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Analyse d'un algorithme de décomposition pour un

problème de programmation quadratique

Résumé : On présente l'analyse numérique d'un algorithme de décomposition pour la mi-
nimisation d'une fonction coût quadratique, séparable en x1 et x2, sous la contrainte que x1

et x2 sont orthogonaux sur la sphère unité. Notre algorithme consiste en une étape locale où
la fonction coût est minimisée séparément en chacune de ses deux variables, en respectant les
contraintes. Cette première étape est suivie d'une étape globale où on minimise la fonction
coût sur un sous-espace généré par les solutions de l'étape locale. Un théorème de conver-
gence locale est établi quand les minimiseurs globaux ne sont pas dégénérés. Notre analyse
utilise les conditions nécessaires et su�santes et les propriétés de continuité du minimum
global d'une fonction coût quadratique minimisée sous une double contrainte sphérique et
linéaire. Cette analyse est reliée à un nouvel algorithme de décomposition de domaine pour
les calculs de structure électronique.

Mots-clés : programmation quadratique, contraintes d'orthogonalité, méthode de décom-
position de domaine, calculs de structure électronique
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1 Introduction

In [2] and [3] we develop a multilevel domain decomposition algorithm for electronic structure
calculations which has been extremely e�ective in computing electronic structure for large,
linear polymer chains. Both the computational cost and memory requirement scale linearly
with the number of atoms. Although this algorithm has been very e�ective in practice,
a theory establishing convergence has not yet been developed. The algorithm in [2, 3]
was motivated by a related decomposition algorithm for a quadratic programming problem
with an orthogonality constraint. In this paper, we develop a convergence theory for the
decomposition algorithm.

Let H1 and H2 be symmetric n by n matrices. We consider the following quadratic
optimization problem:

min F (x1,x2) := xT
1H1x1 + xT

2H2x2 (1)

subject to xT
1x1 = 1 = xT

2x2, xT
1x2 = 0.

In other words, �nd orthogonal unit vectors x1 and x2 which minimize the separable
quadratic objective function. Our algorithm for (1) consists of a �local step� where we
minimize F over each variable separately, while enforcing the constraints, followed by a
�global step� where we optimize over a subspace generated by the iterates of the local step.
There are two modes of the local step, a �forward� and a �reverse� mode. In consecutive
iterations, we employ the forward mode followed by the reverse mode. If xk = (xk1,xk2)
is the iterate at step k, then the forward and the reverse modes of the local step are the
following:

forward

{
yk1 ∈ arg min {F (z,xk2) : ‖z‖ = 1, zTxk2 = 0},
yk2 ∈ arg min {F (yk1, z) : ‖z‖ = 1, zTyk1 = 0},

reverse

{
yk2 ∈ arg min {F (xk1, z) : ‖z‖ = 1, zTxk1 = 0},
yk1 ∈ arg min {F (z,yk2) : ‖z‖ = 1, zTyk2 = 0}.

(2)

Here and throughout the paper, ‖ · ‖ denotes the Euclidean norm.
The problem which must be solved in electronic structure calculations is more general

than (1) and the multilevel algorithm developed in [2, 3] is more complex than (2). For
example, in electronic structure calculations, H1 and H2 could be of di�erent dimensions
and the orthogonality condition xT

1x2 = 0 in (1) would be replaced by the more general
condition xT

1Px2 = 0 where P is rectangular. Nonetheless, the algorithm studied in this
paper was the basis for the more general algorithm developed in [2, 3], and our analysis is
an initial step towards justifying and understanding the convergence properties of the more
general algorithm.

One can think of either the forward or reverse modes as a block Gauss-Seidel iteration
[5, p. 323]. In the forward mode, we �rst hold the second block of variables xk2 �xed and
we optimize over the �rst block of variables to obtain yk1; in the second step, we hold the
�rst block of variables �xed at yk1 and we optimize over the second block to obtain yk2.

RR n° 6288



4 Hager & Bencteux & Cancès & Le Bris

In general, the local steps converge to a limit which may not be a stationary point of
(1). To achieve convergence to a stationary point for (1), each local step, either forward or
reverse, is followed by a �global step� where we minimize F over the subspace spanned by
the following 4 vectors, while enforcing the constraints of (1):[

yk1
0

]
,

[
yk2
0

]
,

[
0
yk1

]
,

[
0
yk2

]
(3)

After imposing the two normalization condition xT
1x1 = 1 and xT

2x2 = 1 and the orthog-
onality condition xT

1x2 = 0 on the subspace, we are left with a one dimensional curve of
feasible points in the subspace spanned by the 4 vectors (3). This curve can be expressed
in the following way:

zk(s) =
1√

1 + s2
(yk + sd), (4)

where

d = ±
[

yk2
−yk1

]
and yk =

[
yk1
yk2

]
.

The vector zk(s) lies in the space spanned by the 4 vectors in (3) for each choice of s; the
orthogonality condition holds since

(1 + s2)zT
k1zk2 = (yk1 ± syk2)T(yk2 ∓ syk1)T = ±s∓ s = 0;

and the factor 1/
√

1 + s2 ensures that the two components of zk are unit vectors.
Let Fk(s) = F (zk(s)) be the objective function evaluated along the search direction. For

convenience, the sign in the de�nition of d in the global step is chosen so that F ′k(0) ≤ 0.
At iteration k in the global step, we set

xk+1 = z(sk), (5)

where sk is the stepsize.
The motivation for optimizing over the subspace spanned by the 4 vectors (3) is the

following: First, the subspace should include the original vectors (yk1,0) and (0,yk2) to
ensure that the objective function value decreases. In order to further broaden the search
space, we should consider vectors orthogonal to the original vectors. Since the vectors
(yk2,0) and (0,yk1) are orthogonal to the original vectors, they are suitable for inclusion in
the subspace. Finally, as we will see in Section 4, the optimality condition associated with
the global step and with these 4 vectors provides a link between the subproblems which is
exploited to obtain convergence.

Notice that when H1 and H2 are 2 by 2 matrices, the 4 vectors in (3) span R4. Hence,
in the 2 by 2 case, the global step yields a global optimum for (1). More generally, we �nd
that the local steps steer the iterates into a subspace associated with the eigenvectors of H1

INRIA
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for k = 0, 1, 2, . . .
If k is even, perform a forward step:

yk1 ∈ arg min {F (z,xk2) : ‖z‖ = 1, zTxk2 = 0},
yk2 ∈ arg min {F (yk1, z) : ‖z‖ = 1, zTyk1 = 0},

Else perform a reverse step:
yk2 ∈ arg min {F (xk1, z) : ‖z‖ = 1, zTxk1 = 0},
yk1 ∈ arg min {F (z,yk2) : ‖z‖ = 1, zTyk2 = 0}.

Global step: Set xk+1 = z(sk) where

zk(s) = 1√
1+s2

(yk + sd), d = ±
[

yk2
−yk1

]
,

and
sk ∈ arg min {Fk(s) : s ∈ [0,−ρF ′k(0)]}, Fk(s) = F (zk(s)).

The sign of d is chosen so that F ′k(0) ≤ 0.
end

Figure 1: The decomposition algorithm.

and H2 corresponding to the smallest eigenvalues, while the global step �nds the best point
within this low dimensional subspace.

