
深層ニューラルネットワークによる手書きテキスト認識

Handwritten Text Recognition by Deep Neural Networks

By

LY TUAN NAM

A thesis submitted in fulfillment

Of the requirements for the

DEGREE OF Doctor of Philosophy OF COMPUTER SCIENCE

At the

TOKYO UNIVERSITY OF AGRICULTURE AND TECHNOLOGY

Under supervision of Prof. Masaki Nakagawa and Prof. Keiichi Kaneko

© Copyright by Ly Tuan Nam

Summer, 2021

I

Acknowledgments

First, I would like to thank my supervisors Prof. Masaki Nakagawa and Prof. Keiichi

Kaneko of the Department of Computer and Information Sciences at Tokyo University

of Agriculture and Technology. The door to their office was always open whenever I ran

into a trouble spot or had a question about my research or writing. They consistently

allowed this paper to be my own work but steered me in the right the direction whenever

he thought I needed it. Moreover, I would like to thank other professors at the Department

of Computer and Information Sciences: Prof. Takafumi Saito, Prof. Ikuko Shimizu,

Prof. Seiji Hotta, and Prof. Katsuhide Fujita for their kind comments to revise this

thesis and for teaching academic subjects to me for five years at TUAT. The time studying

under their support is an unforgettable time in my life.

I would also like to express my deepest gratitude to the Hirose Foundation for

financially supporting my study and thank the iLabo Co. Ltd. for providing data and

feedback.

I thank Prof. Asanobu Kitamoto and his group at National Institute of Informatics in

Japan and the committee members of the IEICE PRMU contest for preparing the datasets

of anomalously deformed Kana and leading the PRMU contest.

I owe my thanks to all my friends and laboratory-mates; especially, Dr. Cuong Tuan

Nguyen, Dr. Hung Tuan Nguyen, and Dr. Kha Cong Nguyen for helping me through

difficult times, and for all the support they provided.

Finally, I must express my very profound gratitude to my family, especially my

wonderful wife, Trang Pham for providing me with unfailing support and continuous

encouragement throughout my years of study and through the process of researching and

writing this thesis. This accomplishment would not have been possible without them.

Thank you.

Author

Ly Tuan Nam

II

深層ニューラルネットワークによる手書きテキスト認識

Handwritten Text Recognition by Deep Neural Networks

Nam Tuan LY

Graduate School of Engineering

Tokyo University of Agriculture and Technology

Abstract

This thesis presents deep neural network-based methods for offline handwritten text recognition,

and Japanese historical document recognition. Offline handwritten text recognition is still a big

challenging problem due to various backgrounds, noises, diversity of writing styles, and multiple

touches between characters. In this thesis, we present models of Deep Convolutional Recurrent

Network (DCRN) for recognizing offline handwritten text lines without explicit segmentation of

characters. The DCRN model has three parts: a feature extractor by Convolutional Neural

Network (CNN); an encoder by Bidirectional Long Short-Term Memory (LSTM); and a decoder

by Connectionist Temporal Classification (CTC). We also propose two upgraded version of

DCRN: Attention Augmented Convolutional Recurrent Network (AACRN) model which

employs 1D self-attention mechanism in the encoder, and 2D Self-Attention Convolutional

Recurrent Network (2D-SACRN) which introduces a 2D self-attention mechanism in the feature

extractor to help the CNN to capture the relationships between widely separated spatial regions

in an input image. Since the DCRN models require a large data for training, we synthesize

handwritten text line images from sentences in corpora and handwritten character patterns in the

handwritten character pattern database with elastic distortions. We conducted the experiments on

three public datasets: IAM Handwriting (English), Rimes (French), and TUAT Kondate

(Japanese). The experimental results show that the proposed model achieves similar or better

accuracy when compared to state-of-the-art models in all datasets.

For Japanese historical document recognition, we present recognition of anomalously deformed

Kana sequences, for which a contest was held by IEICE PRMU 2017. The contest was divided

into three levels in accordance with the number of characters to be recognized: level 1: single

characters, level 2: sequences of three vertically written Kana characters, and level 3: unrestricted

sets of characters composed of three or more characters possibly in multiple lines. This thesis

focuses on the methods for levels 2 and 3 that won the contest. We employ the DCRN models for

III

level 2. Then, we propose a method of vertical text line segmentation and multiple line

concatenation before applying DCRN for level 3. We also examine a two-dimensional BLSTM

(2DBLSTM) based method for level 3. Finally, we propose an attention-based sequence to

sequence model named by Attention-based Row-Column Encoder-Decoder (ARCED) for both

level 2 and 3 without explicit segmentation of text lines. The experimental results prove the

performances of the proposed models on the level 2 and 3 tasks.

IV

TABLE OF CONTENTS

Acknowledgments .. I

Table of Contents .. IV

List of figures ... VII

List of tables .. IX

Chapter 1. Introduction .. 1

1.1. Offline Handwritten Text Recognition .. 1

1.2. Japanese Historical Document Recognition .. 4

1.3. Thesis organization .. 6

Chapter 2. Survey of Text Recognition ... 7

2.1. Offline Handwritten Text Recognition .. 7

2.2. Historical Document Recognition ... 9

Chapter 3. Offline Handwritten Text Line Recognition .. 11

3.1. Introduction ... 11

3.2. Datasets .. 11

3.2.1. TUAT Kondate. ... 11

3.2.2. IAM Handwriting. .. 13

3.2.3. Rimes. .. 13

3.3. Deep Convolutional Recurrent Network ... 16

3.3.1. Overview of The Model ... 16

3.3.2. Two approaches of the DCRN model. ... 19

3.3.3. Experiments ... 21

3.4. Attention Augmented Convolutional Recurrent Network 26

3.4.1. Self-Attention Mechanism ... 26

3.4.2. Overview of The Model ... 27

V

3.4.3. Experiments ... 30

3.5. 2D Self-Attention Convolutional Recurrent Network 33

3.5.1. 2D Self-Attention Mechanism. .. 33

3.5.2. Overview of The Model ... 35

3.5.3. Experiments ... 37

3.6. Text Line Image Generation Method .. 43

3.6.1. Synthetic Data Generations. ... 44

3.6.2. Local Elastic Distortion. .. 44

3.6.3. Global Elastic Distortion. ... 46

3.6.4. Experiments ... 46

3.7. Conclusions ... 50

Chapter 4. Japanese Historical Documents Recognition ... 52

4.1. Introduction ... 52

4.2. Contest Overview .. 53

4.3. Three Kana Sequence Recognition.. 55

4.3.1. Level 2 Dataset... 56

4.3.2. Methods for level 2 .. 56

4.3.3. Implementation Details .. 57

4.3.4. Experiments for level 2 .. 62

4.3.5. Cross validation of end-to-end DCRN_ws .. 63

4.4. Unrestricted Kana Recognition ... 65

4.4.1. Level 3 Dataset... 65

4.4.2. Methods for level 3 .. 66

4.4.3. Experiments on level 3 ... 70

4.4.4. Cross validation of Seg plus End-to-End DCRN_ws 72

4.5. Conclusion ... 74

VI

Chapter 5. Attention-based Model for Multiple Text Line Recognition 75

5.1. Introduction ... 75

5.2. The Proposed Method .. 76

5.3. Experiments ... 80

5.3.1. Implementation Details .. 81

5.3.2. Experiment Results .. 82

5.3.3. Analysis on recognized and misrecognized samples 86

5.4. Conclusion. .. 87

Chapter 6. Conclusions and Future works ... 89

6.1. Conclusions ... 89

6.2. Future Works ... 91

References ... 92

Author's Publications and Awards .. 99

VII

List of figures

Figure 3.1. Examples from TUAT Kondate database. ... 12

Figure 3.2. Examples from IAM Handwriting database. ... 14

Figure 3.3. Examples from Rimes database. .. 15

Figure 3.4. Network architecture of the DCRN model... 16

Figure 3.5. Preprocessing on anomalously deformed Kana sequence recognition. 17

Figure 3.6. Overlapped sliding windows approach. ... 19

Figure 3.7. Convolutional feature extractor in the end-to-end model approach............. 20

Figure 3.8. Some mispredicted samples by DCRN_o-s. .. 25

Figure 3.9. Self-attention layer. .. 26

Figure 3.10. Network architecture of the AACRN model. ... 28

Figure 3.11. Feature extraction for an input image. ... 28

Figure 3.12. Architecture of 2D Self-Attention block. ... 33

Figure 3.13. Network architecture of the 2D-SACRN model. 35

Figure 3.14. The visualization of 2D self-attention maps. ... 41

Figure 3.15. Synthetic pattern generation method. ... 43

Figure 3.16. Examples of local elastic distortion by shearing, rotation and scaling

transformations. .. 45

Figure 3.17. Examples of global elastic distortion by scaling and rotation 46

Figure 3.18. Samples of generated synthetic data. ... 47

Figure 3.19. Correctly recognized and misrecognized samples by End-to-End_SHTL. 49

Figure 4.1. Sample page in the contest [7]. .. 53

Figure 4.2. Different notations of the same category. .. 54

Figure 4.3. Similar notations between different categories. ... 54

Figure 4.4. Fade and show-through. ... 54

file:///C:/Users/namly/Dropbox/Works_01_2021/%5bLyTuanNam%5d%20PhD_Thesis/3_PhD%20Thesis_LY%20TUAN%20NAM.docx%23_Toc83630551
file:///C:/Users/namly/Dropbox/Works_01_2021/%5bLyTuanNam%5d%20PhD_Thesis/3_PhD%20Thesis_LY%20TUAN%20NAM.docx%23_Toc83630552
file:///C:/Users/namly/Dropbox/Works_01_2021/%5bLyTuanNam%5d%20PhD_Thesis/3_PhD%20Thesis_LY%20TUAN%20NAM.docx%23_Toc83630553
file:///C:/Users/namly/Dropbox/Works_01_2021/%5bLyTuanNam%5d%20PhD_Thesis/3_PhD%20Thesis_LY%20TUAN%20NAM.docx%23_Toc83630554
file:///C:/Users/namly/Dropbox/Works_01_2021/%5bLyTuanNam%5d%20PhD_Thesis/3_PhD%20Thesis_LY%20TUAN%20NAM.docx%23_Toc83630555
file:///C:/Users/namly/Dropbox/Works_01_2021/%5bLyTuanNam%5d%20PhD_Thesis/3_PhD%20Thesis_LY%20TUAN%20NAM.docx%23_Toc83630556
file:///C:/Users/namly/Dropbox/Works_01_2021/%5bLyTuanNam%5d%20PhD_Thesis/3_PhD%20Thesis_LY%20TUAN%20NAM.docx%23_Toc83630557
file:///C:/Users/namly/Dropbox/Works_01_2021/%5bLyTuanNam%5d%20PhD_Thesis/3_PhD%20Thesis_LY%20TUAN%20NAM.docx%23_Toc83630558
file:///C:/Users/namly/Dropbox/Works_01_2021/%5bLyTuanNam%5d%20PhD_Thesis/3_PhD%20Thesis_LY%20TUAN%20NAM.docx%23_Toc83630559
file:///C:/Users/namly/Dropbox/Works_01_2021/%5bLyTuanNam%5d%20PhD_Thesis/3_PhD%20Thesis_LY%20TUAN%20NAM.docx%23_Toc83630560
file:///C:/Users/namly/Dropbox/Works_01_2021/%5bLyTuanNam%5d%20PhD_Thesis/3_PhD%20Thesis_LY%20TUAN%20NAM.docx%23_Toc83630561
file:///C:/Users/namly/Dropbox/Works_01_2021/%5bLyTuanNam%5d%20PhD_Thesis/3_PhD%20Thesis_LY%20TUAN%20NAM.docx%23_Toc83630561
file:///C:/Users/namly/Dropbox/Works_01_2021/%5bLyTuanNam%5d%20PhD_Thesis/3_PhD%20Thesis_LY%20TUAN%20NAM.docx%23_Toc83630562
file:///C:/Users/namly/Dropbox/Works_01_2021/%5bLyTuanNam%5d%20PhD_Thesis/3_PhD%20Thesis_LY%20TUAN%20NAM.docx%23_Toc83630563
file:///C:/Users/namly/Dropbox/Works_01_2021/%5bLyTuanNam%5d%20PhD_Thesis/3_PhD%20Thesis_LY%20TUAN%20NAM.docx%23_Toc83630564
file:///C:/Users/namly/Dropbox/Works_01_2021/%5bLyTuanNam%5d%20PhD_Thesis/3_PhD%20Thesis_LY%20TUAN%20NAM.docx%23_Toc83630565

VIII

Figure 4.5. Fragmented patterns and noisy patterns. .. 55

Figure 4.6. Various backgrounds. ... 55

Figure 4.7. Some vertical text line images in the level 2 dataset. 56

Figure 4.8. Network architecture of DCRN. .. 57

Figure 4.9. Convolutional feature extractor in DCRN-o. ... 59

Figure 4.10. Convolutional feature extractor in DCRN-wo. .. 60

Figure 4.11 Convolutional feature extractor in DCRN-ws... 60

Figure 4.12. Samples recognized and misrecognized by DCRN-o_12. 63

Figure 4.13. Level 3 images containing vertical and horizontal guide lines. 65

Figure 4.14. Overlap or touching between two vertical lines. .. 65

Figure 4.15. Fade and show-through. ... 65

Figure 4.16. The methodology for recognizing unrestricted kana in level 3.................. 67

Figure 4.17. Concatenated text lines. ... 68

Figure 4.18. Samples recognized and misrecognized by DCRN-o_12_Lv3. 72

Figure 5.1. The overview of the ARCED model. ... 75

Figure 5.2. Network architecture of the ARCED model. ... 76

Figure 5.3. Feature extraction for a gray-scale input image (c=1). 77

Figure 5.4. Row-column BLSTM encoder. .. 78

Figure 5.5. Visualization of the attention weights for single line text written vertically.

 .. 83

Figure 5.6. Visualization of the attention weights for multiple lines of text written

vertically. .. 85

Figure 5.7. Correctly recognized and misrecognized samples. 88

file:///C:/Users/namly/Dropbox/Works_01_2021/%5bLyTuanNam%5d%20PhD_Thesis/3_PhD%20Thesis_LY%20TUAN%20NAM.docx%23_Toc83630569
file:///C:/Users/namly/Dropbox/Works_01_2021/%5bLyTuanNam%5d%20PhD_Thesis/3_PhD%20Thesis_LY%20TUAN%20NAM.docx%23_Toc83630570
file:///C:/Users/namly/Dropbox/Works_01_2021/%5bLyTuanNam%5d%20PhD_Thesis/3_PhD%20Thesis_LY%20TUAN%20NAM.docx%23_Toc83630580
file:///C:/Users/namly/Dropbox/Works_01_2021/%5bLyTuanNam%5d%20PhD_Thesis/3_PhD%20Thesis_LY%20TUAN%20NAM.docx%23_Toc83630583
file:///C:/Users/namly/Dropbox/Works_01_2021/%5bLyTuanNam%5d%20PhD_Thesis/3_PhD%20Thesis_LY%20TUAN%20NAM.docx%23_Toc83630584
file:///C:/Users/namly/Dropbox/Works_01_2021/%5bLyTuanNam%5d%20PhD_Thesis/3_PhD%20Thesis_LY%20TUAN%20NAM.docx%23_Toc83630585

IX

List of tables

Table 3.1. The detail of information of TUAT Kondate database. 12

Table 3.2. Summary of Nakayosi and Kuchibue databases. .. 13

Table 3.3. Details of the IAM Handwriting dataset. .. 13

Table 3.4. Details of the Rimes dataset. ... 14

Table 3.5. Network configuration of the CNN model in the pretrained CNN approach.22

Table 3.6. Network configuration of the CNN model in the end-to-end model approach.

 .. 23

Table 3.7. Label Error Rate (LER) and Sequence Error Rate (SER) on Kondate. 24

Table 3.8. LER and SER on Kondate when combined with the linguistic context. 24

Table 3.9. Network configuration of the CNN model. ... 30

Table 3.10. Recognition error rates (%) on the test set of Kondate dataset. 31

Table 3.11. Recognition error rates (%) with different encoders. 32

Table 3.12. Network configurations of the CNN in the feature extractor. 37

Table 3.13. Recognition error rates (%) on IAM and Rimes datasets. 39

Table 3.14. Recognition error rates (%) on the test set of TUAT Kondate. 40

Table 3.15. Recognition error rates (%) with different feature extractors. 40

Table 3.16. Label Error Rate (LER) and Sequence Error Rate (SER) on Kondate........ 48

Table 4.1. Network configuration of our CNN model. .. 58

Table 4.2. Network configuration of our CNN model. .. 61

Table 4.3. Recognition error rates (%) on level 2 dataset. ... 62

Table 4.4. Recognition error rates (%) of five models. .. 64

Table 4.5. Recognition error rates (%) on level 3 dataset. ... 71

Table 4.6. Recognition error rates (%) of five models. .. 73

Table 5.1. Network configuration of our CNN model. .. 81

file:///C:/Users/namly/Dropbox/Works_01_2021/%5bLyTuanNam%5d%20PhD_Thesis/3_PhD%20Thesis_LY%20TUAN%20NAM.docx%23_Toc80175805
file:///C:/Users/namly/Dropbox/Works_01_2021/%5bLyTuanNam%5d%20PhD_Thesis/3_PhD%20Thesis_LY%20TUAN%20NAM.docx%23_Toc80175806
file:///C:/Users/namly/Dropbox/Works_01_2021/%5bLyTuanNam%5d%20PhD_Thesis/3_PhD%20Thesis_LY%20TUAN%20NAM.docx%23_Toc80175807

X

Table 5.2. Recognition error rates (%) on level 2 test set. ... 82

Table 5.3. Recognition error rates (%) on level 3 test set. ... 84

Table 5.4. Recognition error rates (%) with different encoders. 85

Table 5.5. Recognition error rates (%) with different decoders. 86

1

Chapter 1. Introduction

1.1. Offline Handwritten Text Recognition

Before the digital age, printed and handwritten text documents have been among the

most important methods for transmitting and storing information. Nowadays, despite the

abundance of electronic note-taking devices, many people still choose to write and take

their notes in the traditional way with pen and paper. In addition, there are still a lot of

application forms that need to be completed in handwriting with pen and paper. As a

result, there is a bulk number of documents on papers that need to be processed. However,

there are some drawbacks to physical handwritten documents and notes. They cannot be

stored and accessed as data efficiently, making it difficult to search through them

efficiently and to share them with others. In the age of digital, when computer and smart

devices become popular, information is stored, processed, indexed, and searched by

computer systems, making its retrieval a cheap and quick task. Handwritten documents

are no exception and need to be transferred to digital format that could be easily processed

by computer systems. The goal is to extract information contained in handwritten

documents and to store them in a computerized format. This is the motivation of

handwritten document analysis systems.

Offline handwritten text recognition is an important part of handwritten document

analysis systems and has received a lot of attention from numerous researchers for

decades. Starting with the recognition of isolated handwritten characters and digits, the

focus has shifted to the recognition of words and sentences. Recognizing them is

significantly more difficult than characters because of a large vocabulary in each language,

and multiple touches between characters. Other challenging of offline handwritten text

recognition are various backgrounds, noises, and diversity of writing styles. For

Japanese/Chinese offline handwritten text recognition, a problem is added due to the large

character set; varieties of characters mixed of thousands of Kanji characters of Chinese

origin, two sets of phonetic characters, alphabets, numerals, symbols, etc.; and the

difficulty of segmentation (Characters appear in a document without any word spacing).

Most early works of handwritten Japanese/Chinese text recognition were often taking

the segmentation-based approach that segments or over-segments text into characters and

fragments and then merges the fragments in the recognition state [1, 2]. This

2

segmentation-based approach is costly and error-prone, especially for cursive writing

because the segmentation of characters directly affects the performance of the whole

system. On the other hand, segmentation-free methods can avoid segmentation errors and

have been employed for western handwritten documents based on the Hidden Markov

Model (HMM) [3, 4], so far. This segmentation-free approach firstly scans the text image

with a sliding window to get the sequence of images, then applies Gaussian Mixture

Models (GMMs) or Neural Networks (NNs) to get the sequence of features. The sequence

of features is modeled with character HMMs. A weakness of HMMs is the local modeling,

which cannot capture long-term dependencies in the input sequence.

In recent years, many segmentation-free methods based on Deep Neural Networks

(DNNs) and Connectionist Temporal Classification (CTC) [5–13] have been proposed

and proven to be powerful models for both western and oriental text recognition. The core

recognition engine has been shifted from Hidden Markov Models (HMMs) to Recurrent

Neural Networks (RNNs) with CTC. The principle of the CTC-based approach is to

interpret the network output as a sequence of label probabilities over all labels and use an

objective function to maximize the sequence probability.

