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Abstract: The finite element method has been widely used to investigate the mechanical behavior of
biological tissues. When analyzing these particular materials subjected to dynamic requests, time
integration algorithms should be considered to incorporate the inertial effects. These algorithms can
be classified as implicit or explicit. Although both algorithms have been used in different scenarios, a
comparative study of the outcomes of both methods is important to determine the performance of a
model used to simulate the active contraction of the skeletal muscle tissue. In this work, dynamic
implicit and dynamic explicit solutions are presented for the movement of the eye ball induced by the
extraocular muscles. Aspects such as stability, computational time and the influence of mass-scaling
for the explicit formulation were assessed using ABAQUS software. Both strategies produced similar
results regarding range of movement of the eye ball, total deformation and kinetic energy. Using the
implicit dynamic formulation, an important amount of computational time reduction is achieved.
Although mass-scaling can reduce the simulation time, the dynamic contraction of the muscle is
drastically altered.

Keywords: finite element method; implicit FEM; explicit FEM; skeletal muscle

1. Introduction

The extraocular muscles (EOM) are responsible for the eye movements of the upper
eyelid and the eyeball. The group that controls the eyeball contains six muscles: four
muscles that run almost a straight course from origin to insertion and hence are called
recti and two muscles that run a diagonal course, the oblique muscles [1]. The group
that controls eye movement in the cardinal directions are the superior (responsible for
elevation, incyclotorsion and adduction), inferior (responsible for depression, extorsion
(outward, rotational movement) and adduction), lateral (responsible for abduction) and
medial (responsible for adduction) rectus muscles. The movements of the extraocular
muscles take place under the influence of a system of extraocular soft tissue pulleys in
the orbit. The extraocular muscle pulley system is fundamental to the movement of the
eye muscles, in particular to ensure conformity to Listing’s law. Certain diseases of the
pulleys (heterotopy, instability and hindrance of the pulleys) cause particular patterns of
incomitant strabismus [2]. Simulating and analyzing eye movements is useful for assessing
the role of these tissues and for exploring the equilibrium of the applied forces that can be
impaired and lead to different pathologies [3,4].

The finite element method (FEM) has been widely used to simulate the behavior of
skeletal muscle both passively and actively [5–10]. The vast majority of studies have focused
on determining the essential parameters that best fit the experimental evidence [4,10,11].
Although different approximations and scenarios have been evaluated with the help of this
numerical technique, the contraction of the muscle has been analyzed assuming quasi-static
conditions with no inertia effects [4].
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An important aspect to consider when reproducing the eyeball movements using FEM
is the fast response of the muscles when activated and how the result of this contraction is
translated to induce the system motion. This movement is achieved in a few tenths of a
second [11]. When tackling these small time periods, realistic simulations should account
for the inertia effect of the mass of the different elements. In such scenarios, the use of a
dynamic formulation of the FEM is essential. Time integration algorithms for dynamic
problems in FEM analysis can be classified as implicit or explicit. Basically, the implicit
method computes the state of the model at each time increment based on the information
of that same time increment and the previous time increment, while the explicit method
uses the data of the previous time increment to solve the motion equations during the new
time increment [12]. Implicit time integration schemes are more expensive per time step,
but can obtain the solution for larger time steps and provide a control on the dynamic
residual force vector, since they are usually used in conjunction with an iterative procedure
within each time step [13]. The explicit algorithm can be solved directly without requiring
iteration. This method is conditionally stable, and the critical time step for the operator
(without damping) is a function of the material specification and the size of the smallest
element of the mesh [12]. Increments larger than this critical time can cause the solution to
be unstable and oscillations to occur in the model’s response, which can lead to excessively
distorted elements. To decrease the total computational time, a mass-scaling technique is
commonly used, whereby the solver can use larger time increments by artificially increasing
the density of the system. However, it is important to ensure that the added mass does
not change the behavior of the model, which in simulating active muscle contraction is
decisive. The choice between implicit and explicit methods with or without mass scaling
has been the subject of many studies [12,14–16]

The aim of this study was therefore to compare dynamic implicit and explicit solutions
using ABAQUS software [17] in the analysis of the contraction of the EOM for eyeball
movements. More specifically, we compared the prediction of dynamic effects, potential
convergence problems, the accuracy and stability of the calculations, the computational
time between the two methods and the influence of mass-scaling in the explicit formulation.

