GAB
model in the dilute range and Pitzer model in the highly concentrated range in LiCl model
solution.
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Figure 23. Modelled solute salt activity and osmotic coefficient using combined Pitzer – GAB
model. The small kink around 9 mol/kg is an artefact caused by model phase transition
between the dilute and concentrated range.

It was estimated that acceptable fit with experimental data could be obtained by using one
constant value (the same for all systems) for the GAB parameter 𝐾 and two salt specific
parameters 𝑟 and 𝐸 that were assumed to vary linearly in respect to temperature.

For mixed electrolyte solutions, if sufficient data is available, the model structure enables
inclusion of interaction parameters for better fit. If they are lacking, the multicomponent
system follows the Zdanovskii-Stokes-Robinson relationship (Stokes and Robinson, 1966)
for mixtures (Pajarre and Koukkari, 2018; Pajarre and Koukkari, n.d.).

4.1.2 Results

Experimental water activity data in concentrated range was fitted to the GAB model to derive
the model parameters. Example model fits are shown in Figure 24. During the work it was
observed that GAB model fit became noticeably worse if the water activity was less than
0.05. Also, the chosen model framework did not seem to work in temperatures above 100°C,
possibly because the relationship of the chosen (constant) 𝐾 parameter and vaporisation
energy of water.

Figure 24. GAB model function (Stokes and Robinson, 1948) as a function of water activity in
NaOH (left) and CaCl2 solution (right)
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Obtained parameter values for the salts under study are shown in Table 7.

Table 7. Parameters for the GAB model. 𝐾 is constant in all systems

Full report of the results of the study will be included in the upcoming paper “CALPHAD
aqueous solution model based on the BET approach: Multicomponent solutions”, to be
submitted to the CALPHAD journal in 2021.

a b at 298.15 K
Ek 639.697262 -0.9903817 344.41
K = exp(-E/RT) 0.870

CaCl2 r 9.655591564 -0.00878782 7.04
E 6447.271737 -1.95364767 5864.79

KOH r 8.289930409 -0.00799447 5.91
E 1128.226566 19.92731251 7069.55

LiCl r 6.09973796 -0.0072459 3.94
E 5087.644587 6.171240917 6927.60

NaOH r 5.790522161 -0.00778864 3.47
E 8139.737426 -3.08755544 7219.18

LiNO3 r 3.605827292 -0.00163126 3.12
E 6118.680172 -4.38889511 4810.13

NaNO3 r 4.849837707 -0.00191836 4.28
E 9655.277311 -7.34262151 7466.07

KNO3 r 5.882853139 -0.00230165 5.20
E 11914.6122 -10.1695308 8882.57

Ca(NO3)2 r 6.571146956 -0.00218956 5.92
E 14929.00909 -14.3288689 10656.86

KCl r 8.326142316 -0.00269535 7.52
E 7387.259941 -20.7911888 1188.37

NaCl r 9.67017201 -0.00356864 8.61
E 10044.43598 -23.1198019 3151.27

LiOH r 7.611901413 -0.00476056 6.19
E 14280.99952 -12.484693 10558.69

Ca(OH)2 r 5.460917258 -0.01218704 1.83
E 12938.0716 -19.2264273 7205.71
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4.2 LIFAC -electrolyte model

Karri Penttilä

Various industrial and natural processes require the knowledge of the real behaviour of
aqueous electrolyte solutions, because the salt that is present in the liquid phase may
influence the phase equilibrium behaviour significantly. Even small amounts of salt may have
an appreciable impact on the boiling points, the mutual solubility, or the relative volatility of
solvents. The main solvent found in bioprocesses, which is water, is highly polar and has the
capability to dissolve large amounts of electrolytes. The ions resulting from dissociated
electrolytes pose a problem for thermodynamic modelling, as electrolytic solutions behave
highly non-ideally even in small concentrations (Hautala, 2016). A reliable knowledge of the
phase equilibria of electrolyte systems is essential for the design and simulation of different
chemical processes, including wastewater treatment, extractive distillation, various extraction
processes, extractive and antisolvent crystallization of salts, petroleum refining, coal
gasification, environmental protection, petroleum and natural gas exploitation, formation of
gas hydrates, and various absorption and gas scrubbing processes. The quality of the
description of the phase equilibrium behaviour for electrolyte systems is strongly dependent
on the thermodynamic model (gE model, group contribution concept, equation of state
(EOS), EOS + gE mixing rules) and the quality of the parameters used (Kiepe et al., 2006).

In this work, LIQUAC (Li et al., 1994) and LIFAC (Yan et al., 1999) models are implemented
and added as user defined models to ChemSheet (Koukkari et al., 2000) and ChemApp
(Petersen and Hack, 2007). Furthermore, a separate Excel based tool was developed to be
able to fit various activity model parameters by using Solver Add-in. Mean ionic activity
coefficients for strong electrolytes in pure water can be calculated accurately with these
models. By assuming total dissociation of the salt, these models are generally applicable for
the reliable prediction of arbitrary systems with strong electrolytes up to high salt
concentrations. With ChemApp and its global Gibbs energy minimization algorithm it
becomes possible to combine LIQUAC and LIFAC electrolyte models with various vapour
and solid phase models in order to solve vapour/liquid/liquid equilibrium (VLLE) including
complex chemical reactions, solid dissolution and precipitation. Moreover, it also becomes
possible to combine equilibrium and kinetically controlled reactions by using constrained free
Gibbs energy (CFE) approach (Koukkari and Pajarre, 2006).

4.2.1 LIFAC Model

In the LIQUAC and LIFAC models, the excess Gibbs energy for single- or mixed-solvent
electrolyte systems is calculated as the sum of three contributions (Figure 25):

𝐺𝐸 = 𝐺𝐿𝑅
𝐸 + 𝐺𝑀𝑅

𝐸 + 𝐺𝑆𝑅
𝐸 (42)

The first term represents the long-range (LR) interaction contribution and it takes into
account direct charge effects like attraction and repulsion between ions and the formation of
a solvate shell in solution. The second term describes the middle-range (MR) interaction
contribution caused by charge dipole and charge-induced dipole interactions. The third term
(SR) expresses the contribution of the non-charge interactions (UNIQUAC and UNIFAC).
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Figure 25. LIQUAC and LIFAC contributions (Zünd, 2007).

In UNIFAC model (Fredenslund et al., 1977), the functional groups of a chemical species are
divided into (functional) main groups and subgroups. For example, the alkyl groups CH3,
CH2, CH and C are different subgroups of the main group CH2 (Figure 26).

Figure 26. Examples of UNIFAC and LIFAC main and subgroups.

The group contribution components consist of volume contribution (Rk), surface area
contribution (Qk), and interaction parameter between the functional groups (ai,j), which are
obtained from wide range of experimental measurements. In LIFAC model, the UNIFAC
group contribution method is generalised to water and inorganic ions but their main groups,
subgroups, and chemical species are in each case identical. Figure 27 shows currently
published groups.

4.2.2 LIFAC Activity Model

According to the thermodynamics relation:

ln 𝛾𝑖 = 1
𝑅𝑇

𝜕𝐺𝐸

𝜕𝑛𝑖
(43)

Since for ions and for solvents a different reference state and a different concentration scale
is used (molality), the three terms are calculated differently for ions and solvents. As

Main
group

Sub
group

Name R Q Sample molecule

1 CH3 0.9011 0.848 Hexane
2 CH2 0.6744 0.540 =2*(1)+4*(2)
3 CH 0.4469 0.228

1
(CH2)

4 C 0.2195 0.000
5 CH2=CH 1.3454 1.176 2-Methyl-1-butene
6 CH=CH 1.1167 0.867 =2*(1)+1*(2)+1*(7)
7 CH2=C 1.1173 0.988
8 CH=C 0.8886 0.676

2
(C=C)

70 C=C 0.6605 0.485
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reference state for the ions the infinite diluted solution is chosen. This means that for the
calculation of the activity coefficient two different equations are used:

ln 𝛾𝑠𝑜𝑙𝑣
𝑥 = ln 𝛾𝑠𝑜𝑙𝑣

𝑥,𝐿𝑅 + ln 𝛾𝑠𝑜𝑙𝑣
𝑥 ,𝑀𝑅 + ln 𝛾𝑠𝑜𝑙𝑣

𝑥,𝑆𝑅 (44)

ln 𝛾𝑖𝑜𝑛
∗,𝑚 = ln 𝛾𝑖𝑜𝑛

∗,𝑚,𝐿𝑅 + ln 𝛾𝑖𝑜𝑛
∗,𝑚,𝑀𝑅 + ln 𝛾𝑖𝑜𝑛

∗,𝑚,𝑅 (45)

The indexes solv and ion indicate the activity coefficient of the solvent or the ion, the indexes
x and m stand for the concentration scale that is used, mole fraction (x) or molality (m). The
asterisk indicates the reference state of the infinite diluted solution for the ions.

