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Abstract

We present or recall several equilibrium methods that allow to compute isentropic processes,

either during the compression or the release of the material. These methods are applied to

compute the isentropic release of a shocked monoatomic liquid at high pressure and temperature.

Moreover, equilibrium results of isentropic release are compared to the direct nonequilibrium

simulation of the same process. We show that due to the viscosity of the liquid but also to

nonequilibrium effects, the release of the system is not strictly isentropic.
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I. INTRODUCTION

The exploration of the thermodynamic behavior of materials under extreme conditions

usually follows two paths corresponding to two experimental devices: isothermal compres-

sions and shock compressions. Isothermal compressions are performed with diamond anvil

cell (DAC) techniques, and are used to compress materials up to very high pressures, al-

though with limited temperatures. On the other hand, shock compression experiments

investigate the high-pressure/high temperature regions through the propagation of dynamic

shock waves in the system. Nevertheless, the thermodynamic domain available using shock

experiments remains limited to the so-called Hugoniot curve, which is, by definition, the

collection of thermodynamic states which can be reached from a system at fixed initial con-

ditions, with shocks of increasing strengths. Such a constraint arises from the fact that the

system is assumed to satisfy Euler’s fluid equations (i.e inviscid Navier-Stokes equations),

and physically meaningful shocks therefore have to fulfill the Rankine-Hugoniot conditions,

which relate the thermodynamic parameters of the fluid at rest, and the thermodynamic

parameters of the shocked material. Another constraint is that shock waves are adiabatic,

therefore leading to very large temperature increases in the material, which limits its com-

pressibility. The equations of state (EOS) used to predict the material’s behavior at the

extreme conditions encountered are often simple extrapolations of EOS fitted on available

data, i.e. shock data and DAC data. It then appeared interesting to enlarge the experimen-

tal domain of investigation of materials behavior using dynamic compression set-ups, and

particularly isentropic compressions. Several experimental set-ups allow to load a pressure

ramp in a material. The first one is the high pulsed power (of which the sandia Z machine

and the High Explosive Pulsed Power1,2 at LANL are good examples). The second one con-

sists in using an impactor with a varying density along one direction, as proposed initially at

the AIP - SWCM conference.3 A successful technique is to stack slices of different materials,

leading to the so-called PILLOW impactors at Sandia,4 MIVAR impactors in France,5 and

more recently the FGM (Functionaly Graded Materials) impactors at LLNL,6 allowing a

real design of a thermodynamic path as a succession of shock and release waves. The last

one concerns experiments of Barnes’ type where the compression is the consequence of the

isentropic release of another material, as for example detonation products.7,8

Experiments involving isentropic compression are of great interest to reach high compres-
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sion states, or in geophysic applications to reach states representative of the earth’s core.

Experiments involving a precise evaluation of release waves in materials need also general

numerical methods to compute the states reached by isentropic pocesses.

Up to now, simulations involving shock processes are rather well developed due to the

simplicity of the Hugoniot equations. Those studies are performed within the framework of

statistical physics, see Refs. 9,10 for reference textbooks on molecular simulation, and Ref. 11

for reference works on nonequilibrium simulation of shock waves. Any state lying on the

Hugoniot can be reached from the reference state by searching for a given compression the

temperature for which the pressure and the total energy of the system satisfies the Hugoniot

relation. The search can be implemented in very efficient manners.12,13,14 Those methods

are now adapted to classical molecular dynamics and Monte Carlo, as well as quantum

molecular dynamics.15

Such an easy method does not exist for isentropic processes. In this paper, we present or

recall several equilibrium methods which allow to follow isentropic paths, both for classical

or quantum molecular dynamics simulations. We contrast these methods in terms of their

precisions, rigor and computational requirements. We compare the results obtained from

equilibrium simulations with release waves observed in nonequilibrium molecular dynamics.

The comparison between equilibrium and nonequilibrium methods therefore measures how

isentropic the expansion of the system is. It is expected that release waves of a perfect

non-viscous fluid are isentropic. For simple monoatomic fluids such as argon, it is often

assumed that the release is isentropic, and viscosity effects are neglected. Our results show

that even in this simple case, the release is not strictly isentropic and some corrections have

to be taken into account. As a by-product of our study, we also explore more precisely the

relationship between the Hugoniot and the isentrope curves, from a numercial viewpoint, but

also giving a statistical physics proof of the coincidence of the curves for small compressions

(see Appendix B).

Organization of the paper

The paper is organized as follows. In Section II, we present the nonequilibrium method

used to simulate rarefaction waves, while some equilibrium methods for constant entropy

sampling are recalled in Section III - details of the practical implementaion of the thermo-
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dynamic integration and precisions on the isentropic integration are given in Appendix A

and C respectively). In Section IV, a comparison of numerical results obtained in the case

of release waves in argon is performed, and we discuss whether release waves are isentropic.

II. NONEQUILIBRIUM SIMULATIONS

A. Microscopic description of physical systems

We first recall how a system is described at the microscopic level using statistical

mechanics.16 Statistical physics is a theory which allows to compute thermodynamic (macro-

scopic) properties of a system knowing the microscopic interactions between its constitutive

elements.

Consider a microscopic system composed of N particles, confined in a simulation box

D = [0, Lx] × [0, Ly] × [0, Lz]. The volume of the domain is denoted by V = |D| = LxLyLz.