The rest of the paper is organized as follows. Section 2 describes the formulation of
the skeletal muscle behavior, the implicit and explicit algorithms, the implementation of
the user subroutine and the description of the finite element model. In Section 3, selected
results of the model comparing both algorithms are presented and then discussed in
Section 4. Finally, in Section 5, the main conclusions are summarized.

2. Materials and Methods
2.1. Muscle Contraction Model

Let Ω0 be a three-dimensional portion of the space representing the solid initial
geometry of the muscle tissue. This region defines a set of points at a reference configuration
which are identified by the position vector X. The motion of the solid defines the current
configuration at time t, Ωt and can be described by the map x = χ(X) = x(X).

Let F = ∂x
∂X be the deformation gradient associated with the motion, where J ≡ detF > 0

is the Jacobian of the transformation. A multiplicative decomposition of this deformation
gradient into volume-changing and volume-preserving parts is established to handle the
quasi-incompressibility constraint presented by soft tissues (J ∼= 1) [8]

F = J
1
3 F̄, F̄ = J−

1
3 F (1)

C = FTF, C̄ = J−
2
3 C = F̄T F̄ (2)

b = FFT , b̄ = J−
2
3 b = F̄F̄T (3)

where J
1
3 I and F̄ represent the volumetric and deviatoric deformation gradients, respec-

tively. C and b are the right and left Cauchy–Green strain tensors and C̄ and b̄ their
modified counterparts.
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It is assumed in this work that the contraction process can be modelled as two fictitious
steps [8,18] (see Figure 1). The first step is associated with the relative motion of the protein
filaments myosin and actin during the power stroke of the cross bridges, and the second
step relates to the elastic deformation of cross bridges. This contraction process can be
expressed as a multiplicative decomposition of the deformation gradient F̄:

F̄ = F̄eF̄a (4)

where F̄a is the deformation gradient associated with the contractile response induced
by the actin and myosin translation, whereas F̄e defines a deformation due to the cross
bridges elasticity. The gradient F̄a represents the active contraction so it does not need
to be integrable. Thus, infinitesimal parts of the tangent space Ω0 are deformed inde-
pendently, and the configuration they form after the motion may not be compatible. The
gradient F̄e guarantees the compatibility in the deformed configuration Ωt. Accordingly,
let C̄e = F̄T

e F̄e = F̄−T
a C̄F̄−1

a be a deformation measure due to the titin and cross bridges
motion which is not a state variable since it depends on C̄ and F̄a.

Figure 1. Illustration of the contraction process modelled as two fictitious steps. Gi vectors located at a point X in a muscle
fiber in the initial configuration Ω0 transform into new vectors λ̄iGi by the active contraction Fa. The intermediate step
is associated with the relative motion of the protein filaments due to cross bridges power stroke. In the final step, the
cross-bridges are deformed by Fe to restore the compatibility of the deformed configuration Ωt.

The active contraction occurs along the direction that is defined by the muscle fibers,
so let us introduce this direction as n0, and let λ̄a be the active stretch. Thus, the active
contractile tensor, F̄′a, can be written in the local coordinate system, Gi, as:

F̄′a = λ̄aG1 ⊗G1 + λ̄−1/2
a G2 ⊗G2 + λ̄−1/2

a G3 ⊗G3 (5)
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where we assume the active contractile tensor F̄′a to be isochoric. This local coordinate
system varies along the fiber length and is represented at a particular point of the tissue in
Figure 1.

The components of the contractile tensor expressed in the global system of coordinates
Ei, F̄a, can be obtained as:

F̄a = RT F̄′aR (6)

where R is the rotation tensor.
A strain energy density formulation decoupled into volume-changing and volume-

preserving parts is commonly taken to formulate the elastic constitutive law for transversely
isotropic materials such as skeletal muscle [8,18,19]. This energy is formulated in this
work as:

Ψ = Ψvol(J) + Ψ̄p(C̄, N) + Ψ̄a(C̄e, λ̄a, N) (7)

where N = n0 ⊗ n0. Equivalently, Ψ can be expressed as a function of the invariants of the
strain tensors:

Ψ = Ψvol(J) + Ψ̄p( Ī1, Ī2, Ī4) + Ψ̄a( J̄4, λ̄a) (8)

where Ī1 = trC̄ and Ī2 = 1
2 ((trC̄)2 − trC̄2) are the first and second modified strain in-

variants of the symmetric modified Cauchy–Green tensor C̄, and Ī4 = n0 · C̄n0 = λ̄2 is
the pseudo-invariant related to the anisotropy of the passive response (collagen fibers).
Similarly, the active contribution of the strain energy function, Ψ̄a, is expressed in terms of
the pseudo-invariant associated to C̄e and the preferred direction n0, J̄4 = n0 · C̄en0 = λ2

e .
As shown, the anisotropy in the formulation is induced by a single orientation for both the
passive and the active behavior. Although in fusiform muscles such as the EOM this is com-
monly accepted, in other muscle architectures two families of fibers should be considered
to adopt a more suitable formulation [9,20].

The third term in Equation (8) represents the strain energy associated with the active
response and, consequently, with the actin-myosin interaction. This term is written here
as a function Ψ̄′a that relates to the energy stored in the cross-bridges, while f1(λ̄a) is a
function that accounts for the filament overlap and f2(t) for the muscle activation level:

Ψ = Ψvol(J) + Ψ̄p( Ī1, Ī2, Ī4) + f1(λ̄a) f2(t)Ψ̄′a( J̄4) (9)

The function 0 < f1(λ̄a) < 1 has been experimentally characterized in previous
studies for different muscles [19,21] and fitted by a smooth exponential relationship:

f1(λ̄a) = exp
−(λ̄a−λopt)

2

2ξ2 (10)

where λopt is the optimum length of the muscle at which isometric maximum stress is
developed and ξ determines the curvature of the function. To formulate f2(t), we assume
in this work that all muscle fibers are completely recruited in each contraction, and this
function can be expressed as:

f2(t) = α tanh2(s1t) (11)

where 0 < α < 1 governs the activation level, s1 regulates the initial slope of the function
and t is the time variable. Finally, the energy stored in the cross-bridges is expressed
in terms of the invariant associated to C̄e in the direction of the muscle fibers n0 and a
parameter P0 related to the maximum active stress:

Ψ̄′a =
1
2

P0( J̄4 − 1)2 (12)

During the muscle contraction process, the second law of thermodynamics can be for-
mulated in the shape of the Clausius–Planck inequality neglecting the thermal dissipation



Mathematics 2021, 9, 1024 5 of 17

rate. This inequality allows us to consider that some of the power produced internally is
stored while another portion is dissipated [8]:

Dint = −Ψ̇ +
1
2

S : Ċ +
1
2

Sa : Ċa ≥ 0 (13)

In Equation (13), Sa represents active stress and 1
2 Sa : Ċa the muscle power stroke [18].

Following the work of Hernández-Gascón et al. [8], the following constitutive relations
are obtained:

S = 2
∂Ψ
∂C

+ F−1
a

(
2

∂Ψ
∂Ce

)
F−T

a (14)(
Pa − 2Fa

∂Ψ
∂Ca

+ 2Ce
∂Ψ
∂Ce

F−T
a

)
: Ḟa ≥ 0 (15)

where Pa is the first Piola–Kirchoff active stress. Since contraction occurs along the muscle
fiber only, Equation (15) reduces to:[

Pa −
∂Ψ̄
∂λ̄a

+

(
2C̄e

∂Ψ̄
∂C̄e

F̄−T
a

)
:

∂F̄a

∂λ̄a

]
˙̄λa ≥ 0 (16)

This expression leads to the following constitutive relation for the active contraction
velocity ˙̄λa:

Pa −
∂Ψ̄
∂λ̄a

+

(
2C̄e

∂Ψ̄
∂C̄e

F̄−T
a

)
:

∂F̄a

∂λ̄a
= C ˙̄λa (17)

assuming that:

C =
1
v0

P0 f1(λ̄a) f2(t) (18)

where v0 is associated with the initial contraction velocity. The active stress Pa from
Equation (17) is defined as a function of P0, f1(λa) and f2(t), and ν is a friction parameter
that takes into account the relative sliding speed between actin and myosin:

Pa = −νP0 f1(λ̄a) f2(t) (19)

Substituting Equations (18) and (19) and the last term of Equation (9) into Equation (17)
leads to the expression for the contraction velocity:

˙̄λa = v0

[
−ν− 1

f1(λ̄a)

∂ f1(λ̄a)

∂λ̄a
Ψ̄′a( J̄4) +

(
2C̄e

∂Ψ̄′a( J̄4)