In this thesis, we present a model of Deep Convolutional Recurrent Network (DCRN)

for offline handwritten Japanese text recognition without explicit segmentation of

characters. The DCRN model consists of three main parts: a convolutional feature

extractor using Convolutional Neural Network (CNN) to extract features from a text

image; an encoder using Bi-directional Long-Short Term Memory (BLSTM) to encode

the sequence of features; and a decoder using a CTC to decode the features into the final

label sequence. As far as we know, this is the first approach that adopts the CTC-based

model for offline handwritten Japanese text recognition.

Recently, A. Vaswani et al. [14] proposed a self-attention mechanism, which uses all

position-pairs of the input sequence to extract more expressive representations for the

inputs. The self-attention replaces the LSTM in both encoder and decoder and helps the

sequence-to-sequence model achieve state-of-the-art results in translation via

Transformer [14], speech recognition via Speech-Transformer [15], and other tasks.

Based on the self-attention mechanism, we propose an upgraded version of DCRN named

Attention Augmented Convolutional Recurrent Network (AACRN) which introduces 1D

self-attention mechanism in the encoder. The self-attention module is complementary to

RNN in the encoder and helps the encoder to capture long-range and multi-level

3

dependencies across an input sequence. As far as we know, this is the first approach that

employs the self-attention mechanism in the encoder of the CTC-based model for offline

handwritten text recognition.

Convolutional Neural Networks (CNNs) are successfully employed as feature

extractors in the CTC-based models [8–13]. It processes the information in a local

neighborhood, so that it might not extract information from long-distance locations in an

input image. To solve this weakness of the CNN network in the feature extractor, we

present a 2D Self-Attention Convolutional Recurrent Network (2D-SACRN) model with

a 2D self-attention mechanism for recognizing handwritten text lines. In this model, we

present a 2D self-attention mechanism in the feature extractor to help the CNN to capture

the relationships between widely separated spatial regions in an input image. As far as we

know, it is the first approach that employs the 2D self-attention mechanism in the feature

extractor of the CTC-based model for offline handwritten text recognition. The extensive

experiments on three widely used datasets: IAM Handwriting (English), Rimes (French),

and TUAT Kondate (Japanese) show that the proposed model achieves similar or better

accuracy when compared to state-of-the-art models in all datasets.

Deep Neural Networks, especially end-to-end models typically require a large number

of patterns per category for training. However, for many handwriting datasets, especially

handwritten Japanese/Chinese datasets which have many categories with over thousands,

the number of patterns per category is limited, so that it is necessary to apply a data

argumentation method. Many data argumentation methods for handwriting datasets have

been proposed by modifying the original data such as affine transformations [12, 13],

nonlinear combinations [13, 14] and Random warp grid distortion [15]. However, such

method just modifies the original data, but cannot gain the real text line image. In this

work, we propose a synthetic pattern generation method which synthesize handwritten

text line images from sentences in corpora and handwritten character patterns in the

isolated character database with elastic distortions.

4

1.2. Japanese Historical Document Recognition

Japanese use Kanji, ideographic characters of Chinese origin, and Kana, phonetic

characters made from Kanji characters. Kanji are used for nouns and stems of verbs,

adverbs, adjectives etc. while Kana are used for conjugation parts and so on. There are

thousands of Kanji characters but only 46 Kana characters since Japanese has 5 vowels

and 10 consonants, thus 50 phonemes, but 4 phonemes were merged to others.

Until the Edo period (1603 - 1868), Japanese documents were vertically written with a

brush or wood block printed. Characters, especially Kanji of Chinese origin and Kana (a

set of 46 phonetic characters made from Kanji), were deformed and cursively written, so

even experts have difficulty in reading them. Due to the demand for preserving historical

documents and availing them for research without damaging physical documents,

digitization and preservation of digital reproductions have been studied and practiced in

many regions and languages [16–19].

The Center for Open Data in the Humanities (CODH) in Japan is studying and

developing ways to enhance access to Japanese humanities data and constructing data

platforms to promote collaborative research among people with diverse backgrounds.

Under the support by CODH, Pattern Recognition and Media Understanding (PRMU)

held a contest to read anomalous Kana in 2017 [20]. The tasks are divided into three levels

in accordance with the number of characters in a circumscribed rectangle: level 1: single

characters, level 2: sequences of three vertically written Kana characters, and level 3:

unrestricted sets of characters composed of three or more characters possibly in multiple

lines. In this contest, we proposed the combination of a pre-trained CNN and an BLSTM

with CTC named by Deep Convolutional Recurrent Network (DCRN) for level 2 and the

DCRN combined with a vertical line segmentation method for level 3 [21]. Here, CNN

stands for Convolutional Neural Network, BLSTM for Bidirectional Long Short-Term

Memory Neural Network and CTC for Connectionist Temporal Classification. These

methods won the best award with 12.88% character error rate (CER) for level 2 and

26.70% for level 3. After the contest, we presented their end-to-end trained versions, with

the results of the new state-of-the-art accuracy of 10.90% CER for level 2 and 18.50%

for level 3 [12].

This thesis is based on the previous works of the DCRN model which won the best

algorithm award in the PRMU algorithm contest in 2017 but omits level 1 and focuses on

level 2 and 3. Moreover, we added end-to-end-training and a two-dimensional

5

Bidirectional Long Short-Term Memory (2DBLSTM) based model after the contest. We

compare the pretrained CNN approach and the end-to-end approach with more detailed

variations for level 2: recognizing sequences of three vertically written Kana characters.

Then, we propose a method of vertical text line segmentation and multiple line

concatenation before applying the DCRN model for level 3: recognizing unrestricted sets

of characters in multiple lines. We also examine two-dimensional Bidirectional Long

Short-Term Memory (2DBLSTM)-based methods for level 3 and compare their

performances with the vertical text line segmentation-based method.

This thesis also introduces an attention-based sequence to sequence model named by

Attention-based Row-Column Encoder-Decoder (ARCED) for both level 2 and 3 without

explicit segmentation of text lines. Since Japanese historical documents were written

cursively through an entire text line with neighbor text lines touching each other, a line

segmentation-free approach is sought. In this model, we incorporate a row-column

BLSTM in the encoder to capture the sequential order information in both the vertical

and the horizontal directions and a residual LSTM network in the decoder to take

advantage of entire past attention information.

6

1.3. Thesis organization

Chapter 2 presents surveys on two above topics: offline handwritten text recognition

and Japanese historical document recognition. Next, the following chapters present my

works on offline handwriting text recognition (Chapter 3), Japanese historical document

recognition (Chapter 4), and Attention-based model for multiple text line recognition

(Chapter 5). Finally, chapter 6 draws some conclusions and discussions about this thesis

as well as shows the future works.

7

Chapter 2. Survey of Text Recognition

2.1. Offline Handwritten Text Recognition

Document recognition consists of two main parts: layout analysis [22] and text

recognition, which we will survey briefly here.

Early works of handwritten Japanese/Chinese text recognition [1, 2] usually focused on

segmentation-based methods. The segmentation-based methods firstly segment text lines

into isolated characters before individually recognizing each character, but they may

make over-segmentation: dividing single-character patterns into small components or

under-segmentation: leaving multiple character patterns unsegmented into individual

characters. Segmentation candidates and recognition candidates are combined with

linguistic context and geometric context in a lattice diagram. The best path in the lattice

diagram is searched to produce the recognition result [1]. Over-segmentation is preferred

because split components can be merged by the best path search. However, the

segmentation-based methods are costly, and the errors of this process directly affect the

performance of the whole system. On the other hand, segmentation-free methods can

avoid segmentation errors and have been employed for western handwritten documents

using Hidden Markov Models (HMMs) [3, 4], so far. This approach firstly scans a text

line image with a sliding window to get a sequence of images. Then, this sequence of

images is fed into Gaussian Mixture Models (GMMs) or Neural Networks (NNs) to get a

sequence of features. The sequence of features is modeled with character HMMs. Word

models are obtained by concatenation of character HMMs. A weakness of HMMs is the

local modeling, which cannot capture long-term dependencies in the input sequence.

In recent years, many segmentation-free methods have been proposed and shown to be

effective, especially for recognizing noisy, complex, and handwritten text due to the

progress of Deep Neural Networks (DNNs). They can be categorized into two main

approaches: Connectionist Temporal Classification (CTC) and attention-based sequence-

to-sequence methods. Both methods address the problem of variable-length between

input and output in text recognition tasks.

The basic idea of CTC is to interpret an output as a probability distribution over all

possible label sequences and use an objective function to maximizes the probability of

the correct labeling. Early works of CTC for handwritten text recognition were presented

8

by A. Graves et al. [5]. They combined bidirectional Long Short-Term Memory (LSTM)

and CTC to build an end-to-end trainable model for online and offline handwritten

English text recognition. For offline handwritten text recognition, firstly an input image

is normalized by transformation methods such as rotate and shearing transformations.

Then, the feature vectors are extracted from the normalized images by a sliding window

approach and fed to the BLSTM network followed by CTC to get the final sequence

results. With the word accuracy of 74.1% and character accuracy of 81.8% on the IAM

dataset, the BLSTM-CTC model outperformed the traditional HMM model. Following

the works in [5], A. Graves et al. proposed Multidimensional Recurrent Neural Network

followed by CTC for offline Arabic handwriting recognition [23]. The proposed model

consists of three components: a multidimensional recurrent neural network

(multidimensional LSTM in particular); a CTC output layer; and the hierarchical structure.

The experiments on the IFN/ENIT database from the ICDAR 2007 Arabic handwriting

recognition competition show that the proposed model outperforms all entries in the 2007

ICDAR Arabic recognition contest.

V. Pham et al. presented an end-to-end MDLSTM followed by CTC for handwritten

text recognition [7]. This MDLSTM-CTC model was proposed in [23], but they have

adapted the filter sizes for input images and applied dropout to the MDLSTM network.

In the experiments, three handwriting datasets were used to evaluate the proposed system:

Rimes, IAM and OpenHaRT containing handwritten French, English, and Arabic text,

respectively. The results of the extensive experiments show that the recognition networks

with dropout at the topmost layer significantly reduces the CER and WER by 10-20%,

and the performance can be further improved by 30-40% if dropout is applied at multiple

LSTM layers.

B. Shi et al. proposed an end-to-end trainable neural network called Convolutional

Recurrent Neural Network (CRNN) for scene text recognition [8]. The CRNN model

consists of three components: convolutional layers by CNN, recurrent layers by BLSTM,

and a transcription layer by CTC. At the bottom of CRNN, the convolutional layers

extract a feature sequence from an input image. On top of the convolutional layers, a

recurrent network is built for making prediction for each frame of the feature sequence

outputted by the convolutional layers. The transcription layer at the top of CRNN

translates the per-frame predictions by the recurrent layers into a label sequence. The

CRNN model can be jointly trained with one loss function. To evaluate the effectiveness

of the proposed CRNN model, they conducted experiments on standard benchmarks for

9

scene text recognition including: ICDAR 2003 (IC03); ICDAR 2013 (IC13); IIIT 5k-

word (IIIT5k), Street View Text (SVT), and musical score recognition. The experiment

results show that CRNN achieves superior or highly competitive performance, compared

with conventional methods as well as other CNN and RNN based algorithms. N. T. Ly et

al. also presented the combination of pre-trained CNN and BLSTM with CTC, named

Deep Convolutional Recurrent Network (DCRN) [10]. They demonstrated that the

DCRN model outperforms the segmentation-based method [1] for offline handwritten

Japanese text recognition. Then, they present an end-to-end version of the DCRN model

for recognizing offline handwritten Japanese text [11].

Another approach, the attention-based sequence-to-sequence model has been

successful applied in many tasks, such as machine translation [24, 25] and speech

recognition [26]. It is also shown to be effective and achieved high accuracy in the task

of text recognition [27, 28]. Following the success of MDLSTM and the attention-based

sequence to sequence model, T. Bluche et al. presented the MDLSTM Attention model

for handwritten paragraph recognition [29]. The MDLSTM Attention model consists of

two main components: an encoder that extracts feature maps from an input image, and a

sequential decoder that predicts characters from these feature maps. The author carried

out the experiments on the IAM database consisting of images of handwritten English

text documents. The experiment results show that the proposed model worked well on

both the word and line recognition tasks.

A. Chowdhury et al. [28] proposed an attention-based model with a beam search

decoder for handwritten English and French text recognition. The proposed model

consists of two parts: a feature extractor that uses CNN to extract visual features from an

input image, and an attention-based sequence to sequence module that maps the visual

features to a sequence of characters. They also employed the form of Batch & Layer

Normalization, Focal Loss, and Beam Search to improve the proposed model. The

experiments on the IAM and Rimes datasets show that the proposed model provides

significant boost in accuracy as compared to the standard RNN-CTC model. C. Wang et

al. proposed a memory-augmented attention model for scene text recognition [27]. N. T.

Ly et al. also proposed an attention-based sequence-to-sequence model with residual

LSTM for recognizing multiple text lines in Japanese historical documents [30].

2.2. Historical Document Recognition

10

Here we summarize some publications reporting historical document processing in the

languages of Chinese origin written with brushes. Kim et al. developed a system for

digitizing more than 10 million Hanja* historical documents [31]. To build the system,

they employed manual typing and handwriting recognition based on the Mahalanobis

distance. In China, Digital Heritage Publishing Ltd. digitized more than 36,000 volumes

(4.7 million pages) of Siku Quanshu, which is the largest collection of books on Chinese

history compiled by 361 scholars during the Qianlong period (1711–1799). They first

applied optical character recognition (OCR) to segment and recognize characters and then

manually corrected misrecognized characters [9]. Kitadai et al. reported a system to help

archeologists read wooden tablets excavated from ancient ruins [16]. Given an input

character image, the system provides functions to restore the image and presents similar

character images already decoded, using simple pattern matching since the purpose is to

nominate candidates and sample patterns are very limited. Truyen et al. developed a

system for digitizing hundreds of thousands of Nom historical documents [32]. Nom is

the old Vietnamese writing system composed of original Chinese characters and

Vietnamese characters created in the same way as Chinese characters, i.e., formed from

radicals. The digitization system segments a document image into characters and

recognizes individual characters by the modified quadratic discriminant function

(MQDF) [33]. To train MQDF, pattern augmentation was applied.

For text recognition in historical documents, H. Yang et al. employed a CNN followed

by CTC for Chinese text recognition in historical documents [34]. D. Valy et al. used a

CNN and a 1DLSTM or 2DLSTM to recognize Khmer historical palm leaf manuscripts

[35]. Ly et al. presented Deep Learning-based methods for recognizing single text line

(level 2) as well as multiple text lines (level 3) in the Kana-PRMU dataset [12, 21] of

Japanese historical documents as mentioned before. N. T. Ly et al. also proposed an

attention-based sequence-to-sequence model with residual LSTM for recognizing

multiple text lines in Japanese historical documents [30].

11

Chapter 3. Offline Handwritten Text Line Recognition

3.1. Introduction

In this chapter, we present models of Deep Convolutional Recurrent Network (DCRN)

for recognizing offline handwritten text lines without explicit segmentation of characters.

The DCRN model has three parts: a CNN feature extractor; an BLSTM encoder; and a

CTC decoder. We also propose two upgraded version of DCRN: Attention Augmented

Convolutional Recurrent Network (AACRN) model which employs 1D self-attention

mechanism in the encoder, and 2D Self-Attention Convolutional Recurrent Network (2D-

SACRN) which introduces a 2D self-attention mechanism in the feature extractor to help

the CNN to capture the relationships between widely separated spatial regions in an input

image. Finally, we present the Text Line Image Generation Method that synthesizes

handwritten text line images from sentences in corpora and handwritten character patterns

in the handwritten character pattern database with elastic distortions. The experiments are

conducted on three public datasets: IAM Handwriting (English), Rimes (French), and

TUAT Kondate (Japanese) to evaluate the performance of the proposed models and the

effectiveness of the Text Line Image Generation Method.

The rest of this chapter is organized as follows: Section 3.2 describes the datasets.

Section 3.3 presents the Deep Convolutional Recurrent Network model. Section 3.4

describes the Attention Augmented Convolutional Recurrent Network model. Section 3.5

presents the 2D Self-Attention Convolutional Recurrent Network model. Section 3.6

presents the Text Line Image Generation Method. Section 3.7 concludes the chapter.

3.2. Datasets

We conduct the experiments on the following three datasets: two widely used western

handwritten datasets - IAM Handwriting [29] and Rimes [30], and one Japanese

handwritten dataset - TUAT Kondate [31]. The details of them are given in the following

sections.

3.2.1. TUAT Kondate.

TUAT Kondate is an online handwritten database compiled by Nakagawa Lab., Tokyo

University of Agri. & Tech. (TUAT). The database stores online handwritten patterns

mixed of text, figures, tables, maps, diagrams and so on. It was turned to offline patterns

by thickening strokes with constant width. The handwritten Japanese portion of TUAT

12

Kondate comprises 13,685 text line images collected from 100 Japanese writers. We split

the dataset into three subsets: 11,487 text line images collected from 84 writers for

training; 800 text line images collected from 6 writers; and 1,398 text line images

collected from 10 writers for testing. There are 3,345 different characters in the dataset.

Figure 3.1 shows examples of images in TUAT Kondate dataset. The summary of the

TUAT Kondate is given in Table 3.1.

Table 3.1. The detail of information of TUAT Kondate database.

TUAT Kondate

Train set Valid set Test set

Number of writers 84 6 10

Number of samples 11,487 800 1,398

Figure 3.1. Examples from TUAT Kondate database.

We use the TUAT HANDs Nakayosi and Kuchibue handwritten Japanese character

databases [16] for pretraining the weights of the CNN network of DCRN model and

generating the SHTL datasets. Nakayosi contains samples of 163 writers, 10,403

character patterns covering 4,438 classes per writer. Kuchibue contains handwritten

samples of 120 writers, 11,951 character patterns covering 3,345 classes per writer. The

summary of the Nakayosi and Kuchibue databases are shown in Table 3.2. They are

turned to offline patterns again by thickening stroke with constant width. In this work, we

experimented with 3,345 classes of JIS level-1 Kanji characters (2965 classes) and kana,

alpha-numerals, symbols and so on (380 classes) for pretraining the CNN model and

13

generating SHLT datasets. For pretraining the CNN model, we used the samples of

Nakayosi for training and the samples of Kuchibue for testing. The training set (Nakayosi

dataset) is randomly split into two group, with approximately 90% for training and

remainder for validation.

Table 3.2. Summary of Nakayosi and Kuchibue databases.

 Nakayosi Kuchibue

Number of writers 163 120

Number of classes 4,438 3,345

Number of samples 1,695,689 1,695,689

3.2.2. IAM Handwriting.

IAM Handwriting is an offline handwritten English text dataset compiled by the FKI-

IAM Research Group. The dataset is composed of 13,353 text lines extracted from 1,539

pages of scanned handwritten English text, which were written by 657 different writers.

All text lines in the IAM Handwriting are built using sentences provided by the Lancaster-

Oslo/Bergen (LOB) corpus. We employ the IAM Aachen splits [36] shared by T. Bluche

from RWTH Aachen University to split the dataset into three subsets: 6,482 lines (747

pages) for training, 2,915 (336 pages) lines for testing, and 976 lines (116 pages) for

validation. There are 79 different characters in the dataset, including the space character.

Figure 3.2 shows examples of images in IAM Handwriting dataset. The summary of the

IAM Handwriting is given in Table 3.3.

Table 3.3. Details of the IAM Handwriting dataset.

IAM Handwriting

Train set Valid set Test set

Text lines 6,482 976 2,915

Pages 747 116 336

3.2.3. Rimes.

Rimes is a well-known handwriting French dataset compiled by A2iA’s research

laboratory. The dataset consists of 11,333 lines extracted from 1,500 paragraphs for

training and 778 lines extracted from 100 paragraphs for testing. The original dataset does

not include the validation set, so we use the lines extracted from the last 100 paragraphs

of the training set as a validation set. Consequently, the Rimes dataset consists of three

14

subsets: 10,532 lines for training, 801 lines for validation, and 778 lines for testing. There

are 99 different characters in the dataset, including the space character. Figure 3.3 shows

examples of images in IAM Handwriting dataset. The summary of the IAM Handwriting

is given in Table 3.4.

Table 3.4. Details of the Rimes dataset.

Rimes

Train set Valid set Test set

Text lines 10,532 801 778

Paragraphs 1,400 100 100

Figure 3.2. Examples from IAM Handwriting database.

15

Figure 3.3. Examples from Rimes database.

16

3.3. Deep Convolutional Recurrent Network

3.3.1. Overview of The Model

In this section, we present a model of Deep Convolutional Recurrent Network (DCRN)

for recognizing offline handwritten Japanese text line images without explicit

segmentation of characters. As far as we know, this is the first approach that adopts the

CTC-based model for offline handwritten Japanese text recognition. The network

architecture of DCRN consists of 3 components, including the convolutional feature

extractor, an BLSTM encoder, and a CTC decoder, from bottom to top as shown in Figure

3.4.

Figure 3.4. Network architecture of the DCRN model.

17

From the bottom of the DCRN, the convolutional feature extractor extracts a feature

sequence from an input image, the encoder at the top of the convolutional feature extractor

predicts each frame of the feature sequence output by the convolutional feature extractor.