Ideally, the stepsize sk is the global minimum of Fk(s) over all s. However, the conver-
gence analysis for this �optimal step� is not easy since ‖yk −xk+1‖ could be on the order of
1 for all k. For example, if H1 = H2, then Fk(s) is constant, independent of s; consequently,
any choice of s is optimal, and there is no control over the iteration change. To ensure global
convergence of the algorithm, we restrict the stepsize to an interval [0,−ρF ′k(0)], where ρ is
a �xed positive scalar. In other words, we take

sk ∈ arg min {Fk(s) : s ∈ [0,−ρF ′k(0)]}. (6)

Notice that sk = 0 when F ′k(0) = 0 and the global step is skipped. In practice, we observe
convergence when sk is a global minimizer of Fk. The constraint on the stepsize is needed
to rigorously prove convergence of the iteration. For reference, the complete algorithm is
recapped in Figure 1.

As we show later in (41), F ′k(0) tends to zero. Hence, the constraint s ∈ [0,−ρF ′k(0)] on
the stepsize in the line search (6) implies that the iteration di�erence xk+1 − yk tends to
zero. Another approach for controlling the stepsize is to employ a trust region scheme [4, p.
129] where we minimize F in the subpace (3) and a ball of radius ρk centered at yk. If ρk
tends to zero, then the change xk+1 − yk again tends to zero. The update (6) amounts to a
trust region step with a special choice for the trust region radius.

Since F is a pure quadratic, the objective function satis�es

F (x1,x2) = F (−x1,x2) = F (x1,−x2) = F (−x1,−x2).

RR n° 6288



6 Hager & Bencteux & Cancès & Le Bris

Hence, if ykj is a minimum in a subproblem at iteration k, then so is −ykj . In order to carry
out the analysis, it is convenient to choose the signs so that following inequalities hold:{

xT
k2H1yk1 ≥ 0 and yT

k1H2yk2 ≥ 0 (forward mode)

xT
k1H2yk2 ≥ 0 and yT

k2H1yk1 ≥ 0 (reverse mode)
(7)

With this sign convention, the multipliers associated with the orthogonality constraints in
the local step are always nonnegative as shown in Section 4.

Our analysis establishes local, and in some cases global, convergence of the decomposition
algorithm of Figure 1 to a stationary point. In Corollary 1 we show that if y = (y1,y2)
is a local minimizer for (1), then there exist scalars λ1, λ2, and µ satisfying the �rst-order
condition [

H1 0
0 H2

] [
y1

y2

]
=
[
λ1I µI
µI λ2I

] [
y1

y2

]
. (8)

where λ1 and λ2 lie between the smallest and second smallest eigenvalues of H1 and H2

respectively. The condition (8) together with the requirement that y1 and y2 are feasible in
(1) form the KKT (Karush-Kuhn-Tucker) conditions.

Solutions of the subproblems (2) satisfy the following conditions: There exist scalars λk1,
µk1, λk2, and µk2 such that

forward

[
H1 0
0 H2

] [
yk1
yk2

]
=
[
λk1yk1 + µk1xk2
µk2yk1 + λk2yk2

]
,

reverse

[
H1 0
0 H2

] [
yk1
yk2

]
=
[
λk1yk1 + µk1yk2
µk2xk1 + λk2yk2

]
.

(9)

A fundamental di�erence between the �rst-order optimality conditions for the original op-
timization problem (1) and the subproblems (2) is that µk1 may not equal µk2 in the sub-
problems. Hence, a key objective in the analysis is to show that the multipliers in the
subproblems approach a common limit. As will be seen in the analysis that follows, we are
able to bound the di�erence µk1 − µk2 in terms of F ′k(0), which tends to zero. Hence, as
F ′k(0) tends to zero, both the iteration change xk+1 − yk tends to zero, according to (6),
and the multiplier di�erence µk1 − µk2 tends to zero.

The local step in the decomposition algorithm requires the solution of a quadratic pro-
gram of the following form:

min xTHx subject to ‖x‖ = 1, aTx = 0, (10)

where a ∈ Rn with ‖a‖ = 1 and H is symmetric. In the decomposition algorithm, H is Hi

and a is either xki or yki, i = 1 or 2. Since H is symmetric, we can perform an orthogonal
change of variables to diagonalize H. Hence, without loss of generality, we can assume that
H is diagonal with the ordered eigenvalues

ε1 ≤ ε2 ≤ . . . ≤ εn (11)

INRIA



Analysis of a Quadratic Programming Decomposition Algorithm 7

The analysis of the decomposition algorithm is based on an analysis of how the multiplier
for the constraint aTx = 0 in (10) depends on a. If H is a multiple of the identity, then
this multiplier vanishes, and the dependence of the multiplier on a is trivial. Except in this
special case, the dependence of the multiplier on a is nontrivial. For almost every choice of
a, the multiplier is unique and depends continuously on a. Suppose that H is not a multiple
of the identity and let εs denote the smallest eigenvalue of H which is strictly larger than ε1.
The degenerate choices of a, where uniqueness and continuity are lost correspond to those
a 6= 0 which satisfy the equations∑

εi=ε1

a2
i

εs − ε1
=
∑
εi>εs

a2
i

εi − εs
, ai = 0 when εi = εs. (12)

We say that a is degenerate for H if (12) holds, and conversely, a is nondegenerate if (12)
is violated or H is a multiple of the identity. The degenerate choices of a compose a set
of measure 0. We say that (y1,y2) is nondegenerate for (1) if y1 is nondegenerate for H2

and y2 is nondegenerate for H1. If H1 and H2 commute, then the solution to (1), given in
Section 3, is nondegenerate.

Our main result is the following:

Theorem 1. If the global minimizers of (1) are all nondegenerate, then for any starting

guess su�ciently close to the solution set, there exists a subsequence of the iterates of the

decomposition algorithm of Figure 1 that approaches a stationary point for (1).

The proof of Theorem 1 will be given in Section 4.
Remark 1. In the special case where H1 = H2 and ε3 − ε2 ≥ ε2 − ε1, it is shown in [1]

that the decomposition algorithm is globally convergent for any starting point. On the other
hand, we observe in Section 5 that when ε3− ε2 < ε2− ε1, then for specially chosen starting
points, the algorithm could converge to a stationary point which is not a global minimum.

In our local convergence result Theorem 1, the requirement for the starting point ensures
that the iterates avoid degenerate points for either H1 or H2. Let Cd denote the minimum
value for the objective function of (1) subject to the additional constraint that either x1

is degenerate for H2 or x2 is degenerate for H1. Since the global minimizers of (1) are
nondegenerate, Cd is strictly larger than the minimum value for the objective function. If
the objective function at the starting point is strictly less than Cd, then the iterates are
bounded away from degenerate points for either H1 or H2.

The paper is organized as follows. In Section 2 we develop necessary and su�cient
optimality conditions for a quadratic optimization problem with both a sphere and an a�ne
constraint, and we develop necessary optimality conditions for (1). In Section 3 we apply
the optimality theory to obtain an optimal solution for the local subproblem, and we show
that the multipliers in the subproblems possess a continuity property. The optimality theory
also yields the solution to the original problem (1) when H1 and H2 commute. In Section
4 we prove our local convergence result Theorem 1. In Section 5 we investigate the global
convergence of the decomposition algorithm using a series of numerical examples.

