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Abstract 

This thesis presents deep neural network-based methods for offline handwritten text recognition, 

and Japanese historical document recognition. Offline handwritten text recognition is still a big 

challenging problem due to various backgrounds, noises, diversity of writing styles, and multiple 

touches between characters. In this thesis, we present models of Deep Convolutional Recurrent 

Network (DCRN) for recognizing offline handwritten text lines without explicit segmentation of 

characters. The DCRN model has three parts: a feature extractor by Convolutional Neural 

Network (CNN); an encoder by Bidirectional Long Short-Term Memory (LSTM); and a decoder 

by Connectionist Temporal Classification (CTC). We also propose two upgraded version of 

DCRN: Attention Augmented Convolutional Recurrent Network (AACRN) model which 

employs 1D self-attention mechanism in the encoder, and 2D Self-Attention Convolutional 

Recurrent Network (2D-SACRN) which introduces a 2D self-attention mechanism in the feature 

extractor to help the CNN to capture the relationships between widely separated spatial regions 

in an input image. Since the DCRN models require a large data for training, we synthesize 

handwritten text line images from sentences in corpora and handwritten character patterns in the 

handwritten character pattern database with elastic distortions. We conducted the experiments on 

three public datasets: IAM Handwriting (English), Rimes (French), and TUAT Kondate 

(Japanese). The experimental results show that the proposed model achieves similar or better 

accuracy when compared to state-of-the-art models in all datasets. 

For Japanese historical document recognition, we present recognition of anomalously deformed 

Kana sequences, for which a contest was held by IEICE PRMU 2017. The contest was divided 

into three levels in accordance with the number of characters to be recognized: level 1: single 

characters, level 2: sequences of three vertically written Kana characters, and level 3: unrestricted 

sets of characters composed of three or more characters possibly in multiple lines. This thesis 

focuses on the methods for levels 2 and 3 that won the contest. We employ the DCRN models for 
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level 2. Then, we propose a method of vertical text line segmentation and multiple line 

concatenation before applying DCRN for level 3. We also examine a two-dimensional BLSTM 

(2DBLSTM) based method for level 3. Finally, we propose an attention-based sequence to 

sequence model named by Attention-based Row-Column Encoder-Decoder (ARCED) for both 

level 2 and 3 without explicit segmentation of text lines. The experimental results prove the 

performances of the proposed models on the level 2 and 3 tasks. 
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Chapter 1. Introduction 

1.1. Offline Handwritten Text Recognition 

Before the digital age, printed and handwritten text documents have been among the 

most important methods for transmitting and storing information. Nowadays, despite the 

abundance of electronic note-taking devices, many people still choose to write and take 

their notes in the traditional way with pen and paper. In addition, there are still a lot of 

application forms that need to be completed in handwriting with pen and paper. As a 

result, there is a bulk number of documents on papers that need to be processed. However, 

there are some drawbacks to physical handwritten documents and notes. They cannot be 

stored and accessed as data efficiently, making it difficult to search through them 

efficiently and to share them with others. In the age of digital, when computer and smart 

devices become popular, information is stored, processed, indexed, and searched by 

computer systems, making its retrieval a cheap and quick task. Handwritten documents 

are no exception and need to be transferred to digital format that could be easily processed 

by computer systems. The goal is to extract information contained in handwritten 

documents and to store them in a computerized format. This is the motivation of 

handwritten document analysis systems. 

Offline handwritten text recognition is an important part of handwritten document 

analysis systems and has received a lot of attention from numerous researchers for 

decades. Starting with the recognition of isolated handwritten characters and digits, the 

focus has shifted to the recognition of words and sentences. Recognizing them is 

significantly more difficult than characters because of a large vocabulary in each language, 

and multiple touches between characters. Other challenging of offline handwritten text 

recognition are various backgrounds, noises, and diversity of writing styles. For 

Japanese/Chinese offline handwritten text recognition, a problem is added due to the large 

character set; varieties of characters mixed of thousands of Kanji characters of Chinese 

origin, two sets of phonetic characters, alphabets, numerals, symbols, etc.; and the 

difficulty of segmentation (Characters appear in a document without any word spacing). 

Most early works of handwritten Japanese/Chinese text recognition were often taking 

the segmentation-based approach that segments or over-segments text into characters and 

fragments and then merges the fragments in the recognition state [1, 2]. This 
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segmentation-based approach is costly and error-prone, especially for cursive writing 

because the segmentation of characters directly affects the performance of the whole 

system. On the other hand, segmentation-free methods can avoid segmentation errors and 

have been employed for western handwritten documents based on the Hidden Markov 

Model (HMM) [3, 4], so far. This segmentation-free approach firstly scans the text image 

with a sliding window to get the sequence of images, then applies Gaussian Mixture 

Models (GMMs) or Neural Networks (NNs) to get the sequence of features. The sequence 

of features is modeled with character HMMs. A weakness of HMMs is the local modeling, 

which cannot capture long-term dependencies in the input sequence. 

In recent years, many segmentation-free methods based on Deep Neural Networks 

(DNNs) and Connectionist Temporal Classification (CTC) [5–13] have been proposed 

and proven to be powerful models for both western and oriental text recognition. The core 

recognition engine has been shifted from Hidden Markov Models (HMMs) to Recurrent 

Neural Networks (RNNs) with CTC. The principle of the CTC-based approach is to 

interpret the network output as a sequence of label probabilities over all labels and use an 

objective function to maximize the sequence probability. 

In this thesis, we present a model of Deep Convolutional Recurrent Network (DCRN) 

for offline handwritten Japanese text recognition without explicit segmentation of 

characters. The DCRN model consists of three main parts: a convolutional feature 

extractor using Convolutional Neural Network (CNN) to extract features from a text 

image; an encoder using Bi-directional Long-Short Term Memory (BLSTM) to encode 

the sequence of features; and a decoder using a CTC to decode the features into the final 

label sequence. As far as we know, this is the first approach that adopts the CTC-based 

model for offline handwritten Japanese text recognition. 

Recently, A. Vaswani et al. [14] proposed a self-attention mechanism, which uses all 

position-pairs of the input sequence to extract more expressive representations for the 

inputs. The self-attention replaces the LSTM in both encoder and decoder and helps the 

sequence-to-sequence model achieve state-of-the-art results in translation via 

Transformer [14], speech recognition via Speech-Transformer [15], and other tasks. 

Based on the self-attention mechanism, we propose an upgraded version of DCRN named 

Attention Augmented Convolutional Recurrent Network (AACRN) which introduces 1D 

self-attention mechanism in the encoder. The self-attention module is complementary to 

RNN in the encoder and helps the encoder to capture long-range and multi-level 
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dependencies across an input sequence. As far as we know, this is the first approach that 

employs the self-attention mechanism in the encoder of the CTC-based model for offline 

handwritten text recognition. 

Convolutional Neural Networks (CNNs) are successfully employed as feature 

extractors in the CTC-based models [8–13]. It processes the information in a local 

neighborhood, so that it might not extract information from long-distance locations in an 

input image. To solve this weakness of the CNN network in the feature extractor, we 

present a 2D Self-Attention Convolutional Recurrent Network (2D-SACRN) model with 

a 2D self-attention mechanism for recognizing handwritten text lines. In this model, we 

present a 2D self-attention mechanism in the feature extractor to help the CNN to capture 

the relationships between widely separated spatial regions in an input image. As far as we 

know, it is the first approach that employs the 2D self-attention mechanism in the feature 

extractor of the CTC-based model for offline handwritten text recognition. The extensive 

experiments on three widely used datasets: IAM Handwriting (English), Rimes (French), 

and TUAT Kondate (Japanese) show that the proposed model achieves similar or better 

accuracy when compared to state-of-the-art models in all datasets. 

Deep Neural Networks, especially end-to-end models typically require a large number 

of patterns per category for training. However, for many handwriting datasets, especially 

handwritten Japanese/Chinese datasets which have many categories with over thousands, 

the number of patterns per category is limited, so that it is necessary to apply a data 

argumentation method. Many data argumentation methods for handwriting datasets have 

been proposed by modifying the original data such as affine transformations [12, 13], 

nonlinear combinations [13, 14] and Random warp grid distortion [15]. However, such 

method just modifies the original data, but cannot gain the real text line image. In this 

work, we propose a synthetic pattern generation method which synthesize handwritten 

text line images from sentences in corpora and handwritten character patterns in the 

isolated character database with elastic distortions. 
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1.2. Japanese Historical Document Recognition 

Japanese use Kanji, ideographic characters of Chinese origin, and Kana, phonetic 

characters made from Kanji characters. Kanji are used for nouns and stems of verbs, 

adverbs, adjectives etc. while Kana are used for conjugation parts and so on. There are 

thousands of Kanji characters but only 46 Kana characters since Japanese has 5 vowels 

and 10 consonants, thus 50 phonemes, but 4 phonemes were merged to others. 

Until the Edo period (1603 - 1868), Japanese documents were vertically written with a 

brush or wood block printed. Characters, especially Kanji of Chinese origin and Kana (a 

set of 46 phonetic characters made from Kanji), were deformed and cursively written, so 

even experts have difficulty in reading them. Due to the demand for preserving historical 

documents and availing them for research without damaging physical documents, 

digitization and preservation of digital reproductions have been studied and practiced in 

many regions and languages [16–19]. 

The Center for Open Data in the Humanities (CODH) in Japan is studying and 

developing ways to enhance access to Japanese humanities data and constructing data 

platforms to promote collaborative research among people with diverse backgrounds. 

Under the support by CODH, Pattern Recognition and Media Understanding (PRMU) 

held a contest to read anomalous Kana in 2017 [20]. The tasks are divided into three levels 

in accordance with the number of characters in a circumscribed rectangle: level 1: single 

characters, level 2: sequences of three vertically written Kana characters, and level 3: 

unrestricted sets of characters composed of three or more characters possibly in multiple 

lines. In this contest, we proposed the combination of a pre-trained CNN and an BLSTM 

with CTC named by Deep Convolutional Recurrent Network (DCRN) for level 2 and the 

DCRN combined with a vertical line segmentation method for level 3 [21]. Here, CNN 

stands for Convolutional Neural Network, BLSTM for Bidirectional Long Short-Term 

Memory Neural Network and CTC for Connectionist Temporal Classification. These 

methods won the best award with 12.88% character error rate (CER) for level 2 and 

26.70% for level 3. After the contest, we presented their end-to-end trained versions, with 

the results of the new state-of-the-art accuracy of 10.90% CER for level 2 and 18.50% 

for level 3 [12]. 

This thesis is based on the previous works of the DCRN model which won the best 

algorithm award in the PRMU algorithm contest in 2017 but omits level 1 and focuses on 

level 2 and 3. Moreover, we added end-to-end-training and a two-dimensional 
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Bidirectional Long Short-Term Memory (2DBLSTM) based model after the contest. We 

compare the pretrained CNN approach and the end-to-end approach with more detailed 

variations for level 2: recognizing sequences of three vertically written Kana characters. 

Then, we propose a method of vertical text line segmentation and multiple line 

concatenation before applying the DCRN model for level 3: recognizing unrestricted sets 

of characters in multiple lines. We also examine two-dimensional Bidirectional Long 

Short-Term Memory (2DBLSTM)-based methods for level 3 and compare their 

performances with the vertical text line segmentation-based method. 

This thesis also introduces an attention-based sequence to sequence model named by 

Attention-based Row-Column Encoder-Decoder (ARCED) for both level 2 and 3 without 

explicit segmentation of text lines. Since Japanese historical documents were written 

cursively through an entire text line with neighbor text lines touching each other, a line 

segmentation-free approach is sought. In this model, we incorporate a row-column 

BLSTM in the encoder to capture the sequential order information in both the vertical 

and the horizontal directions and a residual LSTM network in the decoder to take 

advantage of entire past attention information. 
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1.3. Thesis organization 

Chapter 2 presents surveys on two above topics: offline handwritten text recognition 

and Japanese historical document recognition. Next, the following chapters present my 

works on offline handwriting text recognition (Chapter 3), Japanese historical document 

recognition (Chapter 4), and Attention-based model for multiple text line recognition 

(Chapter 5). Finally, chapter 6 draws some conclusions and discussions about this thesis 

as well as shows the future works. 
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Chapter 2. Survey of Text Recognition 

2.1. Offline Handwritten Text Recognition 

Document recognition consists of two main parts: layout analysis [22] and text 

recognition, which we will survey briefly here. 

Early works of handwritten Japanese/Chinese text recognition [1, 2] usually focused on 

segmentation-based methods. The segmentation-based methods firstly segment text lines 

into isolated characters before individually recognizing each character, but they may 

make over-segmentation: dividing single-character patterns into small components or 

under-segmentation: leaving multiple character patterns unsegmented into individual 

characters. Segmentation candidates and recognition candidates are combined with 

linguistic context and geometric context in a lattice diagram. The best path in the lattice 

diagram is searched to produce the recognition result [1]. Over-segmentation is preferred 

because split components can be merged by the best path search. However, the 

segmentation-based methods are costly, and the errors of this process directly affect the 

performance of the whole system. On the other hand, segmentation-free methods can 

avoid segmentation errors and have been employed for western handwritten documents 

using Hidden Markov Models (HMMs) [3, 4], so far. This approach firstly scans a text 

line image with a sliding window to get a sequence of images. Then, this sequence of 

images is fed into Gaussian Mixture Models (GMMs) or Neural Networks (NNs) to get a 

sequence of features. The sequence of features is modeled with character HMMs. Word 

models are obtained by concatenation of character HMMs. A weakness of HMMs is the 

local modeling, which cannot capture long-term dependencies in the input sequence. 

In recent years, many segmentation-free methods have been proposed and shown to be 

effective, especially for recognizing noisy, complex, and handwritten text due to the 

progress of Deep Neural Networks (DNNs). They can be categorized into two main 

approaches: Connectionist Temporal Classification (CTC) and attention-based sequence-

to-sequence methods. Both methods address the problem of variable-length between 

input and output in text recognition tasks. 

The basic idea of CTC is to interpret an output as a probability distribution over all 

possible label sequences and use an objective function to maximizes the probability of 

the correct labeling. Early works of CTC for handwritten text recognition were presented 
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by A. Graves et al. [5]. They combined bidirectional Long Short-Term Memory (LSTM) 

and CTC to build an end-to-end trainable model for online and offline handwritten 

English text recognition. For offline handwritten text recognition, firstly an input image 

is normalized by transformation methods such as rotate and shearing transformations. 

Then, the feature vectors are extracted from the normalized images by a sliding window 

approach and fed to the BLSTM network followed by CTC to get the final sequence 

results. With the word accuracy of 74.1% and character accuracy of 81.8% on the IAM 

dataset, the BLSTM-CTC model outperformed the traditional HMM model. Following 

the works in [5], A. Graves et al. proposed Multidimensional Recurrent Neural Network 

followed by CTC for offline Arabic handwriting recognition [23]. The proposed model 

consists of three components: a multidimensional recurrent neural network 

(multidimensional LSTM in particular); a CTC output layer; and the hierarchical structure. 

The experiments on the IFN/ENIT database from the ICDAR 2007 Arabic handwriting 

recognition competition show that the proposed model outperforms all entries in the 2007 

ICDAR Arabic recognition contest. 

V. Pham et al. presented an end-to-end MDLSTM followed by CTC for handwritten 

text recognition [7]. This MDLSTM-CTC model was proposed in [23], but they have 

adapted the filter sizes for input images and applied dropout to the MDLSTM network. 

In the experiments, three handwriting datasets were used to evaluate the proposed system: 

Rimes, IAM and OpenHaRT containing handwritten French, English, and Arabic text, 

respectively. The results of the extensive experiments show that the recognition networks 

with dropout at the topmost layer significantly reduces the CER and WER by 10-20%, 

and the performance can be further improved by 30-40% if dropout is applied at multiple 

LSTM layers. 

B. Shi et al. proposed an end-to-end trainable neural network called Convolutional 

Recurrent Neural Network (CRNN) for scene text recognition [8]. The CRNN model 

consists of three components: convolutional layers by CNN, recurrent layers by BLSTM, 

and a transcription layer by CTC. At the bottom of CRNN, the convolutional layers 

extract a feature sequence from an input image. On top of the convolutional layers, a 

recurrent network is built for making prediction for each frame of the feature sequence 

outputted by the convolutional layers. The transcription layer at the top of CRNN 

translates the per-frame predictions by the recurrent layers into a label sequence. The 

CRNN model can be jointly trained with one loss function. To evaluate the effectiveness 

of the proposed CRNN model, they conducted experiments on standard benchmarks for 
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scene text recognition including: ICDAR 2003 (IC03); ICDAR 2013 (IC13); IIIT 5k-

word (IIIT5k), Street View Text (SVT), and musical score recognition. The experiment 

results show that CRNN achieves superior or highly competitive performance, compared 

with conventional methods as well as other CNN and RNN based algorithms. N. T. Ly et 

al. also presented the combination of pre-trained CNN and BLSTM with CTC, named 

Deep Convolutional Recurrent Network (DCRN) [10]. They demonstrated that the 

DCRN model outperforms the segmentation-based method [1] for offline handwritten 

Japanese text recognition. Then, they present an end-to-end version of the DCRN model 

for recognizing offline handwritten Japanese text [11]. 