The system is characterized by the positions q = (q1, . . . , qN ) and momenta p = (p1, . . . , pN)

of the particles, which have masses mi, and interact through a potential energy function U .

The phase-space Ω is the collection of all possible microscopic configurations (q, p) of the

system.

The central quantity describing the system is the Hamiltonian

H(q, p) =
N
∑

i=1

p2
i

2mi
+ U(q1, . . . , qN), (1)

which gives the energy of a given microscopic configuration (q, p). Average thermodynamic

properties of the system can be computed as averages of functions of the microscopic vari-

ables O(q, p) (the so-called observables) with respect to the canonical measure at a temper-

ature T , for a given simulation box:

O = 〈O〉V,T =

∫

Ω

O(q, p) πV,T (q, p) dq dp. (2)

The canonical measure associated with the Hamiltonian (1) weights microscopic states ac-

cording to their energies using a Boltzmann weight:16

πV,T (q, p) =
1

ZV,T

e−βH(q,p), β−1 = kBT, (3)
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where kB is the Boltzmann constant, and the partition function ZV,T is a normalization

factor so that (3) is indeed a probability measure:

ZV,T =

∫

Ω

e−βH(q,p) dq dp. (4)

We have indicated explicitly the dependence of the canonical measure (3) and the partition

function (4) on the temperature T and the volume V since these will be the parameters

allowed to vary in the sequel.

B. Nonequilibrium simulation of release waves

Similarly to what has been proposed for the simulation of shock waves,11 isentropic com-

pressions or releases can be simulated directly using Non-Equilibrium Molecular Dynamics

(NEMD). A straightforward numerical set-up to this end is simply to throw a low speed pis-

ton towards the sample (creating a weak shock), and then accelerating the piston in time.

Except this external forcing, the system evolves according to the standard hamiltonian dy-

namics










q̇i =
pi

mi
,

ṗi = −∇qi
U(q),

(5)

which is integrated in time with the Verlet scheme.17 A linear compression ramp would be

obtained in the case where the acceleration is constant in time.

To obtain release waves, a shock wave can be loaded in a sample; when this shock wave is

reflected when interacting with a free surface, it transforms into a release wave, supposedly

isentropic. In this study, we start the release from an equilibrated state obtained from

a preliminary canonical simulation, using three dimensional periodic boundary conditions.

When the system is equilibrated, the periodic boundary conditions are removed in the x

direction. Two release waves are then created at the two free surfaces, and they propagate

in opposite directions towards the center of the box. This process is illustrated in Figure 1.

From the simulation data presented in Figure 1, profiles of thermodynamic quantities

(average densities, (kinetic) temperatures and pressures) can be extracted and averaged

over thin slices. Moreover, the two release waves being symmetric, their related profiles can

be averaged. A superposition of the profiles, taken at different times but projected back in
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the same thermodynamic diagram, is then obtained and averaged over, leading to a single

profile.

The accuracy of the computation increases with the system size: an increase in the size

of the transverse directions decreases the uncertainties on the slice averages (thanks to a

thermodynamic limit), and an increase in the longitudinal direction allows to accumulate

more profiles in time, therefore reducing statistical errors.

III. EQUILIBRIUM METHODS FOR CONSTANT ENTROPY SAMPLING

We present in this section three methods to compute the collection of all states (in terms

of their temperature, volume and pressure) which have the same entropy as some reference

state. These methods therefore allow to draw a curve in the (V, T ) diagram (or in the

(P, T ) or (P, V ) diagrams), called the isentrope, and will be used as benchmark methods

in Section IV to check whether release waves computed by NEMD simulations are indeed

isentropic or not. We emphasize that, altough presented for the computation of isentropic

releases, all the methods described in this section may also be used to determine isentropic

compressions. We also recall a fourth method, used to obtain the entropy of a system once

the entropy of some reference state (such as the perfect gas) is fixed. The computational

cost of the latter method as well as its low accuracy for dense states prevented us from

applying it to enough points to obtain an entire isentrope curve, and we therefore limited

its use to a consistency check on the results obtained with the other methods.

A. Thermodynamic integration

The entropy of the system varies when the simulation conditions are changed. Here, we

consider that the states visited by the release wave are a succession of local equilibrium

states, which can be described within the canonical ensemble as given by statistical physics.

Therefore, the state of the system is defined by two parameters, its volume (equivalently,

the density) and its temperature.
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1. Variables indexing the variations.

Consider a general transformation in which both the volume accessible to the system

(equivalently, the density) and the temperature are varied. We restrict ourselves to variations

of the domain in one spatial direction only, to model the anisotropic behavior of release waves.

Assuming that the state of the system at rest can be described by some cubic simulation

box with periodic boundary conditions, the volume under compression may be indexed by

a variable λ1, so that the associated simulation domain D(λ1) = [0, (1 + λ1)Lx]× [0, L]2 has

a volume

V (λ1) = (1 + λ1)LxL
2.

Notice that we consider Lx 6= L since we may start from a uniaxially compressed state. The

temperature variations are indexed by a parameter λ2:

T (λ2) = (1 + λ2δT )T,

for some reference temperature T and a given relative temperature variation δT , the tem-

perature variation being therefore ∆T = TδT . The reference inverse temperature is still

β−1 = kBT . The particular case where only the temperature is changed (while the volume

is kept constant) corresponds to λ1 constant, while isothermal transformations are charac-

terized by λ2 remaining constant. Expansions correspond to λ1 > 0.