RR n° 6288



8 Hager & Bencteux & Cancès & Le Bris

2 Optimality Conditions

Each step of the domain decomposition algorithm requires the solution of a sphere con-
strained, quadratic programming problem with a linear constraint. This leads us to consider
a problem with the structure

min f(x) :=
1
2
xTHx− hTx subject to xTx = 1, Ax = b, (13)

where A is m by n, h ∈ Rn, and b ∈ Rm. The local steps of our decomposition algorithm
correspond to the case h = 0, m = 1, and b = 0. Our analysis in this section, however,
applies to the more general quadratic cost function and linear constraints appearing in (13).

The following result gives necessary and su�cient conditions for a point to be a global
minimum. Without the linear constraint, this result is known (see [7]). We give a slightly
di�erent analysis which also takes into account linear constraints. Recall that at a local
minimizer where a constraint quali�cation holds, the Hessian of the Lagrangian is typically
positive semide�nite over the tangent space associated with all the constraints, both the
linear constraint Ax = b and the sphere constraint xTx = 1. If y is a global minimizer
for (13) and λ is the Lagrange multiplier for the sphere constraint, then the second-order
necessary optimality condition is that the �rst-order condition (8) holds and

dT(H− λI)d ≥ 0 whenever Ad = 0 and yTd = 0.

In (15), we claim that the condition yTd = 0 can be dropped and the Hessian of the
Lagrangian is positive semide�nite over a larger space, the null space of A.

Proposition 1. Suppose that y is feasible in (13). A necessary and su�cient condition for

y to be a global minimizer is that there exist λ ∈ R and µ ∈ Rm such that

Hy = h + yλ+ ATµ (14)

and

dT(H− λI)d ≥ 0 whenever Ad = 0. (15)

Proof. Let L : R× Rm × Rn → R be the Lagrangian de�ned by

L(λ,µ,x) = f(x) +
λ

2
(1− xTx) + µT(b−Ax).

First, suppose that there exist λ ∈ R and µ ∈ Rm such that (14) and (15) hold. For any
feasible x for (13), a Taylor expansion of L around y yields

f(x) = L(λ,µ,x)

= L(λ,µ,y) +∇xL(λ,µ,y)(x− y) +
1
2

(x− y)T(H− λI)(x− y)

= f(y) +
1
2

(x− y)T(H− λI)(x− y). (16)

INRIA



Analysis of a Quadratic Programming Decomposition Algorithm 9

The �rst-derivative term in (16) vanishes due to (14). Since x is feasible, A(x − y) = 0.
Hence, (15) and (16) imply that f(x) ≥ f(y), which shows that y is a global minimizer for
(13).

Conversely, suppose that y is a global minimizer for (13). Condition (14) is the usual
�rst-order optimality condition at y. This condition holds if the following �constraint qual-
i�cation� is satis�ed (e. g. see [6]): For each vector d in the tangent space T at y, there
exists a feasible curve approaching y along the direction d, where

T = {d ∈ Rn : yTd = 0, Ad = 0}.

Given d ∈ T , such a feasible curve is given by the formula

x(t) = x0 +
(

y + td− x0

‖y + td− x0‖

)
‖x0 − y‖, (17)

where t is a scalar and x0 is the point satisfying the linear equation Ax = b which is closest
to the origin. Since the expression in parentheses in (17) lies in the null space of A and
since Ax0 = b, it follows that Ax(t) = b for each choice of t. Since x0 is orthogonal to the
null space of A, it follows from the Pythagorean theorem that x(t) is a unit vector for each
choice of t. Di�erentiating x(t), we obtain

x′(0) = d− (y − x0)
(

(y − x0)Td
‖y − x0‖2

)
.

Since d ∈ T , yTd = 0. Since x0 is orthogonal to the null space of A and Ad = 0, we have
xT

0d = 0. Hence, x′(0) = d and there exists a feasible curve approaching y in the direction
d. This veri�es the constraint quali�cation for (13); consequently, the �rst-order condition
(14) is satis�ed for some λ ∈ R and µ ∈ Rm.

By (16), the �rst-order optimality condition (14), and the global optimality of y, we have

(x− y)T(H− λI)(x− y) = 2(f(x)− f(y)) ≥ 0 (18)

whenever x is feasible in (13). Suppose that Ad = 0. If in addition, dTy = 0, then d ∈ T .
Earlier we observed that when d ∈ T , x(t) is feasible in (13) for all choices of t. Since
x(t) is feasible, we can substitute x = x(t) in (18). Since x(t) − y = td + O(t2), it follows
from (18), after dividing by t2 and letting t approach 0+, that (15) holds. If dTy 6= 0, then
d 6∈ T , and ‖y + td‖ < 1 for a suitable choice of t near 0. Increase the magnitude of t until
‖y + td‖ = 1. Substituting x = y + td in (18) gives (15).

We now obtain bounds on the location of the multiplier λ associated with (13).

Proposition 2. If the eigenvalues of H are arranged in increasing order as in (11) and if

A has rank k ≥ 1, then λ ≤ εk+1 when (15) holds. Moreover, if h = 0 and b = 0 and y is

a global minimizer in (13), then λ ≥ ε1.

RR n° 6288



10 Hager & Bencteux & Cancès & Le Bris

Proof. If W is the k+ 1 dimensional space spanned by the eigenvectors associated with the
k + 1 smallest eigenvalues of H, then we have

εk+1 = max{vTHv : v ∈ W, ||v|| = 1}. (19)

Since A has rank k ≥ 1, the dimension of the null space of A is n−k, and there exists a unit
vector v which lies both in the null space of A and in W. Since Av = 0, the second-order
condition (15) and (19) yield

εk+1 ≥ vTHv ≥ λ.

If h = 0 and b = 0, then the �rst-order condition (14) implies that

λ = yTHy ≥ min{vTHv : ‖v‖ = 1} = ε1.

Next, we focus on the original 2-variable problem (1).

Corollary 1. If (y1,y2) is a local minimizer for (1), then there exist λ1, λ2, and µ such

that (8) holds. If y is a global minimizer for (1), then for i = 1, 2, we have λi ∈ [εi1, εi2],
where εij is the j-smallest eigenvalue of Hi,

εi1 ≤ εi2 ≤ . . . ≤ εin. (20)

Proof. The gradients of the constraints for (1) at y are multiples of the 3 vectors[
y1

0

]
,

[
0
y2

]
,

[
y2

y1

]
.

Since these vectors are orthogonal, they are linearly independent. Since the �linear inde-
pendence constraint quali�cation� is satis�ed, the �rst-order optimality condition (8) holds
for suitable choices of λ1, λ2, and µ. If y is a global minimizer of (1), then yi is a global
minimizer of the problem

min xTHix subject to xTx = 1, zTx = 0,

where z = y2 when i = 1 and z = y1 when i = 1. We apply Proposition 2 with k = 1 to
obtain λi ∈ [εi1, εi2], i = 1, 2.