For solvents and ions, the long-range (LR) part of the activity coefficient is calculated as:

ln 𝛾𝑖
𝑥,𝐿𝑅 = ቀ2𝐴𝑀𝑠𝑜𝑙𝑣𝑑𝑚𝑖𝑥

𝑏3𝑑𝑠𝑜𝑙𝑣
ቁ ൬1 + 𝑏√𝐼 − 1

൫1+𝑏√𝐼൯ − 2 ln൫1 + 𝑏√𝐼൯൰ (46)

ln 𝛾𝑖𝑜𝑛
𝐿𝑅 = 𝑧𝑖𝑜𝑛

2 𝐴√𝐼
1+𝑏√𝐼

(47)

where zion stands for the charge number of the regarded ion, Msolv is the molar mass of the
solvent in kg/mol, dsolv is the density of the regarded solvent in kg/mol, dmix is the density of
the solvent mixture and I is the ionic strength given as follows:

𝐼 = 1
2

∑ 𝑧𝑖𝑜𝑛
2 𝑚𝑖𝑜𝑛𝑖𝑜𝑛 (48)

where mion is the molality of the ions in solution in mol/kg. A and b are the Debye-Hückel
parameters dependent on the absolute temperature and the relative dielectric constant of the
solvent mixture. A polynomial equation has been fitted for number of organic solvents to
calculate it. Parameters of these polynomials and equations for the middle-range (MR) part
of the activity coefficients and the for interaction functions Bi,j(I) can be found in Mohs (Mohs
and Gmehling, 2013).

For the calculation of the short-range term of the LIQUAC/LIFAC model UNIQUAC/UNIFAC
is used. In both cases the part consists of a combinatorial (C) and a residual (R) part.

For both the solvents and the ions, the Combinatorial term in short-range (SR) part of the
activity coefficient is calculated as:

ln 𝛾𝑖
𝑆𝑅 = ln 𝛾𝑖

𝐶 + ln 𝛾𝑖
𝑅 (49)

ln 𝛾𝑖
𝐶 = 1 − 𝑉𝑖 + ln 𝑖 − 5𝑞𝑖 ቀ1 − 𝑉𝑖

𝐹𝑖
+ ln 𝑉𝑖

𝐹𝑖
ቁ (50)

𝑉𝑖 = 𝑟𝑖
∑ 𝑥𝑗𝑟𝑗𝑗

(51)

𝐹𝑖 = 𝑞𝑖
∑ 𝑞𝑗𝑗

(52)

where xi is the mole fraction of the regarded species (including the ions) while ri and qi stands
for the relative van der Waals volume and surface area of the species, respectively.

For UNIQUAC and LIQUAC models these are fitted for number of species, but for LIFAC and
UNIFAC model these are calculated using the subgroup structure of the molecule
representing the species:

𝑟𝑖 = ∑ 𝑛𝑘𝑅𝑘𝑘 (53)

𝑞𝑖 = ∑ 𝑛𝑘𝑄𝑘𝑘 (54)
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where nk is the number of subgroups of type k in molecule i and Rk and Qk are the van der
Waal volume and surface area of subgroup k, respectively.

In the UNIQUAC and LIQUAC model the Residual term in short-range (SR) part of the
activity coefficient is calculated as:

ln 𝛾𝑖
𝑅 = 𝑞𝑖 ൬1 − ln ∑ 𝜃𝑗Ψ𝑗,𝑖𝑗 − ∑ 𝜃𝑗Ψ𝑖,𝑗

∑ 𝜃𝑘Ψ𝑘,𝑗𝑘
𝑗 ൰ (55)

𝜃𝑖 = 𝑥𝑖𝑞𝑖
∑ 𝑥𝑗𝑞𝑗𝑗

(56)

In the UNIFAC and LIFAC model the Residual term in short-range (SR) part of the activity
coefficient depends on the group structure of the molecule representing the species:

ln 𝛾𝑖
𝑅 = ∑ 𝑛𝑘 ቀln Γ𝑘 − ln Γ𝑘

(𝑖)ቁ𝑘 (57)

where Γ𝑘 is the group residual activity coefficient, and Γ𝑘
(𝑖) is the residual activity coefficient of

group k in a reference mixture containing only all molecules of type i:

ln 𝛾𝑘
𝑅 = 𝑄𝑘 ൬1 − ln ∑ 𝜃𝑚Ψ𝑚,𝑘𝑚 − ∑ 𝜃𝑚Ψ𝑘,m

∑ 𝜃𝑛Ψ𝑛,𝑚𝑛
𝑚 ൰ (58)

where 𝜃𝑚 is the area fraction of group m and Xm is the fraction of group m in the mixture:

𝜃𝑚 = 𝑄𝑚𝑋𝑚
∑ 𝑄𝑛𝑋𝑛𝑛

(59)

𝑋𝑚 = ∑ 𝑛𝑚
(𝑖)𝑋𝑚𝑖

∑ ∑ 𝑛𝑘
(𝑖)𝑋𝑖𝑘𝑖

(60)

The group interaction parameter Ψ𝑖 ,𝑗 is given as:

Ψ𝑖,𝑗 = 𝑒𝑥𝑝 ቀ𝑎𝑖,𝑗

𝑇
ቁ (61)

where T is the absolute temperature. There are two parameters for each group-group
interaction, ai,j and aj,i, where ai,j ≠ aj,i.

Since for ions the infinite diluted mixture is chosen as reference state, the residual and
combinatorial term have to be normalised to this reference state. See Mohs and Gmehling,
(2013) for the equations.

Number of LIQUAC and LIFAC parameters have been published in the literature. Kiepe et
al., (2006) tabularizes number of calculated Relative van der Waals Group Volume (R) and
Surface Area (Q) of solvents, solvent groups and Ions for mod. LIQUAC and mod. LIFAC. It
also tabularizes number of fitted MR parameters bs,ion and cs,ion between solvents and ions
and for solvent groups and Ions, and number of fitted MR parameters bc,a and cc,a between
cations and anions for modified LIQUAC and LIFAC. Also used UNIQUAC and UNIFAC
parameters ai,j and aj,I are tabularized for the main groups.

Mohs and Gmehling, (2013) has refitted large number of solvent group and ion parameters
for a revised LIQUAC and LIFAC model, which enables the user to describe mean activity
coefficients, osmotic coefficients and also vapour–liquid equilibria reliably. Furthermore, the
prediction of salt solubilities in aqueous solutions and mixed solvents can be performed
successfully. These parameters are also used in this work. User defined model as well as the
Excel tool both have internal data tables containing their values. There is also possibility to
enter user defined parameters either to overwrite existing values or to enter parameters for
new solvent and ion groups.
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Figure 27 shows parameter matrix for currently published LIFAC groups and ions: Red boxes
refer to existing UNIFAC interaction parameters (ai,j and aj,i) between the solvent groups.
Blue and green boxes refer to existing LIFAC interaction parameters (bi,j and ci,j) between
solvent groups and ions and cations and anions, respectively. It can be seen that many
interactions are still missing and need to be fitted.

Figure 27. Parameter matrix for LIFAC solvent groups and ions (Mohs, 2011).

4.2.3 ChemSheet and ChemApp

ChemSheet (Koukkari et al., 2000) is Excel Add-in for ChemApp. It provides intuitive, easy-
to-use interface for ChemApp and its thermodynamic routines. A special user defined model
compatible version of ChemApp calls specific routines in an external usermod.dll file when it
encounters a certain phase model name in ChemSage data-file (USX?). User defined routine
should then calculate lni (partial excess Gibbs energies) for each species in the given phase
at given temperature, pressure and composition. For aqueous phase model, routine
USERGP is called (see Figure 28)
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Figure 28. Entry point in usermod.dll to calculate the contributions to the excess partial Gibbs
energies in an aqueous phase.

Already several EOS and group contribution models have been implemented in earlier
projects (Leppävuori and Koukkari, 2012). These include:

 Unifac (liquid phase)
 Original VLE
 Original LLE
 Dortmund modified
 Lyngby modified
 NRTL(liquid phase)
 Dortmund PSRK (used with PSRK only)
 Dortmund VTPR (used with VTPR only)
 SRK (for only vapour phase or vapour+liquid phases)
 PR (for only vapour phase or vapour+liquid phases)
 PSRK (for vapour+liquid phases using PSRK Unifac)
 VTPR (for vapour+liquid phases using VTPR Unifac)

In this work LIQUAC and LIFAC models were added to the usermod.dll. User defined model
project has been implemented with Visual Studio and coded with Intel Visual Fortran (Intel
Parallel Studio XE 2017). At the time of writing LIQUAC and LIFAC models are being tested
and debugged.