2. Parametrization of the isentrope curve.

The isentrope is the locus of the points in the (λ1, λ2) space such that the entropy nor-

malized by the Boltzmann factor
S

kB

=
U − F

kBT
(6)

is constant, F denoting the free energy of the system, and U its energy. This thermodynamic

relation can be converted into an equivalent formula in the framework of statistical physics,

which is much more convenient from a computational viewpoint:

U ≡ U(T, V ) = 〈H〉V,T ,

where the canonical average is defined in Eq. (2), and

F ≡ F(T, V ) = −kBT ln

∫

Ω

e−βH(q,p) dq dp.
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We start from some reference state described by the parameters (λ1, λ2) = (0, 0). The

statistical physics reformulation of the requirement that (6) be constant is then

S(λ1, λ2) − S(0, 0) =
1

kBT (λ2)
〈H〉V (λ1),T (λ2) −

1

kBT (0)
〈H〉V (0),T (0)

+ ln









∫

Ω(λ1)

e−H(q,p)/kBT (λ2) dq dp

∫

Ω(0)

e−H(q,p)/kBT (0) dq dp









= 0.

In this expression, the phase-space Ω(λ1) is the collection of all possible microscopic config-

urations of the system associated with a domain D(λ1) of volume V (λ1).

3. Numerical implementation

To determine the isentrope curve, we compute the entropy variation along a given path

in (λ1, λ2) space going through the reference initial state, and search for the point such that

the entropy difference with this state is 0. A simple choice is illustrated in Fig. 2. It consists

in performing

(i) an isothermal rarefaction, going from the initial compressed state (0, 0) to an interme-

diate state (λ1, 0) with λ1 ≥ 0;

(ii) in a second step, an isochore cooling, going from the intermediate state (λ1, 0) to some

final state (λ1, λ2), resorting to a maximal temperature difference λ2∆T < 0 large

enough.

The idea is that, in general, the first part of the transformation increases the entropy of the

system (since more space becomes available for the particles), while the entropy decreases

in the second part (since the temperature decreases). Of course, more general paths, with

joint variations of λ1 and λ2, could be considered.

The energies 〈H〉V (λ1),T (λ2) are computed using standard sampling strategies, while the

remainder in the expression of S(λ1, λ2)−S(0, 0), a ratio of partition functions, is estimated

using standard techniques for free-energy calculations. This is detailed in Appendix A.

We emphasize that this procedure is time consuming since it requires many equilibrium

samplings to obtain one point on the curve. It is however exact (up to statistical errors and

discretization errors in the integrals defining A), and can be straightforwardly parallelized

since the equilibrium samplings required are independent.
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B. Successive hugoniostat simulations

The variations of macroscopic quantities across a shock interface are governed by the

Rankine-Hugoniot relations, which relate the jumps of the quantities under investigation

(pressure, density, velocities) to the velocity of the shock front. The third Rankine-Hugoniot

conservation law for the Euler equation governing the hydrodynamic evolution of the fluid

reads (macroscopic quantities are denoted by curly letters)

H = U − U0 −
1

2
(P + P0)(V0 − V ) = 0. (7)

In this expression, U is the internal energy of the fluid, P its pressure, and V its volume.

The subscript 0 refers to the initial state (the pole), the other quantities are evaluated at

a state obtained from some shock compression, after equilibration. The Hugoniot curve

corresponds to all the possible states satisfying (7). In practice, the collection of these states

may be computed by nonequilibrium simulations with shocks of different strengths, inducing

various compressions.

Alternatively, small equilibrium simulations may be used, relying on the statistical physics

reformulation of the Hugoniot relation:

H(λ1, λ2) −H(0, 0) = 〈H〉V (λ1),T (λ2) − 〈H〉V (0),T (0)

+
λ1

2
V (0)

(

〈Pxx〉V (λ1),T (λ2) + 〈Pxx〉V (0),T (0)

)

= 0. (8)

The xx component of the pressure tensor is, for a simulation domain of volume V (λ1),

Pxx(q, p) =
1

V (λ1)

N
∑

i=1

p2
i,x

mi
− qi,x ∂qi,x

U(q). (9)

For a given variation of the volume for instance (indexed by λ1), the variation λ2TδT of the

temperature is sought for, using for instance the techniques described in Refs. 12,13.

The Hugoniot curve does not have a priori any relationship with the isentrope curve.

However, it can be shown that the entropy variation along the Hugoniot curve is negligible

up to terms of order three in the volume variable; the Hugoniot and the isentropic curves

are osculatory. We present in Appendix B two proofs, the standard proof based on thermo-

dynamic relations, and a new proof fully relying on a statistical physics reformulation.

The good agreement between the Hugoniot and the isentrope for small compressions

and/or expansions can be used to compute the isentropic curve as a succession of weak shocks
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or weak releases, this approximation getting more accurate as the shock compressions are

weakened. The only parameter left in this method is the relative volume change δV/V =

λn+1
1 − λn

1 during the instantaneous compressions or releases. We used the Hugoniostat

method12,13 to compute a sequence of states (λn
1 , λ

n
2 ) such that H(λn+1

1 , λn+1
2 ) = H(λn

1 , λ
n
2),

the corresponding thermodynamic properties at these states being obtained as a by-product

of the simulation.