Another approach, the attention-based sequence-to-sequence model has been 

successful applied in many tasks, such as machine translation [24, 25] and speech 

recognition [26]. It is also shown to be effective and achieved high accuracy in the task 

of text recognition [27, 28]. Following the success of MDLSTM and the attention-based 

sequence to sequence model, T. Bluche et al. presented the MDLSTM Attention model 

for handwritten paragraph recognition [29]. The MDLSTM Attention model consists of 

two main components: an encoder that extracts feature maps from an input image, and a 

sequential decoder that predicts characters from these feature maps. The author carried 

out the experiments on the IAM database consisting of images of handwritten English 

text documents. The experiment results show that the proposed model worked well on 

both the word and line recognition tasks. 

A. Chowdhury et al. [28] proposed an attention-based model with a beam search 

decoder for handwritten English and French text recognition. The proposed model 

consists of two parts: a feature extractor that uses CNN to extract visual features from an 

input image, and an attention-based sequence to sequence module that maps the visual 

features to a sequence of characters. They also employed the form of Batch & Layer 

Normalization, Focal Loss, and Beam Search to improve the proposed model. The 

experiments on the IAM and Rimes datasets show that the proposed model provides 

significant boost in accuracy as compared to the standard RNN-CTC model. C. Wang et 

al. proposed a memory-augmented attention model for scene text recognition [27]. N. T. 

Ly et al. also proposed an attention-based sequence-to-sequence model with residual 

LSTM for recognizing multiple text lines in Japanese historical documents [30]. 

2.2. Historical Document Recognition 
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Here we summarize some publications reporting historical document processing in the 

languages of Chinese origin written with brushes. Kim et al. developed a system for 

digitizing more than 10 million Hanja* historical documents [31]. To build the system, 

they employed manual typing and handwriting recognition based on the Mahalanobis 

distance. In China, Digital Heritage Publishing Ltd. digitized more than 36,000 volumes 

(4.7 million pages) of Siku Quanshu, which is the largest collection of books on Chinese 

history compiled by 361 scholars during the Qianlong period (1711–1799). They first 

applied optical character recognition (OCR) to segment and recognize characters and then 

manually corrected misrecognized characters [9]. Kitadai et al. reported a system to help 

archeologists read wooden tablets excavated from ancient ruins [16]. Given an input 

character image, the system provides functions to restore the image and presents similar 

character images already decoded, using simple pattern matching since the purpose is to 

nominate candidates and sample patterns are very limited. Truyen et al. developed a 

system for digitizing hundreds of thousands of Nom historical documents [32]. Nom is 

the old Vietnamese writing system composed of original Chinese characters and 

Vietnamese characters created in the same way as Chinese characters, i.e., formed from 

radicals. The digitization system segments a document image into characters and 

recognizes individual characters by the modified quadratic discriminant function 

(MQDF) [33]. To train MQDF, pattern augmentation was applied. 

For text recognition in historical documents, H. Yang et al. employed a CNN followed 

by CTC for Chinese text recognition in historical documents [34]. D. Valy et al. used a 

CNN and a 1DLSTM or 2DLSTM to recognize Khmer historical palm leaf manuscripts 

[35]. Ly et al. presented Deep Learning-based methods for recognizing single text line 

(level 2) as well as multiple text lines (level 3) in the Kana-PRMU dataset [12, 21] of 

Japanese historical documents as mentioned before. N. T. Ly et al. also proposed an 

attention-based sequence-to-sequence model with residual LSTM for recognizing 

multiple text lines in Japanese historical documents [30]. 
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Chapter 3. Offline Handwritten Text Line Recognition 

3.1. Introduction 

In this chapter, we present models of Deep Convolutional Recurrent Network (DCRN) 

for recognizing offline handwritten text lines without explicit segmentation of characters. 

The DCRN model has three parts: a CNN feature extractor; an BLSTM encoder; and a 

CTC decoder. We also propose two upgraded version of DCRN: Attention Augmented 

Convolutional Recurrent Network (AACRN) model which employs 1D self-attention 

mechanism in the encoder, and 2D Self-Attention Convolutional Recurrent Network (2D-

SACRN) which introduces a 2D self-attention mechanism in the feature extractor to help 

the CNN to capture the relationships between widely separated spatial regions in an input 

image. Finally, we present the Text Line Image Generation Method that synthesizes 

handwritten text line images from sentences in corpora and handwritten character patterns 

in the handwritten character pattern database with elastic distortions. The experiments are 

conducted on three public datasets: IAM Handwriting (English), Rimes (French), and 

TUAT Kondate (Japanese) to evaluate the performance of the proposed models and the 

effectiveness of the Text Line Image Generation Method. 

The rest of this chapter is organized as follows: Section 3.2 describes the datasets. 

Section 3.3 presents the Deep Convolutional Recurrent Network model. Section 3.4 

describes the Attention Augmented Convolutional Recurrent Network model. Section 3.5 

presents the 2D Self-Attention Convolutional Recurrent Network model. Section 3.6 

presents the Text Line Image Generation Method. Section 3.7 concludes the chapter. 

3.2. Datasets 

We conduct the experiments on the following three datasets: two widely used western 

handwritten datasets - IAM Handwriting [29] and Rimes [30], and one Japanese 

handwritten dataset - TUAT Kondate [31]. The details of them are given in the following 

sections. 

3.2.1. TUAT Kondate. 

TUAT Kondate is an online handwritten database compiled by Nakagawa Lab., Tokyo 

University of Agri. & Tech. (TUAT). The database stores online handwritten patterns 

mixed of text, figures, tables, maps, diagrams and so on. It was turned to offline patterns 

by thickening strokes with constant width. The handwritten Japanese portion of TUAT 
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Kondate comprises 13,685 text line images collected from 100 Japanese writers. We split 

the dataset into three subsets: 11,487 text line images collected from 84 writers for 

training; 800 text line images collected from 6 writers; and 1,398 text line images 

collected from 10 writers for testing. There are 3,345 different characters in the dataset. 

Figure 3.1 shows examples of images in TUAT Kondate dataset. The summary of the 

TUAT Kondate is given in Table 3.1. 

Table 3.1. The detail of information of TUAT Kondate database. 

 

TUAT Kondate 

Train set Valid set Test set 

Number of writers 84 6 10 

Number of samples 11,487 800 1,398 

 

 

Figure 3.1. Examples from TUAT Kondate database. 

We use the TUAT HANDs Nakayosi and Kuchibue handwritten Japanese character 

databases [16] for pretraining the weights of the CNN network of DCRN model and 

generating the SHTL datasets. Nakayosi contains samples of 163 writers, 10,403 

character patterns covering 4,438 classes per writer. Kuchibue contains handwritten 

samples of 120 writers, 11,951 character patterns covering 3,345 classes per writer. The 

summary of the Nakayosi and Kuchibue databases are shown in Table 3.2. They are 

turned to offline patterns again by thickening stroke with constant width. In this work, we 

experimented with 3,345 classes of JIS level-1 Kanji characters (2965 classes) and kana, 

alpha-numerals, symbols and so on (380 classes) for pretraining the CNN model and 
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generating SHLT datasets. For pretraining the CNN model, we used the samples of 

Nakayosi for training and the samples of Kuchibue for testing. The training set (Nakayosi 

dataset) is randomly split into two group, with approximately 90% for training and 

remainder for validation. 

Table 3.2. Summary of Nakayosi and Kuchibue databases. 

 Nakayosi Kuchibue 

Number of writers 163 120 

Number of classes 4,438 3,345 

Number of samples 1,695,689 1,695,689 

3.2.2. IAM Handwriting. 

IAM Handwriting is an offline handwritten English text dataset compiled by the FKI-

IAM Research Group. The dataset is composed of 13,353 text lines extracted from 1,539 

pages of scanned handwritten English text, which were written by 657 different writers. 

All text lines in the IAM Handwriting are built using sentences provided by the Lancaster-

Oslo/Bergen (LOB) corpus. We employ the IAM Aachen splits [36] shared by T. Bluche 

from RWTH Aachen University to split the dataset into three subsets: 6,482 lines (747 

pages) for training, 2,915 (336 pages) lines for testing, and 976 lines (116 pages) for 

validation. There are 79 different characters in the dataset, including the space character. 

Figure 3.2 shows examples of images in IAM Handwriting dataset. The summary of the 

IAM Handwriting is given in Table 3.3. 

Table 3.3. Details of the IAM Handwriting dataset. 

 
IAM Handwriting 

Train set Valid set Test set 

Text lines 6,482 976 2,915 

Pages 747 116 336 

3.2.3. Rimes. 

Rimes is a well-known handwriting French dataset compiled by A2iA’s research 

laboratory. The dataset consists of 11,333 lines extracted from 1,500 paragraphs for 

training and 778 lines extracted from 100 paragraphs for testing. The original dataset does 

not include the validation set, so we use the lines extracted from the last 100 paragraphs 

of the training set as a validation set. Consequently, the Rimes dataset consists of three 
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subsets: 10,532 lines for training, 801 lines for validation, and 778 lines for testing. There 

are 99 different characters in the dataset, including the space character. Figure 3.3 shows 

examples of images in IAM Handwriting dataset. The summary of the IAM Handwriting 

is given in Table 3.4. 

Table 3.4. Details of the Rimes dataset. 

 
Rimes 

Train set Valid set Test set 

Text lines 10,532 801 778 

Paragraphs 1,400 100 100 

 

 

 

Figure 3.2. Examples from IAM Handwriting database. 
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Figure 3.3. Examples from Rimes database. 
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3.3. Deep Convolutional Recurrent Network 

3.3.1. Overview of The Model 

In this section, we present a model of Deep Convolutional Recurrent Network (DCRN) 

for recognizing offline handwritten Japanese text line images without explicit 

segmentation of characters. As far as we know, this is the first approach that adopts the 

CTC-based model for offline handwritten Japanese text recognition. The network 

architecture of DCRN consists of 3 components, including the convolutional feature 

extractor, an BLSTM encoder, and a CTC decoder, from bottom to top as shown in Figure 

3.4. 

 

Figure 3.4. Network architecture of the DCRN model. 
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From the bottom of the DCRN, the convolutional feature extractor extracts a feature 

sequence from an input image, the encoder at the top of the convolutional feature extractor 

predicts each frame of the feature sequence output by the convolutional feature extractor. 

At the top of the DCRN, the decoder translates the pre-frame predictions by the encoder 

into the final label sequence. 

A. Preprocessing. 

Firstly, all of the text line images are scaled to the same height (the same width in 

Anomalously deformed Kana Sequence Recognition) of size before recognized by the 

DCRN model. This is necessary because in our model the feature dimension of feature 

sequence which extracted by the convolutional feature extractor is constant since deep 

BLSTM expects a fixed-size feature dimension. After resizing, in order to manage the 

noisy and complicated background, the text line images are converted into binary images 

by Otsu thresholding algorithm [17]. Figure 3.5 presents the preprocessing on 

anomalously deformed Kana sequence recognition. 

 

Figure 3.5. Preprocessing on anomalously deformed Kana sequence recognition. 

B. Convolutional Feature Extractor. 

Convolutional neural networks (CNNs) have been proven to be very powerful visual 

models and achieve the state-of-the-art accuracies on some tasks of computer vision such 

as image recognition [37] and feature representation [38, 39]. 

In the DCRN model, the component of convolutional feature extraction is constructed 

by taking the convolutional, max-pooling and full-connected layers from a standard CNN 

model (softmax layer are removed). Such components are used to extract a feature 

sequence from an input image. Before being fed into the component, all the text images 
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need to be scaled to the same height in order to have the same size of the input image for 

CNN. Then, the feature sequence is extracted from the text image by the convolutional 

feature extractor, which is the input of the encoder. 

C. Encoder. 

Recurrent neural networks (RNNs) are connectionist models containing a self-

connected hidden layer. The benefits of RNNs are allowing information of previous 

inputs to remain in the network’s internal states and the ability to make use of previous 

context. In the traditional RNNs, however, the vanishing gradient problem was 

recognized. Long Short-Term Memory (LSTM) is an RNN architecture designed to 

receive an input sequence with long-range dependencies and output another sequence that 

has one-to-one correspondence to the input sequence [40]. The hidden units of RNN are 

replaced by ‘memory cell’ units, which can store and retrieve information over time, 

giving them access to long-range context. Each memory cell has three multiplicative gate 

units: the input gate, the forget gate and the output gate to control, respectively, the write, 

erase, and read access operations to the unit. These control gates can be shared among 

cells. A group of cells sharing common control gates form a block of LSTM cells. Bi-

directional LSTM allows access to the context of an input from both forward (left to right) 

and backward (right to left) directions. It consists of two LSTM layers that scan the input 

in both the directions [6]. 

In DCRN model, the encoder is built on top of the convolutional feature extractor to 

predict a label distribution for each frame of the feature sequence extracted from the 

previous component. The encoder consists of the Deep Bidirectional LSTM layers which 

take the feature sequence from the convolutional feature extractor as the input. In the last 

LSTM layer, each time step of feature sequence is followed by a fully connected linear 

layer which converts the output feature dimension to the size of the total character set 

(plus 1 for CTC blank character). Finally, a softmax layer is placed at the end to generate 

the label probability vector at each time step. 

D. Decoder. 

CTC is an algorithm designed for sequence labeling tasks where it is difficult to 

segment an input sequence to segments that exactly matches those in a target sequence. 

CTC performs alignment of a probability output sequence to a given label sequence. As 

a result, the system does not need to segment an input sequence for training. The 

probability of a label sequence l from an input sequence x is the total probability of all 
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the paths 𝜋𝑙 that produce the label sequence as shown in Eq. (3.3.1):  

p(𝑙|𝑥) = ∑ 𝑝(𝜋|𝑥)𝜋∈𝜋𝑙
                     (3.3.1)    

CTC loss is the total negative log likelihood − ln p(𝑙|𝑥)  over all pairs of an input 

sequence x and a target label l from training patterns. 

At the top of DCRN model, the decoder decodes the pre-frame predictions made by the 

encoder into the final label sequence. Mathematically, decoding is to find the label 

sequence with the highest probability conditioned on the pre-frame predictions. To obtain 

the conditional probability, we employ a CTC layer as the decoder. 

For decoding, we apply the CTC beam search [22] with 10 for the beam width 

combined with a linguistic context to obtain the final label sequence with the highest 

probability conditioned. In this work, we employ the tri-gram probability [23] as the 

linguistic context. The tri-gram probability 𝑃(𝐶𝑖|𝐶𝑖−2, 𝐶𝑖−1)  is calculated from the 

corpus. It is reduced to unigram or bi-gram when 𝐶𝑖 is the first or second character. 

3.3.2. Two approaches of the DCRN model. 

We have two approaches of the DCRN model: pretrained CNN approach, and End-to-

End approach. The following sessions show the details of two approaches. 

A. Pretrained CNN Approach. 

Firstly, the CNN network is pretrained by the isolated character dataset using the 

stochastic gradient descent. After training the CNN network, we remove just the softmax 

layer or remove both the full connected layers and the softmax layer from the CNN 

 

Figure 3.6. Overlapped sliding windows approach. 
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network to use the remaining network as the convolutional feature extractor to extract 

feature sequence from the input images. We call the former DCRN_o-s and the latter 

DCRN_o-f&s. Finally, this approach slides a sub-window of ℎ × ℎ (h: the height of 

input image in offline handwritten Japanese text recognition or the width of image in 

anomalously deformed Kana sequence recognition) pixels through the text line image 

with 12 (or 16) pixels of the sliding stride size (overlap sliding) to get an image sequence 

and applies the remaining CNN network to extract feature sequence from the image 

sequence. Figure 3.6 shows the architecture of convolutional feature extractor in this 

approach. 

B. End-to-End Approach.  

In this approach, the CNN network is constructed by taking the convolutional, max-

pooling layers from a standard CNN model (fully connected and softmax layers are 

removed). The Leaky ReLu [21] activation is applied in all convolutional layers. Batch 

normalization is applied between convolutional layer and Leaky ReLu activation. We 

apply this CNN network to an input image of size 𝑤 × ℎ × 𝑐  (where c is the color 

channels of image), resulting in a multi-channel output of dimension 𝑤′ × ℎ′ × 𝑘, where 

 

Figure 3.7. Convolutional feature extractor in the end-to-end model approach. 
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k is the number of feature maps in last convolutional layer, 𝑤′and ℎ′ depend on the w 

and h of input images and the amount of pooling layers in the CNN network. Then we 

pass the 𝑤′ features of dimension ℎ′ × 𝑘  to the encoder. Since the height of input 

images is fixed, the dimension ℎ′ × 𝑘 of each feature is the same. In this approach, we 

do not pretrain the CNN network. However, the weights of CNN and the weights of 

LSTM will be end-to-end trained on the pairs of images and sequences by only one loss 

function. Figure 3.7 shows the architecture of convolutional feature extractor in this 

approach. 

3.3.3. Experiments 

To evaluate the performance of the proposed DCRN model, we conducted experiments 

on the Kondate dataset. The implementation details are described in Section A, the results 

of the experiments are presented in Section B and the misrecognized samples are shown 

in Section C. 