INRIA



Analysis of a Quadratic Programming Decomposition Algorithm 11

3 The local step and continuity

In each step of the domain decomposition algorithm, we must solve a quadratic programming
problem of the form (10). After an orthogonal change of variables, we can assume, without
loss of generality, that H is diagonal with the ordered eigenvalues (11) on the diagonal and
‖a‖ = 1. Using Propositions 1 and 2, we now determine the optimal solutions to (10). In
the special case h = 0 and A = aT, the �rst-order optimality conditions (14) reduce to

Hy = yλ+ aµ (21)

Case 1: ε1 = ε2. By Proposition 2, the multiplier λ of Proposition 1 is λ = ε1 = ε2. De�ne
the set

Ei = {j : εj = εi}.

If µ 6= 0, then by (21) we must have ai = 0 for all i ∈ E1. If i 6∈ E1, then

yi =
µai

εi − ε1
and aTy = µ

∑
i 6∈E1

a2
i

εi − ε1
6= 0, (22)

which violates the orthogonality condition aTy = 0. Hence, µ = 0 and all y satisfying
the following conditions are solutions to (10):

yi = 0 if i 6∈ E1, aTy = 0, ‖y‖ = 1. (23)

Observe that there is an in�nite set of solutions y while the multipliers λ and µ are
unique.

Case 2: ε1 < ε2 and a1 = 0. If λ > ε1, then the second-order condition (15) is violated by
the vector d1 = 1 and di = 0 for i > 1. Hence, λ = ε1. As in Case 1, the orthogonality
condition aTy = 0 is violated unless µ = 0. The solution is again given by (23) and
the multipliers are λ = λ1 and µ = 0.

Case 3: ε1 < ε2 and a1 6= 0. We �rst show that λ > ε1. Suppose, to the contrary, that
λ = ε1. The �rst component of (21) implies that µ = 0. Hence, (21) reduces to
Hy = ε1y. Since H is diagonal and εi > ε1 for i > 1, we conclude that yi = 0 for
i > 1. Hence, y1 = ±1 since y is a unit vector. However, a vector of this form violates
the orthogonality condition aTy = 0 when a1 6= 0. This gives a contradiction, so we
have λ > ε1.

(a) ai 6= 0 for some i ∈ E2. We show that λ < ε2. Suppose, to the contrary, that
λ = ε2. Since a1 6= 0 and ai 6= 0 for some i ∈ E2, the second-order condition
(15) is violated by taking d to be completely zero except for components 1 and
i. Since ε1 < λ < ε2, (21) can be solved for y:

y = µ(H− λI)−1a. (24)
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12 Hager & Bencteux & Cancès & Le Bris

If µ = 0, then y = 0, which violates the constraint yTy = 1. We combine the
expression (24), with the orthogonality condition aTy = 0, and the fact that
µ 6= 0 to obtain the equation

g(λ) :=
n∑
i=1

a2
i

εi − λ
= 0. (25)

Observe that g is strictly monotone increasing on the interval (ε1, ε2) and g(ε+1 ) =
−∞ since a1 6= 0 while g(ε−2 ) = +∞ since a2 6= 0. There exists a unique zero λ
of g in (ε1, ε2). The solution to (10) is

yi =
µai
εi − λ

where µ2 =

(
n∑
i=1

a2
i

(εi − λ)2

)−1

= g′(λ)−1. (26)

The equation for µ2 is obtained from the requirement that yTy = 1. Notice that
both the solution y and the multiplier µ are unique to within sign.

(b) ai = 0 for all i ∈ E2 and g(ε2) < 0.We show that λ = ε2 and µ = 0. By (21),
we have

yi =
µai
εi − λ

when i 6∈ E2.

If µ 6= 0, then the orthogonality condition aTy = 0 reduces to (25), which has
no solution on (ε1, ε2) since g is monotone on this interval, g(ε+1 ) = −∞, and
g(ε2) < 0. Hence, µ = 0. If λ < ε2, then (24) implies that y = 0, which violates
the constraint yTy = 1. Hence, λ = ε2 and µ = 0. The solution consists of all
vectors y satisfying

yi = 0 if i 6∈ E2, ‖y‖ = 1. (27)

Notice that λ and µ are again unique.

(c) ai = 0 for all i ∈ E2 and g(ε2) > 0. First, suppose that µ 6= 0. Since g(ε+1 ) =
−∞ while g(ε2) > 0, g in (25) has a unique zero on (ε1, ε2). Hence, one solution
to (21) is given by (26). We now consider the possibility that µ = 0 at a global
minimum. We will show that this leads to a contradiction. Consequently, there
is a unique (to within sign) global minimizer for (10) given by (26). If µ = 0,
then by (21), (εi − λ)yi = 0 for all i, which implies that yi = 0 for i 6∈ E2 since
ε1 < λ ≤ ε2. Since ‖y‖ = 1, it follows that λ = ε2 (or else y = 0, violating
the condition ‖y‖ = 1). We now show that the second-order condition (15) is
violated for the choice

di =
ai

εi − γ
,
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where γ is the unique zero of g on the interval (ε1, ε2). This choice for d satis�es
the condition aTd = 0 since g(γ) = 0. Since γ < ε2, we have

dT(H− λI)d = dT(H− ε2I)d =
n∑
i=1

d2
i (εi − ε2)

=
∑
i 6∈E2

a2
i (εi − ε2)
(εi − γ)2

<
∑
i 6∈E2

a2
i (εi − γ)
(εi − γ)2

= g(γ) = 0.

This violates the second-order condition (15).

(d) ai = 0 for all i ∈ E2 and g(ε2) = 0. This is the degenerate case introduced in
Section 1. We �rst observe that λ = ε2. Suppose, to the contrary, that λ < ε2.
By (21), y is given by (24). If µ 6= 0, then the orthogonality condition gives (25),
which has no solution on (ε1, ε2) since g is monotone and g(ε2) = 0. Consequently,
µ = 0 and (24) implies that y = 0, violating the constraint yTy = 1. Thus λ = ε2.

By (21),

yi =
µai

εi − ε2
for i 6∈ E2. (28)

For i ∈ E2, the �rst-order condition (14) provides no information concerning yi
since both sides of the equation vanish identically:

(εi − ε2)yi = µai = 0.

The general solution is the following. First, choose any value for yi, i ∈ E2 , such
that ∑

i∈E2

y2
i ≤ 1.

Then choose µ in (28) such that ‖y‖ = 1. In other words, we choose µ so that

µ2 =
1−

∑
i∈E2 y

2
i

g′(ε2)
.

Notice that λ is unique in the degenerate case, while both µ and y are not unique.

Lemma 1. For the optimization problem (10) and a global minimizer y, the multiplier λ
associated with the constraint yTy = 1 is a Lipschitz continuous function of a on the unit

sphere. With appropriate sign, the corresponding multiplier µ associated with the orthogo-

nality constraint aTy = 0 is continuous at any nondegenerate a.
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14 Hager & Bencteux & Cancès & Le Bris

Proof. In Case 1, Lipschitz continuity is trivially satis�ed, so we focus on the situation where
ε1 < ε2. Since the intersection of the hyperplanes a1 = 0 or a2 = 0 with the unit sphere are
sets of measure zero on the surface of the sphere, Lipschitz continuity over the complement
implies Lipschitz continuity over the entire sphere (by continuity). Hence, we restrict our
attention to ε1 < ε2, a1 6= 0, and a2 6= 0. In this case, λ is the unique solution to (25) on
the interval (ε1, ε2). Di�erentiating (25) gives

∂λ

∂ai
=

2ai
(λ− εi)g′(λ)

. (29)

If for some i, we have ∑
j∈Ei

a2
j ≥ 1/2, (30)

then

|εi − λ|g′(λ) =
(

1
|εi − λ|

)∑
j∈Ei

a2
j

+ |εi − λ|
∑
j 6∈Ei

a2
j

(εj − λ)2
(31)

≥
(

1
|εi − λ|

)∑
j∈Ei

a2
j ≥

1
2|εi − λ|

≥ 1
2(εn − ε1)

.