At the top of the DCRN, the decoder translates the pre-frame predictions by the encoder

into the final label sequence.

A. Preprocessing.

Firstly, all of the text line images are scaled to the same height (the same width in

Anomalously deformed Kana Sequence Recognition) of size before recognized by the

DCRN model. This is necessary because in our model the feature dimension of feature

sequence which extracted by the convolutional feature extractor is constant since deep

BLSTM expects a fixed-size feature dimension. After resizing, in order to manage the

noisy and complicated background, the text line images are converted into binary images

by Otsu thresholding algorithm [17]. Figure 3.5 presents the preprocessing on

anomalously deformed Kana sequence recognition.

Figure 3.5. Preprocessing on anomalously deformed Kana sequence recognition.

B. Convolutional Feature Extractor.

Convolutional neural networks (CNNs) have been proven to be very powerful visual

models and achieve the state-of-the-art accuracies on some tasks of computer vision such

as image recognition [37] and feature representation [38, 39].

In the DCRN model, the component of convolutional feature extraction is constructed

by taking the convolutional, max-pooling and full-connected layers from a standard CNN

model (softmax layer are removed). Such components are used to extract a feature

sequence from an input image. Before being fed into the component, all the text images

18

need to be scaled to the same height in order to have the same size of the input image for

CNN. Then, the feature sequence is extracted from the text image by the convolutional

feature extractor, which is the input of the encoder.

C. Encoder.

Recurrent neural networks (RNNs) are connectionist models containing a self-

connected hidden layer. The benefits of RNNs are allowing information of previous

inputs to remain in the network’s internal states and the ability to make use of previous

context. In the traditional RNNs, however, the vanishing gradient problem was

recognized. Long Short-Term Memory (LSTM) is an RNN architecture designed to

receive an input sequence with long-range dependencies and output another sequence that

has one-to-one correspondence to the input sequence [40]. The hidden units of RNN are

replaced by ‘memory cell’ units, which can store and retrieve information over time,

giving them access to long-range context. Each memory cell has three multiplicative gate

units: the input gate, the forget gate and the output gate to control, respectively, the write,

erase, and read access operations to the unit. These control gates can be shared among

cells. A group of cells sharing common control gates form a block of LSTM cells. Bi-

directional LSTM allows access to the context of an input from both forward (left to right)

and backward (right to left) directions. It consists of two LSTM layers that scan the input

in both the directions [6].

In DCRN model, the encoder is built on top of the convolutional feature extractor to

predict a label distribution for each frame of the feature sequence extracted from the

previous component. The encoder consists of the Deep Bidirectional LSTM layers which

take the feature sequence from the convolutional feature extractor as the input. In the last

LSTM layer, each time step of feature sequence is followed by a fully connected linear

layer which converts the output feature dimension to the size of the total character set

(plus 1 for CTC blank character). Finally, a softmax layer is placed at the end to generate

the label probability vector at each time step.

D. Decoder.

CTC is an algorithm designed for sequence labeling tasks where it is difficult to

segment an input sequence to segments that exactly matches those in a target sequence.

CTC performs alignment of a probability output sequence to a given label sequence. As

a result, the system does not need to segment an input sequence for training. The

probability of a label sequence l from an input sequence x is the total probability of all

19

the paths 𝜋𝑙 that produce the label sequence as shown in Eq. (3.3.1):

p(𝑙|𝑥) = ∑ 𝑝(𝜋|𝑥)𝜋∈𝜋𝑙
 (3.3.1)

CTC loss is the total negative log likelihood − ln p(𝑙|𝑥) over all pairs of an input

sequence x and a target label l from training patterns.

At the top of DCRN model, the decoder decodes the pre-frame predictions made by the

encoder into the final label sequence. Mathematically, decoding is to find the label

sequence with the highest probability conditioned on the pre-frame predictions. To obtain

the conditional probability, we employ a CTC layer as the decoder.

For decoding, we apply the CTC beam search [22] with 10 for the beam width

combined with a linguistic context to obtain the final label sequence with the highest

probability conditioned. In this work, we employ the tri-gram probability [23] as the

linguistic context. The tri-gram probability 𝑃(𝐶𝑖|𝐶𝑖−2, 𝐶𝑖−1) is calculated from the

corpus. It is reduced to unigram or bi-gram when 𝐶𝑖 is the first or second character.

3.3.2. Two approaches of the DCRN model.

We have two approaches of the DCRN model: pretrained CNN approach, and End-to-

End approach. The following sessions show the details of two approaches.

A. Pretrained CNN Approach.

Firstly, the CNN network is pretrained by the isolated character dataset using the

stochastic gradient descent. After training the CNN network, we remove just the softmax

layer or remove both the full connected layers and the softmax layer from the CNN

Figure 3.6. Overlapped sliding windows approach.

20

network to use the remaining network as the convolutional feature extractor to extract

feature sequence from the input images. We call the former DCRN_o-s and the latter

DCRN_o-f&s. Finally, this approach slides a sub-window of ℎ × ℎ (h: the height of

input image in offline handwritten Japanese text recognition or the width of image in

anomalously deformed Kana sequence recognition) pixels through the text line image

with 12 (or 16) pixels of the sliding stride size (overlap sliding) to get an image sequence

and applies the remaining CNN network to extract feature sequence from the image

sequence. Figure 3.6 shows the architecture of convolutional feature extractor in this

approach.

B. End-to-End Approach.

In this approach, the CNN network is constructed by taking the convolutional, max-

pooling layers from a standard CNN model (fully connected and softmax layers are

removed). The Leaky ReLu [21] activation is applied in all convolutional layers. Batch

normalization is applied between convolutional layer and Leaky ReLu activation. We

apply this CNN network to an input image of size 𝑤 × ℎ × 𝑐 (where c is the color

channels of image), resulting in a multi-channel output of dimension 𝑤′ × ℎ′ × 𝑘, where

Figure 3.7. Convolutional feature extractor in the end-to-end model approach.

21

k is the number of feature maps in last convolutional layer, 𝑤′and ℎ′ depend on the w

and h of input images and the amount of pooling layers in the CNN network. Then we

pass the 𝑤′ features of dimension ℎ′ × 𝑘 to the encoder. Since the height of input

images is fixed, the dimension ℎ′ × 𝑘 of each feature is the same. In this approach, we

do not pretrain the CNN network. However, the weights of CNN and the weights of

LSTM will be end-to-end trained on the pairs of images and sequences by only one loss

function. Figure 3.7 shows the architecture of convolutional feature extractor in this

approach.

3.3.3. Experiments

To evaluate the performance of the proposed DCRN model, we conducted experiments

on the Kondate dataset. The implementation details are described in Section A, the results

of the experiments are presented in Section B and the misrecognized samples are shown

in Section C.

A. Implementation Details

Pretrained CNN approach: For pretrained CNN approach, the detailed architecture of

CNN network used in the convolutional feature extractor is listed in Table 3.5 in which

‘k’, ‘s’, ‘p’ and ‘group’ denote to kernel size, stride, padding size and group size,

respectively. It contains seven learned layers - four convolutional layers alternatively by

four max-pooling layers, two full-connected layers and a softmax layer finally (3345

class). Each convolutional and fully-connected layer is followed by Maxout units [25],

using the group size of 2. Firstly, the CNN network is pretrained by the TUAT Nakayosi

and Kuchibue using stochastic gradient descent with a batch size of 64 samples with the

learning rate of 0.01 and the momentum of 0.95 on GPU. After training the CNN network,

we remove just the softmax layer or both the full connected layers and the softmax layer

from the CNN network to use the remaining network as the convolutional feature

extractor. We call the former DCRN_o-s and the latter DCRN_o-f&s.

At the encoder, we employ Deep BLSTM network with 256 nodes of two layers. A

fully connected layer and a softmax layer with the node size equal to the character set size

(n=3347) are applied after each time step of Deep BLSTM network. The encoder and the

decoder are trained by using online steepest descent with the learning rate of 0.0001 and

the momentum of 0.9. We use the training set of Kondate for training and the testing set

of Kondate for evaluating the performance of this approach. The validation set of Kondate

is used for turning hyperparameters and avoid overfitting in the DCRN model.

22

Table 3.5. Network configuration of the CNN model in the pretrained CNN approach.

Type Configurations

Input 96×96 image

Conv1 - Maxout #maps:32, k:5×5, s:1, p:0, group:2

MaxPooling1 Window:2×2, s:2

Conv2 - Maxout #maps:32, k:3×3, s:1, p:0, group:2

MaxPooling2 Window:2×2, s:2

Conv3 - Maxout #maps:64, k:3×3, s:1, p:0, group:2

MaxPooling3 Window:2×2, s:2

Conv4 - Maxout #maps:64, k:5×5, s:1, p:0, group:2

MaxPooling4 Window:2×2, s:2

Full-connected - Maxout #nodes:400, group:2

Full-connected - Maxout #nodes:400, group:2

Softmax #nodes: 3345(number class)

End-to-end approach: For the End-to-End approach, the architecture of CNN network

used in the convolutional feature extractor is shown in Table 3.6 in which ‘maps’, ‘k’, ‘s’

and ‘p’ denote the number of kernels, kernel size, stride and padding size of convolutional

layers respectively. It consists of 8 convolutional layers. Batch normalization is applied

after the 2nd, 4th, 6th and 8th convolutional layers followed by Max-Pooling layers. The

Leaky ReLu [20] activation function is applied in all convolutional layers.

At the encoder, we employ Deep BLSTM network with 128 hidden nodes of three

layers. In order to prevent overfitting when training the model, the dropout (dropout

rate=0.2) is also applied in each layer of Deep BLSTM. A fully connected layer and a

softmax layer with the node size equal to the character set size (n=3347) are applied after

each time step of Deep BLSTM network.

The end-to-end approach is trained using stochastic gradient descent with the learning

rate of 0.001 and the momentum of 0.9. The training process stops when the recognition

accuracy of validation set does not gain after 10 epochs.

23

Table 3.6. Network configuration of the CNN model in the end-to-end model approach.

Type Configurations

Input 96×w image

Conv1 - LReLu #maps:32, k:3×3, s:1, p:1

Conv2 - Batch Norm - LReLu #maps:32, k:3×3, s:1, p:1

MaxPooling1 #window:2×2, s:2

Conv3 - LReLu #maps:64, k:3×3, s:1, p:1

Conv4 - Batch Norm - LReLu #maps:64, k:3×3, s:1, p:1

MaxPooling2 #window:2×2, s:2

Conv5 - LReLu #maps:128, k:3×3, s:1, p:1

Conv6 - Batch Norm - LReLu #maps:128, k:3×3, s:1, p:1

MaxPooling3 #window:2×2, s:2

Conv7 - LReLu #maps:256, k:3×3, s:1, p:1

Conv8 - Batch Norm - LReLu #maps:256, k:3×3, s:1, p:1

MaxPooling4 #window:2×2, s:2

B. Experiment Results

In order to evaluate the performance of the AARCN model, we employ the terms of

Character Error Rate (CER) and Sequence Error Rate (SER) that are defined as follows:

(x,z) S

1
CER h,S = ED h(x),z

Z

 (3.3.2)

(x,z) S

 0 if h(x)=z100
SER h,S =

1 otherwiseS

 (3.3.3)

where Z is the total number of target labels in S’ and ED(p, q) is the edit distance between

two sequences p and q.

The first experiment evaluated the performance of the pretrained CNN approach and

the end-to-end approach without using the linguistic context. Table 3.7 shows the

recognition rate on the validation and test sets of Kondate. In the pretrained CNN

approach, DCRN_o-s obtained LER of 6.44% and SER of 25.89% on the test set, it is

24

compared with the results of DCRN_o-f&s. The results imply that the DCRN_o-s model,

the convolutional feature extractor made by only removing the softmax layer from the

CNN model, works better than DCRN_o-f&s, the convolutional feature extractor made

by removing both the fully connected layers and the softmax layer from the CNN model.

End-to-End obtained LER of 3.65% and SER of 17.24% on the test set. The results imply

that the end-to-end approach substantially outperforms the pretrained CNN approach.

Table 3.7. Label Error Rate (LER) and Sequence Error Rate (SER) on Kondate.

Model
LER SER

Valid set Test set Valid set Test set

DCRN_o-f&s 11.74% 6.95% 39.33% 28.04%

DCRN_o-s 11.01% 6.44% 37.38% 25.89%

End-to-End 5.22% 3.65% 24.47% 17.24%

Secondly, we evaluated the performance of the pretrained CNN approach and the end-

to-end approach with the linguistic context [23]. Table 3.8 shows the recognition rate of

these approaches on the test set when combined with the linguistic context. It is compared

with the previous segmentation-based method with the linguistic context. The results

show that both the pretrained CNN approach and the end-to-end approach are superior to

the segmentation-based method and its recognition accuracy is further improved when

the linguistic context is integrated.

Table 3.8. LER and SER on Kondate when combined with the linguistic context.

Model
Test set

LER SER

Segmentation based [1] 11.2% 48.53%

DCRN_o-f&s 6.68% 26.97%

DCRN_o-s 6.10% 24.39%

End-to-End 3.52% 16.67%

C. Correctly recognized and misrecognized samples

There are a total of 362 misrecognized samples among 1398 samples. Most of them are

missing some characters in the ground-truth. Figure 3.8 shows some misrecognized

25

samples by DCRN_o-s whose sequence error rate is 25.89%. For each sample, the upper

image is an input handwritten text line image and the text bounded by the lower blue

rectangular shows the ground-truth and the recognition result separated by “->”.

Figure 3.8. Some mispredicted samples by DCRN_o-s.

26

3.4. Attention Augmented Convolutional Recurrent Network

The RNNs, such as Gated recurrent unit (GRU) or Long-short term memory (LSTM),

are good at sequence modeling and solve the weakness of the local modeling of HMMs.

However, the number of hidden nodes in RNNs is usually fixed, which implies all

historical information is compressed into a fixed-length vector, so that RNNs are difficult

to capture long-range context. Recently, A. Vaswani et al. [14] proposed a self-attention

mechanism in the Transformer model, which achieved the state-of-the-art performance in

some machine translation tasks. The self-attention mechanism can capture the

dependencies between different positions of arbitrary distance in an input sequence and

replaces the LSTM in both the encoder and the decoder of the sequence-to-sequence

models. Based on the self-attention mechanism, we propose an upgraded version of

DCRN named Attention Augmented Convolutional Recurrent Network (AACRN) for

recognizing handwritten Japanese text lines. In this model, we employ the self-attention

mechanism in the encoder to help the encoder to capture long-range and multi-level

dependencies across an input sequence. As far as we know, this is the first approach that

employs the self-attention mechanism in the encoder of the CTC-based model for offline

handwritten text recognition.

3.4.1. Self-Attention Mechanism

Self-attention is a mechanism that uses all position-pairs of the input sequence to extract

more expressive representations for the inputs. Therefore, the self-attention mechanism

can capture the dependencies between different positions of arbitrarily distance in the

Figure 3.9. Self-attention layer.

27

input sequence. The self-attention layer [14] consists of two sub-layers: a multi-head self-

attention mechanism and a position-wise fully connected feed-forward network. A

residual connection [41] followed by layer normalization is applied after each of the two

sub-layers. Figure 3.9 shows the architecture of the self-attention layer. Next, we will

describe how the self-attention layer works. Let 𝑋 ∈ 𝑅𝑇×𝑑𝑥 denote an input to the self-

attention layer. The first sub-layer performs multi-head attention to the input X. Each head

i of the 𝑛ℎ heads compute the queries 𝑄𝑖, keys 𝐾𝑖, and values 𝑉𝑖 from X by linear

projections and then performs Scaled Dot-Product Attention to the queries, keys, and

values to compute the output as shown in Eq. (3.4.1) and Eq. (3.4.2):

Q K V

i i i i i iQ XW K XW V XW (3.4.1)

head softmax i i
i i

k

Q K
V

d

 (3.4.2)

where the projections are parameter matrices 𝑊𝑖
𝑄

, 𝑊𝑖
𝐾 ∈ ℝ𝑑𝑥×𝑑𝑘 and 𝑊𝑖

𝑉 ∈ ℝ𝑑𝑥×𝑑𝑥/𝑛ℎ.

All heads are concatenated and again projected to give the output of the multi-head sub-

layer, as shown in Eq. (3.4.3):

 MultiHead 1O Concat head ,..., head
h

O

n W (3.4.3)

where the projection is a parameter matric 𝑊𝑖
𝑂 ∈ ℝ𝑑𝑥×𝑑𝑥. The output and the input of

the multi-head sub-layer are fed to the layer normalization and to the second sub-layer: a

position-wise fully connected feed-forward network. Finally, the output of the self-

attention layer is computed as shown in Eq. (3.4.4) and Eq. (3.4.5):

 2 MultiHeadLN OX X (3.4.4)

 SelfAttnLayer 2 2LN FFNO X X (3.4.5)

Where LN and FFN are the layer normalization and the position-wise fully connected

feed-forward network, respectively.

3.4.2. Overview of The Model

The AACRN model consists of three main parts: a convolutional feature extractor, a

self-attention-based encoder, and a CTC decoder, from bottom to top, as shown in Figure

3.10 They are described in the following sections.

28

A. Feature extractor

Similar to the DCRN model, we employ a standard CNN network without fully

connected layers to build the feature extractor in the AACRN model. This CNN network

is constructed by taking the convolutional, max-pooling layers from a standard CNN

model to extract a sequence of features from an input image. (fully connected layers are

removed). All the images will be scaled to the same height before fed into the network.

As shown in Figure 3.11, given an input image of size 𝑤 × ℎ × 𝑐 (where c is the color

Figure 3.10. Network architecture of the AACRN model.

Figure 3.11. Feature extraction for an input image.

29

channels of image), the CNN network extracts a feature gird F of size 𝑤′ × ℎ′ × 𝑘, where

k is the number of feature maps in the last convolutional layer, 𝑤′and ℎ′ depend on the

w and h of input images and the number of pooling layers in the CNN network. Then, the

feature gird F will be unfolded to a sequence of features column by column from left to

right in each feature map. The sequence of features will be fed to the encoder.

B. Self-attention based encoder

In the AACRN model, we use the combination of the self-attention layers and the

BLSTM network to build the encoder, which encodes a sequence of features extracted

from the previous component into a sequence of label probability vectors. The self-

attention layers help the encoder capture the dependencies between different positions

with arbitrarily distance in the input. Meanwhile, the BLSTM network helps the encoder

focus on the dependencies of nearby positions. The encoder consists of three main parts:

a self-attention block, which consists of several self-attention layers, two BLSTM

networks which denote BLSTM_1 and BLSTM_2, and a fully connected layer, as shown

in Figure 3.4.2. The output of the self-attention block and BLSTM_1 will be concatenated

before being fed into BLSTM_2. Then, the output of BLSTM_2 will be fed into the fully

connected layer, which converts the output feature dimension to the size of the total

character set (plus 1 for CTC blank character). Finally, a softmax layer is placed at the

end to generate the label probability vector at each time step.

Let 𝐹 = (𝑓1, 𝑓2 ⋯ 𝑓𝑛) , 𝐸 = (𝑒1, 𝑒2 ⋯ 𝑒𝑛) and 𝐻 = (ℎ1, ℎ2 ⋯ ℎ𝑛) denote the

sequence of features, the sequence of label probability vectors, and the output of the

combination of the self-attention block and BLSTM_1, respectively, where n is the

number of feature vectors. Then, we have:

 Concat BLSTM_1 ,SelfAttnH F F (3.4.6)

 Softmax FC BLSTM_2E H (3.4.7)

C. Decoder

At the top of the AACRN model, the decoder generates the final label sequence from

the sequence of label probability vectors made by the encoder. Mathematically, the

decoder finds the label sequence with the highest probability conditioned on the sequence

of the label probability vectors. To obtain the conditional probability, we employ the CTC

algorithm [42] as the decoder.

30

The whole model can be trained end-to-end by the CTC loss and stochastic gradient

descent algorithms. For decoding, we apply the CTC beam search with the beamwidth of

10 to obtain the final label sequence with the highest probability conditioned.

3.4.3. Experiments

To evaluate the performance of the proposed AACRN model, we conducted

experiments on the Kondate Japanese text line dataset. The implementation details are

described in Sec A; the results of the experiments are presented in Sec. B and the correctly

recognized and misrecognized samples are shown in Sec. C.

A. Implementation Details

The architecture of the CNN network in the feature extractor is shown in Table 3.9,

where ‘maps’, ‘k’, ‘s’ and ‘p’ denote the number of kernels, kernel size, stride and

padding size of convolutional layers, respectively. It consists of six convolutional (Conv)

layers. After all Conv layers, batch normalization [43] followed by the ReLU activation

function is applied in order to normalize the inputs to the nonlinear activation. Each Conv

layer in the first five Conv layers is followed by Max-Pooling layers.

Table 3.9. Network configuration of the CNN model.