A. Implementation Details 

Pretrained CNN approach: For pretrained CNN approach, the detailed architecture of 

CNN network used in the convolutional feature extractor is listed in Table 3.5 in which 

‘k’, ‘s’, ‘p’ and ‘group’ denote to kernel size, stride, padding size and group size, 

respectively. It contains seven learned layers - four convolutional layers alternatively by 

four max-pooling layers, two full-connected layers and a softmax layer finally (3345 

class). Each convolutional and fully-connected layer is followed by Maxout units [25], 

using the group size of 2. Firstly, the CNN network is pretrained by the TUAT Nakayosi 

and Kuchibue using stochastic gradient descent with a batch size of 64 samples with the 

learning rate of 0.01 and the momentum of 0.95 on GPU. After training the CNN network, 

we remove just the softmax layer or both the full connected layers and the softmax layer 

from the CNN network to use the remaining network as the convolutional feature 

extractor. We call the former DCRN_o-s and the latter DCRN_o-f&s. 

At the encoder, we employ Deep BLSTM network with 256 nodes of two layers. A 

fully connected layer and a softmax layer with the node size equal to the character set size 

(n=3347) are applied after each time step of Deep BLSTM network. The encoder and the 

decoder are trained by using online steepest descent with the learning rate of 0.0001 and 

the momentum of 0.9. We use the training set of Kondate for training and the testing set 

of Kondate for evaluating the performance of this approach. The validation set of Kondate 

is used for turning hyperparameters and avoid overfitting in the DCRN model. 
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Table 3.5. Network configuration of the CNN model in the pretrained CNN approach. 

Type Configurations 

Input 96×96 image 

Conv1 - Maxout #maps:32, k:5×5, s:1, p:0, group:2 

MaxPooling1 Window:2×2, s:2 

Conv2 - Maxout #maps:32, k:3×3, s:1, p:0, group:2 

MaxPooling2 Window:2×2, s:2 

Conv3 - Maxout #maps:64, k:3×3, s:1, p:0, group:2 

MaxPooling3 Window:2×2, s:2 

Conv4 - Maxout #maps:64, k:5×5, s:1, p:0, group:2 

MaxPooling4 Window:2×2, s:2 

Full-connected - Maxout #nodes:400, group:2 

Full-connected - Maxout #nodes:400, group:2 

Softmax #nodes: 3345(number class) 

 

End-to-end approach: For the End-to-End approach, the architecture of CNN network 

used in the convolutional feature extractor is shown in Table 3.6 in which ‘maps’, ‘k’, ‘s’ 

and ‘p’ denote the number of kernels, kernel size, stride and padding size of convolutional 

layers respectively. It consists of 8 convolutional layers. Batch normalization is applied 

after the 2nd, 4th, 6th and 8th convolutional layers followed by Max-Pooling layers. The 

Leaky ReLu [20] activation function is applied in all convolutional layers. 

At the encoder, we employ Deep BLSTM network with 128 hidden nodes of three 

layers. In order to prevent overfitting when training the model, the dropout (dropout 

rate=0.2) is also applied in each layer of Deep BLSTM. A fully connected layer and a 

softmax layer with the node size equal to the character set size (n=3347) are applied after 

each time step of Deep BLSTM network. 

The end-to-end approach is trained using stochastic gradient descent with the learning 

rate of 0.001 and the momentum of 0.9. The training process stops when the recognition 

accuracy of validation set does not gain after 10 epochs. 
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Table 3.6. Network configuration of the CNN model in the end-to-end model approach.  

Type Configurations 

Input 96×w image 

Conv1 - LReLu #maps:32, k:3×3, s:1, p:1 

Conv2 - Batch Norm - LReLu #maps:32, k:3×3, s:1, p:1 

MaxPooling1 #window:2×2, s:2 

Conv3 - LReLu #maps:64, k:3×3, s:1, p:1 

Conv4 - Batch Norm - LReLu #maps:64, k:3×3, s:1, p:1 

MaxPooling2 #window:2×2, s:2 

Conv5 - LReLu #maps:128, k:3×3, s:1, p:1 

Conv6 - Batch Norm - LReLu #maps:128, k:3×3, s:1, p:1 

MaxPooling3 #window:2×2, s:2 

Conv7 - LReLu #maps:256, k:3×3, s:1, p:1 

Conv8 - Batch Norm - LReLu #maps:256, k:3×3, s:1, p:1 

MaxPooling4 #window:2×2, s:2 

 

B. Experiment Results 

In order to evaluate the performance of the AARCN model, we employ the terms of 

Character Error Rate (CER) and Sequence Error Rate (SER) that are defined as follows: 

   
(x,z) S

1
CER h,S = ED h(x),z

Z 

                (3.3.2)    

  
(x,z) S

  0 if h(x)=z100
SER h,S =

1 otherwiseS 


 

 
             (3.3.3)    

where Z is the total number of target labels in S’ and ED(p, q) is the edit distance between 

two sequences p and q. 

The first experiment evaluated the performance of the pretrained CNN approach and 

the end-to-end approach without using the linguistic context. Table 3.7 shows the 

recognition rate on the validation and test sets of Kondate. In the pretrained CNN 

approach, DCRN_o-s obtained LER of 6.44% and SER of 25.89% on the test set, it is 



 

 

24 

 

compared with the results of DCRN_o-f&s. The results imply that the DCRN_o-s model, 

the convolutional feature extractor made by only removing the softmax layer from the 

CNN model, works better than DCRN_o-f&s, the convolutional feature extractor made 

by removing both the fully connected layers and the softmax layer from the CNN model. 

End-to-End obtained LER of 3.65% and SER of 17.24% on the test set. The results imply 

that the end-to-end approach substantially outperforms the pretrained CNN approach. 

Table 3.7. Label Error Rate (LER) and Sequence Error Rate (SER) on Kondate. 

Model 
LER SER 

Valid set Test set Valid set Test set 

DCRN_o-f&s 11.74% 6.95% 39.33% 28.04% 

DCRN_o-s 11.01% 6.44% 37.38% 25.89% 

End-to-End 5.22% 3.65% 24.47% 17.24% 

 

Secondly, we evaluated the performance of the pretrained CNN approach and the end-

to-end approach with the linguistic context [23]. Table 3.8 shows the recognition rate of 

these approaches on the test set when combined with the linguistic context. It is compared 

with the previous segmentation-based method with the linguistic context. The results 

show that both the pretrained CNN approach and the end-to-end approach are superior to 

the segmentation-based method and its recognition accuracy is further improved when 

the linguistic context is integrated. 

Table 3.8. LER and SER on Kondate when combined with the linguistic context. 

Model 
Test set 

LER SER 

Segmentation based [1] 11.2% 48.53% 

DCRN_o-f&s 6.68% 26.97% 

DCRN_o-s 6.10% 24.39% 

End-to-End 3.52% 16.67% 

 

C. Correctly recognized and misrecognized samples 

There are a total of 362 misrecognized samples among 1398 samples. Most of them are 

missing some characters in the ground-truth. Figure 3.8 shows some misrecognized 
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samples by DCRN_o-s whose sequence error rate is 25.89%. For each sample, the upper 

image is an input handwritten text line image and the text bounded by the lower blue 

rectangular shows the ground-truth and the recognition result separated by “->”. 

 

 

 

 

 

Figure 3.8. Some mispredicted samples by DCRN_o-s. 
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3.4. Attention Augmented Convolutional Recurrent Network 

The RNNs, such as Gated recurrent unit (GRU) or Long-short term memory (LSTM), 

are good at sequence modeling and solve the weakness of the local modeling of HMMs. 

However, the number of hidden nodes in RNNs is usually fixed, which implies all 

historical information is compressed into a fixed-length vector, so that RNNs are difficult 

to capture long-range context. Recently, A. Vaswani et al. [14] proposed a self-attention 

mechanism in the Transformer model, which achieved the state-of-the-art performance in 

some machine translation tasks. The self-attention mechanism can capture the 

dependencies between different positions of arbitrary distance in an input sequence and 

replaces the LSTM in both the encoder and the decoder of the sequence-to-sequence 

models. Based on the self-attention mechanism, we propose an upgraded version of 

DCRN named Attention Augmented Convolutional Recurrent Network (AACRN) for 

recognizing handwritten Japanese text lines. In this model, we employ the self-attention 

mechanism in the encoder to help the encoder to capture long-range and multi-level 

dependencies across an input sequence. As far as we know, this is the first approach that 

employs the self-attention mechanism in the encoder of the CTC-based model for offline 

handwritten text recognition. 

3.4.1. Self-Attention Mechanism 

Self-attention is a mechanism that uses all position-pairs of the input sequence to extract 

more expressive representations for the inputs. Therefore, the self-attention mechanism 

can capture the dependencies between different positions of arbitrarily distance in the 

 

Figure 3.9. Self-attention layer. 
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input sequence. The self-attention layer [14] consists of two sub-layers: a multi-head self-

attention mechanism and a position-wise fully connected feed-forward network. A 

residual connection [41] followed by layer normalization is applied after each of the two 

sub-layers. Figure 3.9 shows the architecture of the self-attention layer. Next, we will 

describe how the self-attention layer works. Let 𝑋 ∈ 𝑅𝑇×𝑑𝑥 denote an input to the self-

attention layer. The first sub-layer performs multi-head attention to the input X. Each head 

i of the 𝑛ℎ heads compute the queries 𝑄𝑖, keys 𝐾𝑖, and values 𝑉𝑖 from X by linear 

projections and then performs Scaled Dot-Product Attention to the queries, keys, and 

values to compute the output as shown in Eq. (3.4.1) and Eq. (3.4.2): 

Q K V

i i i i i iQ XW K XW V XW                  (3.4.1)    

head softmax i i
i i

k

Q K
V

d

 
  

 
 

                   (3.4.2)    

where the projections are parameter matrices 𝑊𝑖
𝑄

, 𝑊𝑖
𝐾 ∈ ℝ𝑑𝑥×𝑑𝑘  and 𝑊𝑖

𝑉 ∈ ℝ𝑑𝑥×𝑑𝑥/𝑛ℎ. 

All heads are concatenated and again projected to give the output of the multi-head sub-

layer, as shown in Eq. (3.4.3): 

 MultiHead 1O Concat head ,..., head
h

O

n W            (3.4.3)    

where the projection is a parameter matric 𝑊𝑖
𝑂 ∈ ℝ𝑑𝑥×𝑑𝑥. The output and the input of 

the multi-head sub-layer are fed to the layer normalization and to the second sub-layer: a 

position-wise fully connected feed-forward network. Finally, the output of the self-

attention layer is computed as shown in Eq. (3.4.4) and Eq. (3.4.5): 

 2 MultiHeadLN OX X                       (3.4.4)    

  SelfAttnLayer 2 2LN FFNO X X                 (3.4.5)    

Where LN and FFN are the layer normalization and the position-wise fully connected 

feed-forward network, respectively. 

3.4.2. Overview of The Model 

The AACRN model consists of three main parts: a convolutional feature extractor, a 

self-attention-based encoder, and a CTC decoder, from bottom to top, as shown in Figure 

3.10 They are described in the following sections. 
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A. Feature extractor 

Similar to the DCRN model, we employ a standard CNN network without fully 

connected layers to build the feature extractor in the AACRN model. This CNN network 

is constructed by taking the convolutional, max-pooling layers from a standard CNN 

model to extract a sequence of features from an input image. (fully connected layers are 

removed). All the images will be scaled to the same height before fed into the network. 

As shown in Figure 3.11, given an input image of size 𝑤 × ℎ × 𝑐 (where c is the color 

 

Figure 3.10. Network architecture of the AACRN model. 

 

 

 

Figure 3.11. Feature extraction for an input image. 
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channels of image), the CNN network extracts a feature gird F of size 𝑤′ × ℎ′ × 𝑘, where 

k is the number of feature maps in the last convolutional layer, 𝑤′and ℎ′ depend on the 

w and h of input images and the number of pooling layers in the CNN network. Then, the 

feature gird F will be unfolded to a sequence of features column by column from left to 

right in each feature map. The sequence of features will be fed to the encoder.  

B. Self-attention based encoder 

In the AACRN model, we use the combination of the self-attention layers and the 

BLSTM network to build the encoder, which encodes a sequence of features extracted 

from the previous component into a sequence of label probability vectors. The self-

attention layers help the encoder capture the dependencies between different positions 

with arbitrarily distance in the input. Meanwhile, the BLSTM network helps the encoder 

focus on the dependencies of nearby positions. The encoder consists of three main parts: 

a self-attention block, which consists of several self-attention layers, two BLSTM 

networks which denote BLSTM_1 and BLSTM_2, and a fully connected layer, as shown 

in Figure 3.4.2. The output of the self-attention block and BLSTM_1 will be concatenated 

before being fed into BLSTM_2. Then, the output of BLSTM_2 will be fed into the fully 

connected layer, which converts the output feature dimension to the size of the total 

character set (plus 1 for CTC blank character). Finally, a softmax layer is placed at the 

end to generate the label probability vector at each time step.  

Let 𝐹 = (𝑓1, 𝑓2 ⋯ 𝑓𝑛) , 𝐸 = (𝑒1, 𝑒2 ⋯ 𝑒𝑛)  and 𝐻 = (ℎ1, ℎ2 ⋯ ℎ𝑛)  denote the 

sequence of features, the sequence of label probability vectors, and the output of the 

combination of the self-attention block and BLSTM_1, respectively, where n is the 

number of feature vectors. Then, we have:  

    Concat BLSTM_1 ,SelfAttnH F F            (3.4.6)    

   Softmax FC BLSTM_2E H                (3.4.7)    

C. Decoder 

At the top of the AACRN model, the decoder generates the final label sequence from 

the sequence of label probability vectors made by the encoder. Mathematically, the 

decoder finds the label sequence with the highest probability conditioned on the sequence 

of the label probability vectors. To obtain the conditional probability, we employ the CTC 

algorithm [42] as the decoder.  
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The whole model can be trained end-to-end by the CTC loss and stochastic gradient 

descent algorithms. For decoding, we apply the CTC beam search with the beamwidth of 

10 to obtain the final label sequence with the highest probability conditioned. 

3.4.3. Experiments 

To evaluate the performance of the proposed AACRN model, we conducted 

experiments on the Kondate Japanese text line dataset. The implementation details are 

described in Sec A; the results of the experiments are presented in Sec. B and the correctly 

recognized and misrecognized samples are shown in Sec. C. 

A. Implementation Details 

The architecture of the CNN network in the feature extractor is shown in Table 3.9, 

where ‘maps’, ‘k’, ‘s’ and ‘p’ denote the number of kernels, kernel size, stride and 

padding size of convolutional layers, respectively. It consists of six convolutional (Conv) 

layers. After all Conv layers, batch normalization [43] followed by the ReLU activation 

function is applied in order to normalize the inputs to the nonlinear activation. Each Conv 

layer in the first five Conv layers is followed by Max-Pooling layers. 

Table 3.9. Network configuration of the CNN model. 

Type Configurations 

Input h×w image 

Conv1 - Batch Norm - ReLu #maps:32, k:3×3, s:1, p:1 

MaxPooling1 #window:2×2, s:2×2 

Conv2 - Batch Norm - ReLu #maps:64, k:3×3, s:1, p:1 

MaxPooling2 #window:2×2, s:2×2 

Conv3 - Batch Norm - ReLu #maps:64, k:3×3, s:1, p:1 

MaxPooling3 #window:2×2, s:2×2 

Conv4 - Batch Norm - ReLu #maps:128, k:3×3, s:1, p:1 

MaxPooling4 #window:1×2, s:1×2 

Conv5 - Batch Norm - ReLu #maps:256, k:3×3, s:1, p:1 

MaxPooling5 #window:2×1, s:2×1 

Conv6 - Batch Norm - ReLu #maps:256, k:3×3, s:1, p:1 
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At the encoder, the self-attention block consists of six self-attention layers where each 

self-attention layer is composed of eight heads and 2048 nodes of one fully connected 

layer. Both BLSTM_1 and BLSTM_2 is composed of forward and backward layers 

where each forward or backward layer is one LSTM layer having 256 hidden nodes. In 

order to prevent overfitting when training the model, the dropout (dropout rate=0.2) is 

also applied in each layer of the two bidirectional BLSTM networks. A fully connected 

layer and a softmax layer with the node size equal to the character set size (n=3347 for 

Kondate dataset) are applied at the end of the encoder. 

The AACRN model is trained using stochastic gradient descent with a learning rate of 

0.001 and a momentum of 0.9. The training process stops when the recognition accuracy 

of the validation set does not gain after ten epochs. 

B. Experiment Results 

In order to evaluate the performance of the AARCN model, we employ the terms of 

Character Error Rate (CER) and Sequence Error Rate (SER) that are defined in Eq. (3.3.2) 

and Eq. (3.3.3).    

Japanese text recognition 

The first experiment evaluated the performance of the AACRN model on the Kondate 

- offline handwritten Japanese text line dataset. Table 3.10 compares the recognition error 

rates by the AACRN model and the previous works of the DCRN models on the test set 

of the Kondate dataset. 

Table 3.10. Recognition error rates (%) on the test set of Kondate dataset. 

Model 
Kondate 

CER SER 

DCRN_o-f&s 6.95 28.04 

DCRN_o-s 6.44 25.89 

End-to-End DCRN 3.65 17.24 

AACRN 2.73 15.74 

 

The AACRN model obtained CER of 2.73% on the test set of Kondate dataset, 

respectively. The results imply that the AACRN model substantially outperforms both 
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pretrained approach and End-to-End approach of the DCRN model on the test sets of 

Kondate dataset. 