4.2.4 Excel Tool

A separate Excel based tool to calculate the activities of various EOS and group contribution
methods has also been made and LIFAC and LIQUAC models were added to it. Currently it
supports the following models:

SUBROUTINE USERGP[DLLEXPORT](NTXX, ITXX1, ITXX2, ITXX3, ITXX4, WTXX, PXX, TXX,

G0XX, V0XX, XXX, CHXX, MDLXX, NCXX, APHI, SION, TMI, GINT, GXX, OSMO)

NTXX = ORDER OF GIVEN INTERACTION

IXX? = INTERACTION PARAMETERS GIVEN IN THE DATA-FILE

WTXX = UNDIMENSIONAL INTERACTION ENERGY (DIVIDED BY R*T)

PXX = PRESSURE [bar]

TXX = TEMPERATURE [K]

G0XX = DIMENSIONLESS STANDARD GIBBS ENERGIES

V0XX = MOLAR VOLUMES [cm3]

XXX = MOLE FRACTIONS OF ALL PHASE CONSTITUENTS

CHXX = CHARGE OD ALL SOLUTES

MDLXX = MODEL NAME FOR THE PHASE

APHI = PARAMETER A(PHI) OF THE DEBYE-HUECKEL LIMITING LAW

SION = IONIC STRENGTH

TMI = SUM OF SOLUTE MOLALITIES

NCXX = NUMBER OF SPECIES IN THE PHASE

GINT = CONTRIBUTION TO THE EXCESS PARTIAL GIBBS ENERGY FROM THE DEBYE-
HUECKEL TERM AFTER THIS HAS BEEN DIVIDED BY A SOLUTE CHARGE SQUARED

GXX = CONTRIBUTION TO THE EXCESS PARTIAL GIBBS ENERGY OF ALL PHASE
CONSTITUENTS FROM THE GIVEN INTERACTION

OSMO =  CONTRIBUTION TO THE OSMOTIC COEFFICIENT FROM THE DEBYE-
HUECKEL TERM (NTXX = 0) OR FROM THE GIVEN INTERACTION (NTXX > 0)
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 SRK (vapour phase or vapour+liquid phases)
 PR (vapour phase or vapour+liquid phases)
 NRTL (liquid only)
 UNIFAC (liquid, original VLE + LLE, Dortmund + Lyngby modified)
 LIQUAC + LIFAC (aqueous/electrolyte)

ChemApp User-defined models compiles as a dynamic-link library (DLL), which is not easiest
to debug during the model coding and development. Thus, there was a need for a separate
Excel based model for calculating/debugging the activity models with VBA modules and
comparing calculated values against the literature values. Moreover, Excel Solver Add-in can
be used with the Excel tool for parameter fitting (see Figure 29).

Excel tool contains one macro that is used as entry point for all model calculations.

FUNCTION MODEL_GET(Mode as Variant, Temp as Variant, Pres as Variant, Comp as
Variant, Units as Variant, Parameters as Variant, Variables as Variant) as Variant

Mode Model and mode ("NRTL",… and "HEA", "LIQ", "VAP", "LVE", "LLE")
Temp Temperature (constant or range containing the temperature)
Pres Pressure (constant or range containing the pressure)
Comp Composition (constant array or range array containing the composition values)
Units Units for T, P and X (constant array or range array containing the unit names)
Parameters Model parameters (range array containing the values)
Variables Variable(s) (constant names or range array containing the names)

MODEL_GET returns and saves the calculated values as array formula. An array formula is
a formula that can perform multiple calculations on one or more items in an array. Array
formula must be entered by pressing Ctrl+Shift+Enter. Figure 29 shows an example of using
MODEL_GET with Excel Solver to fit parameters of the NRTL model for a ternary LLE case
(extraction of levulinic acid from water with 2-MTHF).

Figure 29. Fitting NRTL model parameters with Excel tool and Solver Add-in.
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4.2.5 Application

Extraction of ZnSO4 with kerosene and CYANEX (see Figure 30) was selected as a test
application for the LIFAC model. This is a common test system for extraction and also set of
measurements have been conducted at VTT during 2019/2020 in a separate project to find
out the compositions of the two components in the aqueous and the organic phases.

Figure 30. Extraction of ZnSO4 with kerosene and CYANEX® 272.

Thermodynamic system of the extraction process consists of an aqueous (H2O) and an
organic solution phase kerosene, which is not a pure phase but very similar to dodecane
C12H26. CYANEX 272 is a dialkyl phosphinic acid extractant widely used especially for the
separation of cobalt from nickel to produce high purity cobalt salts and cobalt metal. Since
the active component of CYANEX 272 extractant is a phosphinic acid, metals are extracted
through a cation exchange mechanism. It can be dimerized through hydrogen bonding in the
non-polar organic diluent (Begum et al., 2012). The LIQUAC and LIFAC models were not
ready yet for parameter fitting or calculating the test case at the time of writing the report.

4.2.6 Conclusions

Mean ionic activity coefficients for strong electrolytes in pure water can be calculated
accurately with LIQUAC and LIFAC models. By assuming total dissociation of the salt, these
models are generally applicable for the reliable prediction of arbitrary systems with strong
electrolytes up to high salt concentrations. With the corrected reference state for the ion
activity coefficient, mean ionic activity coefficients in non-aqueous or mixed-aqueous
systems that contain strong electrolytes can also be predicted. But at the same time there is
lack of experimental data for organic activities in all solutions and electrolyte activities in
organic-electrolyte solutions. There is also lack of parameters for standard thermodynamic
properties like enthalpy for many organic molecules that are needed in solubility calculations.

With ChemApp and its global Gibbs energy minimisation algorithm it is possible to combine
LIQUAC and LIFAC electrolyte models with various vapour and solid phase models in order
to solve vapour/liquid/liquid equilibrium (VLLE) including complex chemical reactions, solid
dissolution and precipitation. Moreover, it also possible to combine equilibrium and kinetically
controlled reactions by using constrained free Gibbs energy (CFE) approach. However,
further work is necessary to verify how well these models can be applied to multicomponent
systems as they have conventionally been tested for ternary systems.
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4.3 Non process elements in aqueous database for modelling
industrial processes

4.3.1 Data evaluation for concentrated sulphide containing systems

Risto Pajarre

The data obtainable from VTT’s aqueous database (Pajarre & al 2018) gives a fair basis for
simulation of the aqueous processes occurring in the lime cycle of Kraft pulping. However,
reliable data for sulphide solubility for the lime cycle conditions has been missing. In late
1990’s Jarmo Heinonen working for KCL (Keskuslaboratorio) did series of solubility
measurements (Heinonen, 1999) on concentrated Na2S solutions within temperature range
of  25°C-90°C. The data was but partially disclosed in a conference presentation(Heinonen,
1998). Within the DeepCleanTech task related to concentrated aqueous solutions and
modelling of non-process elements (NPE) in Kraft pulping, this data could be used a part of
the VTT aqueous solution database.

The KCL measurements had been done with Na2S-KCl, Na2S-K2CO3 and Na2S-K2SO4 binary
aqueous salt systems. Additionally, a data for the aqueous Na2S-NaCl, Na2S-Na2CO3, Na2S-
NaOH and Na2S-Na2SO4 systems had been collected from literature. While the original work
included evaluated Pitzer parameters as fixed temperatures, in preliminary check it was
found out that the thermodynamic standard state values and speciation were not compatible
with the other data in the newer VTT database (Pajarre et al., 2018). Therefore, the
parameters were reassessed applying the Pitzer formalism using the original experimental
(by Heinonen and from referenced literature).

Model results together with experimental data from (Heinonen, 1999) are shown in Figure 31.

Figure 31. Experimental data together with model curves for binary systems of Na2S with
KCl, K2CO3 and K2SO4 at temperatures 25, 75 and 90 °C.
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Additional model results are compared with data collected by Heinonen for systems
containing Na2S with NaCl, Na2CO3, NaOH and Na2SO4 in Figure 32.

Figure 32. Literature data together with model curves for binary systems of Na2S with NaCl,
NaOH, Na2CO3 and Na2SO4 within temperature range 50-90 °C.

Thermodynamic parameters for the model are included in the updated database compiled
during the project.

4.3.2 Updated database for aqueous modelling

As a part of the project a FactSage (Bale et al. 2016) version of the VTT aqueous solution
database was constructed. This was done both for future database maintenance and to offer
a product usable directly with other Factsage databases for thermochemical simulation. The
work was based on the solution database created during the earlier Multirec project (Pajarre,
Koukkari, and Kangas 2017). Due to restriction in allowed phase names in FactSage, most of
the existing pure solid phases had to be renamed while phase descriptions containing first
order phase transformations had to split to separate phases to be compatible with the
FactSage standard. During the project number of new solid precipitates and some solution
species were added to the data while some adjustments to the non-ideal aqueous solution
model were made in order to improve the solubility predictions for Si and Al containing
solutions. The newly evaluated sulphide systems were added to the database. The new
database contains elements Al, Ba, C, Ca, Cl, Cu, Fe, H, K, Mg, Mn, N, Na, O, P, S, Si, Sr
and Zn with gas and aqueous solution phases and two solid solutions (non-stoichiometric
burkeite and glaserite). The total number of chemical species in the database is
approximately 250.
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Figure 33. View of the database species listing within FactSage

The database is an equilibrium database without reaction constraint options as the
constraints are not supported by the current version of FactSage.
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5. Modelling of bioreactor systems

Industrial biotechnology, bioremediation, and biohydrometallurgy increasingly generate
thermodynamic models for processes that include biological phenomena. Gibbs energy
minimization enable model construction with much less effort than a purely kinetic model due
to the availability of thermodynamic parameters and the relatively rapid equilibration of acid-
base reactions in aqueous solutions. However, biochemical systems tend to have dependent
reactions, thus making the constraint selection challenging.