Type Configurations

Input h×w image

Conv1 - Batch Norm - ReLu #maps:32, k:3×3, s:1, p:1

MaxPooling1 #window:2×2, s:2×2

Conv2 - Batch Norm - ReLu #maps:64, k:3×3, s:1, p:1

MaxPooling2 #window:2×2, s:2×2

Conv3 - Batch Norm - ReLu #maps:64, k:3×3, s:1, p:1

MaxPooling3 #window:2×2, s:2×2

Conv4 - Batch Norm - ReLu #maps:128, k:3×3, s:1, p:1

MaxPooling4 #window:1×2, s:1×2

Conv5 - Batch Norm - ReLu #maps:256, k:3×3, s:1, p:1

MaxPooling5 #window:2×1, s:2×1

Conv6 - Batch Norm - ReLu #maps:256, k:3×3, s:1, p:1

31

At the encoder, the self-attention block consists of six self-attention layers where each

self-attention layer is composed of eight heads and 2048 nodes of one fully connected

layer. Both BLSTM_1 and BLSTM_2 is composed of forward and backward layers

where each forward or backward layer is one LSTM layer having 256 hidden nodes. In

order to prevent overfitting when training the model, the dropout (dropout rate=0.2) is

also applied in each layer of the two bidirectional BLSTM networks. A fully connected

layer and a softmax layer with the node size equal to the character set size (n=3347 for

Kondate dataset) are applied at the end of the encoder.

The AACRN model is trained using stochastic gradient descent with a learning rate of

0.001 and a momentum of 0.9. The training process stops when the recognition accuracy

of the validation set does not gain after ten epochs.

B. Experiment Results

In order to evaluate the performance of the AARCN model, we employ the terms of

Character Error Rate (CER) and Sequence Error Rate (SER) that are defined in Eq. (3.3.2)

and Eq. (3.3.3).

Japanese text recognition

The first experiment evaluated the performance of the AACRN model on the Kondate

- offline handwritten Japanese text line dataset. Table 3.10 compares the recognition error

rates by the AACRN model and the previous works of the DCRN models on the test set

of the Kondate dataset.

Table 3.10. Recognition error rates (%) on the test set of Kondate dataset.

Model
Kondate

CER SER

DCRN_o-f&s 6.95 28.04

DCRN_o-s 6.44 25.89

End-to-End DCRN 3.65 17.24

AACRN 2.73 15.74

The AACRN model obtained CER of 2.73% on the test set of Kondate dataset,

respectively. The results imply that the AACRN model substantially outperforms both

32

pretrained approach and End-to-End approach of the DCRN model on the test sets of

Kondate dataset.

Effects of self-attention block

To verify the effect of the self-attention block in the encoder, we prepared one variation,

which was the same as the AACRN model except using the self-attention block in the

encoder. This model is named AACRN_w/o_selfAttn. Table 3.11 compares its

recognition error rates with the AACRN model on the test set of the Kondate dataset.

Table 3.11. Recognition error rates (%) with different encoders.

Model
Kondate

CER SER

AACRN_w/o_selfAttn 3.44 19.67

AACRN 2.73 15.74

In the test sets of the Kondate dataset, the AACRN model outperforms the

AACRN_w/o_selfAttn model. The results show that the self-attention block in the

encoder improves the performance of the AACRN model for the Japanese text

recognition tasks. This seems to be due to the self-attention block that helps the encoder

capture the dependencies between different positions in the input sequence.

33

3.5. 2D Self-Attention Convolutional Recurrent Network

Convolutional Neural Networks (CNNs) are successfully employed as feature

extractors in the CTC-based models [8–13]. It processes the information in a local

neighborhood, so that it might not extract information from long-distance locations in an

input image. To solve this weakness of the CNN network in the feature extractor of

DCRN, we propose an upgraded version of DCRN named 2D Self-Attention

Convolutional Recurrent Network (2D-SACRN) model for offline handwritten text line

recognition. In this model, we present a 2D self-attention mechanism in the feature

extractor to help the CNN to capture the relationships between widely separated spatial

regions in an input image. As far as we know, it is the first approach that employs the 2D

self-attention mechanism in the feature extractor of the CTC-based model for offline

handwritten text recognition.

3.5.1. 2D Self-Attention Mechanism.

Convolutional Neural Networks have been proven to be compelling models and achieve

state-of-the-art results in many computer vision tasks. However, convolutional operation

processes the information in a local neighborhood. Thus, it is difficult to obtain

information from long-distance locations. X. Wang et al. proposed the non-local

operations in Non-local Neural Networks for capturing long-range dependencies in an

image or video [44]. H. Zhang et al. adapted the non-local model in [44] to introduce self-

Figure 3.12. Architecture of 2D Self-Attention block.

34

attention to the GAN framework, helping both the generator and the discriminator capture

the relationships between widely separated spatial regions [45]. Based on their works, in

this paper, we present a 2D self-attention block in the feature extractor to help it capture

the relationships between widely separated spatial regions in an input image. The

architecture of the 2D self-attention block is shown in Figure 3.12.

Let 𝑋 ∈ 𝑅𝐻×𝑊×𝐶 denote a feature grid input to the 2D self-attention block (where H,

W, and C are height, width, and the number of channels of the feature grid X, respectively).

Firstly, the 2D self-attention block transforms the feature grid X into three feature grids:

queries 𝑄 ∈ 𝑅𝐻×𝑊×𝐶′
, keys 𝐾 ∈ 𝑅𝐻×𝑊×𝐶′

, and values V ∈ 𝑅𝐻×𝑊×𝐶 by linear

projections as shown in Eq. (3.5.1):

Q K VQ X W K X W V X W (3.5.1)

where the projections are the learned parameter matrices 𝑊𝑄 ∈ ℝ𝐶×𝐶′
, 𝑊𝐾 ∈ ℝ𝐶×𝐶′

, and

𝑊𝑉 ∈ ℝ𝐶×𝐶 with each implemented as a 1×1 convolution layer.

The 2D self-attention maps 𝑃 ∈ 𝑅𝐻×𝑊×𝐻×𝑊 are calculated from the queries Q and the

keys K as shown in Eq. (3.5.2) and Eq. (3.5.3):

T
ijqk ij qks K Q (3.5.2)

,

0, 0

exp

exp

ijqk

ijqk q H k W

ijqk

q k

S
P

S

 (3.5.3)

where 𝑄𝑇 is the transpose of the queries Q and 𝑃𝑖𝑗𝑞𝑘 indicates how the 𝑖𝑗𝑡ℎ location in

the feature grid X attend to the 𝑞𝑘𝑡ℎ location in the feature grid X.

Then, the attended feature grid 𝑋𝑎𝑡𝑡𝑛 are computed from the 2D self-attention maps P

and the values V as shown in Eq. (3.5.4):

 attn FX P V W (3.5.4)

where 𝑊𝐹 ∈ ℝ𝐶×𝐶 is the learned parameter matrices implemented as a 1×1 convolution

layer.

35

Finally, the output of the 2D self-attention block is calculated from the attended features

𝑋𝑎𝑡𝑡𝑛, and the input feature grid X as follow:

*attnO X X (3.5.5)

where λ is a learnable scalar, and it is initialized as 0.

3.5.2. Overview of The Model

The 2D-SACRN model is composed of three main components: a feature extractor, a

recurrent encoder, and a CTC-decoder, as shown in Figure 3.13 They are described in the

following sections.

A. Feature Extractor

In the 2D-SACRN model, we employ a CNN network followed by a 2D self-attention

block to build the feature extractor. The CNN network is constructed by taking the

convolutional and max-pooling layers from a standard CNN network while removing

fully connected, and Softmax layers. Given an input image of size 𝑤 × ℎ × 𝑐 (where c

is the color channels of image), the CNN network extracts a feature gird F of size 𝑤′ ×

ℎ′ × 𝑘, where k is the number of feature maps in the last convolutional layer, and 𝑤′and

ℎ′ depend on the w and h of input images and the number of pooling layers in the CNN

Figure 3.13. Network architecture of the 2D-SACRN model.

36

network. Then, the feature grid F is fed into the 2D self-attention block to get the final

attended feature grid 𝐹𝑎𝑡𝑡𝑛. Finally, the final attended feature grid 𝐹𝑎𝑡𝑡𝑛 is unfolded to a

feature sequence column by column from left to right in each feature map. The feature

sequence is fed into the encoder.

B. Encoder

At the top of the feature extractor, the encoder encodes the feature sequence extracted

from the feature extractor into a sequence of label probabilities. Mathematically, the

encoder predicts label-probabilities for each feature in the feature sequence. In the 2D-

SACRN model, we use a BLSTM network followed by a fully connected layer and a

Softmax layer to build the encoder. The BLSTM network takes the feature sequence from

the feature extractor as the input. Then, the output of the BLSTM network is fed into the

fully connected layer, which converts the output feature dimension to the size of the total

character set (plus 1 for CTC blank character). Finally, the Softmax layer, which is placed

at the end of the encoder, generates the label probabilities at each time step.

Let 𝐹𝑠𝑒𝑞 = (𝑓1, 𝑓2 ⋯ 𝑓𝑛), 𝐸 = (𝑒1, 𝑒2 ⋯ 𝑒𝑛) and 𝐻 = (ℎ1, ℎ2 ⋯ ℎ𝑛) denote the feature

sequence, the sequence of label probabilities, and the output of the BLSTM network,

respectively, where n is the number of feature vectors. Then, we have:

 BLSTM seqH F (3.5.6)

 Softmax FCE H (3.5.7)

C. Decoder

At the top of the 2D-SACRN model, the decoder converts the sequence of label

probabilities made by the encoder into a final label sequence. Mathematically, the

decoding process is to find the final label sequence with the highest probability

conditioned on the sequence of label probabilities. CTC [42] is a specific loss function

designed for sequence labeling tasks where it is difficult to segment the input sequence

into the final segmented sequence that exactly matches a target sequence. In this work,

we employ the CTC algorithm to build the decoder to obtain the conditional probability.

The whole system is trained end-to-end using stochastic gradient descent algorithms to

minimize the CTC loss. For the decoding process in the testing phase, we apply the CTC

37

beam search with the beamwidth of 2 to obtain the final label sequence with the highest

probability conditioned.

3.5.3. Experiments

To evaluate the performance of the proposed 2D-SACRN model, we conducted

experiments on the three datasets: IAM handwriting, Rimes, and TUAT Kondate. The

implementation details are described in Sec A; the results of the experiments are presented

in Sec. B; and the visualization of the 2D self-attention map is shown in Sec. C.

A. Implementation Details

IAM and Rimes datasets. In the experiments on the two western datasets, the

architecture of the CNN network in the feature extractor is ConvNet-1 as shown in Table

3.12, where ‘maps’, ‘k’, ‘s’ and ‘p’ denote the number of kernels, kernel size, stride and

padding size of convolutional layers, respectively. It consists of five convolutional (Conv)

blocks. Each Conv block consists of one Conv layer followed by the Batch normalization

[43] and the ReLU activation. To reduce overfitting, we apply dropout at the input of the

last three Conv blocks (with dropout probability equal to 0.2).

Table 3.12. Network configurations of the CNN in the feature extractor.

Type
Configurations

ConvNet-1 ConvNet-2

Input h×w image h×w image

Conv Block 1 #maps:16, k:3×3, s:1, p:1 #maps:16, k:3×3, s:1, p:1

Max-Pooling1 #window:2×2, s:2×2 #window:2×2, s:2×2

Conv Block 2 #maps:32, k:3×3, s:1, p:1 #maps:32, k:3×3, s:1, p:1

Max-Pooling2 #window:2×2, s:2×2 #window:2×2, s:2×2

Conv Block 3 #maps:48, k:3×3, s:1, p:1 #maps:48, k:3×3, s:1, p:1

Max-Pooling3 #window:1×2, s:1×2 #window:2×2, s:2×2

Conv Block 4 #maps:64, k:3×3, s:1, p:1 #maps:64, k:3×3, s:1, p:1

Max-Pooling4 #window:2×1, s:2×1 #window:1×2, s:1×2

Conv Block 5 #maps:80, k:3×3, s:1, p:1 #maps:80, k:3×3, s:1, p:1

Max-Pooling5 #window:2×1, s:2×1

Conv Block 6 #maps:128, k:3×3, s:1, p:1

38

At the encoder, we employ a Deep BLSTM network with 256 hidden nodes of five

layers. To prevent overfitting when training the model, the dropout (dropout rate=0.5) is

also applied in each layer of the Deep BLSTM network. A fully connected layer and a

softmax layer with the node size equal to the character set size (n=80 for IAM and 100

for Rimes) are applied after each time step of the Deep BLSTM network.

TUAT Kondate dataset. In our experiments on the TUAT Kondate dataset, the

architecture of the CNN network in the feature extractor is ConvNet-2, which consists of

six Conv blocks, as shown in Table 3.12. The Deep BLSTM network in the encoder has

three BLSTM layers with 256 hidden nodes of each layer. The other configurations are

the same as the 2D-SACRN model in the experiments on the two western datasets.

B. Experiment Results

In order to evaluate the performance of the 2D-SACRN model, we employ the terms of

Character Error Rate (CER), Word Error Rate (WER), and Sequence Error Rate (SER)

that are defined as follows:

(x,z) S

1
CER h,S = ED h(x),z

Z

 (4.5.8)

(x,z) S

1
WER h,S = ED h(x),z

Z
word

word

 (4.5.9)

(x,z) S

 0 if h(x)=z100
SER h,S =

1 otherwiseS

 (4.5.10)

where Z is the total number of target labels in S’ and ED(p, q) is the edit distance between

two sequences p and q, while Z𝑤𝑜𝑟𝑑 is the total number of words in S’ and 𝐸𝐷𝑤𝑜𝑟𝑑(p,

q) is the word-level edit distance between two sequences p and q.

English and French Text Recognition:

The first experiment evaluated the performance of the 2D-SACRN model on the two

western handwritten datasets: IAM Handwriting and Rimes in terms of CER and WER.

To fairly compare with the previous models, we do not use any data augmentation

techniques as well as linguistic context information. Table 3.13 shows the recognition

error rates by the 2D-SACRN model and the previous models [7, 9, 13, 46–50] on the test

set of IAM Handwriting and Rimes datasets without using the language model.

39

On the IAM Handwriting dataset, the 2D-SACRN model achieved CER of 6.76% and

WER of 20.89%. These results show that the 2D-SACRN model achieves the state-of-

the-art accuracy and outperforms the best model in [50] by about 8% of CER and 15% of

WER on the IAM Handwriting dataset. On the Rimes dataset, the 2D-SACRN model

achieved CER of 3.43% and WER of 11.92%. Although its CER was considerably larger

than the current state-of-the-art [48], its WER was the best.

From the above results, we conclude that the 2D-SACRN model achieves similar or

better accuracy when compared to the state-of-the-art models in both IAM Handwriting

and Rimes datasets.

Japanese Text Recognition:

In the second experiment, we evaluated the performance of the 2D-SACRN model on

the TUAT Kondate - offline handwritten Japanese text dataset in terms of CER and SER.

To fairly compare with the previous models, we also do not use any data augmentation

techniques as well as linguistic context information. Table 3.14 compares the recognition

error rates by the 2D-SACRN model and the previous works of DCRN and AACRN

Table 3.13. Recognition error rates (%) on IAM and Rimes datasets.

Model
IAM Rimes

CER WER CER WER

CNN-1DLSTM (Moysset et al. [47]) 11.52 35.64 6.14 20.11

MDLSTM (Pham et al. [7]) 10.80 35.10 6.80 28.50

GNN-1DLSTM (Bluche et al. [9])* 10.17 32.88 5.75 19.74

2DLSTM (Moysset et al. [47]) 8.88 29.15 4.94 16.03

2DLSTM-X2 (Moysset et al. [47]) 8.86 29.31 4.80 16.42

CNN-Seq2Seq (Sueiras et al. [46]) 8.80 23.80 4.80 15.90

CNN-Seq2Seq (Zhang et al. [21]) 8.50 22.20 - -

CNN-1DLSTM (Puigcerver et al. [13]) 8.20 25.40 3.30 12.80

2DLSTM (Bluche et al. [48]) 7.90 24.60 2.90 12.60

CNN-1DLSTM (Puigcerver et al. [13])* 7.73 25.22 4.39 14.05

CNN-Transformers (Kang et al. [49]) 7.62 24.54 - -

Deep BLSTM + Dropout (Bluche et al. [50]) 7.30 24.70 5.60 20.90

2D-SACRN (Ours) 6.76 20.89 3.43 11.92

 * Experiments run by Moysset et al. [47]

40

models on the test set of TUAT Kondate without using the language model. The 2D-

SACRN model achieved CER of 2.49% and SER of 12.66% on the test set of TUAT

Kondate. The results imply that the 2D-SACRN model obtains the state-of-the-art results

on the TUAT Kondate dataset and outperforms the best model by about 10% of CER and

25% of SER.

Effects of 2D Self-Attention Mechanism:

To measure the effectiveness of the 2D self-attention mechanism in the feature extractor

of the 2D-SACRN, we prepared one variation, which was the same as the 2D-SACRN

model except using the 2D self-attention block in the feature extractor. This variation is

called 2D-SACRN_w/o_2DSelfAttn. We trained the 2D-SACRN_w/o_2DSelfAttn

according to the same scheme applied to the 2D-SACRN model on the three datasets.

Table 3.15 compares its recognition error rates with the 2D-SACRN model on the test set

of the IAM Handwriting, Rimes, and TUAT Kondate datasets. In all datasets, the 2D-

SACRN model slightly outperforms the 2D-SACRN_w/o_2DSelfAttn. The results imply

that the 2D self-attention mechanism in the feature extractor improves the performance

of the 2D-SACRN model for handwritten text recognition.

Table 3.15. Recognition error rates (%) with different feature extractors.

Model
IAM Rimes Kondate

CER WER CER WER CER SER

2D-SACRN_w/o_2DSelfAttn 7.49 22.97 3.78 13.48 2.77 14.02

2D-SACRN 6.76 20.89 3.43 11.92 2.49 12.66

Table 3.14. Recognition error rates (%) on the test set of TUAT Kondate.

Model
Kondate

CER SER

Segmentation-based method [1] 11.2 48.53

DCRN_o-f&s 6.95 28.04

DCRN_o-s 6.44 25.89

End-to-End DCRN 3.65 17.24

AACRN 2.73 15.74

2D-SACRN (Ours) 2.49 12.66

41

C. Visulization of 2D Self-Attention mechanism

To verify whether the 2D self-attention helps the feature extractor to capture the

relationships between widely separated spatial regions in an input image, we visualize the

2D self-attention map in 2D-SACRN for different images in the IAM Handwritten dataset.

Figure 3.14 shows the visualization of the 2D self-attention map for two images. In each

group, the top image is the original input image, while each of the other five images shows

one query point with color-coded dots (blue, fuchsia, green, red, and yellow) and the 2D

(a) A group of attention maps belonging to the first text image.

(b) A group of attention maps belonging to the second text image.

Figure 3.14. The visualization of 2D self-attention maps.

42

self-attention map for that query point. We observe that the 2D self-attention mechanism

tends to focus on locations having similar texture to the query point, though these

locations are far from the query point. For example, in the first group of Figure 3.14(a),

the blue point (top of the “f” character) attends mostly to locations around the stroke of

the “f”, “d”, “,”, and “k” characters. Besides, the fuchsia point (inside the stroke of the

“a” character of the “blank”) do not attend to locations around its stroke but mostly attends

to the stroke of the “f”, “d”, and “,” characters.

We also see that query points inside background regions seem not to attend mostly to

any other location, such as the red and yellow points in Figure 3.14(a) as well as the green

and red points in Figure 3.14(b). It seems because the points inside background regions

do not mostly relate to any other location in the image. We also find that some query

points are quite close in spatial location but have very different attention maps. For

example, in the second group of Figure 3.14(b), the blue point and the fuchsia point are

quite close but have very different attention maps. This shows that the adjacent points

may freely attend to other distant locations. These observations demonstrate that the 2D

self-attention mechanism helps the feature extractor to capture the relationships between

widely separated spatial regions in an input image.

43

3.6. Text Line Image Generation Method

Deep Neural Networks, especially end-to-end models typically require a large data for

training. However, for many handwriting datasets, especially handwritten Japanese

character and text datasets, the number of data is not enough, so that it is necessary to

apply data argumentation. Many data argumentation methods for handwriting datasets

have been proposed by modifying the original data such as affine transformations [51,

52], nonlinear combinations [52, 53] and Random warp grid distortion [54]. However,

such method just modifies the original data, can’t gain the real text line image. In this

work, we propose a synthetic pattern generation method which synthesize handwritten

text line images from sentences in corpora and handwritten character patterns in the

Nakayosi and Kuchibue [55] database with elastic distortions.

Figure 3.15. Synthetic pattern generation method.