C. Isentropic integration

Another way to perform thermodynamic integration along an isentropic path has been

proposed by Desjarlais.18 The method relies on the equilibrium evaluation of
∂P

∂U
(see

Eq. (11) below). It could be applied to a system where the pressure is not isotropic upon

replacing the pressure observable by the xx component of the pressure tensor.

The total differential of the entropy can be written as:

dS =
∂S

∂T

∣

∣

∣

∣

V

dT +
∂S

∂V

∣

∣

∣

∣

T

dV. (10)

For constant entropy processes,

∂S

∂T

∣

∣

∣

∣

V

=
1

T

∂U

∂T

∣

∣

∣

∣

V

= −
∂P

∂T

∣

∣

∣

∣

V

,
∂S

∂V

∣

∣

∣

∣

T

=
∂P

∂T

∣

∣

∣

∣

V

,

so that, along the isentrope,

dT

T
= −

∂P

∂T

∣

∣

∣

∣

V

∂U

∂T

∣

∣

∣

∣

V

dV = −
∂P

∂U

∣

∣

∣

∣

V

dV.

This equation can be integrated as

T2

T1
= exp

(

−

∫ V2

V1

∂P

∂U

∣

∣

∣

∣

V

dV

)

, (11)

giving the temperature T2 at which the system at volume V2 has the same entropy as the

system in the reference state (T1,P1). This formula is evaluated in practice by discretizing

the integral appearing in the exponential, and approximating the integrand using standard

canonical sampling procedues. We refer to Appendix C for more precisions.
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D. Evaluation of the entropy based on the chemical potential

This technique, which can be used only for systems in a fluid phase, follows the classical

methodology of computing the free energy F of a system starting from the thermodynamic

relation:19

F = U − TS = Nµ − PV, (12)

where µ is the chemical potential, defined in the canonical ensemble as

µ =
∂F

∂N
. (13)

In the case of a canonical simulation, all thermodynamic quantities are functions of the

volume and the temperature, so that

S =
U(T, V ) + Nµ(T, V ) − P(T, V )V

T
. (14)

This expression allows to compute the absolute entropy of the system provided the chemical

potential is known,20 the average pressure and energy being computed using standard sam-

pling techniques. The chemical potential is estimated using the Widom insertion method.

IV. NUMERICAL RESULTS FOR RELEASE WAVES

We compare in this section the results for the different techniques presented in Sections II

and III, for a release in a Lennard-Jones system (argon). The aim is to assess whether the

release is indeed isentropic, and also to demonstrate that approximate equilibrium compu-

tations for small systems (successive Hugoniostat, isentropic integration) can approximate

the isentrope curve obtained from the more rigourous and costly thermodynamic integration

technique.

A. Numerical parameters

1. Initial state.

We consider argon in an initial shocked state, located on the Hugoniot curve for a

compression such that Lx = cL with c = 0.65, and corresponding to T = 1758 K and
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P = 1.7× 1010 Pa. At these thermodynamic conditions, the system is in a liquid state. The

interactions within noble gas atoms are well-described by a Lennard-Jones potential:

V (q1, . . . , qN) =
∑

1≤i<j≤N

v(|qi − qj |), v(r) = 4ε

(

(σ

r

)12

−
(σ

r

)6
)

.

In the case of Argon, ε/kB = 120 K and σ = 3.405 Å. The cut-off radius for the Lennard-

Jones interaction is here rcut = 2.5σ.

2. Nonequilibrium simulations.

In order to reach this initial state before performing the NEMD release, a preliminary

hugoniostat simulation is run for a system of 50×50×500 unit cells, using periodic boundary

conditions. Then, the boundary conditions in the longitudinal direction are removed, and

the system evolves according to the Hamiltonian dynamics. Profiles of thermodynamic

quantities are computed every 0.25 ps for the post-processing procedure described at the

end of Section IIB.

3. Equilibrium simulations

Equilibrium computations have been performed with a system composed of N = 4000

atoms, starting in a FCC crystal geometry before melting, using periodic boundary condi-

tions in all directions.

a. Thermodynamic integration. As shown in Section IIIA, the search of states having

the same entropy can be performed using thermodynamic integration, which amounts to per-

forming many equilibrium simulations. The canonical sampling for a given set of parameters

(λ1, λ2) is done with a Langevin dynamics for Nsteps = 217 time steps, with ∆t = 2×10−15 s,

and a friction coefficient γ = 1013 s−1.

First, the entropy variation along the isothermal release is computed, with canonical

samplings along the path (0, 0) → (0, λ1) with λ1 = 0.54 (using M + 1 = 15 states). Then,

for each compression of interest, the isochore cooling is performed using temperature steps

∆T = −25 K for expansions λ1 ≤ 0.25, and ∆T = −50 K for states λ1 ≥ 0.25 (these paths

can be restated in terms of λ2 ∈ [0, 1] upon considering a temperature modification ∆T
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depending on the compression). The numerical integration for computing the value of A is

finally performed using the trapezoidal rule.