The solution space of a CFE model is a simplex (convex hull) spanned by a set of basis
vectors. Every active constraint is a hyperplane touching one side of the simplex. The
addition of a reaction constraint adds a hyperplane to split the solution space into two non-
empty subspaces (reactants on one side and products on the other). Therefore, the
maximum number of linearly independent reaction constraints is the number of linearly
independent basis vectors. The selection of one reaction constraint limits the set of
alternatives for the other reaction constraints. Therefore, the full set of constraints may need
to be modified when adding a new reaction constraint to a system with reaction constraints.

Biochemical systems tend to have many reactions, sometimes more reactions than species.
The generation of a thermodynamically consistent set of constraints and the mapping from
deterministic reactions to these linearly independent constraints is essential for the
development and utilization of these models.

5.1 MatriMa for generating reaction constraints

Peter Blomberg

MatriMa (Blomberg and Koukkari, 2011) is a tool for calculating a reasonably sparse null
space of a numerical matrix and can be applied to a) any element or entity-conservation
matrix, b) to any reaction matrix, and c) with or without an earlier/partial solution. When the
output is an entity conservation matrix, a matrix where all non-zero matrix elements are
positive can be constructed. Such a matrix is required e.g. when plotting phase diagrams in
FactSage. Reasonable sparsity is sufficient for most purposes (e.g. ChemSheet).

The algorithm computes a new entity conservation matrix containing all pertinent reaction
constraints from a known reaction matrix. Any additions and removals of reactions must
occur by modifying the reaction matrix before the algorithm is run.

The algorithm computes the entity conservation matrix by iterating a linear program for
solving one row at a time. Each new row must a) satisfy the null space equation, b) be
perpendicular to all previous rows, have as few non-zero elements as possible, and if
required have only positive non-zero elements. Splitting the forward and reverse reaction
directions into separate unidirectional reactions is the key for a successful implementation of
the algorithm. Having separate binary variables for the forward and reverse reactions means
twice the number of binary variables, but the resulting constraints are much easier to solve
because they are completely linear. There is no need to create saddle-constraints (binary
multiplied with continuous) or dynamically modify boundaries of continuous variables. A
solution vector is accepted only if it increases the rank of the resulting entity constraint
matrix, thus guaranteeing that the correct number of basis vectors are generated and
knowing when to terminate the iteration. The algorithm also features exclusion of zero
solutions, numerical rounding, and numerical robustness considerations.
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5.1.1 Parallel reactions

A hypothetical system where A becomes D via intermediates B or C can be described with a
single conserved entity, thus leaving 3 degrees of freedom left for reaction constraints.
However, the system contains 4 reactions. Whenever a reaction in one of the branches is
constrained, thereby separating A from D, a reaction in the other branch will also have to be
constrained. Thus, there are four possible constraints when assuming a thermodynamically
feasible direction from A to D.

A B C D r
1 1 1 1
 1 1 1 1

A B C D r
1 1 1 1
  1 1 1

A B C D r
1 1 1 1
 1  1 1

A B C D r
1 1 1 1
   1 1

Reactions AB and AC are constrained in the leftmost matrix. Reactions BD and AC
are constrained in the second matrix. Reactions AB and CD are constrained in the third
matrix. Reactions BD and CD are constrained in the rightmost matrix.

5.1.2 Consecutive reactions

The dissolution of CO2(g) in aqueous base is hypothesised to occur via two consecutive
reactions, both of which are kinetically rate-limiting; a) the phase transfer of CO2 from gas to
liquid, and b) the hydration of CO2 to bicarbonate (Cents et al., 2005; Wylock et al., 2008).
Water autoprotolysis (R1) and acid-base equilibria (R2, R3) are assumed. Thus, the reaction
matrix has five linearly independent reactions as shown in Table 8.

Table 8. Reaction matrix for dissolution and equilibration of CO2 in water.

R1 R2 R3 R4 R5
CO2(g) -1
CO2(aq) 1 -1
H2CO3(aq) -1 1
HCO3

-(aq) 1 -1
CO3

2-(aq) 1
H+(aq) 1 1 1
HO-(aq) 1
H2O(l) -1 -1
Na+(aq)

According to the rank-nullity theorem, the algorithm should find 9 - 5 = 4 linearly independent
entity constraints. The entities can be chosen as the elements (H, C, O, Na) or a combination
of these as shown below. In simple cases such as the case here, the charge accompanies
the elements and is not a linearly independent constraint. The augmented entity conservation
matrix having two explicit reaction constraints is shown in Table 9. Although sparser versions
exist, this version of the matrix was selected due to pedagogical purposes.
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Table 9. Entity conservation matrix for the dissolution and equilibration of CO2 in water. The
two reaction constraints limit two consecutive reactions; dissolution and hydration of CO2.
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r1 r2

Na+ 1
H+ 2 1 1 1 2
O2- 1 1 1 1 1
CO2 1 1 1 1 1
R4 1 1 1 1 1
R5 1 1 1 1

The column for CO2(aq) is now the sum of the columns for CO2(g) and r1. This corresponds
to reaction R4 with the following modification: CO2(g) + r1  CO2(aq). Assuming that the
forward direction is thermodynamically feasible, the amount of r1 in the system now limits the
extent of reaction R4. A similar statement is true for reaction CO2(aq) + H2O(l) + r2
H2CO3(aq). The product of this reaction can be any of the carbonate species (as long as all
reactions are properly balanced) because the carbonate species will be in equilibrium among
themselves as assumed earlier. Biochemical pseudoisomer groups are often convenient
reactants because of the built-in equilibration of protonation species, thus reducing the matrix
size.

Wylock et al., (2008) measured pH and the amount of CO2 in the aqueous phase as a
function of time for CO2-absorption into a NaHCO3-Na2CO3 brine. The total salt concentration
was 10 g/kg. The amount of CO2 in the liquid directly determines the extent of reaction R4,
thus fixing the amount of entity r1 entered into the system. Since the pH was measured, the
amount of entity r2 needed at any given time point can be fitted. As shown in Figure 34,
reaction R5 lags behind reaction R4 measurably at these conditions.

Figure 34. On the left: Measured pHc versus the measured extent of reaction R4. On the
right: Fitted extent of reaction R5 versus measured extent of reaction R4. The line supporting
visual interpretation goes through origo and has a unit slope.
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5.2 Tools for modelling bioreactors

Peter Blomberg, Marja Nappa, Petteri Kangas†

Biochemical reactions use pseudoisomer groups as reactants to describe the reactions
independently of the pH. The approach assumes protonation equilibria and has been
formalised via Legendre transforms (Alberty, 2003). The chemically distinct species H3PO4,
H2PO4

-, HPO4
2-, and PO4

3- achieve equal Gibbs energies during the Legendre transform and
can thus be grouped into one pseudoisomer group to be used for thermodynamic
calculations relating to biochemical reactions. This is readily interpreted as having a fixed
equilibrium distribution of chemical species at each particular pH. The average number of
protons bound by chemical species within one pseudoisomer group can thus be calculated
as a function of pH. The next subchapter presents an application of such a calculation for
modelling a particular bioreactor, followed by an example of computing equilibria in a system
having biochemical reactions. Subsequent chapters demonstrate various software tools
available for modelling biochemical processes.

Microbial sulphate reduction was selected as the main application focus regarding bioreactor
modelling in this report. Due to the combined removal of acidity, metals, and sulphate,
microbial sulphate-reduction appears to be the most promising process for acid mine
drainage treatment (Kaksonen, 2004). This process is also developed by Sulfator and
Savonia.

5.2.1 Legendre transforms for process design

The average number of protons nH bound to the molecules of a pseudoisomer group can be
calculated by equations (62) and (63) for pseudoisomer groups having one pKa and two pKa
values, respectively. The value is fixed by the pH of the aqueous solution (Figure 35).

𝑛H = 𝑛0 +
1

1 + 10𝑝𝐻−𝑝𝐾𝑎 (62)

𝑛H = 𝑛0 +
1 + 2 ∗ 10𝑝𝐾𝑎1−𝑝𝐻

1 + 10𝑝𝐻−𝑝𝐾𝑎2 + 10𝑝𝐾𝑎1−𝑝𝐻
(63)

where n0 is the number of hydrogen atoms in the least protonated pseudoisomer and the pKa
with indexes are acid dissociation constants.

Figure 35. Average number of hydrogen atoms bound to molecules within pseudoisomer
groups for select small biochemical species as a function of pH.
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When applied to the biological reduction of sulphate to sulphide with acetate as the electron
source, acetate + sulphate sulphide + 2 carbonate, nH shows that steady-state operation
occurs near pH 8.3 or requires a constant source of protons (Figure 36). In this case, luckily
the acetate feed can be in the form of acetic acid, which supplies the protons needed to
operate at a lower pH. The lower pH is desired because a) the hydrogen sulphide product is
more easily extracted at pH nearer to or below its pKa value near 7 and b) the cell catalyst is
sensitive to high pH.

