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Abstract

Uniform random generators deliver a simple empirical means to es-
timate the average complexity of an algorithm. We present a general
rejection algorithm that generates sequential letter-to-letter transducers
up to isomorphism. We tailor this general scheme to randomly gener-
ate deterministic tree walking automata and deterministic top-down tree
automata. We apply our implementation of the generator to the estima-
tion of the average complexity of a deterministic tree walking automata
to nondeterministic top-down tree automata construction we also imple-
mented.

1 Introduction

The widespread use of automata as primitive bricks in computer science motiv-
ates an ever renewed search for efficient algorithms taking automata as input
(see for some recent examples [16, 15, 12]). Developing new algorithms and
heuristics raises crucial evaluation issues, as improved worst-case complexity
upper-bounds do not always transcribe into clear practical gains [4].

A suite for software performance evaluation can usually gather three types
of entries:1

1. benchmarks, i.e. large sets of typical samples, which can be prohibitively
difficult to collect, and thus only exist for a few general problems,

2. hard instances, that provide good estimations of the worst case behaviour,
but are not always relevant for average case evaluations,

3. random inputs, that deliver average complexity estimations, for which the
catch resides in obtaining a meaningful random distribution (for instance

∗Published in Maneth, S., editor, CIAA’09, volume 5642 of Lecture Notes in Computer

Science, pages 115–124. Springer, 2009. doi:10.1007/978-3-642-02979-0 15. This work was
supported in part by ANR GAMMA - project BLAN07-2 195422, ANR RAVAJ - project
SETIN-2006, and ANR AVeriSS.

1All of the three types are used in SAT-solver competitions like http://www.

satcompetition.org/.
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a uniform random distribution). As the mathematical computation of the
average complexity of an algorithm is an intricate task that cannot be
undertaken in general, random inputs can prove themselves invaluable for
its empirical estimation.

This paper is dedicated to the random generation of deterministic top-down
tree automata and of deterministic tree-walking automata. Tree automata have
witnessed a recent surge of interest in connection with XML applications [11, 10],
fostering a wealth of theoretical results (e.g. [9, 5, 14]). This paper makes the
following contributions:

∙ Section 2 proposes a generic rejection algorithm for uniformly generating
sequential letter-to-letter transducers. Thanks to the structural proper-
ties of these transducers, the algorithm can be used for the generation of
various kinds of finite automata.

∙ We apply this algorithm in Sect. 3 to the generation of deterministic tree
walking automata. The approach was implemented, and we provide in
Sect. 3.3 an empirical estimation of the average size of the nondeterministic
top-down tree automaton equivalent to a given deterministic tree walking
automaton.

∙ Section 4 presents a bijection between a class of letter-to-letter transducers
and deterministic top-down tree automata, providing a uniform random
generator for this class of tree automata.

Our approach consists in reducing the problem to the uniform random genera-
tion of deterministic word automata, as developed by Bassino et al. [1, 3].

Related Work In the case of deterministic accessible word automata, two
main approaches to the random generation with uniform distribution on com-
plete automata stand out: one based on a recursive decomposition [6] and one
using Boltzmann samplers [1]. The latter algorithm has been extended to pos-
sibly incomplete automata by Bassino et al. [3]. An implementation of these
algorithms is available in the C++ package REGAL [2].2

The random generation of non deterministic finite word automata is still
mostly open. Two recent papers propose such random generation algorithms:
Tabakov and Vardi [13] apply theirs to the evaluation of inclusion testing proced-
ures, whereas Chen et al. [7] evaluate the performance of a learning algorithm.
Both algorithms are ad hoc and fail to provide statistically exploitable distribu-
tions.

Notations If i and j are positive integers, we denote by [i, j] the set of integers
k such that i ≤ k and k ≤ j. If K is a set, P(K) (resp. P∗(K)) denotes the set
of subsets (resp. the set of non empty subsets) of K. The domain of a function
' is denoted Dom(').