Error estimates on the canonical samplings are obtained with block averaging.21 In all

the cases considered, the statistical error (as measured using the 95% confidence interval

associated with the variance computed from block-averaging) is inferior to 1%. Therefore,

the entropy difference is computed within 1% errors. For fixed λ1, the state λ2 such that

S(λ1, λ2) is constant is then known with an error depending on the local value of the partial

derivative of S with respect to λ2. This error can immediately be reformulated as an error

on the estimated temperature. The error on the computed pressure is the error arising from

the error on the state λ2, plus the sampling error. It is found to be at most 2%.

b. Successive Hugoniostat. Successive Hugoniostat simulations have been performed

with a Langevin version of the Hugoniostat method (see Eq. (11) in Ref. 22, with the

parameters ξ = 1012 s−1 and ν = 1012 s−1). Trajectories of Nsteps = 50, 000 timesteps at

each compression are considered, with a timestep ∆t = 5 × 10−16 s. The relative volume

change δV/V0 from one point on the curve to another is set to 0.01.

c. Isentropic integration. See Appendix C.

d. Entropy evaluation. The test particle insertion method used to evaluate the chem-

ical potential requires many more iterations than the other equilibrium techniques. In the

same framework as for isentropic integration (see Appendix C), Nsteps = 5 × 108 iterations

were needed to obtain a satisfactory convergence. The statistical error on the calculated en-

tropy (as measured using the 95% confidence interval associated with the variance computed

from block-averaging) is estimated to be inferior to 1.2 %.

B. Discussion of the numerical results

Release waves are presented in Figures 3-5 in three different diagrams, (P, ρ),(P, T ) and

(T, ρ). It can clearly be seen that the results coming from the three equilibrium techniques

of isentropic simulations are very close. This shows that provided the relative volume change

parameter is carefully chosen in either the successive hugoniostat method or the isentropic

integration, the propagating error remains at a low level; these methods can then be as

accurate as the more rigorous and costly method of thermodynamic integration. Moreover,

evaluating the chemical potential, we have computed absolute value of the entropy at three
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densities, ρ = 2780 kg.m−3, ρ = 2190 kg.m−3, and ρ = 1806 kg.m−3. The corresponding

values, 83.2±0.95 J.mol−1, 83.1±0.42 J.mol−1, 83.2±0.18 J.mol−1, confirm that the entropy

is indeed constant (within the error bars) on the calculated curve, validating once again the

different methods.

The comparison with the results of the expansion of the liquid using nonequilibrium MD is

also fruitful. The overall agreement is fair enough, which means that release waves are indeed

almost isentropic. However, it can be noticed that the temperature is not predicted correctly.

While the different curves look very similar in a (P, ρ) diagrams, some discrepancies appear

in the (T, P ) diagram, which are even more obvious in the (T, ρ) diagram. Indeed, for the

latter diagram, the observed temperatures around the final density are greater than the

error bars. The thermodynamic path followed by the system during its release exhibits

systematically a higher temperature than the one of an isentropic process. This means that

the release of a monoatomic liquid is not strictly isentropic, as is sometimes expected or

assumed.

Recall however that a release is expected to be isentropic only for non-turbulent flows

of non-viscous fluids. In the case considered here, the fluid has a finite, non zero viscosity,

and therefore dissipates energy under the form of heat. As a consequence, the temperature

should be higher than for an isentropic release. A tentative of evaluation of this effect is

presented below. On the Hugoniot curve,33 viscous effects can be introduced in the Hugoniot

relation23 by means of the ”viscous pressure” π as

1

2
π(V0 − V) = U − U0 −

1

2
(P + P0)(V0 − V ), (15)

where π is defined as

π = −ν
du

dx
, (16)

ν being the fluid viscosity and
du

dx
the velocity gradient. Taking the viscosity of the argon

fluid at T = 700 K and P = 1 GPa (the most extremes conditions of available thermody-

namic tables), and considering an average velocity gradient (taken during the fluid release),

we find a temperature elevation of a few Kelvins. Considering that the pressure is much

higher in our simulation, and therefore that the viscosity should be also greater, the actual

temperature increase due to the finite viscosity should rather be of the order of a few tens

of Kelvins, which is consistent with what can be observed in our numerical results.
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Finally, a purely nonequilibrium effect has been observed during the NEMD simulations,

that also leads to a temperature increase in the system. Indeed, gradients of thermodynamic

and kinematic quantities are large at the first stages of the release, when the hot and dense

material is in contact with void. The thermodynamic path followed by the system at those

early stages of the simulation does not correspond to the thermodynamic path followed when

the release has reached its self-similarity regime. Some equilibration time is needed for some

steady-state regime to be reached. We evaluated this time to be around 5 picoseconds.

V. CONCLUSION

We have presented or recalled several equilibrium methods to compute isentropic pro-

cesses in the high pressure regime, either for compressions or releases. These methods,

although very different in nature, lead to similar results when applied to the release of a

monoatomic liquid.

We have then compared release waves computed with these equilibrium methods with

the nonequilibrium simulation of the release process. The results show that the release is

almost, but not strictly isentropic, the system’s temperature being systematically greater

than the one of the isentropic process. This is the consequence of two effects. First, the fluid

actually has a finite viscosity and therefore dissipates heat, leading to a temperature increase.