Figure 36. The average number of protons bound by the biological reduction of sulphate that
consumes acetate and acetic acid as feed.

In Figure 36, a positive nH means that the reaction consumes protons, while a negative nH
means that the reaction releases protons. Thus increasing or decreasing the pH. The graph
reveals two possible states with constant pH and that the system pH tends to approach these
values with time, no matter what the pH was in the beginning.

5.2.2 Equilibrium thermodynamics with biochemical reactions

The biological reduction of sulphate to sulphide with acetic acid as the source of electrons is
conveniently described by the biochemical equation: “Sulphate + Acetate Sulphide + 2
Carbonate”, where “Carbonate” is the pseudoisomer group for CO2(aq), H2CO3(aq), HCO3

-

(aq), and CO3
2-(aq). This reaction expression is independent of pH since it is a biochemical

reaction where pH-equilibration occurs within each pseudoisomer group.

Biochemical reaction constraints can be added to biochemical systems (Blomberg and
Koukkari, 2009) in the same way as chemical reaction constraints are added to chemical
systems. However, the two cannot be mixed directly. A hydrogen- and electron-balanced
chemical reaction is needed for adding a biochemical reaction to a chemical system. The
conversion from a biochemical reaction to a chemical reaction is ameliorated by the fact that
the proton can take part of the chemical reaction with an undetermined stoichiometry. For the
great majority of reactions, choosing any pseudoisomer from a pseudoisomer group is
acceptable because the proton will balance the equation. Carbonate is the one known
exception since choosing the unhydrated/hydrated form when the other form is required
results in an imbalance of water. This imbalance cannot be rectified by any amount of
protons. Nevertheless, in most cases, the task is to find the number of protons that balances
the reaction.

For this particular case, the species most abundant between pH 7 and 8 are chosen; i.e.
SO4

2-(aq), CH3COO-(aq), HS-(aq), and HCO3
-(aq). Fortuitously, the resulting chemical

equation SO4
2-(aq) + CH3COO-(aq) = HS-(aq) + 2 HCO3

-(aq) balances perfectly. Figure 37
shows the evolution of pH in a batch reactor where sulphate in acid mine drainage is reduced
with acetic acid to sulphide. The calculation was done by adding a specified amount of acetic
acid to the mixture and computing the equilibrium composition of the solution using
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ChemSheet. Eventually, sulphate would run out and excess acetic acid would be left
unreacted, thus demonstrating the use of a biologically-catalyzed reaction in a
thermodynamic data file.

Figure 37. Evolution of pH with extent of reaction for sulphate reduction using acetic acid as
the electron source. The pH converges to the steady-state value calculated in Figure 36.

5.2.3 Dynamic SRB -model

A dynamic model for sulphate reduction by bacteria was constructed. The reactor model
accounts for continuous feeds (electron source, sulphate source) and product outlets (gas,
liquid, solid). Initially, the reactor at Savonia was thought to be a plug-flow reactor (PFR), but
the circulation flow rate 𝑣Kierto was sufficient (experimentally confirmed, data not shown) to
model the reactor as a continuously-stirred tank reactor (CSTR), modelled by equations (64-
67).

𝜕𝑐R

𝜕𝑡
=

𝑐BR𝑣BR − 𝑐R𝑣RD

𝑉R
− 𝑘𝑐R (64)

𝑐BR𝑣BR = 𝑐IN𝑣IN + 𝑐R𝑣Kierto (65)

𝑣BR = 𝑣IN + 𝑣Kierto (66)

𝑣RD = 𝑣OUT + 𝑣Kierto (67)

, where cR is the substrate concentration in the reactor, VR is the reactor volume, and k is the
apparent rate constant. In steady-state, the volumetric flow into the reactor 𝑣BR equals the
volumetric flow out from the reactor 𝑣RD.

Substrate uptake is often limited by saturation of the permeability mechanism at high
substrate concentrations, thus resulting in the experimentally-derived Monod-equation (68).
Microbes do not catalyse the reverse reaction in any measurable amount since they do not
grow under such conditions.
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𝑟Metabolism

𝑐𝐶𝑒𝑙𝑙𝑠
= 𝑘max ቈ

𝑐Sulphate

𝐾Sulphate + 𝑐Sulphate
቉ ቈ

𝑐RedEq

𝐾RedEq + 𝑐RedEq
቉ (68)

Both the growth rate of the bacteria and the metabolic activity of the bacteria are sensitive to
pH and often well-enough modelled by a Bell-shaped curve (69).

𝑟(𝑝𝐻, ⋯ ) = 𝑟(⋯ ) ൤
1

1 + 10𝑝𝐻−𝐴 + 10𝐵−𝑝𝐻൨ (69)

, where the parameters A > B define the range of optimal pH values.

Although the exact values may differ from strain to strain and from one community to
another, sulphate-reducing bacteria are generally inhibited 50% by H2S-concentrations
between 2 and 15 mmol L-1 (Koschorreck, 2008). The neutral H2S-molecule is highly
membrane-permeable and ionizes inside the cell, thereby reducing the membrane potential
essential for survival and growth. The same mechanism explains the toxicity of small organic
acids. Hydrogen sulphide is also toxic inside the cell because it interferes with the stability
(disulphide bonds) and catalytic activity (cysteines, iron-sulphur clusters) of enzymes. The
reversible inhibition by H2S can be described by the non-competitive inhibition model (70)
(Reis et al., 1992). This expression underestimates the level of inhibition at low H2S
concentrations and cannot be used for concentrations exceeding 530 mg L-1 simply due to
numerical issues.

𝑟൫𝑐H2S, ⋯ ൯ = 𝑟(⋯ ) ቂ1 −
𝑐H2S

547
ቃ

0.401
(70)

, where the concentration of undissociated H2S is given in mg L-1.

Due to the mechanism of action, well-growing cells tend to tolerate higher concentrations of
inhibitors than poorly growing cells. This can be modelled by the simple, yet effective
differentiation of metabolism and growth (71). This allows survival without growth and
metabolic activity while dying. It has been experimentally observed that both the rate of
growth and the yield of growth decline independently as the pH is lowered (Reis et al., 1992).
The yield of growth is reduced as more energy is diverted toward maintaining the membrane
potential than toward growth. Diffusive flux across a membrane is proportional to the
concentration difference across the membrane (72).

𝑟Cells = 𝑌Cells[𝑟Metabolism − 𝑟Maintenance]

𝑔𝑟𝑜𝑤𝑡ℎ 𝑖𝑓 𝑟Cells > 0

𝑑𝑒𝑎𝑡ℎ 𝑖𝑓 𝑟Cells < 0

(71)

𝐽Flux ∝ ∆𝑐

𝑟Maintenance

𝑐𝐶𝑒𝑙𝑙𝑠
= 𝜏0[10𝑝𝐻IN−𝑝𝐻OUT − 1] +

𝜏HA𝑐HA

𝐾HA + 𝑐HA
+

𝜏H2S𝑐H2S

𝐾H2S + 𝑐H2S

(72)

, where H2S is specifically the undissociated H2S and HA is the undissociated form of acid.
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The full model derived above was not used in the project because there was no need for it.
The applications were satisfactorily modelled using applicable parts of it. The following two
chapters present two applications in which parts of the above model was used.

5.2.4 Process flowsheeting

A flowsheet model for a process including an SRB-reactor was assembled. The model was
used to study the efficacy of reactor effluent on the removal of Calcium from the reactor
influent. The study included optional concentration of effluent by reverse osmosis and
supplementary chemicals.

The HSC Chemistry 9.8 (Outotec, 2018) was used for the computational assessment. The
process streams were modelled using a multi-phase approach. Gaseous phase, aqueous
phase, and pure solid phases were included in the model. Thermodynamic equilibria were
computed for illustrating the effects of precipitation and dissolution as well as the evolution of
pH. Thermodynamic data was obtained from HSC Chemistry 9.8 database for flowsheet
simulation. The Pitzer formalism (Aqua module) was used as the activity model for the
aqueous suspensions. In addition, the SRB-reactor was modelled using biochemical reaction
equations. The entire process was assumed to operate at steady state even though an
actual process might operate partly as a batch process. A snapshot of the flowsheet is
shown in Figure 38.

Figure 38. SRB process modelled using HSC Sim9.

The influent contained 1100 mg Calcium, 110 mg Magnesium, 630 mg Sodium, 15 mg
Potassium, and 4420 mg sulphate in 1000 g water and its pH was adjusted to pH 9 by using
approximately 1 mg NaOH. Thereafter, the model was quickly tested by adding a) an
equimolar mixture of NaOH and NaHCO3, b) an equimolar mixture of Ca(OH)2 and NaHCO3,
concerning hydrogen and carbonate and c) only NaHCO3. (See
Figure 39)

The target for residual calcium was 400 mg L-1 and it was met by adding 18 mmol L-1, 27
mmol L-1, and 60 mmol L-1 reagents in cases a), b), and c), respectively. Case b) required
approximately 50% larger chemical feeds than case a) because the feed itself contained
calcium. In case c), the pH decreased rapidly to pH 6.5, where after it slowly increased to pH
7 due to the buffering capacity of the solution. Computational assessment thus suggested
that all three treatments were capable of reducing calcium to the desired level. The needed
chemical amounts were the lowest when caustic soda and bicarbonate were utilised.
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Replacing the solid NaHCO3 reagent with the effluent mixture increases the amount of fluid
passing through the unit operations. While this may dilute some of the calcium, effluent alone
in any amount would not be sufficient for lowering the calcium concentration to the desired
level. Here, one must weigh the cost of purchasing pure chemical feed versus the increased
costs of larger equipment sizes and operating the reverse osmosis unit.

