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Abstract—This article is related to using modern LiDARs and 

neural networks based algorithms for vulnerable road users 

(VRU) detection. The problem is obvious especially when 

considering blind spots of heavy goods vehicles.  LiDARs have 

developed a lot recently and the results indicate that adults can be 

detected up-to 75 m distance from the sensor even thought that 

pattern recognition requires sufficient point cloud-resolution. Two 

different LiDAR brands have been compared to understand cost-

benefits between LiDAR technologies. The results have been 

conducted using an automated passenger car while considering 

feasibility to big trucks. Due to automotive requirements, the 

processing rate is also considered since usually, the main 

bottleneck is computation power, which is limited in automotive 

products. The used neural network algorithm is Yolo based and 

has been designed for VRU detection. 
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I. INTRODUCTION 

A. Accidents involving pedestrians in Finland and in 

Europe overall 

        Whilst the number of pedestrians killed in road 
accidents has significantly reduced in the last 15 years, still 
5320 pedestrians were killed in traffic accidents according to 
statistics from 2016 [1]. Number of fatalities varies by 
country, from 2,6 pedestrian fatalities per million population 
in Netherlands to Romania’s 36,3 per million population. In 
the last three years in Finland, an average of 21 people have 
died and 360 pedestrians have been injured each year. Every 
tenth, and seven percent of all road deaths and injuries, were 
pedestrians. One in five victims died on the pedestrian 
crossings. Sixty percent of pedestrian injuries occurred on the 
pedestrian crossings [2]. Nearly half of all deaths and nearly a 
third of those injured were 65 years of age or older. Of the 
pedestrians who died on the pedestrian crossing, four out of 
five and almost one in three were injured were 65 years of age 
or older. This applies also to the whole of Europe also, where 
the elderly form the largest group in pedestrian fatalities, but 
the percentage of pedestrian fatalities is high for children as 
well. This is most likely attributed to their higher frailty and 
lower level of motorization.   
 During the darkest quarter of the year in Finland, half of 
all pedestrian injuries occurred in October-January. In 
particular, personal injuries on guardrails were concentrated in 
these months: 58 % of personal injuries on pedestrian 
crossings occurred during this period. In Europe the  number 

increases during the autumn, peaks in December  and then 
decreases in the  spring,  whereas  the  total number of fatalities 
increases  during  the spring and peaks in July. 

The increase in pedestrian fatalities during the winter is 
probably caused by the higher risk for pedestrians in the 
darkness. The duration of  darkness  is longer than in other 
seasons  and pedestrians are much less visible than vehicles, 
which can use lights. 45%  of  pedestrian  fatalities  in  the  EU  
occurred  in  darkness, whilst 39%  of  pedestrian  fatalities  
were recorded  in  daylight. Pedestrian fatalities in darkness 
varies between countries, from 74% in Lithuania to 28% in 
Finland. The elderly form the largest group in pedestrian 
fatalities but the percentage of pedestrian fatalities is high for 
children as well. In Europe 50% off all pedestrian fatalities 
occurred between 4pm and midnight The highest percentage 
of pedestrians killed in road accidents was recorded on Fridays 
and Saturdays, while the lowest was recorded on Sundays.  

B. Heavy goods vehicle pedestrian detection 

Heavy vehicle detection requirements are radically 
different from the ones in passenger cars. Heavy goods vehicle 
driver has straight visibility only on the front side and partial 
visibility of both sides of the vehicle. All other recognition 
happens from mirrors. This causes danger for VRU when the 
heavy vehicle turns at an intersection. Usually the driver has a 
few blind spots around the vehicle. See Fig. 1. Traditional way 
to solve these problems is to make more mirrors but it’s 
limited possibility because every extra mirror causes other 
blind spot behind it. Additionally, driver capacity to follow all  

Fig. 1. Heavy goods vehicle with limited visibility for the driver. 
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mirrors at urban traffic is limited. Dark time traffic is most 
difficult to solve with traditional mirrors or camera systems. A 
25m long truck with a trailer doesn’t give any light to its sides, 
so the driver cannot detect objects after they are out of the 
headlights range, camera systems are working with IR lights, 
but they  require very powerful lights to be able to provide 
light to a 25m long area. 