To our knowledge, this is the first time that this effect has been quantified rigorously using

molecular dynamics simulations. Moreover, the thermodynamic path followed by the system

during its release takes some time to reach a converged profile. We anticipate that these

effects will be enhanced in the case of a more complex fluid, for example in the case of a the

release of detonation product. Therefore, the assumption that release waves are isentropic

should be carefully verified in each case.
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APPENDIX A: PRACTICAL IMPLEMENTATION OF THE THERMODY-

NAMIC INTEGRATION

1. Reformulation of the problem in a fixed geometry

From a computational viewpoint, it is more convenient to work with a fixed simulation

domain. For instance, the unperturbed domain V (0) may be used to fix the geometry

of the system. The volume variations are then rephrased as variations in the interaction

scale between the particles in the direction of compression or release. In the same vein,

the temperature may be kept constant, upon rescaling the interactions strengh by a factor

depending on the temperature variation. Introducing the rescaled potential energy for a

configuration q = (x, y, z):

Uλ1,λ2
(q) =

1

1 + λ2δT
U((1 + λ1)x, y, z).

and the associated Hamiltonian

Hλ1,λ2
(q, p) = Uλ1

(q) +
1

1 + λ2δT

N
∑

i=1

p2
i

2mi
,

canonical averages for a volume V (λ1) at a temperature T (λ2) can be reformulated as canon-

ical averages in terms of the rescaled Hamiltonian Hλ1,λ2
at the reference state at volume

V (0) and temperature T (0). More precisely,

〈H〉V (λ1),T (λ2) =
3N

2
kBT (λ2) + (1 + λ2δT )〈〈Uλ1,λ2

〉〉λ1,λ2
,

where

〈〈f〉〉λ1,λ2
=

∫

Ω(0)

f(q, p) e−Hλ1,λ2
(q,p)/kBT (0) dq dp

∫

Ω(0)

e−Hλ1,λ2
(q,p)/kBT (0) dq dp

.

It is then easily seen that

S(λ1, λ2) − S(0, 0) =
3N

2
ln(1 + λ2δT ) + N ln(1 + λ1)

+β [〈〈Uλ1,λ2
〉〉λ1,λ2

− 〈〈U0,0〉〉0,0] (A1)

+A(λ1, λ2),
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with

A(λ1, λ2) = ln









∫

V (0)N

e−βUλ1,λ2
(q) dq

∫

V (0)N

e−βU0,0(q) dq









.

In the above expression of the entropy difference, the first line is the ideal gas contribution

to the entropy difference. As a consistency check, we can verify that the entropy increases

when the volume or the temperature is increased, as expected. The terms on the second

and third lines in Eq. (A1) are the “excess” contributions associated with the potential

interaction energy.

2. Numerical evaluation of the different terms

To estimate S, two quantities are required:

(i) averages 〈〈·〉〉λ1,λ2
with respect to the Hamiltonian Hλ1,λ2

are computed using stan-

dard sampling techniques such as a Langevin dynamics at an inverse temperature β,

implemented using the so-called BBK algorithm.24 Of course, many other sampling

techniques could be used to estimate this canonical average, in particular Nosé-Hoover

dynamics25,26 or Metropolis-Hastings schemes27,28 (see Ref. 29 for a mathematical re-

view on sampling methods in the context of molecular simulation);

(ii) the term A(λ1, λ2) requires more care in its estimation. Since this term is a ratio

of partition functions, standard techniques used for the computation of free energy

differences may be used. We resorted to thermodynamic integration,30 in which case

the function is rewritten as the integral of some canonical averages:

A(λ1, λ2) =

∫ λ1

0

∂A

∂λ1

(x, 0) dx +

∫ λ2

0

∂A

∂λ2

(λ1, x) dx,

with
∂A

∂λ2
(λ1, λ2) = β

δT

1 + λ2δT
〈〈Uλ1,λ2

〉〉λ1,λ2
, (A2)

and
∂A

∂λ1
(λ1, λ2) =

〈〈

x · ∇xU((1 + λ1)x, y, z)
〉〉

λ1,λ2

. (A3)
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In conclusion, the numerical procedure consists in first estimating the derivatives of the

function A and the average potential energy, for as many points as required on the thermo-

dynamic path chosen. Approximations of S can then be obtained thanks to (A1), after a

numerical integration to obtain A. The entropy difference along the path is then plotted,

and fixing the volume change λ1, the temperature variation is chosen such that the entropy

difference is 0. This determines λ2 as a function of λ1.

APPENDIX B: RELATIONSHIP BETWEEN THE HUGONIOT AND THE

ISENTROPE CURVES AT THE POLE

We present in this Appendix two proofs of the fact that the isentrope curve and the

Hugoniot agree at order 3 in the volume change. The first one is a standard thermodynamic

proof, but the second one, based on statistical physics relations, is new to the best of our

knowledge.

1. Standard thermodynamic proof

For the sake of completeness, we reproduce here the proof of Ref. 31. From the thermody-

namic relation TdS = dU+P dV and from the Hugoniot relation U = U0+
1
2
(P+P0)(V0−V ),

the entropy variation along the Hugoniot curve can be computed. One derivation leads to

T

(

dS

dV

)

Hug

= P +

(

dU

dV

)

Hug

=
1

2
(P − P0) +

1

2
(V0 − V )

(

dP

dV

)

Hug

. (B1)

A second derivation gives

T
d2SHug

dV 2
+

dSHug

dV

dTHug

dV
=

1

2
(V0 − V )

d2PHug

dV 2
. (B2)

With a final derivation,

T
d3SHug

dV 3
+ 2

d2SHug

dV 2

dTHug

dV
+

dSHug

dV

d2THug

dV 2
= −

1

2

d2PHug

dV 2
+

1

2
(V0 − V )

d3PHug

dV 3
. (B3)

At the initial state (denoted with a subscript 0), that is, in the limit V → V0, it holds:
(

dSHug

dV

)

0

= 0,

(

d2SHug

dV 2

)

0

= 0,

T0

(

d3SHug

dV 3

)

0

= −
1

2

(

d2P

dV 2

)

0

6= 0.
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The entropy variation along the Hugoniot curve is therefore of order three in volume, and

the Hugoniot and the isentropic curves are osculatory.