A sequential letter-to-letter transducer (SLT) from input alphabet Σ1 to
output alphabet Σ2 is a tuple T = (Σ1,Σ2, Q, qinit, �, , �, ainit) where Q is the
finite set of states, qinit ∈ Q is the initial state, � is a partial transition function
from Q×Σ1 into Q,  is a partial output function from Q×Σ1 into Σ2 such that

2http://regal.univ-mlv.fr/
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q1c q2 q3 d

�(q1, a) = q2 �(q2, a) = q3 �(q3, a) = q3

�(q1, b) = q1 �(q2, b) = q1 �(q3, b) = q3

(q1, a) = c (q2, a) = d (q3, a) = c

(q1, b) = d (q2, b) = d (q3, b) = d

�(q3) = d

ainit = c

a, c

b, d

a, d

b, d a, c

b, d

Figure 1: A sequential letter-to-letter transducer.

Dom(�) = Dom(), � is a partial final function from Q into Σ2, and ainit ∈ Σ2

is the initial output. An SLT is complete if Dom(�) = Q×Σ1. Accessible states
of an SLT are inductively defined by: qinit is accessible and if q is accessible,
for every a ∈ Σ1, �(q, a) is accessible. An SLT is accessible if all its states are
accessible. An example of complete and accessible SLT is depicted in Fig. 1.

Let T1=(Σ1,Σ2, Q1, qinit1, �1, 1, �1, ainit1) and T2=(Σ1,Σ2, Q2, qinit2, �2, 2,
�2, ainit2) be two SLTs. A function ' fromQ1 toQ2 is an isomorphism from T1 to
T2 if it satisfies the following conditions: (1) ' is bijective, (2) '(qinit1) = qinit2,
(3) �1(q, a) = p iff �2('(q), a) = '(p), (4) 1(q, a) = b iff 2('(q), a) = b, (5)
�1(q) = �2('(q)) and (6) '(ainit1) = ainit2. If such an isomorphism exists, we
say that T1 and T2 are isomorphic. Informally, T1 and T2 are isomorphic if
they encode the same SLT, up to state names. The relation is isomorphic to is
trivially an equivalence relation.

In this paper, we are interested in the uniform random generation of SLTs up
to isomorphism, i.e. we want to equiprobably generate equivalence classes for
the isomorphic relation (and for a given number of states). Since the approach
is purely syntactic and will be applied to different classes of finite automata, we
do not need to define a semantic for SLTs.

2 Generating Sequential Transducers

We propose in this section a general method to generate randomly and uni-
formly deterministic and accessible automata-like structures with n states. For
this purpose, we develop an algorithm that generates sequential letter-to-letter
accessible transducers with n states, that can be further parametrized by giv-
ing some restrictions on the possible outputs for each input letter. The idea
thereafter, for each given problem, is to find an effective bijection ' between
the structures one wants to generate and such a family of transducers. The al-
gorithm is in fact more general, since by Proposition 1, one can build an effective
random generator even if ' is only an injection, provided that all the complete
transducers are in the image of '. This method will be applied in Sect. 3 and
Sect. 4 to build random generators for deterministic tree walking automata and
deterministic top-down tree automata.

Note that we are only interested here in the combinatorial structures of
transducers, not on what their models are. Indeed, our approach will be used
in order to generate several kinds of finite automata. Also note that we are
interested in the uniform random generation of isomorphic classes of SLTs. The
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algorithms proposed in this section fulfill this criterion. However, in order to
simplify the exposition, we will write about random generation of SLTs rather
than of equivalence classes of SLT, but keep in mind that we randomly generate
witnesses of equivalence classes.

2.1 Rejection Algorithms

Before we describe the generation algorithm, let us recall the definition of a
rejection algorithm: Suppose we want to generate elements of a set X, according
to a probability distribution pX . Furthermore, suppose that X is a subset of
Y , and that we have a probability distribution pY on Y , whose restriction to X
is pX . If we have an algorithm to generate elements of Y according to pY , we
may use this algorithm to generate elements of X as follows: repeatedly draw
an element of Y , reject it if it is not in X, and stop if it is in X.

The average complexity of this rejection algorithm depends on the complex-
ity of the generation algorithm on Y , on the complexity of the test whether an
element of Y is in X, and on the average number of rejects. One can show that
if pY (X) is the probability for an element of Y to be in X, the average number
of iterations is 1/pY (X).