II. RELATED WORK 

A. LiDAR sensors 

Many popular LiDAR sensors are designed to use 
scanning techniques with mechanically spinning mirrors, 
which reflect laser beams to the environment as a horizontally 
rotating cone. The scanning resolution and the perception 
accuracy of these spindle-type LiDARs largely derives from 
their beam-count in the vertical direction. The beam-count of 
these LiDARs determines their perception capabilities, and is 
the limiting factor when perceiving an environment with 
mirror-rotating LiDARs. With this scanning technique, the 
horizontal resolution often outmatches the vertical resolution, 
which results in limited 3D information about the targets 
perceived by the LiDAR sensor. The information in vertical 
direction is increased with more scanning beams. However, 
the more precise hardware requirements for higher beam-
counts also increase the cost of these mirror-rotating LiDARs, 
and they are more prone to physical damage from 
environmental stress factors due to the rotating mechanical 
parts.      
 Solid-state LiDAR systems have been developed as an 
alternative to the spinning LiDARs. Solid-state LiDARs 
attempt to minimize moving parts in the sensor, thus reducing 
their fragility. The goal of solid-state technology is to apply 
silicon chip technology to create less expensive and more 
robust LiDAR sensors with technologies such as micro-
electromechanical systems (MEMS), optical phased arrays 
(OPA) and flash LiDAR [3]. Solid-state LiDARs can offer 
vertical resolutions similar to those of state-of-the-art rotating 
LiDARs with high beam counts. However, the problem is 
range since response from a single point is weak due to 
illuminating wide areas. 

B. LiDAR object detection 

With the development of LiDAR sensors and their 
increasing perception capabilities, point cloud data can be 
used in increasingly challenging applications such as object 
detection. Point cloud data from the environment can be 
processed to detect surrounding objects of interest. This can 
be applied to many fields of research, including autonomous 
driving. The perk of using point cloud data in object detection 
is the obtaining of 3D spatial information about surrounding 
objects, which allows the examination of an objects size, shape 
and movement. This information becomes more reliable and 
accurate when using higher resolution LiDARs. 

Point cloud object detection can be performed in several 
ways. Pattern and feature recognition methods are a popular 
solution, and deep learning methods for 3D point clouds have 
gained great popularity in recent years. With modern LiDAR 
sensors however, the amounts of data that needs to be 
processed by computers is rapidly increasing. Deep learning 
solutions for point clouds are often computationally heavy, 
and therefore provide challenges when considering 
automotive applications. The processing times of automotive 
sensing systems should achieve real-time rates to fulfill safety 
requirements.     
 Sensor data fusion is a common method of processing 
different data types from differing sensors, and combining 

their data to yield information, which could not be obtained 
from a single sensor type alone. For example a LiDAR sensor 
provides accurate 3D spatial data about the environment, but 
it does not provide data such as the colors and other visual 
information of the surroundings. The visual features of the 
environment can be accurately perceived by a camera sensor, 
for example. As stated earlier, a major challenge of real-time 
point cloud processing is the amount of data available. 
Through sensor fusion, this data can be filtered in ways, which 
allow focusing on only the desired sub-sections of the point 
cloud i.e. interesting objects surrounding a vehicle. This 
provides the full benefits of the 3D point data, while greatly 
optimizing computation costs, when sensor data fusion is 
utilized to ignore unimportant parts of the point cloud. Such a 
method of data fusion is presented in [4]. The method is based 
on accurate inter-sensor calibration of a LiDAR and a camera, 
as it uses the output detection boxes mapped on an image by a 
2D object detector, to form the initial search area in the lidar 
point cloud through 3D to 2D point projections. The clustering 
is then applied in the LiDAR point cloud with distance-based 
searching to form individual 3D clusters of the objects. In this 
method, the importance of the LiDAR resolution is apparent, 
as the algorithm relies on the 3D points reflected from the 
perceived object. A low-resolution LiDAR-sensor provides 
more uncertain 3D data about surrounding objects, while a 
higher resolution sensor provides more accurate and 
descriptive data about the object, allowing more reliable 
estimation of object properties. 

III. TEST SETUP 

The tests were setup in a way that allows the comparison of 
the perception capabilities of two LiDAR sensors in an 
outdoors environment using the 3D object detection method 
of [4]. The algorithm was modified, however, to use Euclidean 
distance-based clustering to determine the final object 3D 
points based on the initial search areas provided by the 2D 
object detector. The goal of the testing was to perform 
identical measurements of the 3D detection of pedestrians in 
varying distances for both LiDAR sensors. The detection 
system was integrated on the VTT research vehicle Marilyn, 
which was equipped with the two LiDAR sensors used in this 
comparison, see Fig 2. 

 

Fig. 2. VTT automated driving reseach vehicle ‘Marilyn’. 