2. A statistical physics derivation

Without loss of generality (and for notational simplicity), we may set H(0, 0) = S(0, 0) =

0 since we are only interested in differences of F and S.

a. Some useful relations.

The derivatives of the function A are useful for comparing the Hugoniot and the isentrope

relations. The average xx component of the pressure tensor for the volume V (λ1) and the

temperature T (λ2) is obtained by averaging the observable

Pxx(q, p) =
1

V (λ1)
(NkBT (λ2) − x · ∇xU(q)) .

Therefore,

〈Pxx〉V (λ1),T (λ2) =
N

(1 + λ1)V (0)
kBT (λ2) −

1

V (λ1)

∫

V (λ1)N

x · ∇xU(q) e−U(q)/kBT (λ2) dq

∫

V (λ1)N

e−U(q)/kBT (λ2) dq

=
N

βV (0)

1 + λ2δT

1 + λ1
−

1 + λ1

V (λ1)

∫

V (0)N

x · ∇xU((1 + λ1)x, y, z) e−βUλ1,λ2
(q) dq

∫

V (0)N

e−βUλ1,λ2

.

This shows that, using (A3),

〈Pxx〉V (λ1),T (λ2) =
N

βV (0)

1 + λ2δT

1 + λ1

+
1 + λ2δT

βV (0)

∂A

∂λ1

(λ1, λ2).

b. Hugoniot curve.

With the above computations, it is easily seen that the Hugoniot relation (8) can be

restated as

βH(λ1, λ2) =
3N

2
λ2δT + β [(1 + λ2δT )〈〈Uλ1,λ2

〉〉λ1,λ2
− 〈〈U0,0〉〉0,0]

+
Nλ1

2

(

1 + λ2δT

1 + λ1

+ 1

)

+
λ1

2

(

∂A

∂λ1

(0, 0) + (1 + λ2δT )
∂A

∂λ1

(λ1, λ2)

)

.
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c. Comparison between the Hugoniot and the isentrope.

We now Taylor expand the difference βH(λ1, λ2) − S(λ1, λ2) up to the third order, i.e.

neglecting a remainder term r(λ1, λ2) which is such that |r(λ1, λ2)| ≤ C(|λ1| + λ2|)
3. We

denote such remainders by O(λ3) in the sequel. It holds

βH(λ1, λ2) − S(λ1, λ2) =
3N

2
(λ2δT − ln(1 + λ2δT )) + N

(

λ1

2

(

1 +
1

1 + λ1

)

− ln(1 + λ1)

)

+λ1λ2
δT

2

(

N

1 + λ1
+

∂A

∂λ1

(λ1, λ2)

)

+ βλ2δT 〈〈Uλ1,λ2
〉〉λ1,λ2

+
λ1

2

(

∂A

∂λ1

(0, 0) +
∂A

∂λ1

(λ1, λ2)

)

− A(λ1, λ2).

Introducing the notation

Ai =
∂A

∂λi

(0, 0), Aij =
∂2A

∂λi
∂λj

(0, 0),

the Taylor expansions of the function A and its first derivatives at an arbitrary state (λ1, λ2)

read (using A(0, 0) = 0):

A(λ1, λ2) = λ1A1 + λ2A2 +
λ2

1

2
A11 + λ1λ2A12 +

λ2
2

2
A22 + O(λ3),

∂A

∂λi

(λ1, λ2) = Ai + λ1Ai1 + λ2Ai2 + O(λ2).

With these Taylor expansions and the relation (A2), it is straightforward to show that

βH(λ1, λ2) − S(λ1, λ2) =
3N

4
λ2

2δT
2 + λ1λ2

δT

2
(N + A1) + λ2(1 + λ2δT )

∂A

∂λ2

(λ1, λ2)

=
λ2δT

2

[

λ1

(

N + A1 +
A12

δT

)

+ λ2

(

3N

2
δT + 2A2 +

A22

δT

)]

+ O(λ3).

Using (A2), the derivatives of the entropy differences can be computed:

∂S

∂λ1
(λ1, λ2) =

N

1 + λ1
+

∂A

∂λ1
(λ1, λ2) +

1 + λ2δT

δT

∂2A

∂λ1∂λ2
(λ1, λ2),

∂S

∂λ2

(λ1, λ2) =
3NδT

2(1 + λ2δT )
+ 2

∂A

∂λ2

(λ1, λ2) +
1 + λ2δT

δT

∂2A

∂2λ2

(λ1, λ2).

This shows that

βH(λ1, λ2) − S(λ1, λ2) =
λ2δT

2

(

λ1
∂S

∂λ1
(0, 0) + λ2

∂S

∂λ2
(0, 0)

)

+ O(λ3), (B4)
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so that, since

S(λ1, λ2) = S(0, 0) + λ1
∂S

∂λ1
(0, 0) + λ2

∂S

∂λ2
(0, 0) + O(λ2),

and S(0, 0) = 0, it holds

βH(λ1, λ2) −

(

1 +
λ2δT

2

)

S(λ1, λ2) = O(λ3). (B5)

This relation shows immediately that H(λ1, λ2) = O(λ3) on the isentrope, and so, the initial

slopes of the curves, and their first derivatives, coincide.