2.2 Families of Transducers

Let us consider the family Dn(Σ1,Σ2, r, ri, rF ) of accessible SLTs with n states,
where Σ1 is the input alphabet, Σ2 is the output alphabet, r : Σ1 → P∗(Σ2)
is the restriction on transitions, ri ∈ P∗(Σ2) is the restriction on initialization
and rF ∈ P∗(Σ2) is the restriction on finalizations. An n-states accessible SLT
(Σ1,Σ2, Q, i, �, , �, ai) belongs to Dn(Σ1,Σ2, r, ri, rF ) if the following conditions
are met: (i) ai ∈ ri, (ii) �(Q) ⊆ rF , and (iii) for all a ∈ Σ1, (Q, a) ⊆ r(a).

We denote by Cn(Σ1,Σ2, r, ri, rF ) the subset of Dn(Σ1,Σ2, r, ri, rF ) that con-
tains all the complete transducers. In order to generate a random element of
Dn(Σ1,Σ2, r, ri, rF ) or Cn(Σ1,Σ2, r, ri, rF ), we split the problem into three parts:
the underlying graph with input symbols, the transitions outputs, and the set
of final states. For complete transducers, one can perform these parts independ-
ently and still ensure equiprobability. A rejection algorithm is used to adapt
this method to possibly incomplete ones.

2.3 Generation Algorithm

The idea to generate deterministic and accessible word automata developed by
Bassino et al. [1, 3] is to exhibit an effective injection � from automata with n
states on a k-letter alphabet to partitions of [1, kn+1] in n parts in the complete
case and of [1, kn+2] in n+1 parts in the possibly incomplete case. The inverse
�−1 can also be computed, and though all partitions are not the image of an
automaton, there are enough of them to guarantee that a rejection algorithm is
efficient. The algorithm therefore consists in randomly generating a partition,
using a Boltzmann sampler, until the partition is the image of an automaton,
and then compute its preimage. Its average complexity is O(n3/2).

The algorithm to generate a random element of Cn(Σ1,Σ2, r, ri, rF ) consists
in the following three steps:
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1. Randomly generate a complete deterministic and accessible automaton
with n states on Σ1.

2. For each q ∈ Q and each a ∈ Σ1, randomly and uniformly choose (q, a)
in r(a).

3. For each q ∈ Q, randomly and uniformly choose an element x of rF ⊎{#},
where # is a new symbol indicating that the state is not final; then define
�(q) = x if x ∕= # and leave �(q) otherwise undefined.

One can give the number of final states as a parameter f and change Step 3
into: Choose a random subset F with f elements of Q, and for each q ∈ F ,
choose �(q) in rF . The average complexity of the algorithm remains in O(n3/2).

To generate a random element of Dn(Σ1,Σ2, r, ri, rF ), we proceed as be-
fore, except that we generate a possibly incomplete automaton at Step 1. The
problem here is that the distribution is not uniform anymore, since we consider
multiple choices of (q, a) when the transition does not exist, leading to the
same transducer. In order to obtain uniformity, we arbitrarily order Σ2 and
only keep, using a rejection algorithm, transducers such that (q, a) is set to
the minimum in r(a) for every undefined transition. Corollary 1 of [3] ensures
that a proportion greater than c, where c > 0 is a real number, of possibly in-
complete automata are complete. The average number of rejects of this method
is therefore in O(1), as complete structures are not rejected and are numerous
enough. The average complexity is in O(n3/2) as well. Observe that if we had
generated the image of (q, a) for defined transitions only, we would have lost
the uniformity.

Using the same argument about the proportion of complete automata given
in Corollary 1 of [3], we can prove the following fairly general proposition:

Proposition 1 Let En be a subset of Dn(Σ1,Σ2, r, ri, rF ) such that En contains
Cn(Σ1,Σ2, r, ri, rF ). The rejection algorithm consisting in generating uniformly
an element of Dn(Σ1,Σ2, r, ri, rF ) until it is in En performs O(1) iterations on
average.