Figure 39. Pre-treatment of the influent to remove calcium, three treatments a) NaOH and
NaHCO3, b) Ca(OH)2 and NaHCO3 and c) NaHCO3. Amounts in aqueous phase and
precipitate (primary axis) and pH (secondary axis) as a function of chemical feed (mmol of
bicarbonate and hydroxide each per kg H2O).

5.2.5 Deriving biochemical kinetics from process data

This example shows that process measurements can in some cases be used to compute
reaction kinetics even for complex biochemical reactions.

The process performance data measured by Savonia during the development of the SRB
process was analysed using parts of the dynamic SRB model developed in this project. After
having confirmed that the reactor operated sufficiently similar to a continuously stirred tank
reactor, the corresponding reactor design equations were used to reverse engineer the
reaction rates needed to incur the observed changes in the process measurements. After
studious examination of the observed special events and changes to the operating
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conditions, a surprisingly accurate calculation of the reaction rate for the main biochemical
reaction was obtained (Figure 40). Further details are in the confidential technical report.

Figure 40. Apparent reaction rate versus substrate concentration for the main biochemical
reaction in the SRB process.

While the reactor was operated in more or less steady-state, the momentary behaviour of the
reactor spanned a conveniently large portion of the substrate concentration range to
visualise the shape of the curve. Similar plots (not shown) were obtained for key inhibitory
compounds. Being able to recognise the shape of the curve implies that the reactor model
sufficiently captures the phenomena needed to model the reactor. Since these calculations
do not differentiate the individual protonation states of the reactants, this is an example
where biochemical reactions expressed in terms of pseudoisomer groups are handy.
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5.3 Uncertainties in models

Risto Pajarre and Karri Penttilä

Thermochemical process modelling is typically deterministic. A given set of input parameters
combined with specified model parametrization gives certain specific numerical output values
as result. The practical problems being modelled however contain uncertainties in the input
parameters, which result in uncertainties in the predicted outputs. A study of ways to test and
visualise these uncertainties was performed.

It is not possible to calculate by regular free energy minimisers truly continuous states;
however, it is possible to discretise the variables and the states being studied. As the number
of sates needed to be solved is approximately proportional to aN, where N is the number of
parameters with uncertainty, it is typically preferable to use as small number of parameters
as possible and probably never larger number than N=3.

In the study the simulation window was scanned with equally spaced data points, with a
given minimum and maximum parameter value. After that, probability functions were used to
generate weight factors corresponding to individual parameter values and calculated results.

The equilibrium calculation results do not need to be repeated if the weight factors are
changed as the result for any individual equilibrium calculation does not change. Also, if the
applied are deemed to be not independent, as long as the underlying chemical model is
valid, the dependency will be implicitly shown only in the formulas used to generate the
weight factors.

The work done here concentrates in uncertainties in used input values such as molar
amounts, temperature or pressure and not in those in the applied thermodynamic data. It can
be noted though that within the framework of CFE equilibrium calculations, non-equilibrium
reaction affinity is a valid input parameter, similar to fixed partial pressure of gaseous
component, and therefore could be applied here as well. On the other hand, non-zero affinity
can be equated with system in equilibrium but different chemical potential standard states
(equilibrium constant) related to that reaction, and therefore with an uncertainty related to
value. The proposed method is not applicable in its current form to uncertainties in the
applied activity coefficient models.

5.3.1 Model example

The necessary equilibrium calculations were done using ChemSheet, and the resulting data
was handled by regular worksheet functions. Chemical system applied the VTT aqueous
database with the following inputs (Table 10)
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Table 10. Input values for the model chemical system

Input amounts of Na2CO3, Na2SO4 and temperature were considered variable parameters,
while the other inputs had one fixed value. For the amounts of Na2CO3, Na2SO4, 21 equally
spaced input values were used for both, while temperature was varied with 7 steps, resulting
with a calculation model with a total of 3087 model points to be generated.

The modelled output values were divided 20 to equally spaced groups within calculated
minimum and maximum values. In Figure 41 the calculated equilibrium pH, burkeite and
soluble Mg amounts are shown using the original equal spaced, equal probability distribution
of input parameters. Blue curves show the calculated probability distribution, the red bar the
value corresponding to the average composition.

Figure 41. Calculated probability distributions of solution pH, formed burkeite and
magnesium in solution.

As can be seen the pH shows fairly smooth distribution around the value that would be
obtained using the average inputs. Regarding burkeite, about the third of the states are
below the solubility limit and then show a fairly steadily reducing probability of finding more
salt up to a certain maximum value corresponding to optimal conditions, while dissolved
magnesium shows a maximum close to the value corresponding to the average input
parameter values.

Using the same calculated equilibrium distribution, but assuming a truncated normal
distribution (normal distribution, but with hard cut off at the applied minimum and maximum
parameter values) around the mean with standard deviations 0.05 mol/kg for the Na2CO3 and
Na2SO4 inputs, while maintaining the original temperature distribution, results with the curves
shown in Figure 42.

value min max
H2O/kg 1

Na2CO3/mol 2 1.5 2.5

Na2SO4/mol 2 1.6 2.5
T/°C 50 48 52
MgCl2/mol 0.05

CaSO4/mol 0.05
FeCl3/mol 0.01
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Figure 42. Calculated probability distributions with the truncated normal distribution for the
feed input parameters assumed.

The pH distribution is now much sharper while the probability of no burkeite being
precipitated is close to zero. A more detailed analysis would be needed to determine if the
double peak with dissolved Magnesium is due to data artefact and the limited precision of the
distribution calculation or due to two different basic Mg salts being precipitated partly
simultaneously.

5.3.2 Conclusions

Reasonable distribution presentation for analysis and data visualization can be created with
a moderate number of model points that for most systems can be generated fairly fast with
present computational routines. After the necessary model data for the desired parameter
values has been generated, various probability distributions within that parameter space can
be evaluated without redoing the time consuming equilibrium calculations. For faster more
automatized data generation a custom made ChemApp-application could be constructed,
also supporting cross tabulation of various calculated quantities.
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6. Hybrid systems and methods in thermodynamic modelling

6.1 Machine learning for predicting Pitzer parameters based on ion
specific properties

Petteri Kangas† and Risto Pajarre

The use of technology metals in the ICT sector has increased tremendously since the 1990s.
Improved efficiency, cameras, touchscreens, and wireless connectivity have been achieved
by innovative usage of different elements. In 1990, the manufacturing of computers and
mobile phones used approximately 10 metals. Now the number exceeds 50. The
fractionation, concentration, recovery and refining of these elements require fundamental
material property data, particularly so for their mixtures appearing in the respective extraction
processes.

Although much of the fundamental property measurements were conducted in the first half of
the twentieth century, there are still many metals and ion pairs for which there is too little
experimental data available, thus hampering the development of new process concepts.
Conduction of such fundamental measurements with conventional techniques is elaborate
and time-consuming, which has led to scarce practicing in this field.

The exponential growth of computational power has introduced new possibilities for
computational science. Data-based machine learning algorithms have been developed and
deployed to many impressive solutions, such as computer games, machine vision, and drug
discovery. The aim of this work package was to evaluate whether these new machine learning
algorithms could be applied for predicting properties of non-ideal electrolyte solutions when
experiment based data evaluations are not available, the expected applications areas including
hydrometallurgy, water purification, and the treatment of industrial concentrates and brines.

6.1.1 Methodology

Mean activity coefficients of cation-anion pairs in aqueous solution were predicted using a
neural network trained on data from (Pitzer and Mayorga, 1973). This data describes Pitzer
parameters  (Pitzer, 1991) for calculating mean activity coefficients for over 200 different
cation-anion pairs covering 50 different cations and 54 different anions. This parameter set
was considered as proxy for a evaluated experimental data within the stated validity range,
which varied but in most cases extended up to 6 M. Mean activity coefficients acted as labels
(outputs) for the neural network. These labels were connected to features (inputs) of each
particular cation and anion. The features included i) molecular weight, ii) charge, iii)
hydratation number, iv) enthalpy of hydratation, v) entropy of hydratation, vi) Gibbs’ energy of
hydratation, vii) softness, viii) partial molar volume, and ix) radius. The x) molality was used
as an additional input for the neural network. The size of dataset was approximately 5000
data points. 80 % of the data was used for training and the remaining part for validation.