APPENDIX C: PRECISIONS ON THE ISENTROPIC INTEGRATION

Several numerical schemes may be used to integrate (11). The simplest one consists in

approximating the integral appearing in the exponential factor with a Riemman formula

using the value of the integrated function on the left side of the interval:

T2 ≃ T1 exp

(

−
∂P

∂U

∣

∣

∣

∣

V1

(V2 − V1)

)

. (C1)

Of course, higher order integration methods could be used.

It remains to decide how to compute the derivative
∂P

∂U

∣

∣

∣

∣

V1

. Finite differences may be

used to this end, but this would require at least two very carefully converged simulations

with volumes V1 ± ∆V . It seems more appealing to compute the partial derivative using

standard fluctuations formulas:14,32

∂U

∂T

∣

∣

∣

∣

V1

= Cv(V1, T1) =
3

2
NkB +

1

kBT12

(

〈

U2
〉

V1,T1

− 〈U〉2V1,T1

)

, (C2)

and
∂P

∂T

∣

∣

∣

∣

V1

=
NkB

V1
+

1

kBT 2
1

(

〈PH〉V1,T1
− 〈P 〉V1,T1

〈H〉V1,T1

)

, (C3)

where Cv(V1, T1) is the specific heat at constant volume, and the pressure observable for a

simulation domain of volume V1 reads

P (q, p) =
1

3V1

N
∑

i=1

p2
i

mi

− qi · ∇qi
U(q). (C4)

The partial derivative ∂P/∂U can then be evaluated in a single simulation at (N, V1, T1)

using (C2)-(C3).
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The numerical implementation of this method is done as follows. The partial derivative of

the pressure with respect to the energy is first computed with a Monte Carlo simulation for

the given initial conditions (N, V1, T1). The temperature T2 is then evaluated from Eq. (C1).

The partial derivative is next computed at volume V2 to predict the next temperature.

Proceeding incrementally, the whole isentrope curve can be constructed.

The numerical results presented in this work have been obtained by performing canonical

samplings with a Metropolis algorithm, using the Monte-Carlo Gibbs code.34 Partial deriva-

tives have been computed in the NVT ensemble. The convergence of simple thermodynamic

averages was generally obtained after Nsteps = 107 iterations, but derivative properties (re-

lated to the covariance of some observables) required about Nsteps = 108 iterations for a

satisfactory convergence. Error estimates on the canonical samplings have been obtained

with block averaging,21 and the error propagation estimated along the integration scheme

has been computed using standard propagation rules. In all the cases considered, the sta-

tistical error (as measured using the 95% confidence interval associated with the variance

computed from block-averaging) on the predicted temperature on the isentrope curve is

inferior to 1.5 %.
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20 W. Smith, M. Ĺısal, and I. Nezbeda, Chem. Phys. Lett. 426, 436 (2006).

21 H. Flyvberg and H. G. Petersen, J. Chem. Phys. 91, 461 (1989).

22 J.-B. Maillet and G. Stoltz, arXiv preprint 0807.0558 (2008).

23 W. Fickett and W. Davis, Detonation (dover publication, 1979).
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Sud, and the CNRS, and developped in collaboration with the CEA.

24



Caption list:

Figure 1: (a) (color online) Non-Equilibrium Molecular Dynamics of isentropic release

waves. The four pictures represent snapshots of the system during the release process, the

expansion proceeding in the longitudinal x direction. Atoms are colored according to their

potential energies (scaling corresponding to −1.38 × 10−20 J for blue up to 7.55 × 10−20 J

for red).

Figure 1: (b) (color online) Density profiles taken at different times of the simulation

(from blue to red as time increases).

Figure 2: Path in the (λ1, λ2) space used to compute states with the same entropy as

the initial state. Each cross represents some equilibrium canonical sampling along the

thermodynamic path. First, the isothermal expansion is performed (horizontal line in the

diagram), starting from the initial state (0, 0), until the required density is reached. The

entropy of the state (λ1, 0) is Sinit + ∆Sexpansion. Then, an isochore cooling is performed (λ1

is kept fixed; vertical line in the diagram), until the entropy difference during this process is

the opposite of the entropy variation found in the expansion part. The final state (λ1, λ2),

located at the intersection of the curve ∆S = 0 and the vertical line, has then the same

entropy as the initial state.

Figure 3: (color online) Isentropic release in a (P, ρ) diagram. Symbols represent results

from equilibrium methods, red diamonds for the successive hugoniostat, blue squares for

the thermodynamic integration and yellow triangles for the entropy integration. NEMD

results are plotted in green, the width of the so-obtained tube corresponding to the error

bars. The arrow indicates the path followed during the release.

Figure 4: (color online) Isentropic release in a (T, P ) diagram. The symbols are the same

as in Figure 3. Notice that there is slight deviation of the NEMD results for the lowest

temperatures.

Figure 5: (color online) Isentropic release in a (T, ρ) diagram. The symbols are the
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same as in Figure 3. There is a noticeable deviation of the NEMD results for the lowest

temperatures.
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