It follows from (29) that when (30) holds,∣∣∣∣ ∂λ∂ai
∣∣∣∣ ≤ 4(εn − ε1).

If ai = 0, then ∂λ/∂ai = 0 by (29). Now, suppose that ai 6= 0 and (30) is violated. By (29)
and (31), we have∣∣∣∣ ∂λ∂ai

∣∣∣∣ =
2|ai|

1
|εi − λ|

∑
j∈Ei

a2
j

+ |εi − λ|

∑
j 6∈Ei

a2
j

(εj − λ)2


≤ 2(

|ai|
|εi − λ|

)
+
|εi − λ|
|ai|

∑
j 6∈Ei

a2
j

(εn − ε1)2


≤ 2(

|ai|
|εi − λ|

)
+
(
|εi − λ|
|ai|

)(
1

2(εn − ε1)2

) . (32)
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The last inequality is due to the assumption that (30) is violated, which implies that∑
j 6∈Ei

a2
j ≥ 1/2.

The denominator contains both |ai|/|εi − λ| and its reciprocal |εi − λ|/|ai|. Suppose that

|ai|
|εi − λ|

≥ 1. (33)

By (32), the partial derivative ∂λ/∂ai is bounded by 2 in magnitude since both terms in
the denominator of (32) are positive and one of the terms is greater than or equal to 1.
Conversely, if (33) is violated, then we drop the �rst term in the denominator of (32) to
obtain ∣∣∣∣ ∂λ∂ai

∣∣∣∣ ≤ 4(εn − ε1)2.

At this point, we have shown that there exists a constant β with the property that if a
lies on the unit sphere with a1 6= 0 and a2 6= 0, then∣∣∣∣ ∂λ∂ai

∣∣∣∣ ≤ β
for each i. Observe that the solution λ to (25) does not change if a is multiplied by a
nonzero scalar. Hence, for any nonzero a (not necessarily on the unit sphere) with a1 6= 0
and a2 6= 0, we have ∣∣∣∣ ∂λ∂ai

∣∣∣∣ ≤ β/‖a‖.
Consequently, there exists constants r1 < 1 < r2 with the property that∣∣∣∣ ∂λ∂ai

∣∣∣∣ ≤ 2β

whenever r1 ≤ ‖a‖ ≤ r2, a1 6= 0, and a2 6= 0. Given two arbitrary points on the unit
sphere, we can construct a piecewise linear path between them with the property that the
line segments all lie within the shell formed by the spheres of radius r1 and r2. Due to the
bound on the partial derivatives of λ, the change in λ across each line segment is bounded
by 2β times the length of the line segment. Since the number of line segments is bounded,
independent of the location of the points, we deduce that λ is a Lipschitz continuous function
of a on the unit sphere.

Now consider the multiplier µ. If ε1 = ε2, then µ = 0 (Case 1) and there is nothing to
prove. Next, we focus on Case 3a where µ is given by (26). For λ ∈ (ε1, ε2), g′ is bounded
away from zero. For example,

g′(λ) =
n∑
i=1

a2
i

(εi − λ)2
≥ 1

(εn − ε1)2
.
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16 Hager & Bencteux & Cancès & Le Bris

Let λ(a) denote the unique multiplier associated with any given a. Since λ is a Lipschitz
continuous function of a, it follows that µ is continuous at any point a where λ(a) 6= εi
for all i. Since λ ∈ [ε1, ε2], the only potential points of discontinuity are those points b for
which λ(b) = εi, i = 1 or i ∈ E2. If b1 6= 0 or bi 6= 0 for any i ∈ E2, then µ(a) approaches 0
as a approaches b due to the pole in the denominator of g′. Hence, µ is continuous at b.

If b1 = 0 and λ(b) = ε1, then we use (25) to solve for a2
1/(ε1 − λ):

a2
1

λ− ε1
=
∑
i>1

a2
i

εi − λ
(34)

By assumption, λ(a) approaches ε1 as a approaches b. Since the right side of (34) is
continuous when λ is near ε1, the limit of the left side as a approaches b is∑

i>1

b2i
εi − ε1

> 0

since b1 = 0 and ‖b‖ = 1. Consequently, by (26), µ tends to 0 as a approaches b, the same
limit given in Case 2.

Finally, suppose that bi = 0 for all i ∈ E2 and λ(b) = ε2. Again, by (25), we have(
1

λ− ε2

)∑
i∈E2

a2
i =

∑
i6∈E2

a2
i

εi − λ
(35)

According to the statement of the lemma, we only need to prove continuity at nondegenerate
b, in which case the right side does not vanish at λ = ε2. Hence, as a approaches b, the
right side approaches the limit ∑

i 6∈E2

b2i
εi − ε2

6= 0.

Consequently, by (26), µ tends to 0 as a approaches b, the same limit given in Case 3b.
Note that Case 3c is not a point of discontinuity of µ since λ < ε2. This completes the
proof.

Now let us consider the original problem (1). If H1 and H2 commute, then they are
simultaneously diagonalizable by the same eigenvector matrix [8, p. 249]. In this case, we
can perform an orthogonal change of variables to reduce H1 and H2 to diagonal matrices.
The solution is as follows:

Corollary 2. Suppose Hi, i = 1 and 2, are diagonal with diagonal element εij, 1 ≤ j ≤ n,
arranged in increasing order. The minimum cost in (1) is

ε11 + ε22 or ε12 + ε21,
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whichever is smaller. In the �rst case, an associated solution to (1) is

y11 = 1, y22 = 1, and yij = 0 otherwise.

In the latter case, an associated solution to (1) is

y12 = 1, y21 = 1, and yij = 0 otherwise.

Proof. First, let us consider the case where the diagonal elements ofHi are strictly separated:

εi1 < εi2 < . . . < εin

for i = 1, 2. By the �rst-order optimality conditions (8) and by the diagonal structure of
the Hi, we have

(ε1j − λ1)y1j = µy2j and (ε2j − λ2)y2j = µy1j .

We combine these equations to obtain[
(ε1j − λ1)(ε2j − λ2)− µ2

]
y1j = 0 =

[
(ε1j − λ1)(ε2j − λ2)− µ2

]
y2j . (36)

By Corollary 1, the multipliers λ1 and λ2 satisfy λi ∈ [εi1, εi2]. Hence, the coe�cients
of y1j and y2j in (36) are strictly increasing functions of j ∈ [2, n]. It follows that these
coe�cients can vanish for at most one j ∈ [2, n] and possibly for j = 1. When the coe�cients
of y1j and y2j do not vanish in (36), we must have y1j = y2j = 0. In summary, at the global
optimum, all the components of yij vanish except possibly y11, y21, y1j , and y2j for some
j ∈ [2, n]. We focus on the case j = 2 since j > 2 leads to a larger cost.