Therefore, we have a straightforward method to build a random generator for
such a class En, which is efficient if one can quickly test if a given transducer
is in En. In particular, if the membership test can be done in linear time, then
the average complexity of this method is in O(n3/2). Note that the constant
factor might grow quickly, e.g. when ∣Σ1∣ grows.

3 Application to Tree Walking Automata

3.1 Deterministic Tree Walking Automata

A deterministic tree walking automaton (DTWA) on binary trees is a tuple
A = (Q,Σ,Δ, qinit, F ) where Q is a finite set of states, qinit ∈ Q is the initial
state, F ⊆ Q the set of final states and Δ is a partial transition function
from Q × TYPE × Σ to {", ↑,↙,↘} × Q, where TYPE = {root, left, right} ×
{internal, leaf}. A deterministic tree walking automaton is complete if Δ is a
complete function. Accessible states of a DTWA are defined inductively: qinit
is accessible, and if q is accessible and Δ(q, t, a) = (d, p) for some (t, a) ∈
TYPE× Σ, then p is accessible. An example of a DTWA is shown in Fig. 2.
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Δ(q1, (root, internal), a) = (↘, q2)

Δ(q2, (right, leaf), b) = (↑, q1)

q1 q2

(root, internal), a,↘

(right, leaf), b, ↑

Figure 2: A deterministic tree walking automaton.

An isomorphism from a DTWA A1 = (Q1,Σ,Δ1, qinit1, F1) to a DTWA
A2 = (Q2,Σ,Δ2, qinit2, F2) is a bijective function from Q1 to Q2 satisfying
the three conditions (1) '(qinit1) = qinit2, (2) '(q) ∈ F2 iff q ∈ F1, and (3)
Δ1(q, t, a) = (d, p) iff Δ2('(q), t, a) = (d, '(p)).

3.2 From SLTs to DTWAs

We define in this section a rather straightforward bijection � between DTWAs
and a class of SLTs, called DTWA-coherent SLTs, that contains all the complete
SLTs. We obtain thereafter a random generation algorithm for DTWAs thanks
to the restriction mechanisms introduced in Sect. 2.

We first observe that a tree walking automaton can be viewed as a “classical”
finite automaton on the alphabet Σ1 × Σ2 defined by Σ1 = TYPE × Σ and
Σ2 = {", ↑,↙,↘}. Let A = (Q,Σ,Δ, qinit, F ) be a DTWA; we define �(A) by

�(A) = (Σ1,Σ2 ⊎ {$, 1}, Q, qinit, �, , �, $) ,

with �(q, (t, a)) = p and (q, (t, a)) = d iff Δ(q, t, a) = (d, p), and Dom(�) = F
with �(q) = 1 iff q ∈ F . For the example depicted in Fig. 2,

�(q1, ((root, intern), a)) = q2 (q1, ((root, intern), a)) =↘

�(q2, ((right, leaf), b) = q1 (q2, ((right, leaf), b) =↑ �(q1) = 1 .

An SLT on Σ1,Σ2 ⊎ {$, 1} is DTWA-coherent if its initial output symbol is $.
Let us now provide an algorithm for random generation up to isomorphism

of DTWAs. We reuse for this purpose the SLT generation algorithm, and need
the following two propositions.

Proposition 2 The function � is a bijection from DTWAs to DTWA-coherent
SLTs. Moreover, for every DTWA A, �(A) is complete (resp. accessible) if and
only if A is complete (resp. accessible).

Proposition 3 Two DTWAs A1 and A2 are isomorphic if and only if �(A1)
and �(A2) are isomorphic.
Proof. It suffices to note that the same isomorphism holds between A1 and A2

and �(A1) and �(A2). □

Moreover, the restrictions introduced in Sect. 2 are helpful in order to gen-
erate nicer tree walking automata. Indeed, in a tree walking automaton, a
transition labeled by ((t, a), d), with (t, a) ∈ Σ1 and d ∈ Σ2 is useless (i.e. can
never be fired) in either of the following two cases:
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Figure 3: Average number of states in the 10 smallest, the 10 largest, and
the 80 median top-down tree automata obtained from transforming 100 2-letter
DTWAs with n states.