44

3.6.1. Synthetic Data Generations.

Since Deep Neural Networks requires large data for training, we propose a synthetic

pattern generation method which synthesizes handwritten text line images from sentences

in corpora and handwritten character patterns in the isolated character database with local

elastic distortion and global elastic distortion model. The overview of the synthetic

pattern generation method is shown in Figure 3.15. The synthetic handwritten text line

dataset is generated by taking the following 6 steps:

1. Get a sentence from the listed sentences of corpus.

2. Randomly choose a writer from the listed writers of the handwritten character

pattern database.

3. For each character of the sentence in the step 1, a handwritten image of this

character is randomly chosen from the writer selected in the step 2.

4. Apply a local elastic distortion to each handwritten pattern in the step 3.

5. Synthesize a handwritten text line image from the sentence selected in the step 1

and elastically distorted handwritten character images in the step 4 with random

spacing between each character image.

6. Apply a global elastic distortion to the generated synthetic text line image.

3.6.2. Local Elastic Distortion.

The local elastic distortion model performs an affine transformation on each

handwritten character image before concatenating them into a synthetic text line image.

In the local elastic distortion model, we employ shearing, rotation, scaling, translation

transformations.

Shear is a transformation that slants the shape of an object. There are two shear

transformations include X-shear and Y-shear (vertical and horizontal shear). They are

calculated by Eq. (3.6.1) and Eq. (3.6.2).

Translation is a transformation that moves an object to a different position without

rotation. Scaling is a transformation that changes the size of an object. The translation

and scaling transformations are shown in Eq. (3.6.3) and eq. (3.6.4).

Rotation is a transformation that rotates the object at particular angle α from its origin.

The rotation transformation is shown in Eq. (3.6.5).

45

Here, (𝑥′, 𝑦′) is the new coordinate of a point (x, y) transformed by any transformation

model, α is the angle of the shear and rotation transformations, k is the scaling factor of

the scaling transformation, the pair (𝑡𝑥, 𝑡𝑦) is the shift vector of the translation

transformation. The parameters of the local elastic distortion model is presented by

[(𝑝𝑆𝐻, α), (𝑝𝑇 , 𝑡𝑥, 𝑡𝑦), (𝑝𝑆𝐶 , 𝑘), (𝑝𝑅, α)] , where 𝑝𝑆𝐻 , 𝑝𝑇 , 𝑝𝑆𝐶 and 𝑝𝑅 are the

probabilities of applying the shearing, translation, scaling and rotation transformations,

respectively, α is from −8𝜊 𝑡𝑜 8𝜊 with a step of 0.1, 𝑡𝑥 and 𝑡𝑦 are from 3 to 5 pixels

with a step of 1, and k is from 0.8 to 1.2 with a step of 0.01.

tanx x y

y y

 (3.6.1)

t a n

x x

y y x

 (3.6.2)

x

y

x x t

y y t

 (3.6.3)
x k x

y k y

 (3.6.4)

cos sin

sin cos

x x y

y x y

 (3.6.5)

Figure 3.16 show examples of the local elastic distortion model with α = 8°, k=0.9

and 𝑡𝑥 = 𝑡𝑦 = 3.

Figure 3.16. Examples of local elastic distortion by shearing, rotation and scaling transformations.

46

3.6.3. Global Elastic Distortion.

Global elastic distortion model performs affine transformation on a whole text line

image generated by concatenating isolated handwritten character images. In the global

elastic distortion, we employ the rotation and scaling transformations. The rotation and

scaling transformations is similar to the local elastic distortion. The parameters of the

global elastic distortion are presented by [(𝑝𝑆𝐶 , 𝑘), (𝑝𝑅, α)], where 𝑝𝑆𝐶 and𝑝𝑅 are the

probabilities of applying the scaling and rotation transformations, respectively, k is the

scaling factor and from 0.8 to 1.2 with a step of 0.01, and α is the angle of the global

rotation transformation and from −5𝜊 𝑡𝑜 5𝜊 with a step of 0.1.

Figure 3.17 show examples of the global elastic distortion by the scaling and rotation

transformations.

3.6.4. Experiments

To evaluate the effectiveness of the synthetic data generation method, we conducted

experiments of the End-to-End DCRN model on standard benchmarks for offline

handwritten Japanese text recognition. The information of the Synthetic Handwritten

Text Line Dataset generated by the synthetic data generation method is given in Section

A, the results of the experiments are presented in Section B, and the correctly recognized

and misrecognized samples are shown in Sec. C.

A. Synthetic Handwritten Text Line Dataset.

Deep Neural Networks, especially end-to-end models typically require a large data for

training. However, in handwritten Japanese text recognition, the current handwritten

Figure 3.17. Examples of global elastic distortion by scaling and rotation

Figure 11: Examples of global elastic distortion by scaling and rotation transformations.

47

Japanese text dataset TUAT Kondate consists of 13,856 text line images which just cover

about 1,200 character categories (totally have 3345 character categories for JIS level-1).

So, this dataset is quite small and the number of data is not enough to train the end-to-end

DCRN model. So that we apply our proposed synthetic pattern generation method to

argument the training data. We employ the sentences of Nikkei newspaper corpus and

Asahi newspaper corpus and the handwritten character database, Nakayosi and Kuchibue

[55] to generate the Synthetic Handwritten Text Line (SHTL) dataset. Nakayosi contains

samples of 163 writers, 10,403 character patterns covering 4,438 classes per writer.

Kuchibue contains handwritten samples of 120 writers, 11,951 character patterns

covering 3,345 classes per writer. Nikkei corpus consists of about 1.1 million sentences

collected from Nikkei News and Asahi corpus consists of about 1.14 million sentences

collected Asahi News. We randomly choose 30,000 sentences which contain less than 30

characters from each corpus. Since it makes sure that the end-to-end model can be

trainable by SHTL. SHTL consists about 60,000 of synthetic handwritten text line images.

Figure 3.18 show samples of generated synthetic text line image in the SHTL dataset.

B. Experiment Results

To evaluate the effectiveness of the synthetic data generation method, we train the End-

to-End DCRN model by two datasets; the first is the training set of TUAT Kondate and

Figure 3.18. Samples of generated synthetic data.

48

the second is the training set of TUAT Kondate combining the SHTL Dataset. We call

the former End-to-End and the latter End-to-End_SHTL. We use the validation set and

test set of TUAT Kondate to validate and test the performance of End-to-End and End-

to-End_SHTL. Table 3.16 shows the recognition rate on the valid and test sets. End-to

End_SHTL achieved LER of 1.95% and SER of 14.02% and outperformed the End-to-

End on the test set of Kondate. These results show that the recognition accuracy is further

improved when we use the SHTL dataset to train the end-to-end DCRN model. This

means the synthetic data generation method improves the performance of the end-to-end

DCRN model.

Table 3.16. Label Error Rate (LER) and Sequence Error Rate (SER) on Kondate.

Model
LER SER

Valid set Test set Valid set Test set

End-to-End 5.22% 3.65% 24.47% 17.24%

End-to-End_SHTL 3.62% 1.95% 21.87% 14.02%

C. Correctly recognized and misrecognized samples

Figure 3.19 shows some correctly recognized and misrecognized samples by End-to-

End_SHTL whose SER is about 14.02%. For each misrecognized sample, the upper

image is an input handwritten text line image and the text bounded by the lower blue

rectangular shows the ground-truth followed by “->” and the recognition resulted. There

49

are a total of 196 misrecognized samples among 1398 samples in the test set. Most of

them are missing some characters in the ground-truth.

a). Correctly recognized samples.

b). Misrecognized samples.

Figure 3.19. Correctly recognized and misrecognized samples by End-to-End_SHTL.

50

3.7. Conclusions

In this chapter, we present models of Deep Convolutional Recurrent Network (DCRN)

for recognizing offline handwritten Japanese text lines without explicit segmentation of

characters. The DCRN model has three parts: a feature extractor by Convolutional Neural

Network (CNN); an encoder by Bidirectional Long Short-Term Memory (LSTM); and a

decoder by Connectionist Temporal Classification (CTC). As far as we know, this is the

first approach that adopts DNNs for offline handwritten Japanese text recognition. The

experiments show that the DCRN model outperforms the traditional segmentation-based

method on the offline handwritten Japanese dataset – TUAT Kondate.

To solve the drawbacks of RNNs in the encoder, we propose an upgraded version of

DCRN named Attention Augmented Convolutional Recurrent Network (AACRN) which

introduces 1D self-attention mechanism in the encoder. The self-attention mechanism is

complementary to RNN in the encoder and helps the encoder to capture long-range and

multi-level dependencies across an input sequence. Experiments on the TUAT Kondate

dataset show that the AACRN model has reduced the error rates drastically from the

DCRN model. The experiments also show that the self-attention mechanism in the

encoder improves the performance of the CRNN model for handwritten Japanese text

recognition.

To solve the weakness of the CNN network in the feature extractor, we propose a 2D

Self-Attention Convolutional Recurrent Network (2D-SACRN) model with a 2D self-

attention mechanism for offline handwritten text recognition. In this model, we present a

2D self-attention mechanism in the feature extractor to help the CNN to capture the

relationships between widely separated spatial regions in an input image. As far as we

know, it is the first approach that employs the 2D self-attention mechanism in the feature

extractor of the CTC-based model for offline handwritten text recognition. According to

the extensive experiments on the three datasets of IAM Handwriting (English), Rimes

(French), and TUAT Kondate, the 2D-SACRN model achieves similar or better accuracy

than the state-of-the-art models. The 2D self-attention map visualization shows that the

2D self-attention mechanism helps the feature extractor capture the relationships between

widely separated spatial regions in an input image.

Since the DCRN models require a large data for training, we propose a synthetic pattern

generation method which synthesize handwritten text line images from sentences in

corpora and handwritten character patterns in the isolated character database with elastic

51

distortions. The experiments on the offline handwritten Japanese text dataset – TUAT

Kondate show that the synthetic pattern generation method improves the performance of

the DCRN model.

52

Chapter 4. Japanese Historical Documents Recognition

4.1. Introduction

Under the support by the Center for Open Data in the Humanities (CODH) in Japan,

the technical committee on Pattern Recognition and Media Understanding (PRMU) in the

academic society of IEICE Japan held a contest to read deformed Kana in 2017 [20]. The

tasks are divided into three levels in accordance with the number of characters in a

circumscribed rectangle: level 1: single characters, level 2: sequences of three vertically

written Kana characters, and level 3: unrestricted sets of characters composed of three or

more characters possibly in multiple lines. The dataset for the contest consisting of three

sub-datasets for the three levels is published1. We call the dataset Kana-PRMU. In this

contest, we proposed the combination of a pre-trained CNN and an LSTM with CTC

named by Deep Convolutional Recurrent Network (DCRN) for level 2 and the DCRN

combined with a vertical line segmentation method for level 3 [21]. These methods won

the best award with 12.88% character error rate (CER) for level 2 and 26.70% for level

3.

This chapter is based on our previous works which won the best algorithm award in the

PRMU algorithm contest in 2017, but omits level 1 and focuses on level 2 and 3.

Moreover, we added end-to-end-training and a two-dimensional Bidirectional Long

Short-Term Memory (2DBLSTM) based model after the contest. We compare the

pretrained CNN approach and the end-to-end approach with more detailed variations for

level 2: recognizing sequences of three vertically written Kana characters. Then, we

propose a method of vertical text line segmentation and multiple line concatenation before

applying the DCRN model for level 3: recognizing unrestricted sets of characters in

multiple lines. We also examine two-dimensional Bidirectional Long Short-Term

Memory (2DBLSTM)-based methods for level 3 and compare their performances with

the vertical text line segmentation-based method.

The rest of this chapter is organized as follows: Section 4.2 presents methods for

recognizing sequences of three vertically written Kana characters (level 2); Section 4.3

describes methods for recognizing unrestricted sets of Kana characters (level 3); Section

1 http://www.iic.ecei.tohoku.ac.jp/~tomo/alcon2017/dataset.tar.gz

53

4.4 presents attention-based sequence to sequence methods for both level 2 and level 3

datasets; and Section 4.5 concludes the chapter.

4.2. Contest Overview

The PRMU contest is divided in three different levels (1 to 3) in accordance with the

number of characters to be recognized [7]. All the tasks are to recognize Kana characters

of 46 categories; Kanji characters are excluded. All characters are written with brushes.

The Kana-PRMU dataset is compiled from 2,222 scanned pages of 15 pre-modern

Japanese historical books and consists of three subsets for three levels. Figure 4.1 shows

a sample page of the pre-modern Japanese books and examples of level 1, level 2, and

level 3. The datasets for levels 1, 2, and 3 respectively consist of 228,334 segmented

single Kana images, 79,165 sequences of three vertically written Kana characters, and

12,583 samples of unrestricted Kana characters composed of three or more Kana

characters, possibly in multiple lines. Character images are annotated with their bounding

boxes and Unicodes. Contest participants can use only the provided datasets. The test sets

to evaluate the submitted method are undisclosed.

Figure 4.1. Sample page in the contest [7].

54

As in other handwriting databases, there are large deformations and variations even in

the patterns of the same category. Moreover, the old Kana uses several different notations

for the same category, such as shown in Figure 4.2, where the categories ‘o’ and ‘ni’ have

two and four notations, respectively. Furthermore, a notation of the category ‘u’ is similar

to a notation of the category ‘ka’ as shown in Figure 4.3. The different notations and

similar notations between different categories are difficult problems for recognizing the

old handwritten Kana. Since the original images are scanned from old Japanese books,

they are fade and show-through as shown in Figure 4.4; smeared and stained as shown in

Figure 4.5. Their backgrounds are often neither uniform nor even as shown in Figure 4.6.

(a) Two notations of category ‘o’

(b) Four notations of category ‘ni’

Figure 4.2. Different notations of the same category.

 (a) Notation of category ‘u’ (b) Notation of category ‘ka’

Figure 4.3. Similar notations between different categories.

 (a) Fade and show-through. (b) With width variations of vertical lines.

Figure 4.4. Fade and show-through.

55

In this work, we focus on the level 2 and 3 subsets. Since PRMU did not publicize the

test set of the contest, we use one of the 15 historical books as the test set. The remaining

14 books are used for training and validation. Among the 15 books, the 15th book contains

many noisy patterns and a variety of backgrounds. Thus, the 15th book is selected as the

test set for levels 2 and 3. The other books are divided randomly to form the training and

validation sets with the ratio of 9:1. Note that the text is written vertically.

4.3. Three Kana Sequence Recognition

This section presents recognition methods and evaluations on the level 2 dataset.

Figure 4.5. Fragmented patterns and noisy patterns.

Figure 4.6. Various backgrounds.

56

4.3.1. Level 2 Dataset

The level 2 dataset consists of 79,165 images of single vertical text line composed of

three Kana. All images in the 15th book are used as the test set. The other images are

divided randomly from the training and validation sets with a ratio of 9:1. Consequently,

the level 2 dataset consists of three subsets: the training set consisting of 56,097 images,

the validation set consisting of 6,233 images, and the testing set consisting of 16,835

images. Since each image has only a single vertical text line, all images are linearly scaled

to the same width (96 pixels) with arbitrary lengths before fed to the recognition system.

Figure 4.7 shows some vertical text line images in the dataset.

Figure 4.7. Some vertical text line images in the level 2 dataset.

4.3.2. Methods for level 2

In level 2, we employ the DCRN model which is mentioned in the chapter 4 for

recognizing three-Kana-character sequence images. The DCRN model consists of three

main parts: a feature extractor by s CNN; an encoder by BLSTM; and a decoder by a CTC

as shown in Figure 4.8.

In the DCRN, the CNN feature extractor, which is usually pretrained by single-

character images as in level 1, extracts the sequence of features for all the frames from an

input text line image, where each frame is a region within the input image from which

features are extracted by CNN. Then, BLSTM encoder predicts a list for character labels

with scores (label distribution) for each frame. Finally, the CTC decoder finds the most

probable label sequence using the forward and backward algorithms.

57

Figure 4.8. Network architecture of DCRN.

4.3.3. Implementation Details

For the contest, we employed the pretrained CNN approach of the DCRN model and

outperformed the other 9 participants to win the contest. After the contest, however, we

proposed the end-to-end approach of the DCRN model. The difference between the

pretrained CNN approach and the end-to-end approach is that the former pretrains the

CNN by isolated character patterns before it is used to extract a feature sequence from a

text line image. On other hand, the end-to-end approach does not pretrain the CNN

network but trains the weights of CNN and those of BLSTM on pairs of images and

sequences by only one loss function. The following sections A and B describe the

implementation details of these approaches.

58

In both approaches, we binarize all images using Otsu’s method [30] and scale them

into the same 64-pixel width while maintaining the aspect ratio. The Otsu’s method can

remove background noise due to smears, stains, fade and show-through and so on, but

some noise remains. The CNN feature extractor can extract key features while ignoring

this remaining noise.

A. Pretrained CNN approach

We employ a cascade of five blocks of a convolutional layer and a max-pooling layer

followed by two full-connected layers to make the CNN component for feature extraction.

The detailed architecture of our CNN model is given in Table 4.1 in which ‘maps,’ ‘k,’

‘s,’ and ‘p’ denote the number of kernels, kernel size, stride, and padding size of

convolutional layers, respectively.

Table 4.1. Network configuration of our CNN model.

Type Configurations

Input 64×64 image

Conv1 - ReLu #maps:64, k:3×3, s:1, p:1

MaxPooling1 #window:2×2, s:2×2

Conv2 - ReLu #maps:64, k:3×3, s:1, p:1

MaxPooling2 #window:2×2, s:2×2

Conv3 - ReLu #maps:128, k:3×3, s:1, p:1

MaxPooling3 #window:2×2, s:2×2

Conv4 - ReLu #maps:128, k:3×3, s:1, p:1

MaxPooling4 #window:2×2, s:2×2

Conv5 - ReLu #maps:256, k:3×3, s:1, p:1

MaxPooling5 #window:2×2, s:2×2

FC1 - ReLu #nodes: 200

FC2 - ReLu #nodes: 200

Softmax #nodes: 46(number class)

Firstly, the CNN model is pretrained by the training set in the level 1 dataset using the

stochastic gradient descent with the learning rate of 0.001 and the momentum of 0.95

(Hereafter, training or pretraining is made by the training set in some dataset). We apply

mini-batch training with the batch size of 64 samples. After training the CNN model, we

59

remove just the softmax layer or both the full connected layers and the softmax layer from

the CNN model to use the remaining network as the feature extractor. Although the CNN

architecture is the same, there are three methods to extract features from an input text line

image by the CNN model.

The first method slides a sub-window of 64×64 pixels through the text line image with

a sliding stride size (overlap sliding) of 12 or 16 pixels and applies the CNN network

without the softmax layer to extract features. We call this method DCRN-o_12 and

DCRN-o_16 when the sliding stride size is 12 and 16 pixels, respectively. Figure 4.9

shows this way of forming the feature extractor.

Figure 4.9. Convolutional feature extractor in DCRN-o.

The second method employs a sub-window of 64×32 pixels and the sliding stride size

of 32 pixels (without overlap sliding) as shown in Figure 4.10 and applies the CNN

network without the softmax and full connection layers to extract features from the input

image. The full connection layer is further removed because an input image has a different

size from character images used to pretrain the CNN model. We call this method DCRN-

wo.

60

Figure 4.10. Convolutional feature extractor in DCRN-wo.

The third method does not use the sliding window but directly uses the text line image

as an input of the CNN model and applying the CNN network again without the softmax

and full connection layers to extract features for the same reason as in DCRN-wo. Figure

4.11 shows its architecture, where ‘h’ and ‘w’ denote the height and width of an input

image and ‘h’ ’ and ‘w’’ denote the height and width of an output image. We call this

method DCRN-ws.

Figure 4.11 Convolutional feature extractor in DCRN-ws.

For the encoder, we employ three levels of 1DBLSTM networks with each level

composed of two LSTMs (forward and backward), where every LSTM contains 128

memory blocks with each block having a single cell. A fully connected layer and a

61

softmax layer with the node size equal to the character set size (n=47) are applied after

each time step of the encoder. Here the number of category is added one category for

blank character. The classifier is trained using the online steepest decent with the learning

rate of 0.0001 and the momentum of 0.9. All vertical text line images in the dataset are

scaled to the same width before being fed to the system.

B. End-to-end approach

The end-to-end approach does not pretrain the CNN network but trains the weights of

the CNN and those of BLSTM on pairs of images and sequences by only one loss function.

We employ the CNN network without the fully connected and softmax layers for the

same reason as in DCRN-wo and DCRN-ws. To reduce the training time of this approach,

we apply the batch normalization [31] after each convolutional layer in the CNN network.

Table 4.2 shows the architecture of the CNN network used in the convolutional feature

extractor, where ‘maps,’, ‘k,’ ‘s,’ and ‘p’ denote the number of kernels, kernel size, stride

and padding size of each convolutional layer, respectively. The architecture consists of

four convolutional layers. Batch normalization and Max-Pooling are applied after each

convolutional layer. The Leaky ReLu [32] activation function is employed in all

convolutional layers.

Table 4.2. Network configuration of our CNN model.