De�ne x2
1j = vj and x2

2j = wj for j = 1, 2. The optimization problem (1) with Hi

diagonal and xij = 0 for j > 2 reduces to

min v1ε11 + v2ε12 + w1ε21 + w2ε22
subject to v1 + v2 = 1 = w1 + w2,

v1w1 = v2w2, v1, v2, w1, w2 ≥ 0.

The equation v1w1 = v2w2 is the orthogonality condition x11x21 = −x12x22 squared. We
substitute v1 = 1− v2 and w1 = 1− w2 to reduce the optimization problem to

min ε11 + ε21 + v2(ε12 − ε11) + w2(ε22 − ε21) (37)

subject to v2 + w2 = 1, v2 ≥ 0, w2 ≥ 0.

We substitute v2 = 1 − w2 in the objective function to further reduce the optimization
problem to

min ε21 + ε12 + w2(ε11 + ε22 − ε21 − ε12)
subject to 0 ≤ w2 ≤ 1.
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18 Hager & Bencteux & Cancès & Le Bris

Since the cost function is linear in w2, the minimum is achieved at either w2 = 0 (w1 = 1,
v1 = 0, v2 = 1) with objective function value ε21 + ε12 or w2 = 1 (w1 = 0, v1 = 1, v2 = 0)
with objective function value ε11 + ε22.

When the diagonal elements are not strictly separated, the solution given in the statement
of the corollary remains valid. This can be proved as follows: First, perturb the diagonal
elements to make them strictly separated. By the previous analysis, we know that the
solution given in the statement of the corollary is valid. Next, let the perturbation tend
to zero. The limit of these perturbed solutions is a solution of the original unperturbed
problem.

Remark 2. Assuming the eigenvalues are all distinct, then the degenerate choices for a
in (10) correspond to those vectors a for which

a2
1

ε2 − ε1
=

n∑
i=3

a2
i

εi − ε2
, a2 = 0,

∑
i 6=2

a2
i = 1. (38)

The solution to (1) given by Corollary 2 has the property that the nonzeros lie in the �rst two
components of the vectors, while a degenerate a must have nonzero in components greater
than or equal to 3. In fact, it follows from (38) that

n∑
i=3

a2
i ≥

ε3 − ε2
ε3 − ε1

.

Remark 3. Let us consider the special case H1 = H2 = H. Since H1 and H2 commute,
we can apply Corollary 2. Let εj denote the j-th smallest eigenvalue of H. As shown in
(37), the optimization problem (1) reduces to

min 2ε1 + (v2 + w2)(ε2 − ε1)
subject to v2 + w2 = 1, v2 ≥ 0, w2 ≥ 0.

Since v2 + w2 = 1, the objective function value is ε1 + ε2, independent of the choice of v2
and w2 satisfying the constraints. Hence, when H1 = H2 there are an in�nite number of
solutions to (1). y1 is any unit vector in the span of the eigenvectors associated with ε1 and
ε2, and y2 is any orthogonal unit vector in the same eigenspace. Note that if H is 2 by 2,
then all feasible points are optimal and F (x1,x2) is the trace of H whenever x1 and x2 are
feasible in (1).

4 Convergence of the decomposition algorithm

The proof of Theorem 1 is organized into four steps. In Step 1, we analyze the global step
and show that the iteration di�erence ‖xk+1 − yk‖ tends to 0. In Step 2, we show that
the multipliers µkj in the local step are almost monotone decreasing since the violation in
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monotonicity decays to zero as the iteration number k tends to in�nity. Step 3 and 4 focus
on the limit of the multipliers µkj as k tends to in�nity. Step 3 considers the limit 0, while
Step 4 considers a positive limit.
Step 1. Analysis of the global step

Suppose that iteration k corresponds to the forward mode. Let yk denote the result of
the local step, and let xk+1 be the result of the global step based on the starting point yk.
Since xk1 is feasible in the �rst subproblem of the forward mode (2), we have

F (yk1,xk2) ≤ F (xk1,xk2).

Since xk2 is feasible in the second subproblem, we have

F (yk1,yk2) ≤ F (yk1,xk2).

Combining these relations gives

F (yk) ≤ F (xk). (39)

A similar analysis for the reverse mode also gives F (yk) ≤ F (xk).
The components of zk(s) lie on the unit sphere for all choices of s. Consequently, F ′′k (s)

is bounded by a �nite constant M , uniformly in k and s. De�ne the constants

δ = min{ρ, 1/M} and s̄k = −δF ′k(0).

Since s̄k lies on the interval [0,−ρF ′k(0)] appearing in (6), we have

F (xk+1) = Fk(sk) ≤ Fk(s̄k). (40)

Expanding in a Taylor series around s = 0, there exists ξk ∈ [0, s̄k] such that

Fk(s̄k) = Fk(0) + F ′k(0)s̄k + 1
2 s̄

2
kF
′′
k (ξk)

≤ Fk(0) + F ′k(0)s̄k + 1
2 s̄

2
kM

= Fk(0) + δF ′k(0)2( 1
2δM − 1) ≤ Fk(0)− δ

2F
′
k(0)2

= F (yk)− δ
2F
′
k(0)2 ≤ F (xk)− δ

2F
′
k(0)2,

where the last inequality is (39). Combining this with (40) gives

F (xk+1) ≤ F (xk)−
(
δ

2

)
F ′k(0)2.

Summing this inequality over k yields

F (xk) ≤ F (x0)−
(
δ

2

) k−1∑
i=0

F ′i (0)2.

RR n° 6288
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Since the feasible points for (1) lie on the unit sphere, the objective function value is bounded
from below. Hence, we have

lim
k→∞

F ′k(0) = 0. (41)

By the de�nition of zk and the fact that sk ∈ [0,−ρF ′k(0)] where F ′k(0) approaches 0, we
also conclude that

‖xk+1 − yk‖ ≤ c|F ′k(0)| (42)

where c is a constant which is independent of k.

Step 2. The change in the multiplier µ.