Effects of self-attention block 

To verify the effect of the self-attention block in the encoder, we prepared one variation, 

which was the same as the AACRN model except using the self-attention block in the 

encoder. This model is named AACRN_w/o_selfAttn. Table 3.11 compares its 

recognition error rates with the AACRN model on the test set of the Kondate dataset. 

Table 3.11. Recognition error rates (%) with different encoders. 

Model 
Kondate 

CER SER 

AACRN_w/o_selfAttn 3.44 19.67 

AACRN 2.73 15.74 

 

In the test sets of the Kondate dataset, the AACRN model outperforms the 

AACRN_w/o_selfAttn model. The results show that the self-attention block in the 

encoder improves the performance of the AACRN model for the Japanese text 

recognition tasks. This seems to be due to the self-attention block that helps the encoder 

capture the dependencies between different positions in the input sequence. 
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3.5. 2D Self-Attention Convolutional Recurrent Network 

Convolutional Neural Networks (CNNs) are successfully employed as feature 

extractors in the CTC-based models [8–13]. It processes the information in a local 

neighborhood, so that it might not extract information from long-distance locations in an 

input image. To solve this weakness of the CNN network in the feature extractor of 

DCRN, we propose an upgraded version of DCRN named 2D Self-Attention 

Convolutional Recurrent Network (2D-SACRN) model for offline handwritten text line 

recognition. In this model, we present a 2D self-attention mechanism in the feature 

extractor to help the CNN to capture the relationships between widely separated spatial 

regions in an input image. As far as we know, it is the first approach that employs the 2D 

self-attention mechanism in the feature extractor of the CTC-based model for offline 

handwritten text recognition. 

3.5.1. 2D Self-Attention Mechanism. 

Convolutional Neural Networks have been proven to be compelling models and achieve 

state-of-the-art results in many computer vision tasks. However, convolutional operation 

processes the information in a local neighborhood. Thus, it is difficult to obtain 

information from long-distance locations. X. Wang et al. proposed the non-local 

operations in Non-local Neural Networks for capturing long-range dependencies in an 

image or video [44]. H. Zhang et al. adapted the non-local model in [44] to introduce self-

 

Figure 3.12. Architecture of 2D Self-Attention block. 
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attention to the GAN framework, helping both the generator and the discriminator capture 

the relationships between widely separated spatial regions [45]. Based on their works, in 

this paper, we present a 2D self-attention block in the feature extractor to help it capture 

the relationships between widely separated spatial regions in an input image. The 

architecture of the 2D self-attention block is shown in Figure 3.12.   

Let 𝑋 ∈ 𝑅𝐻×𝑊×𝐶 denote a feature grid input to the 2D self-attention block (where H, 

W, and C are height, width, and the number of channels of the feature grid X, respectively). 

Firstly, the 2D self-attention block transforms the feature grid X into three feature grids: 

queries 𝑄 ∈ 𝑅𝐻×𝑊×𝐶′
, keys 𝐾 ∈ 𝑅𝐻×𝑊×𝐶′

, and values V ∈ 𝑅𝐻×𝑊×𝐶  by linear 

projections as shown in Eq. (3.5.1):  

Q K VQ X W K X W V X W                        (3.5.1)    

where the projections are the learned parameter matrices 𝑊𝑄 ∈ ℝ𝐶×𝐶′
, 𝑊𝐾 ∈ ℝ𝐶×𝐶′

, and 

𝑊𝑉 ∈ ℝ𝐶×𝐶 with each implemented as a 1×1 convolution layer. 

The 2D self-attention maps 𝑃 ∈ 𝑅𝐻×𝑊×𝐻×𝑊 are calculated from the queries Q and the 

keys K as shown in Eq. (3.5.2) and Eq. (3.5.3): 

T
ijqk ij qks K Q                                     (3.5.2)    
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                               (3.5.3)    

where 𝑄𝑇 is the transpose of the queries Q and 𝑃𝑖𝑗𝑞𝑘 indicates how the 𝑖𝑗𝑡ℎ location in 

the feature grid X attend to the 𝑞𝑘𝑡ℎ location in the feature grid X. 

Then, the attended feature grid 𝑋𝑎𝑡𝑡𝑛 are computed from the 2D self-attention maps P 

and the values V as shown in Eq. (3.5.4):  

 attn FX P V W                                   (3.5.4)    

where 𝑊𝐹 ∈ ℝ𝐶×𝐶 is the learned parameter matrices implemented as a 1×1 convolution 

layer.  
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Finally, the output of the 2D self-attention block is calculated from the attended features 

𝑋𝑎𝑡𝑡𝑛, and the input feature grid X as follow: 

*attnO X X                                    (3.5.5)    

where λ is a learnable scalar, and it is initialized as 0. 

3.5.2. Overview of The Model 

The 2D-SACRN model is composed of three main components: a feature extractor, a 

recurrent encoder, and a CTC-decoder, as shown in Figure 3.13 They are described in the 

following sections. 

A. Feature Extractor 

In the 2D-SACRN model, we employ a CNN network followed by a 2D self-attention 

block to build the feature extractor. The CNN network is constructed by taking the 

convolutional and max-pooling layers from a standard CNN network while removing 

fully connected, and Softmax layers. Given an input image of size 𝑤 × ℎ × 𝑐 (where c 

is the color channels of image), the CNN network extracts a feature gird F of size 𝑤′ ×

ℎ′ × 𝑘, where k is the number of feature maps in the last convolutional layer, and 𝑤′and 

ℎ′ depend on the w and h of input images and the number of pooling layers in the CNN 

 

Figure 3.13. Network architecture of the 2D-SACRN model. 
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network. Then, the feature grid F is fed into the 2D self-attention block to get the final 

attended feature grid 𝐹𝑎𝑡𝑡𝑛. Finally, the final attended feature grid 𝐹𝑎𝑡𝑡𝑛 is unfolded to a 

feature sequence column by column from left to right in each feature map. The feature 

sequence is fed into the encoder. 

B. Encoder 

At the top of the feature extractor, the encoder encodes the feature sequence extracted 

from the feature extractor into a sequence of label probabilities. Mathematically, the 

encoder predicts label-probabilities for each feature in the feature sequence. In the 2D-

SACRN model, we use a BLSTM network followed by a fully connected layer and a 

Softmax layer to build the encoder. The BLSTM network takes the feature sequence from 

the feature extractor as the input. Then, the output of the BLSTM network is fed into the 

fully connected layer, which converts the output feature dimension to the size of the total 

character set (plus 1 for CTC blank character). Finally, the Softmax layer, which is placed 

at the end of the encoder, generates the label probabilities at each time step. 

Let 𝐹𝑠𝑒𝑞 = (𝑓1, 𝑓2 ⋯ 𝑓𝑛), 𝐸 = (𝑒1, 𝑒2 ⋯ 𝑒𝑛) and 𝐻 = (ℎ1, ℎ2 ⋯ ℎ𝑛) denote the feature 

sequence, the sequence of label probabilities, and the output of the BLSTM network, 

respectively, where n is the number of feature vectors. Then, we have:  

 BLSTM seqH F                          (3.5.6)    

  Softmax FCE H                        (3.5.7)    

C. Decoder 

At the top of the 2D-SACRN model, the decoder converts the sequence of label 

probabilities made by the encoder into a final label sequence. Mathematically, the 

decoding process is to find the final label sequence with the highest probability 

conditioned on the sequence of label probabilities. CTC [42] is a specific loss function 

designed for sequence labeling tasks where it is difficult to segment the input sequence 

into the final segmented sequence that exactly matches a target sequence. In this work, 

we employ the CTC algorithm to build the decoder to obtain the conditional probability.  

The whole system is trained end-to-end using stochastic gradient descent algorithms to 

minimize the CTC loss. For the decoding process in the testing phase, we apply the CTC 
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beam search with the beamwidth of 2 to obtain the final label sequence with the highest 

probability conditioned. 

3.5.3. Experiments 

To evaluate the performance of the proposed 2D-SACRN model, we conducted 

experiments on the three datasets: IAM handwriting, Rimes, and TUAT Kondate. The 

implementation details are described in Sec A; the results of the experiments are presented 

in Sec. B; and the visualization of the 2D self-attention map is shown in Sec. C. 

A. Implementation Details 

IAM and Rimes datasets. In the experiments on the two western datasets, the 

architecture of the CNN network in the feature extractor is ConvNet-1 as shown in Table 

3.12, where ‘maps’, ‘k’, ‘s’ and ‘p’ denote the number of kernels, kernel size, stride and 

padding size of convolutional layers, respectively. It consists of five convolutional (Conv) 

blocks. Each Conv block consists of one Conv layer followed by the Batch normalization 

[43] and the ReLU activation. To reduce overfitting, we apply dropout at the input of the 

last three Conv blocks (with dropout probability equal to 0.2).  

Table 3.12. Network configurations of the CNN in the feature extractor. 

Type 
Configurations 

ConvNet-1 ConvNet-2 

Input h×w image h×w image 

Conv Block 1 #maps:16, k:3×3, s:1, p:1 #maps:16, k:3×3, s:1, p:1 

Max-Pooling1 #window:2×2, s:2×2 #window:2×2, s:2×2 

Conv Block 2 #maps:32, k:3×3, s:1, p:1 #maps:32, k:3×3, s:1, p:1 

Max-Pooling2 #window:2×2, s:2×2 #window:2×2, s:2×2 

Conv Block 3 #maps:48, k:3×3, s:1, p:1 #maps:48, k:3×3, s:1, p:1 

Max-Pooling3 #window:1×2, s:1×2 #window:2×2, s:2×2 

Conv Block 4 #maps:64, k:3×3, s:1, p:1 #maps:64, k:3×3, s:1, p:1 

Max-Pooling4 #window:2×1, s:2×1 #window:1×2, s:1×2 

Conv Block 5 #maps:80, k:3×3, s:1, p:1 #maps:80, k:3×3, s:1, p:1 

Max-Pooling5  #window:2×1, s:2×1 

Conv Block 6  #maps:128, k:3×3, s:1, p:1 
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At the encoder, we employ a Deep BLSTM network with 256 hidden nodes of five 

layers. To prevent overfitting when training the model, the dropout (dropout rate=0.5) is 

also applied in each layer of the Deep BLSTM network. A fully connected layer and a 

softmax layer with the node size equal to the character set size (n=80 for IAM and 100 

for Rimes) are applied after each time step of the Deep BLSTM network. 

TUAT Kondate dataset. In our experiments on the TUAT Kondate dataset, the 

architecture of the CNN network in the feature extractor is ConvNet-2, which consists of 

six Conv blocks, as shown in Table 3.12. The Deep BLSTM network in the encoder has 

three BLSTM layers with 256 hidden nodes of each layer. The other configurations are 

the same as the 2D-SACRN model in the experiments on the two western datasets.  

B. Experiment Results 

In order to evaluate the performance of the 2D-SACRN model, we employ the terms of 

Character Error Rate (CER), Word Error Rate (WER), and Sequence Error Rate (SER) 

that are defined as follows: 

   
(x,z) S

1
CER h,S = ED h(x),z

Z 

                                (4.5.8)    

   
(x,z) S

1
WER h,S = ED h(x),z

Z
word

word 

                         (4.5.9)    

 
(x,z) S

  0 if h(x)=z100
SER h,S =

1 otherwiseS 


 

 
                          (4.5.10)    

where Z is the total number of target labels in S’ and ED(p, q) is the edit distance between 

two sequences p and q, while Z𝑤𝑜𝑟𝑑 is the total number of words in S’ and 𝐸𝐷𝑤𝑜𝑟𝑑(p, 

q) is the word-level edit distance between two sequences p and q. 

English and French Text Recognition: 

The first experiment evaluated the performance of the 2D-SACRN model on the two 

western handwritten datasets: IAM Handwriting and Rimes in terms of CER and WER. 

To fairly compare with the previous models, we do not use any data augmentation 

techniques as well as linguistic context information. Table 3.13 shows the recognition 

error rates by the 2D-SACRN model and the previous models [7, 9, 13, 46–50] on the test 

set of IAM Handwriting and Rimes datasets without using the language model.  
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On the IAM Handwriting dataset, the 2D-SACRN model achieved CER of 6.76% and 

WER of 20.89%. These results show that the 2D-SACRN model achieves the state-of-

the-art accuracy and outperforms the best model in [50] by about 8% of CER and 15% of 

WER on the IAM Handwriting dataset. On the Rimes dataset, the 2D-SACRN model 

achieved CER of 3.43% and WER of 11.92%. Although its CER was considerably larger 

than the current state-of-the-art [48], its WER was the best. 

From the above results, we conclude that the 2D-SACRN model achieves similar or 

better accuracy when compared to the state-of-the-art models in both IAM Handwriting 

and Rimes datasets.  

Japanese Text Recognition: 

In the second experiment, we evaluated the performance of the 2D-SACRN model on 

the TUAT Kondate - offline handwritten Japanese text dataset in terms of CER and SER. 

To fairly compare with the previous models, we also do not use any data augmentation 

techniques as well as linguistic context information. Table 3.14 compares the recognition 

error rates by the 2D-SACRN model and the previous works of DCRN and AACRN 

Table 3.13. Recognition error rates (%) on IAM and Rimes datasets. 

Model 
IAM Rimes 

CER WER CER WER 

CNN-1DLSTM (Moysset et al. [47]) 11.52 35.64 6.14 20.11 

MDLSTM (Pham et al. [7]) 10.80 35.10 6.80 28.50 

GNN-1DLSTM (Bluche et al. [9])* 10.17 32.88 5.75 19.74 

2DLSTM (Moysset et al. [47]) 8.88 29.15 4.94 16.03 

2DLSTM-X2 (Moysset et al. [47]) 8.86 29.31 4.80 16.42 

CNN-Seq2Seq (Sueiras et al. [46]) 8.80 23.80 4.80 15.90 

CNN-Seq2Seq (Zhang et al. [21]) 8.50 22.20 - - 

CNN-1DLSTM (Puigcerver et al. [13]) 8.20 25.40 3.30 12.80 

2DLSTM (Bluche et al. [48]) 7.90 24.60 2.90 12.60 

CNN-1DLSTM (Puigcerver et al. [13])* 7.73 25.22 4.39 14.05 

CNN-Transformers (Kang et al. [49]) 7.62 24.54 - - 

Deep BLSTM + Dropout (Bluche et al. [50]) 7.30 24.70 5.60 20.90 

2D-SACRN (Ours) 6.76 20.89 3.43 11.92 

        * Experiments run by Moysset et al. [47] 
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models on the test set of TUAT Kondate without using the language model. The 2D-

SACRN model achieved CER of 2.49% and SER of 12.66% on the test set of TUAT 

Kondate. The results imply that the 2D-SACRN model obtains the state-of-the-art results 

on the TUAT Kondate dataset and outperforms the best model by about 10% of CER and 

25% of SER.  

Effects of 2D Self-Attention Mechanism: 

To measure the effectiveness of the 2D self-attention mechanism in the feature extractor 

of the 2D-SACRN, we prepared one variation, which was the same as the 2D-SACRN 

model except using the 2D self-attention block in the feature extractor. This variation is 

called 2D-SACRN_w/o_2DSelfAttn. We trained the 2D-SACRN_w/o_2DSelfAttn 

according to the same scheme applied to the 2D-SACRN model on the three datasets. 

Table 3.15 compares its recognition error rates with the 2D-SACRN model on the test set 

of the IAM Handwriting, Rimes, and TUAT Kondate datasets. In all datasets, the 2D-

SACRN model slightly outperforms the 2D-SACRN_w/o_2DSelfAttn. The results imply 

that the 2D self-attention mechanism in the feature extractor improves the performance 

of the 2D-SACRN model for handwritten text recognition. 

Table 3.15. Recognition error rates (%) with different feature extractors. 

Model 
IAM Rimes Kondate 

CER WER CER WER CER SER 

2D-SACRN_w/o_2DSelfAttn 7.49 22.97 3.78 13.48 2.77 14.02 

2D-SACRN 6.76 20.89 3.43 11.92 2.49 12.66 

 

Table 3.14. Recognition error rates (%) on the test set of TUAT Kondate. 

Model 
Kondate 

CER SER 

Segmentation-based method [1] 11.2 48.53 

DCRN_o-f&s 6.95 28.04 

DCRN_o-s 6.44 25.89 

End-to-End DCRN 3.65 17.24 

AACRN 2.73 15.74 

2D-SACRN (Ours) 2.49 12.66 
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C. Visulization of 2D Self-Attention mechanism 

To verify whether the 2D self-attention helps the feature extractor to capture the 

relationships between widely separated spatial regions in an input image, we visualize the 

2D self-attention map in 2D-SACRN for different images in the IAM Handwritten dataset. 

Figure 3.14 shows the visualization of the 2D self-attention map for two images. In each 

group, the top image is the original input image, while each of the other five images shows 

one query point with color-coded dots (blue, fuchsia, green, red, and yellow) and the 2D 

 

(a) A group of attention maps belonging to the first text image. 

 

(b) A group of attention maps belonging to the second text image. 

Figure 3.14. The visualization of 2D self-attention maps. 
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self-attention map for that query point. We observe that the 2D self-attention mechanism 

tends to focus on locations having similar texture to the query point, though these 

locations are far from the query point. For example, in the first group of Figure 3.14(a), 

the blue point (top of the “f” character) attends mostly to locations around the stroke of 

the “f”, “d”, “,”, and “k” characters. Besides, the fuchsia point (inside the stroke of the 

“a” character of the “blank”) do not attend to locations around its stroke but mostly attends 

to the stroke of the “f”, “d”, and “,” characters.  