 

A. Measurement system overview 

The VTT test vehicle Marilyn was used as the platform for 
this measurement. The object detection algorithm of [4] was 
implemented on the vehicle with three sensor data processing 
computers, each with their own task. The data transfer 
between the computers was handled using an OpenDDS 
network [5]. An Nvidia Jetson Xavier NX deep learning 
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device was used as a platform to run the vanilla YOLOv4 2D 
object detector trained on the COCO dataset [6]. The detector 
was using an input size of 512x512, which has the reported 
Average Percision (AP) of 43.0 %. The object detector 
processed images obtained from a Basler Ace color camera, 
and published the detection information through OpenDDS. 
The LiDAR data was processed by a Cincoze computer, which 
modified the LiDAR sensor raw data to a point cloud, and 
published it to the OpenDDS network. The data fusion and the 
measurements for the sensor comparison were performed on a 
Jetson Xavier AGX embedded device. The Xavier NX device 
was able to process data at a rate of  about 8 Hz, and the 
LiDARs were set to output point clouds at 10 Hz. The Xavier 
AGX device performing the data fusion was set to process the 
incoming camera and LiDAR data as qucikly as possible, 
which resulted in a slightly uneven rate for the data fusion 
inference due to the different processing rates of the camera 
and LiDAR computers. Therefore, the measurements for the 
LiDAR comparison were calculated per frame, ignoring 
elapsed time in the measurements. The LiDARS used in the 
comparison were the Ouster OS1-32 sensor, and the Luminar 
Hydra 3 sensor. The measurements were collected by first 
performing individual measurements for the Ouster sensor, 
and then the same measurements were repeated using the 
Luminar sensor. The measurement system is presented in Fig. 
3. 

B. Pedestrian detection measurement setup 

The goal was to perform measurements for both LiDARs 
in identical scenarios, for equal amounts of processed frames 
in a single scenario. The measurements were conducted in two 
separate sets. One for Ouster and one for Luminar. The 
measuring vehicle stood still for all measurements, with the 
pedestrian being the only moving target in front of the vehicle. 
Each set included four measurements. Three of those 
measurements were conducted with a pedestrian walking 
around in the critical distances shown in Fig 4. The fourth 
measurement was a scenario where the pedestrian is 
approaching from a large distance, walking towards the 
observing vehicle. For the critical distances, markings were 
drawn on the ground at the distances of 11.5, 18 and 25.15 
meters.  

 

Fig. 3. Measurement system setup. 

Fig. 4. Dangerous locations on a heavy goods vehicle where the risk of a 

pedestrian being run over is exceptionally great. 

 

Fig. 5. Example of the object detection algorithm using the 2D detecttion 

boxes to form a point cluster representing the pedestrian. Luminar Hydra 3 

is used here. 

These distances were selected based on three particularly 
dangerous areas around the vehicle, where surprising 
sideways movement of the vehicles body while turning for 
example, can be a risk to the VRU, see Fig. 4.  For each of 
these distances, a test subject walked back and forth in a line 
at a constant distance, and the measurement data was captured. 
These three measurements were conducted to provide some 
reference on the perception capabilities of the two LiDARs on 
heavy goods vehicle safety applications. 

For the fourth measurement, the test subject was observed 
approaching the vehicle from a large distance. The 
measurement data stored from the target pedestrian included 
xyz-coordinates, distance, whether the pedestrian was 
succesfully extracted from the point cloud, and cluster-size of 
the extracted pedestrian object.   
 On some occasions, the point cloud extraction of the 
pedestrian object fails in situations where the 2D object 
detector locates the target from the image, but the LiDAR 
sensor cannot associate any 3D points to it i.e. the LiDAR has 
received no reflections from the target. Admittedly, this only 
occurred when measuring with the Ouster sensor. The cluster 
size refers to the final amount of LiDAR-points associated to 
the object after the detection algorithm is finished. This is the 
main measurement in assessing the reliability and perception 
capability of the LiDAR sensors in this research. An example 
of a pedestrian detection is shown in Fig. 5. 
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IV. EXPERIMENTAL RESULTS 

The measurements were completed for the critical 
distances of 11.5, 18.0 and 25.15 meters. The amount of 
frames measured varied slightly for the scenarios, as the 
measurement was controlled by hand. The frame amounts 
varied from 234 to 272. The observed point cluster data was 
analyzed by finding the minimum, maximum and mean cluster 
size for each of the measurement scenarios.  

TABLE I.  OUSTER OS1-32 PEDESTRIAN PERCEPTION 

Ouster 

Distance (m) 11.5 18.0 25.15 Approach 

Min. cluster size 60 23 10 1 

Max. cluster size 98 45 22 626 

Mean cluster size 73.4 31.4 15.5 69.7 

Frame amount 259 243 272 193 

 

 

 

TABLE II.  LUMINAR HYDRA 3 PEDESTRIAN PERCEPTION 

Luminar 

Distance (m) 11.5 18.0 25.15 Approach 

Min. cluster size 409 207 127 36 

Max. cluster size 942 507 339 2212 

Mean cluster size 525.9 298.2 195.2 318.7 

Frame amount 234 244 261 312 

 

 

Fig. 6. Point-cluster sizes of the detected pedestrian on different distances 

for the Ouster OS1-32 LiDAR. 