By the orthogonality between yk1 and xk2 (forward), between yk1 and yk2 (forward and
reverse), and between xk1 and yk2 (reverse), the �rst-order optimality conditions (9) for the
subproblems (2) yield:

forward


λk1 = yT

k1H1yk1
µk1 = xT

k2H1yk1
λk2 = yT

k2H2yk2
µk2 = yT

k1H2yk2

reverse


λk1 = yT

k1H1yk1
µk1 = yT

k2H1yk1
λk2 = yT

k2H2yk2
µk2 = xT

k1H2yk2

(43)

By our sign convention (7), the multipliers µkj are nonnegative.
By the de�nition of Fk(s), we have

F ′k(0) = ±2(yT
k1H1yk2 − yT

k2H2yk1). (44)

We multiply the �rst equation in (9) by yT
k2 to obtain yT

k1H1yk2 = µk1yT
k2xk2. We multiply

the second equation by yT
k1 to obtain yT

k1H2yk2 = µk2. Hence, in the forward mode, it
follows from (44) that

µk2 = yT
k1H2yk2

= yT
k1H1yk2 ∓ F ′k(0)/2

= µk1yT
k2xk2 ∓ F ′k(0)/2, (45)

which implies that

µk2 ≤ |µk1yT
k2xk2|+ |F ′k(0)|/2 ≤ µk1 + |F ′k(0)|/2 (46)

since yk2 and xk2 are unit vectors. In a similar fashion, for the reverse mode at iteration
k + 1, we have

µk+1,1 ≤ µk+1,2 + |F ′k+1(0)|/2. (47)
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If iteration k corresponds to the forward mode, then the multiplier µk1 corresponds to
a = xk2 and H = H1 in (10). The multiplier µk−1,1 corresponds to a = yk−1,2 and H = H1

in (10). By (42) ‖xk2−yk−1,2‖ ≤ c|F ′k−1(0)|. We apply Lemma 1 and (41). For any (small)
η > 0, we have

|µk1 − µk−1,1| ≤ η (48)

when k is su�ciently large, which implies that

µk1 ≤ µk−1,1 + η. (49)

The analogous result for the reverse mode is

µk+1,2 ≤ µk2 + η (50)

for k su�ciently large.
Combining (46)�(50), it follows that when k is large enough that |F ′j(0)| ≤ η for all

j ≥ k, we have

µk−1,1 � µk1 � µk2 � µk+1,2 � µk+1,1 (51)

where the notation µk1 � µk2 means that µk2 ≤ µk1 + η. Hence, in each iteration, the
µ multiplier either decreases or makes an increase which is bounded by η. By (43), the
multipliers are bounded by the largest absolute eigenvalues of H1 and H2.

Step 3. The case lim inf µk1 = 0.
When lim inf µk1 = 0, there exists a subsequence of the iterates with the property that

µk1 tends to 0. By (51) and the fact that η can be taken arbitrarily small, we conclude that
the corresponding subsequence of the multipliers µk2 also approaches 0. Since yk lies in a
compact set, we can extract subsequences converging to a limit that we denote by y. By
(43), the corresponding subsequence of multipliers λk1 and λk2 also approach limits denoted
λ1 and λ2. By (9), we have [

H1 0
0 H2

] [
y1

y2

]
=
[
λ1y1

λ2y2

]
.

Since y1 and y2 are orthogonal unit vectors, we conclude that y is a stationary point for
(1) corresponding to the multiplier µ = 0.

Step 4. The case µ = lim inf µk1 > 0.
We extract a subsequence, denoted νj1, of the multiplier sequence µk1 which converges

to µ:

lim
j→∞

νj1 = µ.

Given any η > 0, choose K large enough that (51) holds for all k ≥ K. Also, choose K
larger, if necessary, so that

|µ− νj1| ≤ η for all j ≥ K. (52)
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Hence, for any j ≥ K, we have

µ− η ≤ νj1 ≤ µ+ η. (53)

By (51), (53), and the fact that the νj1 form a subsequence of the µk1, it follows that

νj2 ≤ νj1 + η ≤ µ+ 2η.

Let k denote an index in the original sequence with the property that µk2 = νj2. By (51),
we have

νj2 = µk2 ≥ µk+1,2 − η ≥ µk+1,1 − 2η.

By (48) and (52), it follows that

µk+1,1 ≥ µk1 − η = νj1 − η ≥ µ− 2η.

Combining these inequalities gives

µ− 4η ≤ νj2 ≤ µ+ 2η and µ− η ≤ νj1 ≤ µ+ η.

Since η is arbitrary, it follows that νj1 and νj2 approach the same limit µ.
Again, by extracting subsequences, there exist limits y1, y2, λ1, and λ2 such that[

H1 0
0 H2

] [
y1

y2

]
=
[
λ1y1 + µx2

µy1 + λ2y2

]
. (54)

By (45), we have

µ = µyT
2 x2,

where µ > 0. Since y2 and x2 are unit vectors, we deduce that x2 = y2. When x2 is replaced
by y2 in (54), we see that y is a stationary point.

Remark 4. In the special case H1 = H2 = H, both the analysis and the algorithm
simplify. As noted earlier, F ′k(0) = 0 in this case so the global step is skipped. Moreover, the
monotonicity property (51) holds without the reverse iteration. Hence, the decomposition
algorithm can simply employ forward steps, for which the associated �rst-order optimality
condition is [

H 0
0 H

] [
yk1
yk2

]
=
[
λk1yk1 + µk1yk−1,2

µk2yk1 + λk2yk2

]
. (55)

Multiplying the �rst equation by yT
k2 gives

µk1yT
k2yk−1,2 = yT

k2Hyk1
= yT

k1(µk2yk1 + λk2yk2) = µk2.
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Since yk2 and yk−1,2 are unit vectors, this shows that µk2 ≤ µk1. Multiplying the �rst
equation in (55) by yk−1,2 gives

µk1 = yT
k−1,2Hyk1

= yT
k1(µk−1,2yk−1,1 + λk−1,2yk−1,2)

= µk−1,2yT
k1yk−1,1.

Since yk1 and yk−1,1 are unit vectors, we deduce that µk1 ≤ µk−1,2. Hence, (51) holds with
� replaced by ≥.

5 Numerical experiments

A series of numerical experiments were performed to investigate the convergence rate of
the decomposition algorithm and to explore the connections between the theoretical anal-
ysis and the practical convergence. The experiments we describe were performed using
Scilab (www.scilab.org). The solution of each local step (10) was obtained by computing
an eigenvector associated with the smallest non-zero eigenvalue of the matrix PHP, where
P = I − aaT is the projection into the subspace perpendicular to a. The global step was
implemented using the Scilab routine �optim� with default parameter values.

Recall that in our theoretical analysis, the stepsize was restricted to an interval [0,−ρF ′k(0)],
for some �xed ρ > 0, to ensure that the iterates approach each other in the limit. However,
in all our numerical experiments, we found that there was no need to restrict the stepsize
to obtain convergence. Hence, it appears that the restriction on the stepsize in (6) is an
artifact of the analysis presented in this paper.

In (51) we show that the multipliers associated with the local steps in the decomposition
algorithm almost decay monotonically. In Remark 4, we show that the decay is monotone
when H1 = H2. Numerically, we found that when H1 6= H2, the convergence of the
multipliers may not be monotone. An illustration is given in Figure 2 where we randomly
generate two 100 by 100 diagonal matrices H1 and H2 with entries between −1 and +1,
and we plot the multipliers as a function of the iteration number. Due to the initial growth
in the multipliers during the �rst 300 iterations, the convergence is not monotone and the
inequalities � in (51) can not be replaced by ≥ in general.

In our experiments, the convergence speed when H1 = H2 was closely related to the
distribution of the smallest 3 eigenvalues of the matrix, independent of the matrix dimension.
To illustrate the typical convergence, we consider the 3 by 3 diagonal matrix

H1 = H2 =

 1 0 0
0 2 0
0 0 2 + α

 , (56)

where α > 0 is a parameter which we vary to explore the convergence. The starting guess is

xT
02 =

1√
3

[1 1 1]T. (57)
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Figure 2: Convergence of the multipliers, random 100 by 100 diagonal matrices H1 and H2,
ρ = 1.