Based on preliminary screening of different neural network structures, a feed-forward neural
network was chosen. It suited better for estimating continuous mean activity coefficients as
functions of molality compared to e.g. regression trees. Machine learning studies were
conducted using the Keras (Chollet and others, 2015) framework as it allows rapid
development of neural network based models. Tensorflow (Abadi et al., 2015) and PlaidML
(plaidML, 2019) were used as Keras backends. The hyper-parameters of the neural network
model were optimised using the Scikit-learn (Pedregosa et al., 2011) toolbox. Model
development was conducted using the Jupyter (Kluyver et al., 2016) notebook environment
within the Anaconda (Anaconda, n.d.) Python toolbox. Calculations were run on a laptop
computer (Windows 10, Intel quad core, 1900 MHz) with separate graphics processing unit
(AMD Radeon RX550).
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6.1.2 Results

The model for predicting mean activity coefficients was divided into two parts. The first part
described an average mean activity coefficient based solely on the charge of the cation and
the charge of anion (1-1,1-2, 2-1,2-2,1-3,3-1,4-1,5-1). The second part represented the
deviation of the mean activity coefficient for a specific cation-anion pair with respect to the
average mean activity coefficient for ions of corresponding charges. This deviation was
estimated based on the neural network model trained using above mentioned cation-anion
specific features and labels obtained from literature.

The over-fitting of the neural network model was avoided using hyper-parameter
optimisation. The following hyper-parameters were optimised: i) number of epochs, ii) batch
size, iii) applied activation function, iv) number of neurons in each layer, v) number of hidden
layers, vi) loss function, and vii) training algorithm.  Based on the optimisation of hyper-
parameters, it was concluded that a two hidden layer network topology with about 20
neurons in the first layer and about 5 neurons in the second layer was sufficient. A special
characteristic of this feed-forward neural network topology was the fact that molality was fed
as a feature to both layers. Other features were supplied only to the first layer of network.
This allowed accurate modelling of diluted suspensions as described by Debye-Hückel
limiting law (Huckel and Debye, 1924).

80% of the data was used for training and 20% for model validation. The accuracy of
predicting mean activity coefficients using the final neural network model was improved for
65% of the cation-anion pairs when compared to charge specific average values. The model
failed to improve accuracy in cases were the original data for certain anions were scattered.
Some polyatomic organic anions were only participating in one or two ion pairs. In addition,
some features used for machine learning were not defined for these polyatomic organic
anions. On the other hand, predicting mean activity coefficients for cation-anion pairs with
inorganic anions (such as SO4, CO3, NO3) was successful in many cases.

Figure 43. Example comparisons of mean activity coefficients as function of square root of
molality. Orange: Experimental data based Pitzer model; Green: Neural network model; Ionic
charge based comparison model. Ion pairs are from the data validation set.
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Figure 44. Comparison of the predicted and experimental mean activity coefficients within the
training and validation test sets.

Table 11. Comparison fit errors between the neural Network model and the Ionic charge
based comparison model. Green colour denotes the cases (133 out of 203) where the neural
network model work better than the ionic charge based model. Relatively poor performance
was found with Na(+) and K(+) where large part of the dataset was with interaction with large
anions that had little data with other cations.

Since the finalization of this work package, the datasets and analysis has been used as a
basis for further work in a candidate thesis at Aalto University (Kattelus, 2020).

6.1.3 Summary

Machine learning was applied for predicting mean activity coefficients for ion pairs in
concentrated aqueous solutions. The developed model was able to improve the predicted
mean activity coefficients for two thirds of the cases compared to using only ion charges for
prediction. Predictions were most successful when modelling metal cations and inorganic
anions. The training data for polyatomic organic anions was too scarce.
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Al(+3aq) 0.025 nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan
Ba(+2aq) 0.024 0.0045 0.01 nan 0.0022 0.046 nan nan nan nan nan 0.018 nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan
Be(+2aq) nan nan nan nan nan nan nan 0.12 nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan
Ca(+2aq) 0.0062 0.00065 0.0026 nan nan 0.15 nan 0.0005 0.026 nan 0.15 0.0006 nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan
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Cu(+2aq) 0.0075 nan nan nan nan 0.11 nan 0.012 nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan
Dy(+3aq) nan nan nan nan nan 0.035 nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan
Er(+3aq) nan nan nan nan nan 0.0024 nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan
Eu(+3aq) nan 3 nan nan nan 0.071 nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan
Fe(+2aq) 0.0014 nan nan nan nan nan nan 0.0016 0.36 nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan
Ga(+3aq) nan nan nan nan nan nan nan nan nan nan nan 0.28 nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan
Gd(+3aq) nan nan nan nan nan 0.014 nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan
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K(+aq) 0.0006 0.007 0.0038 0.0002 0.047 0.073 0.0095 0.015 0.0013 0.013 0.022 nan 0.0036 0.011 nan nan 0.016 nan nan 0.0018 nan 0.15 0.0088 0.0076 0.0083 0.0061 0.0081 0.0098 0.045 0.0046 nan 0.0028 0.0022 0.0019 0.0052 0.0022 0.0015 nan 0.012 0.025 0.0007 0.0098 nan 0.0017 0.0025 20
La(+3aq) 0.013 nan nan nan nan 0.056 nan nan nan nan nan 0.12 nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan
Li(+aq) 0.041 0.025 0.016 nan 0.054 0.0023 0.0029 0.0072 nan nan nan 0.082 0.032 nan nan nan nan nan nan 0.005 nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan
Lu(+3aq) 0.12 nan nan nan nan 0.0073 nan nan nan nan nan 0.16 nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan
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Ni(+2aq) 0.0091 nan nan nan nan nan nan 0.021 nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan
Pb(+2aq) nan nan nan nan nan 0.48 nan nan nan nan nan 0.012 nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan
Pr(+3aq) nan nan nan nan nan 0.052 nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan
Rb(+aq) 0.0016 0.014 0.0044 0.0082 nan 0.082 0.0059 0.006 nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan
Sc(+3aq) 0.0071 nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan
Sm(+3aq) nan nan nan nan nan 0.039 nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan
Sr(+2aq) 0.0089 0.00032 0.0062 nan nan 0.24 nan 0.0036 nan nan nan 0.0008 nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan
Tb(+3aq) nan nan nan nan nan 0.015 nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan
Tl(+aq) nan nan nan nan nan 0.0091 nan nan nan nan nan 0.0031 nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan
Tm(+3aq) nan nan nan nan nan 0.0018 nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan
UO2(+2aq) 0.0044 nan nan nan nan 0.017 nan 0.026 nan nan nan 0.34 nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan
Y(+3aq) nan nan nan nan nan 0.022 nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan
Yb(+3aq) nan nan nan nan nan 0.0015 nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan
Zn(+2aq) 0.21 0.0083 0.0095 nan nan 0.021 nan 0.0029 nan nan nan 0.06 nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan



RESEARCH REPORT VTT-R-01210-20
71 (83)

6.2 Surrogate models for faster thermodynamic calculations in
chemical flowsheet simulation

Andreas Roth and Risto Pajarre

6.2.1 Introduction

Surrogate models are an engineering approach mostly used to replace systems that are
complex or unknown. The main idea is to view the system as a black box and mimic the
output of the system. They are mathematically simple models that map, or regress, the input-
output relationships of a more complex, computationally demanding model. In this work,
applicability of neural networks based surrogate models were studied for replacement of unit
operation models in HSC Chemistry 10 software (Metso Outotec, 2020) and as a
replacement for a thermodynamic non-ideal solution model for modelling activity coefficients.

6.2.2 Methods

The neural network modelling was performed using both HSC inbuilt tools and the
Tensorflow open source program (Abadi et al., 2015). For the unit operation calculations a
system with one hidden layer with 45 neurons was used with the number of input and output
nodes depending on the number of input and output values in the case system. For the
activity coefficient modelling, the best results were obtained by three hidden layers combined
with dropout layers. The short description of the modelling work and results are given here,
full description is included in the Masters Thesis of Andreas Roth (Roth, 2020).

6.2.3 Unit operation model

Neural Networks based surrogate models have potential application area in accelerating
complex thermodynamic and process calculations in systems were similar calculations need
to repeated a large number of times, e.g. for optimization tasks or in digital twins. As a test
case, autoclave model within the Outotec HSC 10 simulation software was converted to a
surrogate model (Figure 45).

Figure 45. Autoclave system.

The HSC model contained in addition to the autoclave itself the surrounding pulping,
preheater, scrubber, mixer and flash units. The chemical system in the model contained the
H2O, O2, N2, H2SO4, H(+a), Co(+2a), SO4(-2a), CoS, Fe2O3, FeS2, S and SiO2 species. Two
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versions of the surrogate modelling were tested. In one, only the autoclave unit only was
converted to a surrogate model, in the other, the whole larger system in Figure 45. Because
of the large number of internal streams and relatively small number of streams exiting the
balance area of Figure 45, the larger model area has smaller number of stream inputs and
outputs to model; Indeed, the larger model area had only three input values (CoS, FeS2 and
SiO2 inputs) that were considered to variables.

Figure 46. Neural network schemas for the autoclave unit (left) and the whole balance area
(right)

Training data was generated for 2000 cases, varying the feed amounts uniformly by 50%
from their original values.