We also see that query points inside background regions seem not to attend mostly to 

any other location, such as the red and yellow points in Figure 3.14(a) as well as the green 

and red points in Figure 3.14(b). It seems because the points inside background regions 

do not mostly relate to any other location in the image. We also find that some query 

points are quite close in spatial location but have very different attention maps. For 

example, in the second group of Figure 3.14(b), the blue point and the fuchsia point are 

quite close but have very different attention maps. This shows that the adjacent points 

may freely attend to other distant locations. These observations demonstrate that the 2D 

self-attention mechanism helps the feature extractor to capture the relationships between 

widely separated spatial regions in an input image. 
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3.6. Text Line Image Generation Method 

Deep Neural Networks, especially end-to-end models typically require a large data for 

training. However, for many handwriting datasets, especially handwritten Japanese 

character and text datasets, the number of data is not enough, so that it is necessary to 

apply data argumentation. Many data argumentation methods for handwriting datasets 

have been proposed by modifying the original data such as affine transformations [51, 

52], nonlinear combinations [52, 53] and Random warp grid distortion [54]. However, 

such method just modifies the original data, can’t gain the real text line image. In this 

work, we propose a synthetic pattern generation method which synthesize handwritten 

text line images from sentences in corpora and handwritten character patterns in the 

Nakayosi and Kuchibue [55] database with elastic distortions. 

 

Figure 3.15. Synthetic pattern generation method. 
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3.6.1. Synthetic Data Generations. 

Since Deep Neural Networks requires large data for training, we propose a synthetic 

pattern generation method which synthesizes handwritten text line images from sentences 

in corpora and handwritten character patterns in the isolated character database with local 

elastic distortion and global elastic distortion model. The overview of the synthetic 

pattern generation method is shown in Figure 3.15. The synthetic handwritten text line 

dataset is generated by taking the following 6 steps: 

1. Get a sentence from the listed sentences of corpus. 

2. Randomly choose a writer from the listed writers of the handwritten character 

pattern database. 

3. For each character of the sentence in the step 1, a handwritten image of this 

character is randomly chosen from the writer selected in the step 2. 

4. Apply a local elastic distortion to each handwritten pattern in the step 3. 

5. Synthesize a handwritten text line image from the sentence selected in the step 1 

and elastically distorted handwritten character images in the step 4 with random 

spacing between each character image. 

6. Apply a global elastic distortion to the generated synthetic text line image.  

3.6.2. Local Elastic Distortion. 

The local elastic distortion model performs an affine transformation on each 

handwritten character image before concatenating them into a synthetic text line image. 

In the local elastic distortion model, we employ shearing, rotation, scaling, translation 

transformations. 

Shear is a transformation that slants the shape of an object. There are two shear 

transformations include X-shear and Y-shear (vertical and horizontal shear). They are 

calculated by Eq. (3.6.1) and Eq. (3.6.2). 

Translation is a transformation that moves an object to a different position without 

rotation. Scaling is a transformation that changes the size of an object. The translation 

and scaling transformations are shown in Eq. (3.6.3) and eq. (3.6.4). 

Rotation is a transformation that rotates the object at particular angle α from its origin. 

The rotation transformation is shown in Eq. (3.6.5). 
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Here, (𝑥′, 𝑦′) is the new coordinate of a point (x, y) transformed by any transformation 

model, α is the angle of the shear and rotation transformations, k is the scaling factor of 

the scaling transformation, the pair ( 𝑡𝑥, 𝑡𝑦 ) is the shift vector of the translation 

transformation. The parameters of the local elastic distortion model is presented by 

[(𝑝𝑆𝐻, α), (𝑝𝑇 , 𝑡𝑥, 𝑡𝑦), (𝑝𝑆𝐶 , 𝑘), (𝑝𝑅, α)] , where 𝑝𝑆𝐻 , 𝑝𝑇 , 𝑝𝑆𝐶  and 𝑝𝑅  are the 

probabilities of applying the shearing, translation, scaling and rotation transformations, 

respectively, α is from −8𝜊 𝑡𝑜 8𝜊  with a step of 0.1, 𝑡𝑥 and 𝑡𝑦 are from 3 to 5 pixels 

with a step of 1, and k is from 0.8 to 1.2 with a step of 0.01. 
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Figure 3.16 show examples of the local elastic distortion model with α = 8°,  k=0.9 

and 𝑡𝑥 = 𝑡𝑦 = 3. 

 

Figure 3.16. Examples of local elastic distortion by shearing, rotation and scaling transformations. 
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3.6.3. Global Elastic Distortion. 

Global elastic distortion model performs affine transformation on a whole text line 

image generated by concatenating isolated handwritten character images. In the global 

elastic distortion, we employ the rotation and scaling transformations. The rotation and 

scaling transformations is similar to the local elastic distortion. The parameters of the 

global elastic distortion are presented by [(𝑝𝑆𝐶 , 𝑘), (𝑝𝑅, α)], where 𝑝𝑆𝐶  and𝑝𝑅 are the 

probabilities of applying the scaling and rotation  transformations, respectively, k is the 

scaling factor and from 0.8 to 1.2 with a step of 0.01, and α is the angle of the global 

rotation transformation and from −5𝜊 𝑡𝑜 5𝜊 with a step of 0.1. 

Figure 3.17 show examples of the global elastic distortion by the scaling and rotation 

transformations. 

3.6.4. Experiments 

To evaluate the effectiveness of the synthetic data generation method, we conducted 

experiments of the End-to-End DCRN model on standard benchmarks for offline 

handwritten Japanese text recognition. The information of the Synthetic Handwritten 

Text Line Dataset generated by the synthetic data generation method is given in Section 

A, the results of the experiments are presented in Section B, and the correctly recognized 

and misrecognized samples are shown in Sec. C. 

A. Synthetic Handwritten Text Line Dataset. 

Deep Neural Networks, especially end-to-end models typically require a large data for 

training. However, in handwritten Japanese text recognition, the current handwritten 

 

Figure 3.17. Examples of global elastic distortion by scaling and rotation 

 

 

 

 

Figure 11: Examples of global elastic distortion by scaling and rotation transformations. 
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Japanese text dataset TUAT Kondate consists of 13,856 text line images which just cover 

about 1,200 character categories (totally have 3345 character categories for JIS level-1). 

So, this dataset is quite small and the number of data is not enough to train the end-to-end 

DCRN model. So that we apply our proposed synthetic pattern generation method to 

argument the training data. We employ the sentences of Nikkei newspaper corpus and 

Asahi newspaper corpus and the handwritten character database, Nakayosi and Kuchibue 

[55] to generate the Synthetic Handwritten Text Line (SHTL) dataset. Nakayosi contains 

samples of 163 writers, 10,403 character patterns covering 4,438 classes per writer. 

Kuchibue contains handwritten samples of 120 writers, 11,951 character patterns 

covering 3,345 classes per writer. Nikkei corpus consists of about 1.1 million sentences 

collected from Nikkei News and Asahi corpus consists of about 1.14 million sentences 

collected Asahi News. We randomly choose 30,000 sentences which contain less than 30 

characters from each corpus. Since it makes sure that the end-to-end model can be 

trainable by SHTL. SHTL consists about 60,000 of synthetic handwritten text line images. 

Figure 3.18 show samples of generated synthetic text line image in the SHTL dataset. 

B. Experiment Results 

To evaluate the effectiveness of the synthetic data generation method, we train the End-

to-End DCRN model by two datasets; the first is the training set of TUAT Kondate and 

 

Figure 3.18. Samples of generated synthetic data. 
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the second is the training set of TUAT Kondate combining the SHTL Dataset. We call 

the former End-to-End and the latter End-to-End_SHTL. We use the validation set and 

test set of TUAT Kondate to validate and test the performance of End-to-End and End-

to-End_SHTL. Table 3.16 shows the recognition rate on the valid and test sets. End-to 

End_SHTL achieved LER of 1.95% and SER of 14.02% and outperformed the End-to-

End on the test set of Kondate. These results show that the recognition accuracy is further 

improved when we use the SHTL dataset to train the end-to-end DCRN model. This 

means the synthetic data generation method improves the performance of the end-to-end 

DCRN model. 

Table 3.16. Label Error Rate (LER) and Sequence Error Rate (SER) on Kondate. 

Model 
LER SER 

Valid set Test set Valid set Test set 

End-to-End 5.22% 3.65% 24.47% 17.24% 

End-to-End_SHTL 3.62% 1.95% 21.87% 14.02% 

 

C. Correctly recognized and misrecognized samples 

Figure 3.19 shows some correctly recognized and misrecognized samples by End-to-

End_SHTL whose SER is about 14.02%. For each misrecognized sample, the upper 

image is an input handwritten text line image and the text bounded by the lower blue 

rectangular shows the ground-truth followed by “->” and the recognition resulted. There 
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are a total of 196 misrecognized samples among 1398 samples in the test set. Most of 

them are missing some characters in the ground-truth. 

  

 

a). Correctly recognized samples. 

 

b). Misrecognized samples. 

Figure 3.19. Correctly recognized and misrecognized samples by End-to-End_SHTL. 
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3.7. Conclusions 

In this chapter, we present models of Deep Convolutional Recurrent Network (DCRN) 

for recognizing offline handwritten Japanese text lines without explicit segmentation of 

characters. The DCRN model has three parts: a feature extractor by Convolutional Neural 

Network (CNN); an encoder by Bidirectional Long Short-Term Memory (LSTM); and a 

decoder by Connectionist Temporal Classification (CTC). As far as we know, this is the 

first approach that adopts DNNs for offline handwritten Japanese text recognition. The 

experiments show that the DCRN model outperforms the traditional segmentation-based 

method on the offline handwritten Japanese dataset – TUAT Kondate. 

To solve the drawbacks of RNNs in the encoder, we propose an upgraded version of 

DCRN named Attention Augmented Convolutional Recurrent Network (AACRN) which 

introduces 1D self-attention mechanism in the encoder. The self-attention mechanism is 

complementary to RNN in the encoder and helps the encoder to capture long-range and 

multi-level dependencies across an input sequence. Experiments on the TUAT Kondate 

dataset show that the AACRN model has reduced the error rates drastically from the 

DCRN model. The experiments also show that the self-attention mechanism in the 

encoder improves the performance of the CRNN model for handwritten Japanese text 

recognition. 

To solve the weakness of the CNN network in the feature extractor, we propose a 2D 

Self-Attention Convolutional Recurrent Network (2D-SACRN) model with a 2D self-

attention mechanism for offline handwritten text recognition. In this model, we present a 

2D self-attention mechanism in the feature extractor to help the CNN to capture the 

relationships between widely separated spatial regions in an input image. As far as we 

know, it is the first approach that employs the 2D self-attention mechanism in the feature 

extractor of the CTC-based model for offline handwritten text recognition. According to 

the extensive experiments on the three datasets of IAM Handwriting (English), Rimes 

(French), and TUAT Kondate, the 2D-SACRN model achieves similar or better accuracy 

than the state-of-the-art models. The 2D self-attention map visualization shows that the 

2D self-attention mechanism helps the feature extractor capture the relationships between 

widely separated spatial regions in an input image. 

Since the DCRN models require a large data for training, we propose a synthetic pattern 

generation method which synthesize handwritten text line images from sentences in 

corpora and handwritten character patterns in the isolated character database with elastic 
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distortions. The experiments on the offline handwritten Japanese text dataset – TUAT 

Kondate show that the synthetic pattern generation method improves the performance of 

the DCRN model. 
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Chapter 4. Japanese Historical Documents Recognition 

4.1. Introduction 

Under the support by the Center for Open Data in the Humanities (CODH) in Japan, 

the technical committee on Pattern Recognition and Media Understanding (PRMU) in the 

academic society of IEICE Japan held a contest to read deformed Kana in 2017 [20]. The 

tasks are divided into three levels in accordance with the number of characters in a 

circumscribed rectangle: level 1: single characters, level 2: sequences of three vertically 

written Kana characters, and level 3: unrestricted sets of characters composed of three or 

more characters possibly in multiple lines. The dataset for the contest consisting of three 

sub-datasets for the three levels is published1. We call the dataset Kana-PRMU. In this 

contest, we proposed the combination of a pre-trained CNN and an LSTM with CTC 

named by Deep Convolutional Recurrent Network (DCRN) for level 2 and the DCRN 

combined with a vertical line segmentation method for level 3 [21]. These methods won 

the best award with 12.88% character error rate (CER) for level 2 and 26.70% for level 

3.  

This chapter is based on our previous works which won the best algorithm award in the 

PRMU algorithm contest in 2017, but omits level 1 and focuses on level 2 and 3. 

Moreover, we added end-to-end-training and a two-dimensional Bidirectional Long 

Short-Term Memory (2DBLSTM) based model after the contest. We compare the 

pretrained CNN approach and the end-to-end approach with more detailed variations for 

level 2: recognizing sequences of three vertically written Kana characters. Then, we 

propose a method of vertical text line segmentation and multiple line concatenation before 

applying the DCRN model for level 3: recognizing unrestricted sets of characters in 

multiple lines. We also examine two-dimensional Bidirectional Long Short-Term 

Memory (2DBLSTM)-based methods for level 3 and compare their performances with 

the vertical text line segmentation-based method.  

The rest of this chapter is organized as follows: Section 4.2 presents methods for 

recognizing sequences of three vertically written Kana characters (level 2); Section 4.3 

describes methods for recognizing unrestricted sets of Kana characters (level 3); Section 

                                                 
1 http://www.iic.ecei.tohoku.ac.jp/~tomo/alcon2017/dataset.tar.gz 
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4.4 presents attention-based sequence to sequence methods for both level 2 and level 3 

datasets; and Section 4.5 concludes the chapter. 

4.2. Contest Overview 

The PRMU contest is divided in three different levels (1 to 3) in accordance with the 

number of characters to be recognized [7]. All the tasks are to recognize Kana characters 

of 46 categories; Kanji characters are excluded. All characters are written with brushes. 

The Kana-PRMU dataset is compiled from 2,222 scanned pages of 15 pre-modern 

Japanese historical books and consists of three subsets for three levels. Figure 4.1 shows 

a sample page of the pre-modern Japanese books and examples of level 1, level 2, and 

level 3. The datasets for levels 1, 2, and 3 respectively consist of 228,334 segmented 

single Kana images, 79,165 sequences of three vertically written Kana characters, and 

12,583 samples of unrestricted Kana characters composed of three or more Kana 

characters, possibly in multiple lines. Character images are annotated with their bounding 

boxes and Unicodes. Contest participants can use only the provided datasets. The test sets 

to evaluate the submitted method are undisclosed.  

 

Figure 4.1. Sample page in the contest [7]. 
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As in other handwriting databases, there are large deformations and variations even in 

the patterns of the same category. Moreover, the old Kana uses several different notations 

for the same category, such as shown in Figure 4.2, where the categories ‘o’ and ‘ni’ have 

two and four notations, respectively. Furthermore, a notation of the category ‘u’ is similar 

to a notation of the category ‘ka’ as shown in Figure 4.3. The different notations and 

similar notations between different categories are difficult problems for recognizing the 

old handwritten Kana. Since the original images are scanned from old Japanese books, 

they are fade and show-through as shown in Figure 4.4; smeared and stained as shown in 

Figure 4.5. Their backgrounds are often neither uniform nor even as shown in Figure 4.6. 

          

(a) Two notations of category ‘o’                              

                 

(b) Four notations of category ‘ni’ 

Figure 4.2. Different notations of the same category. 

                   

                 (a) Notation of category ‘u’        (b) Notation of category ‘ka’ 

Figure 4.3. Similar notations between different categories. 

                            

 (a) Fade and show-through.        (b) With width variations of vertical lines. 

Figure 4.4. Fade and show-through. 
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In this work, we focus on the level 2 and 3 subsets. Since PRMU did not publicize the 

test set of the contest, we use one of the 15 historical books as the test set. The remaining 

14 books are used for training and validation. Among the 15 books, the 15th book contains 

many noisy patterns and a variety of backgrounds. Thus, the 15th book is selected as the 

test set for levels 2 and 3. The other books are divided randomly to form the training and 

validation sets with the ratio of 9:1. Note that the text is written vertically.  

4.3. Three Kana Sequence Recognition 

This section presents recognition methods and evaluations on the level 2 dataset. 

        

Figure 4.5. Fragmented patterns and noisy patterns. 

           

Figure 4.6. Various backgrounds. 
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4.3.1. Level 2 Dataset 

The level 2 dataset consists of 79,165 images of single vertical text line composed of 

three Kana. All images in the 15th book are used as the test set. The other images are 

divided randomly from the training and validation sets with a ratio of 9:1. Consequently, 

the level 2 dataset consists of three subsets: the training set consisting of 56,097 images, 

the validation set consisting of 6,233 images, and the testing set consisting of 16,835 

images. Since each image has only a single vertical text line, all images are linearly scaled 

to the same width (96 pixels) with arbitrary lengths before fed to the recognition system. 

Figure 4.7 shows some vertical text line images in the dataset. 

 

Figure 4.7. Some vertical text line images in the level 2 dataset. 

4.3.2. Methods for level 2 

In level 2, we employ the DCRN model which is mentioned in the chapter 4 for 

recognizing three-Kana-character sequence images. The DCRN model consists of three 

main parts: a feature extractor by s CNN; an encoder by BLSTM; and a decoder by a CTC 

as shown in Figure 4.8. 