Since H1 = H2, the reverse step can be skipped, and decomposition algorithm operates in
�forward mode� without a global step. The components of the iterates are always nonzero,
and the iterates given by (26) can be expressed in the form

xk1i =
µk1xk−1,2i

εi − λk1
, xk2i =

µk2xk,1i
εi − λk2

. (58)

The iterates converge to a pair (x1,x2) of the form

xT
1 = [a b 0]T and xT

2 = [−b a 0]T

with a2 + b2 = 1, which is a valid solution to (1) according to Corollary 2 and Remark 3.
Since the third component of the solution vanishes, we will study how quickly the third

component approaches 0. By (58), the ratio between the second and third components can
be expressed as

xk13
xk12

=
xk−1,23

xk−1,22

(
ε2 − λ1k

ε3 − λ1k

)
=
xk−1,13

xk−1,12

(
ε2 − λ2,k−1

ε3 − λ2,k−1

)(
ε2 − λ1k

ε3 − λ1k

)
.
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Figure 3: Convergence of xk13 for matrices (56) and starting point (57).

Since ε2 > ε3 for the matrix (56), the rational function (ε2 − λ)/(ε3 − λ), λ ∈ [1, 2], attains
its maximum value 1/(1 + α) at λ = 1. Hence, by induction, we have

xk13
xk12

≤
(

1
1 + α

)2k

. (59)

Thus as α approaches 0, the bound on the rate at which the third component approaches 0,
relative to the second component, grows, and the convergence could be much slower. And
as α becomes large, the bound decreases and the convergence rate increases. In summary,
the convergence speed seems to depend on the ratio of the gap between ε2 and ε3 relative
to the gap between ε1 and ε2. As the ratio approaches 0, the convergence could be slower,
as seen in (59).

In Figure 3 we show the convergence of xk13 as a function of the iteration number k for
various choices of α. Notice that as α approaches 0, the optimization problem (1) becomes
more poorly conditioned since the points

xT
1 = [1 0 0] and xT

2 = [0 0 1]

are feasible with objective function value 3 + α ≈ 3, when α ≈ 0. Thus there are feasible
points which are separated from the optimal solution, but with nearly the same cost as the
optimal solution. In the extreme case where α = 0, the algorithm �nds the global minimum
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of the objective function at the �rst iteration. The two vectors x1 and x2 have their three
components di�erent from zero.

We now give an example where the decomposition algorithm does not converge to the
global minimum when the starting guess is su�ciently poor. In Remark 1, we point out
that the decomposition algorithm is convergent for any starting guess when H1 = H2 and
ε3 − ε2 ≥ ε2 − ε1. Suppose that ε3 − ε2 < ε2 − ε1, and the starting guess is

xT
02 =

1√
2

[1 0 1 0 0 . . . ]T.

According to case 3c of Section 3,

xT
11 =

1√
2

[−1 0 1 0 0 . . . ]T and x12 = x02.

Hence, the algorithm converges after one iteration to the stationary point

xT
1 =

1√
2

[−1 0 1 0 0 . . . ]T and x2 =
1√
2

[1 0 1 0 0 . . . ]T.

This starting guess, however, is exceptional. If the second component of x02 is changed to
any nonzero value α, then the iterates quickly converge to the global minimum. For example,
if α = 10−14 and

H1 = H2 = diag [−0.9,−0.5,−0.4,−0.3,−0.2,−0.1, 0.0,+0.1,+0.2,+0.3],

then the error is reduced to 10−10 within 44 iterations.
For the case H1 6= H2, the decomposition algorithm may converge to a stationary point

which is not the global minimum when the starting guess is degenerate and the degenerate
iterates are chosen in a very special way. As an example, suppose that H1 and H2 are
diagonal matrices, with diagonal elements arranged in increasing order, and that all the
components of the starting point x02 are nonzero except for component 2 which is 0. The
nonzero components of x02 are chosen to make it degenerate for H1. The initial iterate y11

is described by case 3d of Section 3. There are an in�nite number of solutions to the local
subproblem. We choose the solution for which the second component is zero (the remaining
components are nonzero). Take ε11 close enough to ε12 to ensure that y111 is near 1 in
magnitude. In this case, g(ε22) < 0 in the second local step. By case 3b of Section 3, all the
components of the iterate y12 are zero except for the second component which is 1. Since
F ′1(0) = 0, the global step has no e�ect; we have x21 = y11 and x22 = y12. Thereafter, xk1
is the �rst column of the identity and xk2 is the second column of the identity. If H1 and
H2 are chosen so that

ε11 + ε22 > ε21 + ε12,

then the iteration has reached a stationary point which is not the global minimum. In
contrast, with any perturbation in the second component of x02, we obtain convergence to
the global minimum.
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If the eigenvectors corresponding to the smallest eigenvalues of H1 and H2 are orthog-
onal, then these orthogonal eigenvectors are the solution of (1). By randomly choosing the
remaining orthogonal eigenvectors of H1 and H2, we obtain noncommuting matrices for
which the solution of (1) is known. As a speci�c example, we took Hi = QiDiQT

i where Di

is a diagonal matrix with diagonal elements chosen randomly on [−1, 1], and Qi, i = 1 or 2,
is an orthogonal matrix of the form

Q1 =
[

e1 U1

]
and Q2 =

[
e2 U2

]
.

Here ei denotes the i-th column of the identity matrix, and Ui is an n by n− 1 matrix with
randomly chosen entries such that Qi is orthogonal, i = 1 or 2. For all starting points, we
observed convergence to the global minimum. Convergence to local, non global, minima has
also been observed in the case where the matrices H1 and H2 do not commute, but have
the same eigenvector associated with the smallest eigenvalue.

6 Conclusions

A decomposition algorithm is developed for a quadratic programming problem with sphere
and orthogonality constraints. The algorithm consists of local steps, both forward and
reverse, and a global step where we minimize over a subspace. Without the global step, any
limit (y1,y2) of the local step satis�es[

H1 0
0 H2

] [
y1

y2

]
=
[
λ1I µ1I
µ2I λ2I

] [
y1

y2

]
.

This di�ers from the �rst-order optimality conditions (8) associated with the original op-
timization problem (1) because µ1 may not equal µ2. If the local step is followed by the
global step, then according to the analysis of Section 4, F ′k(0) tends to zero (see (41)), which
implies that (see (44)) yT

1 H1y2 = yT
2 H2y1. Since µ1 = yT

1 H1y2 and µ2 = yT
2 H2y1, the

global step ensures that µ1 = µ2. Consequently, the �rst-order optimality condition for (1)
is satis�ed.

The complexity of the analysis is connected with the proof of convergence. To show that
the iterate xk2 converges to the same limit as yk2, we studied the properties of multipliers for
the subproblem (10). We showed that the multiplier λ for the sphere constraint lies between
ε1 and ε2, the two smallest eigenvalues of H; moreover, λ depends Lipschitz continuously on
a. In contrast, the multiplier µ associated with the orthogonality constraint is continuous
at nondegenerate choices for a.

A less technical explanation for the performance of the decomposition algorithm is that
the local steps steer the iterates into a low dimensional subspace associated with the eigen-
vectors of the smallest eigenvalues of H1 or H2, while the global step �nds the best point
in this subspace.
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