For the autoclave unit the Mean Square Error (MSE) was 2.54e-4 while the largest relative
error was 0.04. For the larger model area MSE was 4.15e-8 and the largest relative error
0.001. The dependency of accuracy on the number of data sets used for network training
was tested for the larger model. Approximately 1000 data sets were found to be enough for
sufficient accuracy.

Figure 47. Achieved MSE as a function of data points (left). Comparison of the surrogate
model mass flow rates with the original model for the autoclave unit (right).

The model run times are presented in Table 12. Given are the simulation times for 100 model
runs for the original non-neural network case, surrogate model were only the actual
autoclave model has been replaced, surrogate model were the whole flowsheet in Figure 45
has been replaced by a neural network and finally a ‘blanco’ model to give an estimate of the
constant computational overhead not dependent of the model type used.
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Table 12. Effect of a neural network on the simulation time

6.2.4 Activity coefficient model for mixtures

The ability of neural networks to find patterns in complex data could potentially be used to
estimate non ideal solution properties in thermochemical systems that are not properly
assessed. As a concept test of the capabilities of a neural network based modelling for
simulating activity coefficients in a non-ideal multicomponent systems, a study based on
aqueous solution mixture properties as evaluated by the HSC 10 program was performed.
The test system contained 22 aqueous species whose activity was modelled in mixtures of
varying concentrations, taking account their solubility relative to corresponding major solids
in the HSC 10 database. After training the model it was tested against a validation dataset.
Comparison of the surrogate activity coefficients vs. the original ones are shown in Figure 48.

Figure 48. Comparison of the original Pitzer model based estimates for the activity
coefficients (𝑙𝑛𝛾𝑖) from the HSC 10 program and the corresponding surrogate model. Also
shown are the error limits corresponding to 50% relative error in activity coefficients.

6.2.5 Conclusions

The accuracy of the unit operation surrogate model was excellent. The time savings obtained
for a single relatively simple unit were small but noticeable. With a large model area replaced
by neural network model the time savings increased rapidly.

The largest errors in the activity coefficient model were encountered in cases of very small or
very high activity coefficients in highly concentrated solutions. While the surrogate model is
not directly affected by the lack of physical realism of the training data, it is possible that the
data was qualitatively different in a region were the applied Pitzer model is not properly valid
anymore. Elsewhere, the surrogate model predictions were generally within 50% of those
derived from the original model. If roughly corresponding results could be obtained in poorly
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studied system with sparse data, they would be adequate for many purposes. This would be
need to be shown in a further study.
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7. Industrial perspective and future challenges

7.1 Benefits to Finnish process industry

The exponential growth of computational power has introduced new possibilities for
computational science. In process industry, this can be seen by the on-going global
digitalization, which provides new opportunities for the process modelling, design, control
and other expert systems even though digitalization has been part of this industry for a long
time.

Research institutes VTT and Savonia, industrial companies Valmet, Outotec and Finnish
Minerals Group and SMEs Langis and Sulfator were involved in the DeepCleanTech
consortium. The focus of the research at VTT has been thermodynamic modelling and
especially the applying the constrained equilibrium calculations, AI tools and biochemical
modelling in industrial processes.

Valmet has practiced long-term development work in which the know-how and utilisation of
chemistry through multi-phase programs, particularly VTT’s ChemSheet, has created a
unique and internationally recognised competitive advantage to the company. In the future,
special attention will be paid on the control of contaminant behaviour in forest industry by
innovative means to control of the chemistry of non-process elements and help the
customers to make their processes greener. The research of both topics has been the key
focus in DeepCleanTech.

Outotec actively utilises the models in the development of new process concepts and their
further marketing to customers. Digital twin models are also increasingly used for dynamic
process control as well as in practical process commissioning and operator training. Physical
and chemical models describing the process phenomena combined with black-box models is
an interesting development tendency that has an important role in digitalization and has been
also an interest in DeepCleanTech.

Modelling reduces the risks in new process solutions. Finnish Minerals Group focusses on
developing new holistic methods for metals recovery, using the multi-phase models to
support development of optional process concepts. The usage of modelling is often cost-
effective way to evaluate the viability of new process options. Certainly, the models need to
be validated through experimental work.

SME companies will benefit on the computational root cause analysis of new monitoring
techniques, in developing novel remote sensors for environmental analysis and when
designing new innovative bioactive processes. Good understanding of phenomena helps
avoiding the problems and fastens the trouble shooting. The computational results can be
further connected to experimental knowledge with the help of new expert systems, soft-
sensor solutions and artificial intelligence algorithms utilising machine learning.

A comprehensive set of concurrent industrial applications were also presented in the Latest
in Modelling symposium which was organised under the auspices of the DeepCleanTech
project at VTT on September 12th 2019 (Kangas et al., 2019), (see Figure 49 to Figure 51).
The symposium speakers represented a broad range of expertise from both academia and
industry from Finland, France, Germany and Russia. Multicomponent chemical modelling
was widely applied for various circular economy processes for their design and problem
solving. Computational physics and multiphase chemistry had been successfully connected
for chemical reactors, power plant modelling, rotary kilns and other industrial furnaces as well
as for hydrometallurgical precipitators and digesters. At best, the new process concepts
introduced have reached 50-60% reductions in process energy consumption and CO2-
release.
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Figure 49. The Latest in Modelling symposium September 12th, 2019 was arranged to honour
the 65th birthday of professor Pertti Koukkari. The international symposium gathered ca 80
modelling experts from both academia and industry.

Figure 50. Speakers of the Latest in Modelling 2019 symposium. Top left prof. Antti Vasara,
CEO of VTT, seminar opening, Prof. Tapio Salmi, Academy of Finland, Dr. Susanna
Kuitunen, Neste Engineering Oy, from left Ass.prof. Daniel Lindberg Aalto University, Prof.
Irina Zvereva, Prof. Alexander Toikka St. Petersburg State University below Dr Ville-Valtteri
Visuri Univdrstiy of Oulu and Dr. Timo Kankaanpää, Freeport Cobalt.
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Figure 51. Speakers of the Latest in Modelling 2019 symposium. Top left prof. Pertti
Koukkari, Dr. Alexander Pisch, CNRS Grenoble, Dr. Sonja Enestam, Valmet Oyj, from left Dr
Jukka Rantamäki, Metsä Fibre Oyj, Dr. Keijo Salmenoja, Andritz Oyj, Dr. Antti Roine Outotec
Oyj, below Karri Penttilä VTT, Eemeli Hytonen VTT with prof. Klaus Hack and Dr. Stephan
Petersen of GTT Technologies.

7.2 Future challenges

The on-going global digitalization of process industry provides new opportunities and brings
new challenges for the thermodynamic methodology.

The utilisation of both measured and simulated thermochemical state properties in the
information networks is an interesting task of the future web-controlled industrial practice.
The multi-phase models of unit processes can be further coupled with the control system for
the entire process and process-specific time constants, which in addition allows the
thermodynamic models to be used as components in the automation software.

To speed up the calculations, hybrid models combining the thermochemical data with
empirical or machine learning techniques is a forthcoming opportunity. It has also been
suggested that the ample data received from thermochemical calculations would be well
suited for training expert systems and algorithms using methods of artificial intelligence.

Thermodynamic simulation is based on the thermodynamic property data. In addition to
properties of pure substances, a process chemist will also need the data on how the
elements and compounds behave when mixing and reacting with each other. The same
basic data is then applicable to various processes - e.g. the mining water simulation tools
developed by VTT include properties for approximately ten metal cations and five anions and
the data is equally applicable in pulp and paper industry and wastewater management
(Pajarre et al., 2018).

The aim for sustainable circular economy however creates new challenges. While interest to
manage the non-process and trace elements in process industries has proliferated during the
last few years, in the field of materials technology several tens of chemical elements have
been adapted for commercial use both in industry and in consumer products. For the great
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majority of their compounds only the property data of pure substances have been determined
while the mixing model parameters are for most part unknown. A typical concurrent example
are the lithium species, both in high temperature salt and slag mixtures as well as in aqueous
solutions. The lack of adequate property data hampers both the design of primary extraction
processes and the development of recycling technologies.

To a fair extent the elaborate thermodynamic experimental measurement can be replaced by
computational methods. First principles or ab initio calculations combined with
thermodynamic continuum models are already applicable to relatively simple high
temperature systems. More complex cases such as aqueous solutions may be subjected to
machine learning and artificial intelligence methods for deducing interaction parameters for
new systems based on previously studied conditions of familiar systems. The obvious
challenges for future research in this field are to overcome the discontinuities of some of the
thermochemical data at phase transformation points and finding ways to select the
appropriate training sets when developing parameters for unknown mixtures.

Supplying thermodynamic data for new unmeasured systems has traditionally been possible
only by added experimental research, which is costly and time-consuming. In the new
circular economy, the in-depth research of property data for the freshly adapted chemical
elements and compounds in industrial use yet appears as an up-to-date task. While
physicists and material scientists have harnessed the properties of the novel substances for
various high-tech products, the process chemists must accept the challenge to quantify the
interactions of these species when recovering and recycling them.
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