In the DCRN, the CNN feature extractor, which is usually pretrained by single-

character images as in level 1, extracts the sequence of features for all the frames from an 

input text line image, where each frame is a region within the input image from which 

features are extracted by CNN. Then, BLSTM encoder predicts a list for character labels 

with scores (label distribution) for each frame. Finally, the CTC decoder finds the most 

probable label sequence using the forward and backward algorithms. 
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Figure 4.8. Network architecture of DCRN.  

4.3.3. Implementation Details 

For the contest, we employed the pretrained CNN approach of the DCRN model and 

outperformed the other 9 participants to win the contest. After the contest, however, we 

proposed the end-to-end approach of the DCRN model. The difference between the 

pretrained CNN approach and the end-to-end approach is that the former pretrains the 

CNN by isolated character patterns before it is used to extract a feature sequence from a 

text line image. On other hand, the end-to-end approach does not pretrain the CNN 

network but trains the weights of CNN and those of BLSTM on pairs of images and 

sequences by only one loss function. The following sections A and B describe the 

implementation details of these approaches. 
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In both approaches, we binarize all images using Otsu’s method [30] and scale them 

into the same 64-pixel width while maintaining the aspect ratio. The Otsu’s method can 

remove background noise due to smears, stains, fade and show-through and so on, but 

some noise remains. The CNN feature extractor can extract key features while ignoring 

this remaining noise. 

A. Pretrained CNN approach 

We employ a cascade of five blocks of a convolutional layer and a max-pooling layer 

followed by two full-connected layers to make the CNN component for feature extraction. 

The detailed architecture of our CNN model is given in Table 4.1 in which ‘maps,’ ‘k,’ 

‘s,’ and ‘p’ denote the number of kernels, kernel size, stride, and padding size of 

convolutional layers, respectively. 

Table 4.1. Network configuration of our CNN model. 

Type Configurations 

Input 64×64 image 

Conv1 - ReLu #maps:64, k:3×3, s:1, p:1 

MaxPooling1 #window:2×2, s:2×2 

Conv2 - ReLu #maps:64, k:3×3, s:1, p:1 

MaxPooling2 #window:2×2, s:2×2 

Conv3 - ReLu #maps:128, k:3×3, s:1, p:1 

MaxPooling3 #window:2×2, s:2×2 

Conv4 - ReLu #maps:128, k:3×3, s:1, p:1 

MaxPooling4 #window:2×2, s:2×2 

Conv5 - ReLu #maps:256, k:3×3, s:1, p:1 

MaxPooling5 #window:2×2, s:2×2 

FC1 - ReLu #nodes: 200 

FC2 - ReLu #nodes: 200 

Softmax #nodes: 46(number class) 

 

Firstly, the CNN model is pretrained by the training set in the level 1 dataset using the 

stochastic gradient descent with the learning rate of 0.001 and the momentum of 0.95 

(Hereafter, training or pretraining is made by the training set in some dataset). We apply 

mini-batch training with the batch size of 64 samples. After training the CNN model, we 



 

 

59 

 

remove just the softmax layer or both the full connected layers and the softmax layer from 

the CNN model to use the remaining network as the feature extractor. Although the CNN 

architecture is the same, there are three methods to extract features from an input text line 

image by the CNN model. 

The first method slides a sub-window of 64×64 pixels through the text line image with 

a sliding stride size (overlap sliding) of 12 or 16 pixels and applies the CNN network 

without the softmax layer to extract features. We call this method DCRN-o_12 and 

DCRN-o_16 when the sliding stride size is 12 and 16 pixels, respectively. Figure 4.9 

shows this way of forming the feature extractor. 

 

Figure 4.9. Convolutional feature extractor in DCRN-o. 

The second method employs a sub-window of 64×32 pixels and the sliding stride size 

of 32 pixels (without overlap sliding) as shown in Figure 4.10 and applies the CNN 

network without the softmax and full connection layers to extract features from the input 

image. The full connection layer is further removed because an input image has a different 

size from character images used to pretrain the CNN model. We call this method DCRN-

wo. 
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Figure 4.10. Convolutional feature extractor in DCRN-wo. 

The third method does not use the sliding window but directly uses the text line image 

as an input of the CNN model and applying the CNN network again without the softmax 

and full connection layers to extract features for the same reason as in DCRN-wo. Figure 

4.11 shows its architecture, where ‘h’ and ‘w’ denote the height and width of an input 

image and ‘h’ ’ and ‘w’’ denote the height and width of an output image. We call this 

method DCRN-ws. 

 

Figure 4.11 Convolutional feature extractor in DCRN-ws. 

For the encoder, we employ three levels of 1DBLSTM networks with each level 

composed of two LSTMs (forward and backward), where every LSTM contains 128 

memory blocks with each block having a single cell. A fully connected layer and a 
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softmax layer with the node size equal to the character set size (n=47) are applied after 

each time step of the encoder. Here the number of category is added one category for 

blank character. The classifier is trained using the online steepest decent with the learning 

rate of 0.0001 and the momentum of 0.9. All vertical text line images in the dataset are 

scaled to the same width before being fed to the system. 

B. End-to-end approach 

The end-to-end approach does not pretrain the CNN network but trains the weights of 

the CNN and those of BLSTM on pairs of images and sequences by only one loss function. 

We employ the CNN network without the fully connected and softmax layers for the 

same reason as in DCRN-wo and DCRN-ws. To reduce the training time of this approach, 

we apply the batch normalization [31] after each convolutional layer in the CNN network. 

Table 4.2 shows the architecture of the CNN network used in the convolutional feature 

extractor, where ‘maps,’, ‘k,’ ‘s,’ and ‘p’ denote the number of kernels, kernel size, stride 

and padding size of each convolutional layer, respectively. The architecture consists of 

four convolutional layers. Batch normalization and Max-Pooling are applied after each 

convolutional layer. The Leaky ReLu [32] activation function is employed in all 

convolutional layers. 

Table 4.2. Network configuration of our CNN model. 

Type Configurations 

Input h×w image 

Conv1 - Batch Norm - LReLu #maps:32, k:3×3, s:1, p:1 

MaxPooling1 #window:2×2, s:2×2 

Conv2 - Batch Norm - ReLu #maps:32, k:3×3, s:1, p:1 

MaxPooling2 #window:2×2, s:2×2 

Conv3 - Batch Norm - ReLu #maps:64, k:3×3, s:1, p:1 

MaxPooling3 #window:2×2, s:2×2 

Conv4 - Batch Norm - ReLu #maps:64, k:3×3, s:1, p:1 

MaxPooling4 #window:1×2, s:1×2 

 

At the encoder, we employ the same Deep BLSTM network as in the pretrained CNN 

approach. To prevent overfitting when training the model, the dropout (dropout rate=0.2) 

is also applied in each layer in Deep BLSTM. The fully connected layer and the softmax 
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layer the same as the pretrained CNN approach are applied after each time step of Deep 

BLSTM. The end-to-end DCRN model is trained using the stochastic gradient descent 

with the learning rate of 0.001 and the momentum of 0.9. The training process stops when 

the recognition accuracy on the validation set does not gain after 10 epochs. 

4.3.4. Experiments for level 2 

The performance on levels 2 and 3 is measured in terms of Label Error Rate (LER) and 

Sequence Error Rate (SER), which are defined in Eq. (3.3.2) and Eq. (3.3.3). 

Table 4.3 shows the performances for the five models. Comparison of DCRN-o_12 and 

DCRN-o_16 suggests that the smaller stride of the sliding window with overlap works 

better in the convolutional feature extractor. The result that DCRN-o_12 and DCRN-o_16 

are better than DCRN-ws suggests that the convolutional feature extractor made by 

sliding a sub-window through an input image is superior to the convolutional feature 

extractor made by directly using an input text line image as the input of the CNN model. 

The DCRN-o_16 model was awarded the best method prize for achieving 87.6% 

recognition accuracy for Lv2, while other methods recorded an average of 45.6% 

recognition accuracy for the secret test set [7]. The worst network in Table 4.3 is DCRN-

wo, which suggests sliding a sub-window without overlap may lose the information from 

the border regions in the sub-window when extracting features by CNN. 

Table 4.3. Recognition error rates (%) on level 2 dataset. 

Networks 
LER SER 

Valid set Test set Valid set Test set 

DCRN-wo 14.19 26.79 33.51 59.28 

DCRN-ws 10.21 18.56 25.07 44.81 

DCRN-o_16 9.72 14.44 23.62 35.11 

DCRN-o_12 8.65 12.88 21.03 31.60 

End-to-End DCRN_ws 5.10 10.90 13.10 27.70 

 

With a 10.90% LER and 27.70% SER, the End-to-End DCRN_ws obtained the best 

recognition accuracy. This result suggests that the end-to-end model approach works 

substantially better than the pretrained CNN approach. 

On the other hand, there are still large gaps between the validation and testing sets. This 

suggests that the number of training samples was not adequate, so overfitting occurred. 



 

 

63 

 

Employing more samples for training or applying data augmentation may decrease the 

error rates to some extent. 

Figure 4.12 shows some correctly recognized and misrecognized samples by DCRN-

o_12, whose sequence error rate is 31.60%. For each correctly recognized sample, the 

upper image is an input vertical text line composed of three Kana characters and the text 

below shows the recognition result (ground-truth). For each misrecognized sample, the 

upper image is an input image and the text below shows the ground-truth followed by “-

>” and the recognition result. There are 5,320 misrecognized samples among 16,835 

samples. Most are misrecognized due to only one of the three characters. 

 

(a) Correctly recognized samples 

 

(b) Misrecognized samples 

Figure 4.12. Samples recognized and misrecognized by DCRN-o_12. 

4.3.5. Cross validation of end-to-end DCRN_ws 

We employ the k-fold cross validation to evaluate the performance of the proposed 

End-to-End DCRN_ws model more fairly. Since the level 2 dataset is made from 2,222 

scanned pages of 15 pre-modern Japanese books, we use the value of k=5 and split the 

dataset into 5 folds from 15 books with each fold having the same number of books. In 

other words, fold 1 consists of data from the 1st, 2nd, and 3rd books, fold 2 consists of 

data from the 4th, 5th, and 6th books, and so on. On the basis of the five folds, the i-th 
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model of End-to-End DCRN_ws is trained and validated by four folds but not the i-th 

fold. These four folds are divided randomly to form the training and validation sets with 

the ratio of 9:1. Then, the validated i-th model is evaluated on the i-th fold. The average 

accuracy of the five models is calculated as follows: 

                   Avg(𝑒𝑟𝑟𝑜𝑟_𝑟𝑎𝑡𝑒) = ∑
𝑒𝑟𝑟𝑜𝑟_𝑟𝑎𝑡𝑒𝑖×𝑁𝑖

𝑁

5
𝑖=1             (4.3.1)    

where 𝑒𝑟𝑟𝑜𝑟_𝑟𝑎𝑡𝑒𝑖 is the error rate of the i-th model, 𝑁𝑖 is the number of test images 

for the i-th model, and N is the total number of the test images for all models. 

Table 4.4 shows the recognition error rates of the five models. On average, this 

approach achieved a 14.45% LER and 34.44% SER, but these results are inferior to those 

shown in Table 4.3. The reason seems to be that fewer patterns were used here for training 

than in the previous experiment, whereas more patterns were used for testing. Another 

reason seems to be that the test patterns in the 15th book in the previous experiment were 

not the hardest to read. In fact, the worst error rate was recorded by Model 3, which 

employed the 7th, 8th, and 9th books for testing but others for training and validation. 

Another observation can be made from Table 4.4. The results greatly vary because we 

prepared the folds on the basis of separate books. This way of preparing folds is fair and 

able to predict unseen books and characters. When the training set is not large, however, 

systems might be evaluated by very different patterns. This seems to be another reason 

for the inferior performance mentioned above. Increasing test patterns is the best method, 

but changing the preparation of folds should be considered, such as preparing the folds 

by sampling from all the books. 

Table 4.4. Recognition error rates (%) of five models. 

Models 
Test set 

LER SER Number of samples 

Model 1 16.05 38.41 25,493 

Model 2 8.82 23.31 7,976 

Model 3 23.87 52.60 9,025 

Model 4 14.36 30.82 2,609 

Model 5 12.09 30.44 34,062 

Average 14.45 34.44 - 
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4.4. Unrestricted Kana Recognition 

This section presents recognition methods and evaluations on the level 3 dataset. 

4.4.1. Level 3 Dataset 

The hardest task is level 3, which could be considered as an extension of level 2. In 

level 3, 12,583 images are divided into three subsets: the training set of 10,118 images, 

the validation set of 1,125 images, and the testing set of 1,340 images. All images in level 

3 consist of three or more Kana characters written on one vertical line or multiple vertical 

lines. In addition to the difficulties mentioned above, there are some other difficulties 

such as the vertical and horizontal guide lines (Figure 4.13), the overlap or even touching 

between two vertical lines (Figure 4.14), and fade and show-through (Figure 4.15). In 

Figure 4.14(a), we draw blue bounding boxes to show each character. In the experiments, 

we use each image in its original size. 

 

Figure 4.13. Level 3 images containing vertical and horizontal guide lines. 

                                                  

(a) Overlap between two vertical lines.       (b) Two samples of touching between two vertical lines. 

Figure 4.14. Overlap or touching between two vertical lines. 

 

Figure 4.15. Fade and show-through. 
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4.4.2. Methods for level 3 

We propose three approaches for solving the level 3 task. The first approach applies 

vertical text line segmentation which segments multiple vertical text lines into individual 

vertical text lines and concatenates them to form a single vertical line image before 

employing the Kana sequence recognition of level 2. Since BLSTM for level 2 only works 

on a single vertical line image, we need to segment vertical text line images and reshape 

them into a single vertical text line image. The second approach employs the pretrained 

CNN network from level 2 and adds a 2DBLSTM that does not require any line 

segmentation to avoid the limitation of BLSTM in the first approach. The last approach 

employs only a 2DBLSTM. The second and the third approaches produce 2-dimensional 

predictions for a multi-line input image. The prediction is scanned and serialized into a 

prediction sequence and aligned with a label sequence for minimizing CTC loss. Thus, 

we can train the networks directly without needing any line segmentation. 

Multi-dimensional LSTM is an extension of LSTM to n-dimensions by using n 

recurrent connections from the previous states along every dimension with n forget gates 

[19]. 

The idea of accessing bi-directional context by BLSTM can also be extended to multi-

dimensional LSTM. For a two-dimensional LSTM, the bi-directional context of a 2D 

input along every dimension creates a total of four directions accessed by four layers of 

two-dimensional LSTM. We call a two-dimensional LSTM with bi-directional context 

access as 2DBLSTM. In our case, a 2DBLSTM receives a document image and outputs 

two-dimensional sequential predictions. In general, a multi-dimensional LSTM receives 

an n-dimensional input, scans it through each dimension as a sequential input and outputs 

another set of n-dimensional sequential predictions that have one-to-one correspondence 

to the input. CTC determines the final labels. 

Common to the three approaches, in the same way as for level 2, we binarize all images 

using Otsu’s method [30] and scale them into the same width of 64 pixels while 

maintaining the aspect ratio. 

Level 3, however, includes multiple-line images. In fact, 40.82% percent images have 

two lines. For such patterns, the above scaling implies each text line may only have half 

the width in such cases. 

A. Vertical text line segmentation and concatenation approach 
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The first approach segments vertical text lines and concatenates them into a single line 

before applying Kana sequence recognition. Figure 4.16 shows the process of 

methodology for recognizing unrestricted kana in level 3. 

1) Vertical text line segmentation and concatenation 

For vertical text line segmentation, we employ the segmentation method [13] tuned to 

vertical writing. Since there are many noises after binarization in historical documents, 

we remove connected components (CCs) that have areas smaller than the threshold of 25 

pixels (5×5). The size of the i-th connected component (Si) is calculated from the average 

of the height and the width of its bounding box. Each connected component has a 

bounding box. Some of them have widths larger than heights and vice versa, so we 

calculate the representative width of a component by the arithmetic mean of its width and 

height. We sort components in ascending order by their sizes and calculate the average 

size (AS) of all N components in the page from the larger half of components since those 

in the smaller half are often noises and isolated strokes. Images that have widths less than 

AS are considered as one-line images and left for the subsequent step. 

               𝐴𝑆 =  
2

𝑁
∑ 𝑆𝑖

𝑁

𝑖=
𝑁

2

                        (4.4.1)    

 

Figure 4.16. The methodology for recognizing unrestricted kana in level 3. 
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For images having widths equal or larger than AS, we employ our implementation [13] 

of the X-Y cut method [33] to separate them into text line images. The X-Y cut method 

calculates the vertical projection profile for each image and generates text-line borders at 

the transiting positions of non-zero projection to zero projection and zero projection to 

non-zero projection. The X-Y cut method sometimes overcuts text line images, so we 

combine the text line images that have widths less than half of AS. 

Then, we apply the Voronoi diagram method [34] to segment images unsegmented by 

the X-Y cut method. A Voronoi diagram shows the borders between CCs. To adapt the 

method to our purpose, we calculate the direction of each Voronoi border from its start 

point and end point, where the start and the end points are the upper and the lower points 

of a Voronoi border, respectively. We discard borders extending to the left or the right 

side of images while keeping borders starting from the top and ending at the bottom of 

the images. If both the above methods are unsuccessful for segmenting text line images, 

which is judged by the width of a vertical text-line exceeding AS, we forcefully separate 

at centerlines of images. These cases often include text lines touching each other or 

horizontal guide lines. 