Type Configurations

Input h×w image

Conv1 - Batch Norm - LReLu #maps:32, k:3×3, s:1, p:1

MaxPooling1 #window:2×2, s:2×2

Conv2 - Batch Norm - ReLu #maps:32, k:3×3, s:1, p:1

MaxPooling2 #window:2×2, s:2×2

Conv3 - Batch Norm - ReLu #maps:64, k:3×3, s:1, p:1

MaxPooling3 #window:2×2, s:2×2

Conv4 - Batch Norm - ReLu #maps:64, k:3×3, s:1, p:1

MaxPooling4 #window:1×2, s:1×2

At the encoder, we employ the same Deep BLSTM network as in the pretrained CNN

approach. To prevent overfitting when training the model, the dropout (dropout rate=0.2)

is also applied in each layer in Deep BLSTM. The fully connected layer and the softmax

62

layer the same as the pretrained CNN approach are applied after each time step of Deep

BLSTM. The end-to-end DCRN model is trained using the stochastic gradient descent

with the learning rate of 0.001 and the momentum of 0.9. The training process stops when

the recognition accuracy on the validation set does not gain after 10 epochs.

4.3.4. Experiments for level 2

The performance on levels 2 and 3 is measured in terms of Label Error Rate (LER) and

Sequence Error Rate (SER), which are defined in Eq. (3.3.2) and Eq. (3.3.3).

Table 4.3 shows the performances for the five models. Comparison of DCRN-o_12 and

DCRN-o_16 suggests that the smaller stride of the sliding window with overlap works

better in the convolutional feature extractor. The result that DCRN-o_12 and DCRN-o_16

are better than DCRN-ws suggests that the convolutional feature extractor made by

sliding a sub-window through an input image is superior to the convolutional feature

extractor made by directly using an input text line image as the input of the CNN model.

The DCRN-o_16 model was awarded the best method prize for achieving 87.6%

recognition accuracy for Lv2, while other methods recorded an average of 45.6%

recognition accuracy for the secret test set [7]. The worst network in Table 4.3 is DCRN-

wo, which suggests sliding a sub-window without overlap may lose the information from

the border regions in the sub-window when extracting features by CNN.

Table 4.3. Recognition error rates (%) on level 2 dataset.

Networks
LER SER

Valid set Test set Valid set Test set

DCRN-wo 14.19 26.79 33.51 59.28

DCRN-ws 10.21 18.56 25.07 44.81

DCRN-o_16 9.72 14.44 23.62 35.11

DCRN-o_12 8.65 12.88 21.03 31.60

End-to-End DCRN_ws 5.10 10.90 13.10 27.70

With a 10.90% LER and 27.70% SER, the End-to-End DCRN_ws obtained the best

recognition accuracy. This result suggests that the end-to-end model approach works

substantially better than the pretrained CNN approach.

On the other hand, there are still large gaps between the validation and testing sets. This

suggests that the number of training samples was not adequate, so overfitting occurred.

63

Employing more samples for training or applying data augmentation may decrease the

error rates to some extent.

Figure 4.12 shows some correctly recognized and misrecognized samples by DCRN-

o_12, whose sequence error rate is 31.60%. For each correctly recognized sample, the

upper image is an input vertical text line composed of three Kana characters and the text

below shows the recognition result (ground-truth). For each misrecognized sample, the

upper image is an input image and the text below shows the ground-truth followed by “-

>” and the recognition result. There are 5,320 misrecognized samples among 16,835

samples. Most are misrecognized due to only one of the three characters.

(a) Correctly recognized samples

(b) Misrecognized samples

Figure 4.12. Samples recognized and misrecognized by DCRN-o_12.

4.3.5. Cross validation of end-to-end DCRN_ws

We employ the k-fold cross validation to evaluate the performance of the proposed

End-to-End DCRN_ws model more fairly. Since the level 2 dataset is made from 2,222

scanned pages of 15 pre-modern Japanese books, we use the value of k=5 and split the

dataset into 5 folds from 15 books with each fold having the same number of books. In

other words, fold 1 consists of data from the 1st, 2nd, and 3rd books, fold 2 consists of

data from the 4th, 5th, and 6th books, and so on. On the basis of the five folds, the i-th

64

model of End-to-End DCRN_ws is trained and validated by four folds but not the i-th

fold. These four folds are divided randomly to form the training and validation sets with

the ratio of 9:1. Then, the validated i-th model is evaluated on the i-th fold. The average

accuracy of the five models is calculated as follows:

 Avg(𝑒𝑟𝑟𝑜𝑟_𝑟𝑎𝑡𝑒) = ∑
𝑒𝑟𝑟𝑜𝑟_𝑟𝑎𝑡𝑒𝑖×𝑁𝑖

𝑁

5
𝑖=1 (4.3.1)

where 𝑒𝑟𝑟𝑜𝑟_𝑟𝑎𝑡𝑒𝑖 is the error rate of the i-th model, 𝑁𝑖 is the number of test images

for the i-th model, and N is the total number of the test images for all models.

Table 4.4 shows the recognition error rates of the five models. On average, this

approach achieved a 14.45% LER and 34.44% SER, but these results are inferior to those

shown in Table 4.3. The reason seems to be that fewer patterns were used here for training

than in the previous experiment, whereas more patterns were used for testing. Another

reason seems to be that the test patterns in the 15th book in the previous experiment were

not the hardest to read. In fact, the worst error rate was recorded by Model 3, which

employed the 7th, 8th, and 9th books for testing but others for training and validation.

Another observation can be made from Table 4.4. The results greatly vary because we

prepared the folds on the basis of separate books. This way of preparing folds is fair and

able to predict unseen books and characters. When the training set is not large, however,

systems might be evaluated by very different patterns. This seems to be another reason

for the inferior performance mentioned above. Increasing test patterns is the best method,

but changing the preparation of folds should be considered, such as preparing the folds

by sampling from all the books.

Table 4.4. Recognition error rates (%) of five models.

Models
Test set

LER SER Number of samples

Model 1 16.05 38.41 25,493

Model 2 8.82 23.31 7,976

Model 3 23.87 52.60 9,025

Model 4 14.36 30.82 2,609

Model 5 12.09 30.44 34,062

Average 14.45 34.44 -

65

4.4. Unrestricted Kana Recognition

This section presents recognition methods and evaluations on the level 3 dataset.

4.4.1. Level 3 Dataset

The hardest task is level 3, which could be considered as an extension of level 2. In

level 3, 12,583 images are divided into three subsets: the training set of 10,118 images,

the validation set of 1,125 images, and the testing set of 1,340 images. All images in level

3 consist of three or more Kana characters written on one vertical line or multiple vertical

lines. In addition to the difficulties mentioned above, there are some other difficulties

such as the vertical and horizontal guide lines (Figure 4.13), the overlap or even touching

between two vertical lines (Figure 4.14), and fade and show-through (Figure 4.15). In

Figure 4.14(a), we draw blue bounding boxes to show each character. In the experiments,

we use each image in its original size.

Figure 4.13. Level 3 images containing vertical and horizontal guide lines.

(a) Overlap between two vertical lines. (b) Two samples of touching between two vertical lines.

Figure 4.14. Overlap or touching between two vertical lines.

Figure 4.15. Fade and show-through.

66

4.4.2. Methods for level 3

We propose three approaches for solving the level 3 task. The first approach applies

vertical text line segmentation which segments multiple vertical text lines into individual

vertical text lines and concatenates them to form a single vertical line image before

employing the Kana sequence recognition of level 2. Since BLSTM for level 2 only works

on a single vertical line image, we need to segment vertical text line images and reshape

them into a single vertical text line image. The second approach employs the pretrained

CNN network from level 2 and adds a 2DBLSTM that does not require any line

segmentation to avoid the limitation of BLSTM in the first approach. The last approach

employs only a 2DBLSTM. The second and the third approaches produce 2-dimensional

predictions for a multi-line input image. The prediction is scanned and serialized into a

prediction sequence and aligned with a label sequence for minimizing CTC loss. Thus,

we can train the networks directly without needing any line segmentation.

Multi-dimensional LSTM is an extension of LSTM to n-dimensions by using n

recurrent connections from the previous states along every dimension with n forget gates

[19].

The idea of accessing bi-directional context by BLSTM can also be extended to multi-

dimensional LSTM. For a two-dimensional LSTM, the bi-directional context of a 2D

input along every dimension creates a total of four directions accessed by four layers of

two-dimensional LSTM. We call a two-dimensional LSTM with bi-directional context

access as 2DBLSTM. In our case, a 2DBLSTM receives a document image and outputs

two-dimensional sequential predictions. In general, a multi-dimensional LSTM receives

an n-dimensional input, scans it through each dimension as a sequential input and outputs

another set of n-dimensional sequential predictions that have one-to-one correspondence

to the input. CTC determines the final labels.

Common to the three approaches, in the same way as for level 2, we binarize all images

using Otsu’s method [30] and scale them into the same width of 64 pixels while

maintaining the aspect ratio.

Level 3, however, includes multiple-line images. In fact, 40.82% percent images have

two lines. For such patterns, the above scaling implies each text line may only have half

the width in such cases.

A. Vertical text line segmentation and concatenation approach

67

The first approach segments vertical text lines and concatenates them into a single line

before applying Kana sequence recognition. Figure 4.16 shows the process of

methodology for recognizing unrestricted kana in level 3.

1) Vertical text line segmentation and concatenation

For vertical text line segmentation, we employ the segmentation method [13] tuned to

vertical writing. Since there are many noises after binarization in historical documents,

we remove connected components (CCs) that have areas smaller than the threshold of 25

pixels (5×5). The size of the i-th connected component (Si) is calculated from the average

of the height and the width of its bounding box. Each connected component has a

bounding box. Some of them have widths larger than heights and vice versa, so we

calculate the representative width of a component by the arithmetic mean of its width and

height. We sort components in ascending order by their sizes and calculate the average

size (AS) of all N components in the page from the larger half of components since those

in the smaller half are often noises and isolated strokes. Images that have widths less than

AS are considered as one-line images and left for the subsequent step.

 𝐴𝑆 =
2

𝑁
∑ 𝑆𝑖

𝑁

𝑖=
𝑁

2

 (4.4.1)

Figure 4.16. The methodology for recognizing unrestricted kana in level 3.

Image containing
multiple lines

Vertical line
segmentation by

Segmentation method
[K. C. Nguyen et al., 2016.]

Single text line image

Recognize by the
recognizer of level 2

Concatenate
segmented text lines

68

For images having widths equal or larger than AS, we employ our implementation [13]

of the X-Y cut method [33] to separate them into text line images. The X-Y cut method

calculates the vertical projection profile for each image and generates text-line borders at

the transiting positions of non-zero projection to zero projection and zero projection to

non-zero projection. The X-Y cut method sometimes overcuts text line images, so we

combine the text line images that have widths less than half of AS.

Then, we apply the Voronoi diagram method [34] to segment images unsegmented by

the X-Y cut method. A Voronoi diagram shows the borders between CCs. To adapt the

method to our purpose, we calculate the direction of each Voronoi border from its start

point and end point, where the start and the end points are the upper and the lower points

of a Voronoi border, respectively. We discard borders extending to the left or the right

side of images while keeping borders starting from the top and ending at the bottom of

the images. If both the above methods are unsuccessful for segmenting text line images,

which is judged by the width of a vertical text-line exceeding AS, we forcefully separate

at centerlines of images. These cases often include text lines touching each other or

horizontal guide lines.

Finally, we concatenate text line images from right to left and create a text line image

from top to bottom by aligning the concatenated text line images with the center. Figure

4.17 shows some generated text line images.

Figure 4.17. Concatenated text lines.

69

2) Kana sequence recognition

We employ the best model (End-to-End DCRN-ws) and second best model (DCRN-

o_12) in level 2 for recognizing single-line images.

For training the two models, we apply the above vertical text line segmentation and

concatenation to all training and validation images of level 3. Then, we train the two

models using the training images until the recognition accuracy on the validation set does

not gain after 10 epochs.

Moreover, we can also use the training images of level 2 for this approach. We denote

the training images of level 3, which are the results of the vertical text line segmentation

and concatenation, as STL_Lv3 (to denote single text line images of the level 3) and

denote those of level 2, which are all single-line images, as STL_Lv2. Then, when End-

to-End DCRN-ws and DCRN-o_12 are trained by STL_Lv3 alone, we call them Seg +

End-to-End DCRN-ws_Lv3 and Seg + DCRN-o_12_Lv3, respectively. Moreover, when

they are trained by both STL_Lv3 and STL_Lv2, we call them Seg + End-to-End DCRN-

ws_Lv2&3 and Seg + DCRN-o_12_Lv2&3, respectively. We will compare their

recognition performances in the evaluation.

B. CNN plus 2DBLSTM approach

The second approach employs a pretrained CNN network and a 2DBLSTM that does

not require any vertical text line segmentation. We reuse the pretrained CNN network

without the softmax and full connection layers from the pretrained CNN approach of level

2 described in Table 1 for feature extraction. The output of the pretrained CNN is scanned

by two levels of the 2DBLSTM. The first level is composed of four LSTM layers that

each have 64 single-cell memory blocks, and the second level is also composed of four

LSTM layers, each having 128 single-cell memory blocks (2DBLSTM_b:64_b:128). We

call this model CNN + 2DBLSTM_b:64_b:128. The output of the 2DBLSTM is scanned

through the order of writing in the vertical direction (top to bottom, right to left) and is

then aligned to the sequence of character labels for training using the CTC layer.

For training the networks, we use level 2 and level 3 images. All images of levels 2 and

3 are scaled into the same width of 64 pixels including two-line images. This means that

single text line images are scaled with their width being 64 pixels whereas text line images

of two lines are scaled so that each text line has the width of almost 32 pixels. To help the

model learn these scaled characters, we add the level 2 images scaled to the width of 32

70

pixels to the training set. We denote this model as CNN + 2DBLSTM_b:64_b:128_Lv3

when it is trained by the level 3 dataset only and as CNN +

2DBLSTM_b:64_b:128_Lv2&3 when it is trained by the level 2 and level 3 datasets.

C. 2DBLSTM approach

The third approach replaces the CNN in the second approach by a stage of 2DBLSTM

with the result of three stages overall. The output by the three stages of 2DBLSTM is then

scanned and aligned to the sequence of character labels using CTC in the same way as in

the second approach.

To reduce the number of time steps in each dimension of 2DBLSTM, inputs are

scanned through a window of consecutive time steps in each dimension. Weighted

connections are used to transform each window of consecutive time steps to a single input

time step.

We use the three stages of 2DBLSTM. Each stage is composed of four LSTM layers.

There are 2, 10 and 50 single-cell memory blocks for each layer in the first, second, and

third stages, respectively. The input window sizes are 2×2, 4×2, and 4×2 for this sequence

of stages, respectively. The input window sizes are applied to reduce the dimensionality

of input images. Two feedforward full-connected layers with 6 hidden units for the first

layer and 20 hidden units for the second layer are applied between the first and second

stages and between the second and third stages, respectively. The feedforward layers

merge the output of previous stages before their subsequent stages. They reduce the

number of weights compared with directly connecting the stages.

For training the networks, we use the level 2 and level 3 images in the same way as in

the previous approach. We denote this model as 2DBLSTM_b:2_b:10_b:50_Lv3 when it

is trained by the level 3 dataset only and as 2DBLSTM_b:2_b:10_b:50_Lv2&3 when it

is trained by the level 2 and level 3 datasets.

4.4.3. Experiments on level 3

Table 4.5 shows the recognition error rates of the three approaches for level 3. When

only the level 3 dataset is used for training, Segmentation + End-to-End DCRN_ws_Lv3

achieves the best results: 18.50% LER and 73.70% SER. When both level 2 and level 3

datasets are used for training, Segmentation + End-to-End DCRN_ws_Lv2&3 again

achieves the best results: 12.30% LER and 54.90% SER. In both cases, the vertical text

71

line segmentation and concatenation approach outperforms the CNN plus 2DBLSTM

approach as well as the 2DBLSTM approach without CNN.

Table 4.5 also shows that training with both the level 2 and level 3 datasets improves

the recognition accuracy for all approaches. For the CNN plus 2DBLSTM approach and

the 2DBLSTM approach, we halved the width of the level 2 training patterns in order to

add them to train the models, although this width reduction may have had side effects.

The results show its effect probably because the large set of 56,097 × 3 characters

contributes to learning these models.

Table 4.5. Recognition error rates (%) on level 3 dataset.

Networks
LER SER

Valid set Test set Valid set Test set

CNN + 2DBLSTM_b:64_b:128_Lv3 14.45 44.18 55.82 97.16

CNN + 2DBLSTM_b:64_b:128_Lv2&3 23.59 43.09 67.38 94.55

2DBLSTM_b:2_b:10_b:50_Lv3 18.59 46.73 66.37 98.81

2DBLSTM_b:2_b:10_b:50_Lv2&3 15.55 37.72 63.35 94.55

Seg + DCRN-o_12_Lv3 11.72 26.70 49.14 82.57

Seg + DCRN-o_12_Lv2&3 9.47 24.24 40.53 78.81

Seg + End-to-End DCRN_ws_Lv3 4.30 18.50 21.50 73.70

Seg + End-to-End DCRN_ws_Lv2&3 2.80 12.30 15.40 54.90

Figure 4.18 shows some samples correctly recognized and misrecognized by Seg +

DCRN-o_12_lv3, which had a 26.70% character error rate. The Seg + DCRN-o_16_lv3

model was awarded the best method prize for achieving 39.1% recognition accuracy for

Lv3, while other methods recorded an average of 21.5% recognition accuracy for the

secret test set [7]. For each correctly recognized sample, the upper image is an input and

the text below shows the recognition result (ground-truth). For each misrecognized

sample, the upper image is an input image and the text below shows the ground-truth

followed by “->” and the recognition result.

72

a) Correctly recognized samples.

b) Misrecognized samples.

Figure 4.18. Samples recognized and misrecognized by DCRN-o_12_Lv3.

4.4.4. Cross validation of Seg plus End-to-End DCRN_ws

In the same way as in Section 4.3, we employ the five-fold cross validation to fairly

evaluate the performance of the proposed methods on the level 3 dataset. We prepare five

folds and select training/validation sets for each test hold the same way as above.

Table 4.6 shows the recognition error rates of the five models. On average, this

approach achieved a 23.73% LER and 75.95% SER, but these results are inferior to those

of the model trained by only the level 3 dataset shown in Table 4.5. This result is the same

73

as that in Section 4.3.5. Large variation in the performance is again the same as that in

Section 4.3.5, possibly for the same reason.

Table 4.6. Recognition error rates (%) of five models.

Models
Test set

LER SER Number of samples

Model 1 24.19 75.73 3,433

Model 2 16.66 66.44 1,353

Model 3 35.84 87.25 2,709

Model 4 19.76 51.14 617

Model 5 18.72 75.57 4,471

Average 23.73 75.95 -

74

4.5. Conclusion

In this chapter, we compared several Deep Neural Network architectures to recognize

anomalously deformed Kana Sequence in Japanese historical documents in accordance

with two levels (2 and 3) in a contest held by IEICE PRMU 2017. For level 2, the end-

to-end approach achieved the best Label Error Rate (LER) of 10.90% and Sequence Error

Rate (SER) of 27.70%. For level 3, the vertical text line segmentation and concatenation

approach achieved the best LER of 12.30% and SER of 54.90% when trained by both the

level 2 and level 3 datasets. The sequence error rate is so high that linguistic context must

be incorporated. For cross validation experiments, organization of folds for cross

validation should be reconsidered for better prediction of error rates.

75

Chapter 5. Attention-based Model for Multiple Text

Line Recognition

5.1. Introduction

This chapter introduces an attention-based row-column encoder-decoder (ARCED)

model for recognizing multiple text lines image in Japanese historical documents. Since

Japanese historical documents were written cursively through an entire text line with

neighbor text lines touching each other, a segmentation-free approach is sought. We

propose a model consisting of three main parts: a feature extractor, a row-column encoder,

and a decoder. Given an input image, the feature extractor extracts a feature grid from it

by a CNN. The row-column encoder applies a row bidirectional LSTM (BLSTM) and a

column BLSTM to encode the feature grid in the horizontal direction and the vertical

direction, respectively. The decoder applies an attention-based LSTM to generate the

final target text based on the attended pertinent features. In this model, we incorporate a

row-column BLSTM in the encoder to capture the sequential order information in both

the vertical and the horizontal directions and a residual LSTM network in the decoder to

take advantage of entire past attention information.

Experiments on level 2 and level 3 of the Kana-PRMU dataset show that the ARCED

model reduces the error rates for single text lines (level 2) and for three or more characters

possibly in multiple lines (level 3) drastically from the previous methods [7]. The

experiments also show that the row-column BLSTM in the encoder and the residual

Figure 5.1. The overview of the ARCED model.

76

LSTM network in the decoder improve the performance of the attention-based encoder-

decoder model for the text recognition task in the Japanese historical documents.