1. t is in {root} × {internal, leaf} and d =↑, or

2. t is in {root, left, right} × {leaf} and d ∈ {↙,↘}.

Let us denote by rDTWA the subset of Σ1 × Σ2 of the pairs (a, b) that do not
match any of the above two cases. The class EDTWA

n of useful DTWA-coherent
SLTs with n states then contains Cn(Σ1,Σ2 ⊎ {$, 1}, rDTWA, {$}, {1}) and is
included in Dn(Σ1,Σ2 ⊎ {$, 1}, rDTWA, {$}, {1}). Thus, random generation of
DTWAs can be performed by first using Proposition 1 to obtain a SLT T and
then by computing �−1(T ).

3.3 Experimentation: From DTWAs to Top-Down Tree

Automata

Tree walking automata enjoy a tight connection with several logical formal-
isms [9, 14], including some XPath fragments. Formula satisfiability then re-
duces to the emptiness of the language of a tree walking automaton. Neverthe-
less, the latter problem is rather hard to decide: it is an ExpTime-complete
problem, for which the known algorithms consist essentially in constructing
an exponentially larger equivalent top-down tree automaton, and (on the fly)
checking this automaton for emptiness in linear time.

We have implemented a prototype tool for converting DTWAs into coac-
cessible nondeterministic top-down tree automata (under the form of Relax

NG grammars [10]). Given a DTWA with n states, the resulting top-down tree

automaton can hold as many as O(2n
2

) states, that encode which pairs (p, q) of
states allow a run of the DTWA to start from state p on a given tree node and
return to it in state q without ever visiting its parent node.

We ran the algorithm on 100 randomly generated incomplete DTWA for each
n and report the mean number of states in the computed equivalent top-down
tree automaton in Fig. 3. Due to very high standard deviation values, we exclude
the 10 smallest and 10 largest output automata from the mean computation,
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and display their mean number of states on separate plots. All three plots
display an exponential behaviour. Overall, the translation results in a O(2n)

size increase on average, which is significantly better than the worst-case O(2n
2

)
bound.

4 Application to Top-Down Tree Automata

4.1 Deterministic Top-Down Tree Automata

In this section, ℱ denotes a finite ranked alphabet, i.e. there is an arity function
ar from ℱ into ℕ. We denote by ℱi the subset of elements C of ℱ such that
ar(C) = i. We assume that $ /∈ ℱ . Let ℱ = {(f, i) ∣ f ∈ ℱ ∖ℱ0, 1 ≤ i ≤ ar(f)}.

A deterministic top-down tree automata (DTDA) is a tuple (Q,ℱ , �, qinit)
where Q is a finite set of states satisfying 0 /∈ Q, qinit ∈ Q is the initial state,
and � is a partial transition function mapping elements of Q×ℱi to Q

i (for all
i ≥ 1) and elements of Q×ℱ0 to 0. One can inductively define accessible states
of a DTDA by: the initial state qinit is accessible and for every f /∈ ℱ0, if q is
accessible and �(q, f) = (q1, . . . , qar(f)) then the qi’s are accessible. A DTDA
is complete if Q× (ℱ ∖ ℱ0) ⊆ Dom(�). For more information on top-down tree
automata, the reader is referred to [8].

Let A1 = (Q1,ℱ , �1, qinit1) and A2 = (Q2,ℱ , �2, qinit2) be two DTDAs.
An isomorphism ' is a bijective function ' from Q1 to Q2 such that (1) for
every state q, every f ∈ ℱ ∖ ℱ0, �1(q, f) = (q1, . . . , qar(f)) iff �2('(q), f) =
('(q1), . . . , '(qar(f))), (2) '(qinit1) = qinit2, and (3) for every state q, every
C ∈ ℱ0, �1(q, C) = 0 iff �2('(q), C) = 0.