Finally, we concatenate text line images from right to left and create a text line image 

from top to bottom by aligning the concatenated text line images with the center. Figure 

4.17 shows some generated text line images. 

 

Figure 4.17. Concatenated text lines. 
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2) Kana sequence recognition 

We employ the best model (End-to-End DCRN-ws) and second best model (DCRN-

o_12) in level 2 for recognizing single-line images. 

For training the two models, we apply the above vertical text line segmentation and 

concatenation to all training and validation images of level 3. Then, we train the two 

models using the training images until the recognition accuracy on the validation set does 

not gain after 10 epochs. 

Moreover, we can also use the training images of level 2 for this approach. We denote 

the training images of level 3, which are the results of the vertical text line segmentation 

and concatenation, as STL_Lv3 (to denote single text line images of the level 3) and 

denote those of level 2, which are all single-line images, as STL_Lv2. Then, when End-

to-End DCRN-ws and DCRN-o_12 are trained by STL_Lv3 alone, we call them Seg + 

End-to-End DCRN-ws_Lv3 and Seg + DCRN-o_12_Lv3, respectively. Moreover, when 

they are trained by both STL_Lv3 and STL_Lv2, we call them Seg + End-to-End DCRN-

ws_Lv2&3 and Seg + DCRN-o_12_Lv2&3, respectively. We will compare their 

recognition performances in the evaluation.  

B. CNN plus 2DBLSTM approach 

The second approach employs a pretrained CNN network and a 2DBLSTM that does 

not require any vertical text line segmentation. We reuse the pretrained CNN network 

without the softmax and full connection layers from the pretrained CNN approach of level 

2 described in Table 1 for feature extraction. The output of the pretrained CNN is scanned 

by two levels of the 2DBLSTM. The first level is composed of four LSTM layers that 

each have 64 single-cell memory blocks, and the second level is also composed of four 

LSTM layers, each having 128 single-cell memory blocks (2DBLSTM_b:64_b:128). We 

call this model CNN + 2DBLSTM_b:64_b:128. The output of the 2DBLSTM is scanned 

through the order of writing in the vertical direction (top to bottom, right to left) and is 

then aligned to the sequence of character labels for training using the CTC layer. 

For training the networks, we use level 2 and level 3 images. All images of levels 2 and 

3 are scaled into the same width of 64 pixels including two-line images. This means that 

single text line images are scaled with their width being 64 pixels whereas text line images 

of two lines are scaled so that each text line has the width of almost 32 pixels. To help the 

model learn these scaled characters, we add the level 2 images scaled to the width of 32 
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pixels to the training set. We denote this model as CNN + 2DBLSTM_b:64_b:128_Lv3 

when it is trained by the level 3 dataset only and as CNN + 

2DBLSTM_b:64_b:128_Lv2&3 when it is trained by the level 2 and level 3 datasets. 

C. 2DBLSTM approach 

The third approach replaces the CNN in the second approach by a stage of 2DBLSTM 

with the result of three stages overall. The output by the three stages of 2DBLSTM is then 

scanned and aligned to the sequence of character labels using CTC in the same way as in 

the second approach. 

To reduce the number of time steps in each dimension of 2DBLSTM, inputs are 

scanned through a window of consecutive time steps in each dimension. Weighted 

connections are used to transform each window of consecutive time steps to a single input 

time step. 

We use the three stages of 2DBLSTM. Each stage is composed of four LSTM layers. 

There are 2, 10 and 50 single-cell memory blocks for each layer in the first, second, and 

third stages, respectively. The input window sizes are 2×2, 4×2, and 4×2 for this sequence 

of stages, respectively. The input window sizes are applied to reduce the dimensionality 

of input images. Two feedforward full-connected layers with 6 hidden units for the first 

layer and 20 hidden units for the second layer are applied between the first and second 

stages and between the second and third stages, respectively. The feedforward layers 

merge the output of previous stages before their subsequent stages. They reduce the 

number of weights compared with directly connecting the stages. 

For training the networks, we use the level 2 and level 3 images in the same way as in 

the previous approach. We denote this model as 2DBLSTM_b:2_b:10_b:50_Lv3 when it 

is trained by the level 3 dataset only and as 2DBLSTM_b:2_b:10_b:50_Lv2&3 when it 

is trained by the level 2 and level 3 datasets. 

4.4.3. Experiments on level 3 

Table 4.5 shows the recognition error rates of the three approaches for level 3. When 

only the level 3 dataset is used for training, Segmentation + End-to-End DCRN_ws_Lv3 

achieves the best results: 18.50% LER and 73.70% SER. When both level 2 and level 3 

datasets are used for training, Segmentation + End-to-End DCRN_ws_Lv2&3 again 

achieves the best results: 12.30% LER and 54.90% SER. In both cases, the vertical text 
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line segmentation and concatenation approach outperforms the CNN plus 2DBLSTM 

approach as well as the 2DBLSTM approach without CNN. 

Table 4.5 also shows that training with both the level 2 and level 3 datasets improves 

the recognition accuracy for all approaches. For the CNN plus 2DBLSTM approach and 

the 2DBLSTM approach, we halved the width of the level 2 training patterns in order to 

add them to train the models, although this width reduction may have had side effects. 

The results show its effect probably because the large set of 56,097 × 3 characters 

contributes to learning these models. 

Table 4.5. Recognition error rates (%) on level 3 dataset. 

Networks 
LER SER 

Valid set Test set Valid set Test set 

CNN + 2DBLSTM_b:64_b:128_Lv3 14.45 44.18 55.82 97.16 

CNN + 2DBLSTM_b:64_b:128_Lv2&3 23.59 43.09 67.38 94.55 

2DBLSTM_b:2_b:10_b:50_Lv3 18.59 46.73 66.37 98.81 

2DBLSTM_b:2_b:10_b:50_Lv2&3 15.55 37.72 63.35 94.55 

Seg + DCRN-o_12_Lv3 11.72 26.70 49.14 82.57 

Seg + DCRN-o_12_Lv2&3 9.47 24.24 40.53 78.81 

Seg + End-to-End DCRN_ws_Lv3 4.30 18.50 21.50 73.70 

Seg + End-to-End DCRN_ws_Lv2&3 2.80 12.30 15.40 54.90 

 

Figure 4.18 shows some samples correctly recognized and misrecognized by Seg + 

DCRN-o_12_lv3, which had a 26.70% character error rate. The Seg + DCRN-o_16_lv3 

model was awarded the best method prize for achieving 39.1% recognition accuracy for 

Lv3, while other methods recorded an average of 21.5% recognition accuracy for the 

secret test set [7]. For each correctly recognized sample, the upper image is an input and 

the text below shows the recognition result (ground-truth). For each misrecognized 

sample, the upper image is an input image and the text below shows the ground-truth 

followed by “->” and the recognition result. 
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a) Correctly recognized samples. 

 

b) Misrecognized samples. 

Figure 4.18. Samples recognized and misrecognized by DCRN-o_12_Lv3. 

4.4.4. Cross validation of Seg plus End-to-End DCRN_ws 

In the same way as in Section 4.3, we employ the five-fold cross validation to fairly 

evaluate the performance of the proposed methods on the level 3 dataset. We prepare five 

folds and select training/validation sets for each test hold the same way as above. 

Table 4.6 shows the recognition error rates of the five models. On average, this 

approach achieved a 23.73% LER and 75.95% SER, but these results are inferior to those 

of the model trained by only the level 3 dataset shown in Table 4.5. This result is the same 
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as that in Section 4.3.5. Large variation in the performance is again the same as that in 

Section 4.3.5, possibly for the same reason. 

Table 4.6. Recognition error rates (%) of five models. 

Models 
Test set 

LER SER Number of samples 

Model 1 24.19 75.73 3,433 

Model 2 16.66 66.44 1,353 

Model 3 35.84 87.25 2,709 

Model 4 19.76 51.14 617 

Model 5 18.72 75.57 4,471 

Average 23.73 75.95 - 
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4.5. Conclusion 

In this chapter, we compared several Deep Neural Network architectures to recognize 

anomalously deformed Kana Sequence in Japanese historical documents in accordance 

with two levels (2 and 3) in a contest held by IEICE PRMU 2017. For level 2, the end-

to-end approach achieved the best Label Error Rate (LER) of 10.90% and Sequence Error 

Rate (SER) of 27.70%. For level 3, the vertical text line segmentation and concatenation 

approach achieved the best LER of 12.30% and SER of 54.90% when trained by both the 

level 2 and level 3 datasets. The sequence error rate is so high that linguistic context must 

be incorporated. For cross validation experiments, organization of folds for cross 

validation should be reconsidered for better prediction of error rates. 
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Chapter 5. Attention-based Model for Multiple Text 

Line Recognition 

5.1. Introduction 

This chapter introduces an attention-based row-column encoder-decoder (ARCED) 

model for recognizing multiple text lines image in Japanese historical documents. Since 

Japanese historical documents were written cursively through an entire text line with 

neighbor text lines touching each other, a segmentation-free approach is sought. We 

propose a model consisting of three main parts: a feature extractor, a row-column encoder, 

and a decoder. Given an input image, the feature extractor extracts a feature grid from it 

by a CNN. The row-column encoder applies a row bidirectional LSTM (BLSTM) and a 

column BLSTM to encode the feature grid in the horizontal direction and the vertical 

direction, respectively. The decoder applies an attention-based LSTM to generate the 

final target text based on the attended pertinent features. In this model, we incorporate a 

row-column BLSTM in the encoder to capture the sequential order information in both 

the vertical and the horizontal directions and a residual LSTM network in the decoder to 

take advantage of entire past attention information.  

Experiments on level 2 and level 3 of the Kana-PRMU dataset show that the ARCED 

model reduces the error rates for single text lines (level 2) and for three or more characters 

possibly in multiple lines (level 3) drastically from the previous methods [7]. The 

experiments also show that the row-column BLSTM in the encoder and the residual 

 

Figure 5.1. The overview of the ARCED model. 
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LSTM network in the decoder improve the performance of the attention-based encoder-

decoder model for the text recognition task in the Japanese historical documents. 

The contributions of this model are three folds. First, we present an attention-based 

encoder-decoder model for recognizing multiple text lines in Japanese historical 

documents. Second, we propose a row-column BLSTM in the encoder to encode the grid 

feature in both the vertical and horizontal directions. Third, we introduce a residual LSTM 

network in the decoder to take advantage of the entire past attention information. 

The rest of this chapter is organized as follows. Section 5.2 presents an overview of the 

ARCED model. The experiments are reported in Section 5.3. Finally, conclusions are 

presented in Section 5.4. 

5.2. The Proposed Method 

We propose an attention-based row-column encoder-decoder (ARCED) model 

consisting of three main parts: a feature extractor, a row-column encoder and a decoder 

as shown in Figure 5.1. From the bottom of the ARCED, the feature extractor extracts a 

feature grid from the input image by DCNN. Then, the row-column encoder applies a row 

BLSTM and a column BLSTM to encode the feature grid in the horizontal and vertical 

directions, respectively. At the top of ARCED, the decoder applies an attention-based 

LSTM and a residual LSTM to focus on the pertinent encoded features and generates the 

final target text. Figure 5.2 shows the detail of ARCED. The parameters 𝜌𝑡,C𝑡, and 𝑦𝑡 

denote the attention weights, the context vector and the output at time t of the decoder, 

respectively. We describe the details of each part in the following sections.  

 

Figure 5.2. Network architecture of the ARCED model.  
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A. Feature Extractor 

CNN is a class of Deep Neural Network designed to work well with the 2D structure 

of an input image. A standard architecture of CNN consists of a number of convolutional 

and pooling layers optionally followed by fully connected layers and a softmax layer. 

CNNs have also been demonstrated to be compelling network architectures for feature 

extraction [38, 39].  

In this work, we employ a standard CNN to build the feature extractor component. The 

CNN is constructed by taking convolutional, max-pooling layers while fully connected 

and softmax layers are removed. As shown in Figure 5.3, we apply the feature extractor 

to extract visual features from an input image of the size {h, w, c}, where h’ and w’ are 

the height and width of the input image and c is the color channel, resulting in a feature 

grid F of the size {h’, w’, k}, where h’ and w’ are the height and width of the feature map 

and k denotes the number of channels. The feature grid F is fed to the encoder. 

B. Row-column Encoder 

 LSTM introduced by S. Hochreiter et al. [40] is a special kind of Recurrent Neural 

Network (RNN) designed to address the vanishing gradient problem when learning input 

sequences with long-range dependencies. Several variants of the LSTM architecture have 

been proposed, such as the Gated Recurrent Unit (GRU) in [56]. A. Graves et al. [57] 

described a variant of LSTM, which is most commonly used in literature and 

demonstrated that it outperforms the other variants for the IAM dataset of online 

handwritten text lines [58]. In this work, we employ the variant of LSTM in [57] to build 

the encoder and decoder components. 

 

Figure 5.3. Feature extraction for a gray-scale input image (c=1). 
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The previous work for scene text recognition [27] and math recognition [59] use a row 

encoder which encodes the feature gird F by running one BLSTM network across each 

row in the grid. Therefore, it cannot capture the sequential order information in the 

vertical direction. In order to capture the sequential order information in both the vertical 

and horizontal directions, we propose a row-column encoder, which consists of two 

BLSTM networks. The first one runs across each row in the feature grid to capture the 

sequential order information in the horizontal direction, while the second one runs across 

each column in the grid to capture the sequential order information in the vertical 

direction as shown in Figure 5.4. We refer to the row BLSTM as BLSTMrow and the 

column BLSTM as BLSTMcol . As shown in Figure 5.4, BLSTMrow  and 

BLSTMcol encode the feature grid F to get the encoded feature grid 𝐸row  and 𝐸col , 

respectively. Then, 𝐸row  and 𝐸col  are concatenated to form  𝐸row&col , which is 

unfolded from the top to the bottom and from the right to the left to produce a sequence 

of encoded vectors 𝐸 = (𝑒1, 𝑒2 ⋯ 𝑒𝑛), where n is the number of feature vectors. Then, 

we have: 

 

Figure 5.4. Row-column BLSTM encoder. 

C. Attention-based decoder 

In the original attention-based seq2seq model [24], the decoder consists of two parts: 

an attention mechanism and an attention-based LSTM network. At each time step t in the 

decoding phase, the attention weights 𝜌𝑡 are calculated from the encoded vectors and the 

target hidden state ℎ𝑡. Given the attention weights, the context vector 𝑐𝑡 is computed as 

the weighted average over all encoded features. Then the attention vector 𝑎𝑡 is computed 
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by concatenating the context vector 𝑐𝑡  with the target hidden state ℎ𝑡 . Finally, the 

attention vector 𝑎𝑡 is fed through the softmax layer to produce a predictive distribution 

𝑦𝑡 as shown in Eq. (5.2.1): 

 softmaxt t

ay W a                            (5.2.1)      

In the original attention-based models, after deciding which location to pay attention to, 

predictive distributions are made based only on the current attention vector. However, to 

be effective, all past attention vectors (predictive distributions) should be maintained 

during the decoding process to keep track of which characters have been predicted. To 

remedy this problem, we introduce an LSTM network between the attention vector and 

the softmax layer, as shown in Figure 5.1. This LSTM network compresses all past 

attention vectors and the current attention vector into a fixed-length vector. Then, it is fed 

through the softmax to produce predictive distributions. Consequently, the system takes 

advantage of all past attention vectors when producing the current predictive distributions.  

Motivated by the idea of the residual connection in [41, 60], we add a residual 

connection between the attention vector and the softmax layer, as shown in Figure 5.2. 

Then, we denote the LSTM between the attention vector and the softmax layer by residual 

LSTM. The residual connection can help the model to address the exploding and 

vanishing gradient problem. Let LSTMRes be the residual LSTM network which has the 

residual connection. At the t-th time step, we have: 

 1

LSTM LSTM LSTM, LSTM ,t t t th O h a                     (5.2.2)   

Res LSTM

t t tO O a                             (5.2.3)   

where 𝒂𝒕 is the attention vector at the time step t, 𝒉𝐋𝐒𝐓𝐌
𝒕  and 𝑶𝐋𝐒𝐓𝐌

𝒕  are the hidden 

states and the output of the LSTM at the time step t, respectively; and 𝑶𝐑𝐞𝐬
𝒕  is the output 

of the residual LSTM network. 

We now describe how our decoder works. At each time step t in the decoding phase, 

the attention-based decoder generates one character 𝑦𝑡 based on the current output 𝑂𝑡 

of the residual LSTM network as shown in Eq. (5.2.4): 

 softmaxt t

oy W O                          (5.2.4)   
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The current output 𝑂𝑡 is computed by the previous hidden state of the residual LSTM 

network ℎRes
𝑡−1 and the current attention vector 𝑎𝑡 as shown in Eq. (5.2.5): 

 1

Res Res Res, LSTM ,t t t th O h a                     (5.2.5)   

The current attention vector 𝑎𝑡  is calculated from the concatenation of the current 

hidden state ℎ𝐴𝑡𝑡𝑛
𝑡  and the current context vector 𝑐𝑡as shown in Eq. (5.2.6): 

 Attntanh ;t t t

ca W c h   
                       (5.2.6)   

The hidden state ℎAttn
𝑡  is computed as shown in Eq. (5.2.7): 

 1 1 1

Attn Attn AttnLSTM , Embed( ),t t t th h y a     
              (5.2.7)   

where LSTMAttn  is the attention-based LSTM network, 𝑦𝑡−1  is the previous ground-

truth symbol (when training the model) or the previously predicted symbol (when testing 

the model), Embed is an embedding layer and 𝑎𝑡−1 is the previous attention vector. 