The contributions of this model are three folds. First, we present an attention-based

encoder-decoder model for recognizing multiple text lines in Japanese historical

documents. Second, we propose a row-column BLSTM in the encoder to encode the grid

feature in both the vertical and horizontal directions. Third, we introduce a residual LSTM

network in the decoder to take advantage of the entire past attention information.

The rest of this chapter is organized as follows. Section 5.2 presents an overview of the

ARCED model. The experiments are reported in Section 5.3. Finally, conclusions are

presented in Section 5.4.

5.2. The Proposed Method

We propose an attention-based row-column encoder-decoder (ARCED) model

consisting of three main parts: a feature extractor, a row-column encoder and a decoder

as shown in Figure 5.1. From the bottom of the ARCED, the feature extractor extracts a

feature grid from the input image by DCNN. Then, the row-column encoder applies a row

BLSTM and a column BLSTM to encode the feature grid in the horizontal and vertical

directions, respectively. At the top of ARCED, the decoder applies an attention-based

LSTM and a residual LSTM to focus on the pertinent encoded features and generates the

final target text. Figure 5.2 shows the detail of ARCED. The parameters 𝜌𝑡,C𝑡, and 𝑦𝑡

denote the attention weights, the context vector and the output at time t of the decoder,

respectively. We describe the details of each part in the following sections.

Figure 5.2. Network architecture of the ARCED model.

77

A. Feature Extractor

CNN is a class of Deep Neural Network designed to work well with the 2D structure

of an input image. A standard architecture of CNN consists of a number of convolutional

and pooling layers optionally followed by fully connected layers and a softmax layer.

CNNs have also been demonstrated to be compelling network architectures for feature

extraction [38, 39].

In this work, we employ a standard CNN to build the feature extractor component. The

CNN is constructed by taking convolutional, max-pooling layers while fully connected

and softmax layers are removed. As shown in Figure 5.3, we apply the feature extractor

to extract visual features from an input image of the size {h, w, c}, where h’ and w’ are

the height and width of the input image and c is the color channel, resulting in a feature

grid F of the size {h’, w’, k}, where h’ and w’ are the height and width of the feature map

and k denotes the number of channels. The feature grid F is fed to the encoder.

B. Row-column Encoder

 LSTM introduced by S. Hochreiter et al. [40] is a special kind of Recurrent Neural

Network (RNN) designed to address the vanishing gradient problem when learning input

sequences with long-range dependencies. Several variants of the LSTM architecture have

been proposed, such as the Gated Recurrent Unit (GRU) in [56]. A. Graves et al. [57]

described a variant of LSTM, which is most commonly used in literature and

demonstrated that it outperforms the other variants for the IAM dataset of online

handwritten text lines [58]. In this work, we employ the variant of LSTM in [57] to build

the encoder and decoder components.

Figure 5.3. Feature extraction for a gray-scale input image (c=1).

78

The previous work for scene text recognition [27] and math recognition [59] use a row

encoder which encodes the feature gird F by running one BLSTM network across each

row in the grid. Therefore, it cannot capture the sequential order information in the

vertical direction. In order to capture the sequential order information in both the vertical

and horizontal directions, we propose a row-column encoder, which consists of two

BLSTM networks. The first one runs across each row in the feature grid to capture the

sequential order information in the horizontal direction, while the second one runs across

each column in the grid to capture the sequential order information in the vertical

direction as shown in Figure 5.4. We refer to the row BLSTM as BLSTMrow and the

column BLSTM as BLSTMcol . As shown in Figure 5.4, BLSTMrow and

BLSTMcol encode the feature grid F to get the encoded feature grid 𝐸row and 𝐸col ,

respectively. Then, 𝐸row and 𝐸col are concatenated to form 𝐸row&col , which is

unfolded from the top to the bottom and from the right to the left to produce a sequence

of encoded vectors 𝐸 = (𝑒1, 𝑒2 ⋯ 𝑒𝑛), where n is the number of feature vectors. Then,

we have:

Figure 5.4. Row-column BLSTM encoder.

C. Attention-based decoder

In the original attention-based seq2seq model [24], the decoder consists of two parts:

an attention mechanism and an attention-based LSTM network. At each time step t in the

decoding phase, the attention weights 𝜌𝑡 are calculated from the encoded vectors and the

target hidden state ℎ𝑡. Given the attention weights, the context vector 𝑐𝑡 is computed as

the weighted average over all encoded features. Then the attention vector 𝑎𝑡 is computed

79

by concatenating the context vector 𝑐𝑡 with the target hidden state ℎ𝑡 . Finally, the

attention vector 𝑎𝑡 is fed through the softmax layer to produce a predictive distribution

𝑦𝑡 as shown in Eq. (5.2.1):

 softmaxt t

ay W a (5.2.1)

In the original attention-based models, after deciding which location to pay attention to,

predictive distributions are made based only on the current attention vector. However, to

be effective, all past attention vectors (predictive distributions) should be maintained

during the decoding process to keep track of which characters have been predicted. To

remedy this problem, we introduce an LSTM network between the attention vector and

the softmax layer, as shown in Figure 5.1. This LSTM network compresses all past

attention vectors and the current attention vector into a fixed-length vector. Then, it is fed

through the softmax to produce predictive distributions. Consequently, the system takes

advantage of all past attention vectors when producing the current predictive distributions.

Motivated by the idea of the residual connection in [41, 60], we add a residual

connection between the attention vector and the softmax layer, as shown in Figure 5.2.

Then, we denote the LSTM between the attention vector and the softmax layer by residual

LSTM. The residual connection can help the model to address the exploding and

vanishing gradient problem. Let LSTMRes be the residual LSTM network which has the

residual connection. At the t-th time step, we have:

 1

LSTM LSTM LSTM, LSTM ,t t t th O h a (5.2.2)

Res LSTM

t t tO O a (5.2.3)

where 𝒂𝒕 is the attention vector at the time step t, 𝒉𝐋𝐒𝐓𝐌
𝒕 and 𝑶𝐋𝐒𝐓𝐌

𝒕 are the hidden

states and the output of the LSTM at the time step t, respectively; and 𝑶𝐑𝐞𝐬
𝒕 is the output

of the residual LSTM network.

We now describe how our decoder works. At each time step t in the decoding phase,

the attention-based decoder generates one character 𝑦𝑡 based on the current output 𝑂𝑡

of the residual LSTM network as shown in Eq. (5.2.4):

 softmaxt t

oy W O (5.2.4)

80

The current output 𝑂𝑡 is computed by the previous hidden state of the residual LSTM

network ℎRes
𝑡−1 and the current attention vector 𝑎𝑡 as shown in Eq. (5.2.5):

 1

Res Res Res, LSTM ,t t t th O h a (5.2.5)

The current attention vector 𝑎𝑡 is calculated from the concatenation of the current

hidden state ℎ𝐴𝑡𝑡𝑛
𝑡 and the current context vector 𝑐𝑡as shown in Eq. (5.2.6):

 Attntanh ;t t t

ca W c h
 (5.2.6)

The hidden state ℎAttn
𝑡 is computed as shown in Eq. (5.2.7):

 1 1 1

Attn Attn AttnLSTM , Embed(),t t t th h y a
 (5.2.7)

where LSTMAttn is the attention-based LSTM network, 𝑦𝑡−1 is the previous ground-

truth symbol (when training the model) or the previously predicted symbol (when testing

the model), Embed is an embedding layer and 𝑎𝑡−1 is the previous attention vector.

The current context vector 𝑐𝑡 is computed by the current attention weights (attention

probabilities) 𝜌𝑡 = (𝜌1
𝑡 , 𝜌2

𝑡 … 𝜌𝑛
𝑡) and the sequence of encoded vectors 𝐸 =

(𝑒1, 𝑒2 ⋯ 𝑒𝑛) as shown in Eq. (5.2.8):

1

n
t t

i i

i

c e

 (5.2.8)

The current attention weights 𝜌𝑡 is calculated based on the hidden state ℎ𝐴𝑡𝑡𝑛
𝑡 of

LSTM𝐴𝑡𝑡𝑛 and the sequence of encoded vectors 𝐸 as shown in Eq. (5.2.9) and (5.2.10):

Attn

Attn

1

exp score ,

exp score ,

t

it

i n
t

j

j

h e

h e

 (5.2.9)

 Attn Attnscore , tanht t

i h e ih e w h w e (5.2.10)

The decoding process is repeated until the decoder produces an <END> (end token).

The ARCED model can be end-to-end trained by the gradient descent algorithm with a

standard cross-entropy loss function.

5.3. Experiments

81

To verify the effectiveness of each part of the ARCED model and compare its

performance with other methods, we conducted experiments on the level 2 and level 3

subsets of Kana_PRMU. The implementation details are described in Section 5.3.1, the

results of the experiments are presented in Section 5.3.2, and the analysis on recognized

and misrecognized samples is given in Section 5.3.3.

5.3.1. Implementation Details

The architecture of the CNN model used to build the feature extractor is shown in Table

5.1, where ‘#maps’, ‘k’, ‘s’ and ‘p’ denote the number of kernels, the kernel size, the

stride size and the padding size of each convolutional layer, respectively. It consists of 6

convolutional layers. Batch normalization is applied to all convolutional layers. Each

convolutional layer in the first five convolutional layers is followed by Max-Pooling

layers.

Table 5.1. Network configuration of our CNN model.

Type Configurations

Input h×w image

Conv1 - Batch Norm - ReLu #maps:32, k:3×3, s:1, p:1

MaxPooling1 #window:2×2, s:2×2

Conv2 - Batch Norm - ReLu #maps:64, k:3×3, s:1, p:1

MaxPooling2 #window:2×2, s:2×2

Conv3 - Batch Norm - ReLu #maps:64, k:3×3, s:1, p:1

MaxPooling3 #window:2×2, s:2×2

Conv4 - Batch Norm - ReLu #maps:128, k:3×3, s:1, p:1

MaxPooling4 #window:1×2, s:1×2

Conv5 - Batch Norm - ReLu #maps:256, k:3×3, s:1, p:1

MaxPooling5 #window:2×1, s:2×1

Conv6 - Batch Norm - ReLu #maps:256, k:3×3, s:1, p:1

At the row-column encoder, both the row BLSTM network 𝐵𝐿𝑆𝑇𝑀𝑟𝑜𝑤and the column

BLSTM network 𝐵𝐿𝑆𝑇𝑀𝑐𝑜𝑙 are composed of forward and backward layers where each

forward or backward layer is a single LSTM layer having 256 hidden nodes. To prevent

overfitting when training, we apply the dropout (drop rate = 0.2) in all LSTM layers of

the BLSTM networks.

82

At the decoder, the attention-based LSTM network LSTM_Attn consists of two LSTM

layers of 512 hidden nodes and the residual LSTM network LSTM_Res consists of a

single LSTM layer of 512 hidden nodes. A projection layer and a softmax layer with the

node size equal to the character set size plus the start token and the end token are applied

after the residual LSTM network. The entire ARCED model is end-to-end trained using

Adam [35] with the learning rate of 0.001 and the batch size of 4. We do not use any data

augmentation or data preprocessing technique in the training process. The training

process stops when the recognition accuracy of the validation set does not gain after ten

epochs.

5.3.2. Experiment Results

In order to evaluate the performance of the ARCED model, we employ the terms of

Character Error Rate (CER) and Sequence Error Rate (SER) that are defined in Eq. (3.3.1)

and Eq. (3.3.2).

A. Single line recognition

First, we conducted an experiment on the level 2 subset, which consists of single

vertical line images of three Kana characters. Table 5.2 compares the recognition error

rates by the ARCED model and the state-of-the-art DCRN models reported in Section 5.3

on the test set of the level 2 subset.

The ARCED model achieved CER of 4.15% and SER of 11.43% on the test set, which

reduced CER to one third and SER to half compared with the best DCRN method. The

results imply that ARCED outperforms the state-of-the-art recognition accuracy of the

DCRN models.

We offer some possible explanations for this improved performance. First, the attention

mechanism seems to help the model focus on the pertinent features to predict characters.

Second, the decoder helps the model learn the context statistics in the training vocabulary

since the decoding mechanism is similar to the language model (given a sequence of

previous characters, it predicts the next character). Third, the row-column BLSTM in the

encoder and the residual LSTM in the decoder also improve the performance of the

system. We will elaborate on these reasons in Sections C and D below.

Table 5.2. Recognition error rates (%) on level 2 test set.

Model CER SER

83

DCRN-wo 26.79 59.28

DCRN-ws 18.56 44.81

DCRN-o_16 14.44 35.11

DCRN-o_12 12.88 31.60

End-to-End DCRN 10.90 27.70

ARCED 4.15 11.43

Figure 5.5 shows correctly recognized samples and their visualization of attention

weights. We can see that the attention mechanism focuses from the top of the image to

read the first character, and shifts one character down to read the next character and so

on. This mechanism is similar to how humans read a vertical text line.

Figure 5.5. Visualization of the attention weights for single line text written vertically.

B. Multiple line recognition

Next, we evaluated the ARCED model for recognizing multiple text line images in the

level 3 subset. This task is challenging because the model has to find the start of the first

line and read all the characters in this line before finding the next line. Table 5.3 compares

the recognition error rates by ARCED and the state-of-the-art methods reported in Section

4.4 on the test set of the level 3 subset. The ARCED model achieved CER of 12.69% and

84

SER of 58.58% on the test set, which reduced CER and SER to two-thirds compared with

the best DCRN method combined with line segmentation. The results confirm that

ARCED works well with the multiple text lines images and outperforms the state-of-the-

art recognition accuracy in Section 4.4.

Table 5.3. Recognition error rates (%) on level 3 test set.

Model CER SER

2DBLSTM 46.73 98.81

CNN + 2DBLSTM 44.18 97.16

Seg + DCRN-o_12 26.70 82.57

Seg + End-to-End DCRN 18.50 73.70

ARCED 12.69 58.58

Again, this seems to be due to the attention-based seq2seq approach, the row-column

BLSTM, and the residual LSTM. Moreover, it avoids errors due to line segmentation

since ARCED does not need line segmentation.

Figure 5.6 shows a correctly recognized sample and its visualization of attention

weights. We can see that the attention mechanism first focuses from the top right of the

image to read the first character, shifts one character down to read the next character, and

shift one more character to read the last character in the first line. Then, the attention

mechanism returns to the top and shifts one line to the left to read the next line. This

mechanism is again similar to us when we read vertical multiple text lines.

85

Figure 5.6. Visualization of the attention weights for multiple lines of text written vertically.

C. Row-column encoder

To verify the effect of the row-column BLSTM in the encoder, we prepared two

variants. The first one is named Row-Encoder, which uses only the row BLSTM in the

encoder. The second one is named Column-Encoder, which uses only the column BLSTM

in the encoder. The other components of these models are the same as the ARCED model.

Table 5.4 compares their recognition error rates.

Table 5.4. Recognition error rates (%) with different encoders.

Model

Level 2 test set Level 3 test set

CER SER CER SER

Row-Encoder 4.66 12.68 19.23 72.61

Column-Encoder 4.38 12.05 12.82 56.64

Row-Column Encoder (ARCED) 4.15 11.43 12.69 58.58

In both the subsets, the Column-Encoder model slightly outperforms the Row-Encoder

model. Since text lines in Japanese historical documents are written vertically from top

to bottom. The ARCED model outperformed on them. The results imply that the row-

column BLSTM in the encoder improves the performance of the attention-based seq2seq

model for the text recognition task in the Japanese historical documents. This seems to

86

be due to the row-column BLSTM that helps the encoder to capture the sequential order

information in both the vertical and horizontal directions in the feature grid F.

D. Residual LSTM

To verify the effect of the residual LSTM network in the decoder, we prepared two

variants. The first one is the same as the ARCED model except using the residual LSTM

network, which is named ARCED_w/o_resLSTM. The second one is the same as

ARCED except using the residual connection, which is named ARCED_w/o_resCon.

Table 5.5 compares their recognition error rates with the ARCED model.

In both the level 2 and level 3 subsets, the ARCED model outperforms the

ARCED_w/o_resLSTM model. The results show that the residual LSTM network

between the attention vector and the softmax layer in the decoder improves the

performance of the attention-based seq2seq model for the text recognition task in the

Japanese historical documents. This seems to be due to the residual LSTM that helps the

decoder to take advantage of all past attention vectors when it produces the predictive

distributions. The ARCED model again outperforms ARCED_w/o_resCon in both the

level 2 and level 3 subsets. The results show that the residual connection improves the

performance of the ARCED model.

Table 5.5. Recognition error rates (%) with different decoders.

Model

Level 2 test set Level 3 test set

CER SER CER SER

ARCED_w/o_resCon 5.67 15.35 29.67 86.64

ARCED_w/o_resLSTM 4.53 12.43 14.43 62.54

ARCED 4.15 11.43 12.69 58.58

5.3.3. Analysis on recognized and misrecognized samples

Figure 5.7 shows some correctly recognized and misrecognized samples by the ARCED

model in the level 3 dataset. The correctly recognized samples show that the ARCED

model is effective in recognizing show-through patterns, connected patterns, and noisy

patterns. For each misrecognized sample, the left image is the input, the middle text is the

87

ground-truth, and the right text is the resulting recognition. Most of the misrecognized

samples are missing only one or two characters in the ground-truth.

5.4. Conclusion.

In this chapter, we presented an attention-based row-column encoder-decoder model

named ARCED for recognizing multiple text lines of deformed Kana sequences in

Japanese historical documents. We introduced the row-column BLSTM in the encoder

and the residual LSTM in the decoder. Following the experiments on the level 2 and level

3 subsets of the Kana_PRMU dataset, our proposed ARCED model achieved 4.15% and

12.69% character error rates in the test sets of level 2 and level 3, respectively. First, the

attention based seq2seq approach can recognize both single and multiple text lines images,

and results in a drastically reduced error rate compared to the previous state-of-the-art

methods. Second, the row-column BLSTM in the encoder further reduced the error rate

of the attention-based model by capturing the sequential order information in both the

vertical and horizontal directions. Third, the residual LSTM further reduced the error rate

by taking advantage of all the past attention vectors while generating the predictive

distributions.

a). Correctly recognized samples in spite of show-through.

88

b). Misrecognized samples.

Figure 5.7. Correctly recognized and misrecognized samples.

89

Chapter 6. Conclusions and Future works

6.1. Conclusions

In this thesis, we presented a model of Deep Convolutional Recurrent Network (DCRN)

for recognizing offline handwritten text lines without explicit segmentation of characters.

The proposed DCRN model consists of three components: feature extractor by CNN,

encoder by BLSTM, and decoder by CTC and has two approaches: pretrained CNN

approach, and End-to-End approach. For decoding, we applied the CTC beam search

combined with the tri-gram language model to obtain the final label sequence. The

extensive experiments on standard benchmarks for offline handwritten Japanese text

recognition show that the DCRN model outperforms the previous works of the

segmentation-based method, and the tri-gram language model improves the performance

of the DCRN model. We also propose an upgraded version of DCRN: Attention

Augmented Convolutional Recurrent Network (AACRN) model which employs 1D self-

attention mechanism in the encoder. The self-attention module is complementary to RNN

in the encoder and helps the encoder to capture long-range and multi-level dependencies

across an input sequence. The experiment results show that the AACRN model

outperforms the DCRN model and the 1D self-attention mechanism improves the

performance of the AACRN model.

Convolutional Neural Network (CNN) are successfully employed as a feature extractor

to extract the visual features from an input image in the DCRN models. However, it

processes the information in a local neighborhood, so that it might not extract information

from long-distance locations in an input image. In this work, we propose an upgraded

version of DCRN: 2D Self-Attention Convolutional Recurrent Network (2D-SACRN)

which introduces a 2D self-attention mechanism in the feature extractor to help the CNN

to capture the relationships between widely separated spatial regions in an input image.

The extensive experiments on three widely used datasets: IAM Handwriting (English),

Rimes (French), and TUAT Kondate (Japanese) show that the proposed model achieves

similar or better accuracy when compared to state-of-the-art models in all datasets.

Furthermore, the visualization of the 2D self-attention map shows that the 2D self-

attention mechanism helps the feature extractor to capture the relationships between

widely separated spatial regions and improves the performance of the 2D-SACRN model.

90

Deep Neural Networks typically require a large number of patterns per category for

training. However, for many handwriting datasets, especially handwritten

Japanese/Chinese datasets, the number of categories is large while the number of patterns

per category is limited, so that it is necessary to apply a data argumentation method. In

this work, we propose a synthetic pattern generation method which synthesize

handwritten text line images from sentences in corpora and handwritten character patterns

in the isolated character database with elastic distortions. The experiments on the offline

handwritten Japanese text dataset show that the synthetic pattern generation method

improves the performance of the DCRN model.