 

 

Fig. 7. Point- cluster sizes of the detected pedestrian on different distances 

for the Luminar Hydra 3 LiDAR. 

 

 Tables I and II, and Fig. 6 and Fig. 7 show the numbers of 
points reflected from the pedestrian target for both of the 
LiDAR sensors. The ‘Approach’ column refers to the 
scenario, where the pedestrian target is approaching directly 
towards the measuring vehicle at a regular walking speed. The 
cluster size has regular increases in point amounts, this is 
caused by the changes in the target pedestrians direction of 
movement. While turning, the pedestrian faces the camera and 
the LiDAR, which results in larger visible surface, and 
therefore more LiDAR points are reflected from the target. 
This is seen on all of the scenarios where the pedestrian is 

 

Fig. 8. Point-cluster sizes of the detected approaching pedestrian for both 

LiDAR-sensors. 

pacing back and forth at a certain distance. The measurement 
only included situations where a succesful pedestrian 
detection occurred. Therefore, the Frame amount of Tables I 
and II is very different for the ‘Approach’ measurement, as the 
Luminar sensor was able to see the pedestrian from greater 
distances than the Ouster sensor. 

 Fig. 8 shows the relation between the measured distance of 
the object and the objects point cluster size. The idea is to 
imitate a situation where the sensors are installed on the front 
bumper or the sides of a large truck. The pedestrians distance 
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from the vehicle was estimated by calculating the center of 
mass of the point cloud points representing the pedestrian. 
Figure 5 also gives insight on the perception distance of 
YOLOv4. For the Luminar sensor, the detections stabilize at a 
distance of over 60 meters, which is when the YOLOv4 
detector begins to provide continuous detections of the 
pedestrian. The Ouster sensor does not receive reflections 
from the pedestrian at this distance, however, and starts 
perceiving the pedestrian at distances of over 40 meters.
 The difference between the amounts of reflected points is 
significant. For the distance of 11.5 meters, the Luminar 
returned approximately 7.2 times more points than the Ouster 
on average. At 18 meters, the Luminar returned 9.5 times more 
points on average, and at 25.15 meters, 12.6 times more points 
on average. Both of the sensors managed to continuously 
detect the pedestrian at all of the critical distances.  

V. CONCLUSIONS AND FUTURE WORK 

The measurements provided insight on the perception 
capabilities of a lower-resolution spindle-LiDAR, and a state-
of-the-art solid-state LiDAR. The tests were conducted in a 
way which examined both sensors applicability in a heavy 
vehicle safety system for detecting pedestrians moving in 
dangerous proximities and critical risk areas of a heavy goods 
vehicle. The greater point amounts of the Luminar allow more 
reliable postprocessing operations. Examples of this are object 
tracking, and size estimation.   
 Compared to previous studies with 3D-camera systems in 
heavy goods vehicles, the LiDAR approach allows more 
reliable detection along the full length of the vehicle [7]. The 
results show the current advancement and potential of state-
of-the-art solid-state LiDARs compared to the popular lower-
resolution spindle-LiDARs. The Luminar Hydra 3 sensor was 
able to associate about 40 3D points to the pedestrian target 
from distances as large as 75 meters. For reference, the Ouster 
32 beam sensor associated about 31.4 points on average to the 
pedestrian from an approximate distance of 18 meters. The 
prowess of modern state-of-the-art LiDARs provides 
increasing possibilities in critical safety applications such as 
heavy vehicle urban driving, where accurate tracking and 
classification of other road users is critical. However, the 
mounting position has influence to the field of view. Usually, 
the LiDARs in a truck are installed either on the roof or front 
bumper where distance to ground does not degrade resolution 
in proximity.     

 In the future, these types of test setups could be integrated 
into actual heavy vehicles, to obtain practical results about the 
usability of LiDAR-based object detection systems for 
pedestrian detection in blind spots. This research used a 
passenger vehicle for mounting the measurement sensors, so 
performing these types of measurements with sensors installed 
on an actual heavy goods vehicle would provide further 
information on the subject. The setup of this research utilized 
an RGB camera, whose image stream was processed by a 
neural network to support the LiDAR sensor. In the future, the 
RGB camera could be replaced with an IR system for 
detection support. Thanks to the high-resolution point clouds 
provided by the Luminar Hydra 3 and other state-of-the-art 
sensors, VRU detection could also be performed by purely 
point cloud analyzing algorithms more reliably than before. 
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