The current context vector 𝑐𝑡 is computed by the current attention weights (attention 

probabilities) 𝜌𝑡 = (𝜌1
𝑡 , 𝜌2

𝑡 … 𝜌𝑛
𝑡 )  and the sequence of encoded vectors 𝐸 =

(𝑒1, 𝑒2 ⋯ 𝑒𝑛) as shown in Eq. (5.2.8): 

1

n
t t

i i

i

c e


                             (5.2.8)   

The current attention weights 𝜌𝑡  is calculated based on the hidden state ℎ𝐴𝑡𝑡𝑛
𝑡  of 

LSTM𝐴𝑡𝑡𝑛 and the sequence of encoded vectors 𝐸 as shown in Eq. (5.2.9) and (5.2.10): 

  

  

Attn

Attn

1

exp score ,

exp score ,

t

it

i n
t

j

j

h e

h e








                   (5.2.9)   

   Attn Attnscore , tanht t

i h e ih e w h w e                (5.2.10)   

The decoding process is repeated until the decoder produces an <END> (end token). 

The ARCED model can be end-to-end trained by the gradient descent algorithm with a 

standard cross-entropy loss function. 

5.3. Experiments 
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To verify the effectiveness of each part of the ARCED model and compare its 

performance with other methods, we conducted experiments on the level 2 and level 3 

subsets of Kana_PRMU. The implementation details are described in Section 5.3.1, the 

results of the experiments are presented in Section 5.3.2, and the analysis on recognized 

and misrecognized samples is given in Section 5.3.3. 

5.3.1. Implementation Details 

The architecture of the CNN model used to build the feature extractor is shown in Table 

5.1, where ‘#maps’, ‘k’, ‘s’ and ‘p’ denote the number of kernels, the kernel size, the 

stride size and the padding size of each convolutional layer, respectively. It consists of 6 

convolutional layers. Batch normalization is applied to all convolutional layers. Each 

convolutional layer in the first five convolutional layers is followed by Max-Pooling 

layers. 

Table 5.1. Network configuration of our CNN model. 

Type Configurations 

Input h×w image 

Conv1 - Batch Norm - ReLu #maps:32, k:3×3, s:1, p:1 

MaxPooling1 #window:2×2, s:2×2 

Conv2 - Batch Norm - ReLu #maps:64, k:3×3, s:1, p:1 

MaxPooling2 #window:2×2, s:2×2 

Conv3 - Batch Norm - ReLu #maps:64, k:3×3, s:1, p:1 

MaxPooling3 #window:2×2, s:2×2 

Conv4 - Batch Norm - ReLu #maps:128, k:3×3, s:1, p:1 

MaxPooling4 #window:1×2, s:1×2 

Conv5 - Batch Norm - ReLu #maps:256, k:3×3, s:1, p:1 

MaxPooling5 #window:2×1, s:2×1 

Conv6 - Batch Norm - ReLu #maps:256, k:3×3, s:1, p:1 

 

At the row-column encoder, both the row BLSTM network 𝐵𝐿𝑆𝑇𝑀𝑟𝑜𝑤and the column 

BLSTM network 𝐵𝐿𝑆𝑇𝑀𝑐𝑜𝑙 are composed of forward and backward layers where each 

forward or backward layer is a single LSTM layer having 256 hidden nodes. To prevent 

overfitting when training, we apply the dropout (drop rate = 0.2) in all LSTM layers of 

the BLSTM networks. 
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At the decoder, the attention-based LSTM network LSTM_Attn consists of two LSTM 

layers of 512 hidden nodes and the residual LSTM network LSTM_Res consists of a 

single LSTM layer of 512 hidden nodes. A projection layer and a softmax layer with the 

node size equal to the character set size plus the start token and the end token are applied 

after the residual LSTM network. The entire ARCED model is end-to-end trained using 

Adam [35] with the learning rate of 0.001 and the batch size of 4. We do not use any data 

augmentation or data preprocessing technique in the training process. The training 

process stops when the recognition accuracy of the validation set does not gain after ten 

epochs. 

5.3.2. Experiment Results 

In order to evaluate the performance of the ARCED model, we employ the terms of 

Character Error Rate (CER) and Sequence Error Rate (SER) that are defined in Eq. (3.3.1) 

and Eq. (3.3.2). 

A. Single line recognition 

First, we conducted an experiment on the level 2 subset, which consists of single 

vertical line images of three Kana characters. Table 5.2 compares the recognition error 

rates by the ARCED model and the state-of-the-art DCRN models reported in Section 5.3 

on the test set of the level 2 subset. 

The ARCED model achieved CER of 4.15% and SER of 11.43% on the test set, which 

reduced CER to one third and SER to half compared with the best DCRN method. The 

results imply that ARCED outperforms the state-of-the-art recognition accuracy of the 

DCRN models. 

We offer some possible explanations for this improved performance. First, the attention 

mechanism seems to help the model focus on the pertinent features to predict characters. 

Second, the decoder helps the model learn the context statistics in the training vocabulary 

since the decoding mechanism is similar to the language model (given a sequence of 

previous characters, it predicts the next character). Third, the row-column BLSTM in the 

encoder and the residual LSTM in the decoder also improve the performance of the 

system. We will elaborate on these reasons in Sections C and D below. 

Table 5.2. Recognition error rates (%) on level 2 test set. 

Model CER SER 
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DCRN-wo 26.79 59.28 

DCRN-ws 18.56 44.81 

DCRN-o_16 14.44 35.11 

DCRN-o_12 12.88 31.60 

End-to-End DCRN 10.90 27.70 

ARCED 4.15 11.43 

 

Figure 5.5 shows correctly recognized samples and their visualization of attention 

weights. We can see that the attention mechanism focuses from the top of the image to 

read the first character, and shifts one character down to read the next character and so 

on. This mechanism is similar to how humans read a vertical text line. 

 

Figure 5.5. Visualization of the attention weights for single line text written vertically. 

B. Multiple line recognition 

Next, we evaluated the ARCED model for recognizing multiple text line images in the 

level 3 subset. This task is challenging because the model has to find the start of the first 

line and read all the characters in this line before finding the next line. Table 5.3 compares 

the recognition error rates by ARCED and the state-of-the-art methods reported in Section 

4.4 on the test set of the level 3 subset. The ARCED model achieved CER of 12.69% and 
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SER of 58.58% on the test set, which reduced CER and SER to two-thirds compared with 

the best DCRN method combined with line segmentation. The results confirm that 

ARCED works well with the multiple text lines images and outperforms the state-of-the-

art recognition accuracy in Section 4.4. 

Table 5.3. Recognition error rates (%) on level 3 test set. 

Model CER SER 

2DBLSTM 46.73 98.81 

CNN + 2DBLSTM 44.18 97.16 

Seg + DCRN-o_12 26.70 82.57 

Seg + End-to-End DCRN 18.50 73.70 

ARCED 12.69 58.58 

 

Again, this seems to be due to the attention-based seq2seq approach, the row-column 

BLSTM, and the residual LSTM. Moreover, it avoids errors due to line segmentation 

since ARCED does not need line segmentation. 

Figure 5.6 shows a correctly recognized sample and its visualization of attention 

weights. We can see that the attention mechanism first focuses from the top right of the 

image to read the first character, shifts one character down to read the next character, and 

shift one more character to read the last character in the first line. Then, the attention 

mechanism returns to the top and shifts one line to the left to read the next line. This 

mechanism is again similar to us when we read vertical multiple text lines. 
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Figure 5.6. Visualization of the attention weights for multiple lines of text written vertically. 

C. Row-column encoder 

To verify the effect of the row-column BLSTM in the encoder, we prepared two 

variants. The first one is named Row-Encoder, which uses only the row BLSTM in the 

encoder. The second one is named Column-Encoder, which uses only the column BLSTM 

in the encoder. The other components of these models are the same as the ARCED model. 

Table 5.4 compares their recognition error rates. 

Table 5.4. Recognition error rates (%) with different encoders. 

Model 

Level 2 test set Level 3 test set 

CER SER CER SER 

Row-Encoder 4.66 12.68 19.23 72.61 

Column-Encoder 4.38 12.05 12.82 56.64 

Row-Column Encoder (ARCED) 4.15 11.43 12.69 58.58 

 

In both the subsets, the Column-Encoder model slightly outperforms the Row-Encoder 

model. Since text lines in Japanese historical documents are written vertically from top 

to bottom. The ARCED model outperformed on them. The results imply that the row-

column BLSTM in the encoder improves the performance of the attention-based seq2seq 

model for the text recognition task in the Japanese historical documents. This seems to 
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be due to the row-column BLSTM that helps the encoder to capture the sequential order 

information in both the vertical and horizontal directions in the feature grid F. 

D. Residual LSTM 

To verify the effect of the residual LSTM network in the decoder, we prepared two 

variants. The first one is the same as the ARCED model except using the residual LSTM 

network, which is named ARCED_w/o_resLSTM. The second one is the same as 

ARCED except using the residual connection, which is named ARCED_w/o_resCon. 

Table 5.5 compares their recognition error rates with the ARCED model. 

In both the level 2 and level 3 subsets, the ARCED model outperforms the 

ARCED_w/o_resLSTM model. The results show that the residual LSTM network 

between the attention vector and the softmax layer in the decoder improves the 

performance of the attention-based seq2seq model for the text recognition task in the 

Japanese historical documents. This seems to be due to the residual LSTM that helps the 

decoder to take advantage of all past attention vectors when it produces the predictive 

distributions. The ARCED model again outperforms ARCED_w/o_resCon in both the 

level 2 and level 3 subsets. The results show that the residual connection improves the 

performance of the ARCED model. 

Table 5.5. Recognition error rates (%) with different decoders. 

Model 

Level 2 test set Level 3 test set 

CER SER CER SER 

ARCED_w/o_resCon 5.67 15.35 29.67 86.64 

ARCED_w/o_resLSTM 4.53 12.43 14.43 62.54 

ARCED 4.15 11.43 12.69 58.58 

 

5.3.3. Analysis on recognized and misrecognized samples 

Figure 5.7 shows some correctly recognized and misrecognized samples by the ARCED 

model in the level 3 dataset. The correctly recognized samples show that the ARCED 

model is effective in recognizing show-through patterns, connected patterns, and noisy 

patterns. For each misrecognized sample, the left image is the input, the middle text is the 
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ground-truth, and the right text is the resulting recognition. Most of the misrecognized 

samples are missing only one or two characters in the ground-truth. 

5.4. Conclusion. 

In this chapter, we presented an attention-based row-column encoder-decoder model 

named ARCED for recognizing multiple text lines of deformed Kana sequences in 

Japanese historical documents. We introduced the row-column BLSTM in the encoder 

and the residual LSTM in the decoder. Following the experiments on the level 2 and level 

3 subsets of the Kana_PRMU dataset, our proposed ARCED model achieved 4.15% and 

12.69% character error rates in the test sets of level 2 and level 3, respectively. First, the 

attention based seq2seq approach can recognize both single and multiple text lines images, 

and results in a drastically reduced error rate compared to the previous state-of-the-art 

methods. Second, the row-column BLSTM in the encoder further reduced the error rate 

of the attention-based model by capturing the sequential order information in both the 

vertical and horizontal directions. Third, the residual LSTM further reduced the error rate 

by taking advantage of all the past attention vectors while generating the predictive 

distributions. 

 

a). Correctly recognized samples in spite of show-through. 
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b). Misrecognized samples. 

Figure 5.7. Correctly recognized and misrecognized samples. 
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Chapter 6. Conclusions and Future works 

6.1. Conclusions 

In this thesis, we presented a model of Deep Convolutional Recurrent Network (DCRN) 

for recognizing offline handwritten text lines without explicit segmentation of characters. 

The proposed DCRN model consists of three components: feature extractor by CNN, 

encoder by BLSTM, and decoder by CTC and has two approaches: pretrained CNN 

approach, and End-to-End approach. For decoding, we applied the CTC beam search 

combined with the tri-gram language model to obtain the final label sequence. The 

extensive experiments on standard benchmarks for offline handwritten Japanese text 

recognition show that the DCRN model outperforms the previous works of the 

segmentation-based method, and the tri-gram language model improves the performance 

of the DCRN model. We also propose an upgraded version of DCRN: Attention 

Augmented Convolutional Recurrent Network (AACRN) model which employs 1D self-

attention mechanism in the encoder. The self-attention module is complementary to RNN 

in the encoder and helps the encoder to capture long-range and multi-level dependencies 

across an input sequence. The experiment results show that the AACRN model 

outperforms the DCRN model and the 1D self-attention mechanism improves the 

performance of the AACRN model. 

Convolutional Neural Network (CNN) are successfully employed as a feature extractor 

to extract the visual features from an input image in the DCRN models. However, it 

processes the information in a local neighborhood, so that it might not extract information 

from long-distance locations in an input image. In this work, we propose an upgraded 

version of DCRN: 2D Self-Attention Convolutional Recurrent Network (2D-SACRN) 

which introduces a 2D self-attention mechanism in the feature extractor to help the CNN 

to capture the relationships between widely separated spatial regions in an input image. 

The extensive experiments on three widely used datasets: IAM Handwriting (English), 

Rimes (French), and TUAT Kondate (Japanese) show that the proposed model achieves 

similar or better accuracy when compared to state-of-the-art models in all datasets. 

Furthermore, the visualization of the 2D self-attention map shows that the 2D self-

attention mechanism helps the feature extractor to capture the relationships between 

widely separated spatial regions and improves the performance of the 2D-SACRN model. 
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Deep Neural Networks typically require a large number of patterns per category for 

training. However, for many handwriting datasets, especially handwritten 

Japanese/Chinese datasets, the number of categories is large while the number of patterns 

per category is limited, so that it is necessary to apply a data argumentation method. In 

this work, we propose a synthetic pattern generation method which synthesize 

handwritten text line images from sentences in corpora and handwritten character patterns 

in the isolated character database with elastic distortions. The experiments on the offline 

handwritten Japanese text dataset show that the synthetic pattern generation method 

improves the performance of the DCRN model. 

For the historical document recognition topic, we presented several Deep Neural 

Network architectures to recognize anomalously deformed Kana Sequence in Japanese 

historical documents in accordance with two levels (2 and 3) in a contest held by IEICE 

PRMU 2017. We employed the DCRN model with two approaches for level 2. Then, we 

proposed a method of vertical text line segmentation and multiple line concatenation 

before applying DCRN for level 3. We also examined a two-dimensional BLSTM 

(2DBLSTM) based method for level 3. For level 2, the end-to-end approach achieved the 

best CER of 10.90% and SER of 27.70%. For level 3, the vertical text line segmentation 

and concatenation approach achieved the best CER of 12.30% and SER of 54.90% when 

trained by both the level 2 and level 3 datasets. Finally, we presented an attention-based 

row-column encoder-decoder model named ARCED for recognizing multiple text lines 

of deformed Kana sequences in Japanese historical documents. We introduced the row-

column BLSTM in the encoder and the residual LSTM in the decoder. Following the 

experiments on the level 2 and level 3 subsets of the Kana_PRMU dataset, the proposed 

ARCED model achieved 4.15% and 12.69% character error rates in the test sets of level 

2 and level 3, respectively. First, the attention based seq2seq approach can recognize both 

single and multiple text lines images, and results in a drastically reduced error rate 

compared to the previous state-of-the-art methods. Second, the row-column BLSTM in 

the encoder further reduced the error rate of the attention-based model by capturing the 

sequential order information in both the vertical and horizontal directions. Third, the 

residual LSTM further reduced the error rate by taking advantage of all the past attention 

vectors while generating the predictive distributions. 
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6.2. Future Works 

For offline handwritten text recognition, however, some problems remain: the multi-

line text data should be considered, and the character set of the Japanese handwritten 

recognition task should be extended to the JIS level 2 set. Firstly, we will improve our 

DCRN models further in terms of recognition accuracy for not only single line text images 

but also multi-line text images. For example, instead of using the BLSTM to build the 

encoder, we will try to use Multidimensional BLSTM to build the encoder. We also plan 

apply the attention-based model to recognize the multiple text line and compare with the 

Multidimensional BLSTM-based model. 

Secondly, we will extend the character set to cover the JIS level 2 characters (about 

7000 characters). The new databases will be used for training and evaluating the DCRN 

models. Finally, the language model made by RNN will be integrated with the system 

and compared with the tri-gram language model. 

For the Japanese historical document recognition, the sequence error rate is so high that 

linguistic context must be incorporated. We will apply the language statistics and context 

processing to improve the accuracy of the systems. Tri-gram language model and RNN 

language model will be considered. This works only focused on the Kana characters, so 

we plan to accumulate more data including Kanji characters to improve the accuracy and 

recognize the whole character set.  

We also will apply the proposed models and the synthetic pattern generation method 

for the other offline handwritten text benchmarks such as offline handwritten Vietnamese 

text recognition or offline handwritten Chinese text recognition. 
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