4.2 From SLTs to DTDAs

We define in this section a bijection  from DTDAs to a subclass of SLTs, called
DTDA-coherent SLTs, that contains all the complete SLTs. For every DTDA
A = (Q,ℱ , �, qinit), let  (A) be the SLT

 (A) = (ℱ ,P(ℱ0) ⊎ {$}, Q, qinit, �, , �, $)

defined by: (q, (f, i)) = ∅ and �(q, (f, i)) = pi iff �(q, f) = (p1, . . . , pn), and
�(q) = {A ∈ ℱ0 ∣ �(q, A) = 0} iff this set is not empty, and �(q) is un-
defined otherwise. For example, let ℱ0 = {A,B}, ℱ1 = {ℎ} and ℱ2 = {f}
in Aexe = ({q1, q2},ℱ , �exe, {q1}) with �exe(q1, f) = (q1, q2), �exe(q2, ℎ) = q2, and
�exe(q1, A) = �exe(q1, B) = �exe(q2, A) = 0. This entails ℱ = {(ℎ, 1), (f, 1), (f, 2)}
in the SLT  (Aexe) depicted in Fig. 4.

A SLT (ℱ ,P∗(ℱ0)⊎ {$}, Q, qinit, �, , �, $) is DTDA-coherent if (1) for every
state q, every (f, i) ∈ ℱ , �(q, (f, i)) is defined iff �(q, (f, j)) is defined for all
j ∈ [1, ar(f)], (2) (q, (f, i)) is either undefined or equal to ∅, and (3) its initial
output is $.

Proposition 4 The function  is a bijection from DTDA to DTDA-coherent
SLTs. Moreover, for every DTDA A,  (A) is complete (resp. accessible) if and
only if A is complete (resp. accessible).
Proof. If A is a DTDA, then it is clear that  (A) is DTDA-coherent. Now
let A1 = (Q1,ℱ , �1, qinit1) and A2 = (Q2,ℱ , �2, qinit2) be DTDAs such that

8



�exe(q1, (f, 1)) = q1

�exe(q1, (f, 2)) = q2

�exe(q2, (ℎ, 1)) = q2

�exe(q1) = {A,B}

�exe(q2) = {A}

q1$

{A,B}

q2 {A}
(f, 2), ∅

(f, 1), ∅ (ℎ, 1), ∅

Figure 4: The SLT  (Aexe) = (ℱ ,P∗({A,B})⊎{$}, {q1, q2}, q1, �exe, exe, �exe, $).

 (A1) =  (A2). By definition of  , Q1 = Q2 and qinit1 = qinit2. Set  (A1) =
 (A2) = (F ,P(ℱ0)⊎{$}, Q1, qinit1, �, , �, $). Reasoning on � shows that �1 and
�2 are equal for letters in ℱ ∖ ℱ0. Reasoning on � shows that �1 and �2 are
equal for letters in ℱ0. It follows that  is injective. The remaining points of
the proposition are straightforward verifications. □

Proposition 5 Two DTDAs A1 and A2 are isomorphic if and only if  (A1)
and  (A2) are isomorphic.
Proof. It suffices to note that the same isomorphism holds between A1 and A2

and  (A1) and  (A2). □

Let rDTDA = ℱ × {∅}. The class EDTDA
n of DTDA-coherent SLTs with

n states contains Cn(ℱ ,P(ℱ0) ⊎ {$}, rDTDA, {$},P∗(ℱ0)) and is included in
Dn(ℱ ,P(ℱ0) ⊎ {$}, rDTDA, {$},P∗(ℱ0)). Thus, random generation of DTDAs
can be performed using Proposition 1 to obtain a SLT T and by computing
 −1(T ).

5 Conclusion

In this paper we define a rejection algorithm to randomly and uniformly generate
sequential letter-to-letter transducers with some restrictions. We also exhibit
two bijections from this class of transducers to the class of deterministic tree
walking automata and deterministic top-down tree automata respectively, and
report on an empirical evaluation of a O(2n) average complexity instead of a

O(2n
2

) worst-case bound for turning a deterministic tree walking automaton
into an equivalent nondeterministic top-down tree automaton.

The approach we propose in this paper can easily be extended to some other
classes of finite automata, like deterministic pebble tree walking automata. A
much less obvious variation would be needed in order to randomly generate
deterministic bottom-up tree automata or hedge automata.
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