For the historical document recognition topic, we presented several Deep Neural

Network architectures to recognize anomalously deformed Kana Sequence in Japanese

historical documents in accordance with two levels (2 and 3) in a contest held by IEICE

PRMU 2017. We employed the DCRN model with two approaches for level 2. Then, we

proposed a method of vertical text line segmentation and multiple line concatenation

before applying DCRN for level 3. We also examined a two-dimensional BLSTM

(2DBLSTM) based method for level 3. For level 2, the end-to-end approach achieved the

best CER of 10.90% and SER of 27.70%. For level 3, the vertical text line segmentation

and concatenation approach achieved the best CER of 12.30% and SER of 54.90% when

trained by both the level 2 and level 3 datasets. Finally, we presented an attention-based

row-column encoder-decoder model named ARCED for recognizing multiple text lines

of deformed Kana sequences in Japanese historical documents. We introduced the row-

column BLSTM in the encoder and the residual LSTM in the decoder. Following the

experiments on the level 2 and level 3 subsets of the Kana_PRMU dataset, the proposed

ARCED model achieved 4.15% and 12.69% character error rates in the test sets of level

2 and level 3, respectively. First, the attention based seq2seq approach can recognize both

single and multiple text lines images, and results in a drastically reduced error rate

compared to the previous state-of-the-art methods. Second, the row-column BLSTM in

the encoder further reduced the error rate of the attention-based model by capturing the

sequential order information in both the vertical and horizontal directions. Third, the

residual LSTM further reduced the error rate by taking advantage of all the past attention

vectors while generating the predictive distributions.

91

6.2. Future Works

For offline handwritten text recognition, however, some problems remain: the multi-

line text data should be considered, and the character set of the Japanese handwritten

recognition task should be extended to the JIS level 2 set. Firstly, we will improve our

DCRN models further in terms of recognition accuracy for not only single line text images

but also multi-line text images. For example, instead of using the BLSTM to build the

encoder, we will try to use Multidimensional BLSTM to build the encoder. We also plan

apply the attention-based model to recognize the multiple text line and compare with the

Multidimensional BLSTM-based model.

Secondly, we will extend the character set to cover the JIS level 2 characters (about

7000 characters). The new databases will be used for training and evaluating the DCRN

models. Finally, the language model made by RNN will be integrated with the system

and compared with the tri-gram language model.

For the Japanese historical document recognition, the sequence error rate is so high that

linguistic context must be incorporated. We will apply the language statistics and context

processing to improve the accuracy of the systems. Tri-gram language model and RNN

language model will be considered. This works only focused on the Kana characters, so

we plan to accumulate more data including Kanji characters to improve the accuracy and

recognize the whole character set.

We also will apply the proposed models and the synthetic pattern generation method

for the other offline handwritten text benchmarks such as offline handwritten Vietnamese

text recognition or offline handwritten Chinese text recognition.

92

References

1. Nguyen, K.C., Nguyen, C.T., Nakagawa, M.: A Segmentation Method of Single-

and Multiple-Touching Characters in Offline Handwritten Japanese Text

Recognition. IEICE Trans. Inf. Syst. E100.D, 2962–2972 (2017).

2. Qiu-Feng Wang, Fei Yin, Cheng-Lin Liu: Handwritten Chinese Text Recognition

by Integrating Multiple Contexts. IEEE Trans. Pattern Anal. Mach. Intell. 34,

1469–1481 (2012).

3. El-Yacoubi, A., Gilloux, M., Sabourin, R., Suen, C.Y.: An HMM-based approach

for off-line unconstrained handwritten word modeling and recognition. IEEE Trans.

Pattern Anal. Mach. Intell. 21, 752–760 (1999).

4. España-Boquera, S., Castro-Bleda, M.J., Gorbe-Moya, J., Zamora-Martinez, F.:

Improving offline handwritten text recognition with hybrid HMM/ANN models.

IEEE Trans. Pattern Anal. Mach. Intell. 33, 767–779 (2011).

5. Graves, A., Liwicki, M., Fernandez, S., Bertolami, R., Bunke, H., Schmidhuber,

J.: A Novel Connectionist System for Unconstrained Handwriting Recognition.

IEEE Trans. Pattern Anal. Mach. Intell. 31, 855–868 (2009).

6. Graves, A., Schmidhuber, J.: Offline Handwriting Recognition with

Multidimensional Recurrent Neural Networks. Adv. Neural Inf. Process. Syst. 21,

NIPS’21. 545–552 (2008).

7. Pham, V., Bluche, T., Kermorvant, C., Louradour, J.: Dropout Improves Recurrent

Neural Networks for Handwriting Recognition. In: Proceedings of International

Conference on Frontiers in Handwriting Recognition, ICFHR. pp. 285–290 (2014).

8. Shi, B., Bai, X., Yao, C.: An End-to-End Trainable Neural Network for Image-

Based Sequence Recognition and Its Application to Scene Text Recognition. IEEE

Trans. Pattern Anal. Mach. Intell. 39, 2298–2304 (2017).

9. Bluche, T., Messina, R.: Gated Convolutional Recurrent Neural Networks for

Multilingual Handwriting Recognition. In: Proceedings of the International

Conference on Document Analysis and Recognition, ICDAR. pp. 646–651 (2017).

93

10. Ly, N.-T., Nguyen, C.-T., Nguyen, K.-C., Nakagawa, M.: Deep Convolutional

Recurrent Network for Segmentation-Free Offline Handwritten Japanese Text

Recognition. In: Proceedings of the International Conference on Document

Analysis and Recognition (ICDAR). pp. 5–9 (2017).

11. Ly, N.T., Nguyen, C.T., Nakagawa, M.: Training an End-to-End Model for Offline

Handwritten Japanese Text Recognition by Generated Synthetic Patterns. In:

Proceedings of the International Conference on Frontiers in Handwriting

Recognition (ICFHR). pp. 74–79 (2018).

12. Ly, N.-T., Nguyen, K.-C., Nguyen, C.-T., Nakagawa, M.: Recognition of

Anomalously Deformed Kana Sequences in Japanese Historical Documents.

IEICE Trans. Inf. Syst. Vol.E102-D, (2019).

13. Puigcerver, J.: Are Multidimensional Recurrent Layers Really Necessary for

Handwritten Text Recognition? In: Proceedings of the International Conference on

Document Analysis and Recognition, ICDAR. pp. 67–72 (2017).

14. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N.,

Kaiser, Ł., Polosukhin, I.: Attention is all you need. In: Advances in Neural

Information Processing Systems. pp. 5999–6009 (2017).

15. Dong, L., Xu, S., Xu, B.: Speech-transformer: A no-recurrence sequence-to-

sequence model for speech recognition. In: Proceedings of the IEEE International

Conference on Acoustics, Speech and Signal Processing - Proceedings. pp. 5884–

5888 (2018).

16. Kitadai, A., Takakura, J., Ishikawa, M., Nakagawa, M., Baba, H., Watanabe, A.:

Document Image Retrieval to Support Reading Mokkans. In: 2008 The Eighth

IAPR International Workshop on Document Analysis Systems. pp. 533–538

(2008).

17. Terasawa, K., Shima, T., Kawashima, T.: A Fast Appearance-Based Full-Text

Search Method for Historical Newspaper Images. In: 2011 International

Conference on Document Analysis and Recognition. pp. 1379–1383 (2011).

18. Van Phan, T., Baba, H., Watanabe, A., Nakagawa, M.: A re-assembling scheme of

fragmented Mokkan images. In: Proceedings of the 2nd International Workshop

on Historical Document Imaging and Processing - HIP ’13. p. 22 (2013).

94

19. Kitadai, A., Nakagawa, M., Baba, H., Watanabe, A.: Similarity Evaluation and

Shape Feature Extraction for Character Pattern Retrieval to Support Reading

Historical Documents. In: 2012 10th IAPR International Workshop on Document

Analysis Systems. pp. 359–363 (2012).

20. PRMU: PRMU algorithm contest 2017,

https://sites.google.com/view/alcon2017prmu/.

21. Nguyen, H.T., Ly, N.T., Nguyen, K.C., Nguyen, C.T., Nakagawa, M.: Attempts to

recognize anomalously deformed Kana in Japanese historical documents. In:

Proceedings of the 4th International Workshop on Historical Document Imaging

and Processing - HIP2017. pp. 31–36 (2017).

22. Eskenazi, S., Gomez-Krämer, P., Ogier, J.-M.: A comprehensive survey of mostly

textual document segmentation algorithms since 2008. Pattern Recognit. 64, 1–14

(2017).

23. Graves, A.: Offline Arabic Handwriting Recognition with Multidimensional

Recurrent Neural Networks. In: Guide to OCR for Arabic Scripts. pp. 297–313

(2012).

24. Luong, T., Pham, H., Manning, C.D.: Effective Approaches to Attention-based

Neural Machine Translation. In: Proceedings of the Conference on Empirical

Methods in Natural Language Processing. pp. 1412–1421 (2015).

25. Bahdanau, D., Cho, K., Bengio, Y.: Neural Machine Translation by Jointly

Learning to Align and Translate. (2014).

26. Bahdanau, D., Chorowski, J., Serdyuk, D., Brakel, P., Bengio, Y.: End-to-end

attention-based large vocabulary speech recognition. In: Proceedings of the

International Conference on Acoustics, Speech and Signal Processing (ICASSP).

pp. 4945–4949 (2016).

27. Wang, C., Yin, F., Liu, C.-L.: Memory-Augmented Attention Model for Scene

Text Recognition. In: 2018 16th International Conference on Frontiers in

Handwriting Recognition (ICFHR). pp. 62–67 (2018).

28. Chowdhury, A., Vig, L.: An Efficient End-to-End Neural Model for Handwritten

Text Recognition. Br. Mach. Vis. Conf. 2018, BMVC 2018. (2018).

95

29. Bluche, T., Louradour, J., Messina, R.: Scan, Attend and Read: End-to-End

Handwritten Paragraph Recognition with MDLSTM Attention. In: Proceedings of

the International Conference on Document Analysis and Recognition (ICDAR).

pp. 1050–1055 (2017).

30. Ly, N.T., Nguyen, C.T., Nakagawa, M.: An attention-based row-column encoder-

decoder model for text recognition in Japanese historical documents. Pattern

Recognit. Lett. 136, 134–141 (2020).

31. Kim, M.S., Jang, M.D., Choi, H. Il, Rhee, T.H., Kim, J.H., Kwag, H.K.:

Digitalizing Scheme of Handwritten Hanja Historical Documents. In: Proceedings

- First International Workshop on Document Image Analysis for Libraries - DIAL

2004. pp. 321–327 (2004).

32. Van Phan, T., Cong Nguyen, K., Nakagawa, M.: A Nom historical document

recognition system for digital archiving. Int. J. Doc. Anal. Recognit. 19, 49–64

(2016).

33. Kimura, F., Takashina, K., Tsuruoka, S., Miyake, Y.: Modified Quadratic

Discriminant Functions and the Application to Chinese Character Recognition.

IEEE Trans. Pattern Anal. Mach. Intell. PAMI-9, 149–153 (1987).

34. Yang, H., Jin, L., Sun, J.: Recognition of Chinese text in historical documents with

page-level annotations. In: Proceedings of International Conference on Frontiers

in Handwriting Recognition, ICFHR. pp. 199–204 (2018).

35. Valy, D., Verleysen, M., Chhun, S., Burie, J.-C.: Character and Text Recognition

of Khmer Historical Palm Leaf Manuscripts. In: 2018 16th International

Conference on Frontiers in Handwriting Recognition (ICFHR). pp. 13–18 (2018).

36. IAM Aachen splits, https://www.openslr.org/56/, last accessed 2021/02/19.

37. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale

image recognition. In: 3rd International Conference on Learning Representations,

ICLR 2015 - Conference Track Proceedings (2015).

38. Xu, Y., Mo, T., Feng, Q., Zhong, P., Lai, M., Chang, E.I.-C.: Deep learning of

feature representation with multiple instance learning for medical image analysis.

In: 2014 IEEE International Conference on Acoustics, Speech and Signal

Processing (ICASSP). pp. 1626–1630 (2014).

96

39. Athiwaratkun, B., Kang, K.: Feature Representation in Convolutional Neural

Networks. (2015).

40. Hochreiter, S., Schmidhuber, J.: Long Short-Term Memory. Neural Comput. 9,

1735–1780 (1997).

41. He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition.

In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

pp. 770–778 (2016).

42. Graves, A., Fernández, S., Gomez, F., Schmidhuber, J.: Connectionist temporal

classification: Labelling unsegmented sequence data with recurrent neural

networks. In: Proceedings of the ACM International Conference Proceeding Series.

pp. 369–376 (2006).

43. Ioffe, S., Szegedy, C.: Batch normalization: Accelerating deep network training by

reducing internal covariate shift. In: Proceedings of the International Conference

on Machine Learning, ICML 2015. pp. 448–456 (2015).

44. Wang, X., Girshick, R., Gupta, A., He, K.: Non-local Neural Networks. In:

Proceedings of the IEEE Computer Society Conference on Computer Vision and

Pattern Recognition. pp. 7794–7803 (2018).

45. Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative

Adversarial Networks. 36th Int. Conf. Mach. Learn. ICML 2019. 2019-June,

12744–12753 (2018).

46. Sueiras, J., Ruiz, V., Sanchez, A., Velez, J.F.: Offline continuous handwriting

recognition using sequence to sequence neural networks. Neurocomputing. 289,

119–128 (2018).

47. Moysset, B., Messina, R.: Are 2D-LSTM really dead for offline text recognition?

In: International Journal on Document Analysis and Recognition. pp. 193–208

(2019).

48. Bluche, T.: Joint Line Segmentation and Transcription for End-to-End

Handwritten Paragraph Recognition. Neural Inf. Process. Syst. (2016).

49. Kang, L., Riba, P., Rusiñol, M., Fornés, A., Villegas, M.: Pay Attention to What

You Read: Non-recurrent Handwritten Text-Line Recognition. arXiv. (2020).

97

50. Bluche, T.: Deep Neural Networks for Large Vocabulary Handwritten Text

Recognition, https://tel.archives-ouvertes.fr/tel-01249405, (2015).

51. Poznanski, A., Wolf, L.: CNN-N-Gram for HandwritingWord Recognition. In:

Proceedings of the IEEE Computer Society Conference on Computer Vision and

Pattern Recognition. pp. 2305–2314 (2016).

52. Chen, B., Zhu, B., Nakagawa, M.: Training of an on-line handwritten Japanese

character recognizer by artificial patterns. Pattern Recognit. Lett. 35, 178–185

(2014).

53. Leung, K.C., Leung, C.H.: Recognition of handwritten Chinese characters by

combining regularization, Fisher’s discriminant and distorted sample generation.

In: Proceedings of the International Conference on Document Analysis and

Recognition, ICDAR. pp. 1026–1030 (2009).

54. Wigington, C., Stewart, S., Davis, B., Barrett, B., Price, B., Cohen, S.: Data

Augmentation for Recognition of Handwritten Words and Lines Using a CNN-

LSTM Network. In: Proceedings of the International Conference on Document

Analysis and Recognition, ICDAR. pp. 639–645 (2017).

55. Nakagawa, M., Matsumoto, K.: Collection of on-line handwritten Japanese

character pattern databases and their analyses. Int. J. Doc. Anal. Recognit. 7, 69–

81 (2004).

56. Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk,

H., Bengio, Y.: Learning phrase representations using RNN encoder-decoder for

statistical machine translation. In: EMNLP 2014 - 2014 Conference on Empirical

Methods in Natural Language Processing, Proceedings of the Conference. pp.

1724–1734 (2014).

57. Graves, A., Schmidhuber, J.: Framewise phoneme classification with bidirectional

LSTM and other neural network architectures. In: Neural Networks. pp. 602–610

(2005).

58. Greff, K., Srivastava, R.K., Koutnik, J., Steunebrink, B.R., Schmidhuber, J.:

LSTM: A Search Space Odyssey. IEEE Trans. Neural Networks Learn. Syst. 28,

2222–2232 (2017).

98

59. Deng, Y., Kanervisto, A., Ling, J., Rush, A.M.: Image-to-markup generation with

coarse-to-fine attention, https://dl.acm.org/citation.cfm?id=3305483, (2017).

60. Kim, J., El-Khamy, M., Lee, J.: Residual LSTM: Design of a Deep Recurrent

Architecture for Distant Speech Recognition. (2017).

99

Author's Publications and Awards

Awards

1. Tokyo University of Agriculture and Technology, TUAT President’s Award for

Students, Mar 2018.

2. The Special Interest Group of Computers and the Humanities (Information

Processing Society of Japan - IPSJ), “Recognizing anomalously deformed Kana by

Deep Convolutional Recurrent Network”, PRMU CH Award, Jan 2018.

3. The Special Interest Group of Pattern Recognition and Media Understanding (The

Institute of Electronics, Information and Communication Engineers, Japan - IEICE),

The 21st PRMU Algorithm Contest, Best Algorithm Award, Dec 2017.

4. The 4th International Workshop on Historical Document Imaging and Processing

(HIP2017), The IAPR Best Paper Award, Nov 2017.

Journal Papers

1. N. T. Ly, K. C. Nguyen, C. T. Nguyen, and M. Nakagawa, “Recognition of

Anomalously Deformed Kana Sequences in Japanese Historical Documents,” IEICE

Transactions on Information and Systems Vol.E102-D, No.8, pp.1554-1564, August

2019. (Chapter 4).

2. N. T. Ly, C. T. Nguyen, and M. Nakagawa, “An attention-based row-column

encoder-decoder model for text recognition in Japanese Historical Documents,”

Pattern Recognition Letters, Vol. 136, pp. 134-141, August 2020. (Chapter 5).

International Conference Papers

1. N. T. Ly, H. T. Nguyen, and M. Nakagawa, “2D Self-Attention Convolutional

Recurrent Network for Offline Handwritten Text Recognition,” The 16th IAPR

International Conference on Document Analysis and Recognition, 2021, pp. 191-204.

(Chapter 3).

100

2. N. T. Ly, C. T. Nguyen, and M. Nakagawa, "Attention Augmented Convolutional

Recurrent Network for Handwritten Japanese Text Recognition," 2020 17th

International Conference on Frontiers in Handwriting Recognition (ICFHR), 2020,

pp. 163-168. (Chapter 3).

3. N. T. Ly, L. Liu, C. Y. Suen and M. Nakagawa, “Hand-drawn Object detection for

scoring Wartegg Zeichen Test”, Second International Conference on Pattern

Recognition and Artificial Intelligence (ICPRAI 2020), Zhongshan City, China, 2020.

4. N. T. Ly, C. T. Nguyen, and M. Nakagawa, "An Attention-Based End-to-End Model

for Multiple Text Lines Recognition in Japanese Historical Documents," 2019

International Conference on Document Analysis and Recognition (ICDAR), 2019,

pp. 629-634. (Chapter 5).

5. N. T. Ly, C. T. Nguyen, and M. Nakagawa, "Training an End-to-End Model for

Offline Handwritten Japanese Text Recognition by Generated Synthetic Patterns,"

2018 16th International Conference on Frontiers in Handwriting Recognition

(ICFHR), 2018, pp. 74-79. (Chapter 3).

6. N. T. Ly, C. T. Nguyen, K. C. Nguyen, and M. Nakagawa, "Deep Convolutional

Recurrent Network for Segmentation-Free Offline Handwritten Japanese Text

Recognition," 2017 14th IAPR International Conference on Document Analysis and

Recognition (ICDAR), 2017, pp. 5-9. (Chapter 3).

Joint Works

1. T. T. Ngo, H. T. Nguyen, N. T. Ly, and M. Nakagawa, “Recurrent neural network

transducer for Japanese and Chinese offline handwritten text recognition,” ICDAR

2021: Document Analysis and Recognition – ICDAR 2021 Workshops, pp. 364-376,

2021.

2. A. D. Le, D. Mochihashi, K. Masuda, H. Mima and N. T. Ly, “Recognition of

Japanese historical text lines by an attention-based encoder-decoder and text line

generation,” 2019 5th International Workshop on Historical Document Imaging and

Processing (HIP), 2019, pp.37-41.

3. H. T. Nguyen, N. T. Ly, K. C. Nguyen, C. T. Nguyen, and M. Nakagawa, “Attempts

to recognize anomalously deformed Kana in Japanese historical documents”, 2017

101

4th International Workshop on Historical Document Imaging and Processing (HIP),

2017, pp. 31-36.

4. H. D Nguyen, N. T. Ly, H. Truong, and D. D Nguyen, “Multi-Column CNNs for

skeleton based human gesture recognition”, 2017 9th International Conference on

Knowledge and Systems Engineering (KSE), 2017, pp. 179-184.

Domestic Conference Papers

1. 耒代誠仁、Nam Tuan Ly、Kha Cong Nguyen、中川正樹、山本和明、

“階層化された情報システムのためのくずし字解読機能の試作、”日本情報

考古学会第42回大会, 岡山大学津島キャンパス, 2019.

2. 佐藤 旭、小林 心、Ly Nam Tuan、Nguyen Tuan Cuong、北本 朝展、中川

正樹、“日本古典籍くずし字文書の文字列認識、”第119回人文科学とコンピ

ュータ研究会発表会、大阪市、02/2019.