∂C̄e
F̄−T

a

)
:

∂F̄a

∂λ̄a

]
(20)

Since Ψ̄′a depends on J̄4, Equation (20) reduces to:

˙̄λa = v0

[
−ν− 1

f1(λ̄a)

∂ f1(λ̄a)

∂λ̄a
Ψ̄′a( J̄4) + 2

λ̄2
e

λ̄a

∂Ψ̄′a( J̄4)

∂ J̄4

]
(21)

Taking the first constitutive relation (Equation (14)) and the particular form of the
strain energy density function, the expressions for the Cauchy stress tensor and the elasticity
tensor can be derived. Both tensors must be provided to define the mechanical constitutive
model in the implicit user material subroutine in ABAQUS/Standard [17], whereas only
the definition of the Cauchy stress is needed in ABAQUS/Explicit [17].

From Equations (7) and (14), the second Piola–Kirchhoff stress tensor is found to be:

S = Svol + S̄p + S̄a (22)
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The Cauchy stress tensor is obtained by means of a weighted push-forward operation
of S, σ = J−1χ∗(S) = J−1FSFT :

σ = σvol + σ̄p + σ̄a = p1 +
1
J

dev
[
F̄S̃pF̄T

]
+

1
J

dev
[
F̄eS̃eF̄T

e

]
= p1 +

1
J

dev[σ̃p] +
1
J

dev[σ̃e]

(23)

with:

p =
dΨvol(J)

dJ
, dev[·] = (·)− 1

3
tr[·]1 (24)

Differentiating Equation (22) with respect to C leads to the material elasticity tensor C,
which can be divided into volumetric and deviatoric parts associated with the passive and
active responses as follows:

C = Cvol + C̄p + C̄a = 2
∂Svol
∂C

+ 2
∂S̄p

∂C
+ 2

∂S̄a

∂C
(25)

The elasticity tensor in the spatial configuration, C, is obtained by a weighted push-
forward operation of C, which can be expressed as C = J−1χ∗(C) and results in:

C = Cvol + C̄p + C̄a (26)

For a detailed explanation about these expressions and further information, the reader
is referred to the works of Weiss et al. [22] and Hernández-Gascón et al. [8].

2.2. Principle of Virtual Work and Finite Element Discretization

The principle of virtual work that allows to establish the finite element formulation is
derived from the balance of momentum of a body V with boundary S that can be written as:∫

S
tdS +

∫
V

ρgdV =
∫

V
ρä (27)

where t is the stress vector, ρ is the material density, g is the gravity acceleration and ä is the
accelerations vector. Applying the relation between the stress vector and the stress tensor
t = nσ with n the normal surface vector and the divergence theorem [13], the following
relation must be fulfilled at each material point:

∇ · σ + ρg = ρä (28)

Multiplying this equation by a virtual displacement field δa and integrating over the
domain V: ∫

V
δa(∇ · σ + ρg − ρä) = 0 (29)

After applying the divergence theorem and some manipulations, the weak form of
the equation of motion that represents the principle of virtual work is obtained:∫

V
σ : δedV =

∫
S

ρ(g − ä)δadV +
∫

S
tδadS (30)

with e = 1
2 (1− F−T F−1) the Euler–Almansi strain tensor.

Equation (30) is the basis for the finite element discretization where the displacements
at the nodes of the mesh elements are considered as the fundamental unknowns. The
continuous displacement field a can be approximated at each element as:

a =
n

∑
k=1

φk(ξ, η, ζ)uk (31)
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where φk are the interpolation functions of an element supported by n nodes and (ξ, η, ζ) the
coordinates of the reference element. The proper definition of the interpolation functions
using polynomials (linear in this work) and assembling element matrix contributions to
the integration over all the solid volume in Equation (30) conduct to the well-known finite
element equation system.

2.3. Implicit Solution Method

The dynamic response in ABAQUS/Standard for nonlinear models is obtained by
direct time integration of all of the degrees of freedom of the finite element model [17].
The time step for implicit integration can be chosen automatically on the basis of the
“half-increment residual” by monitoring the values of equilibrium residuals at t + ∆t/2
once the solution at t + ∆t has been obtained. The accuracy of the solution can be assessed
and the time step adjusted appropriately.

The equilibrium equations are written at the end of the time step (time t + ∆t) and are
calculated from the time integration operator. The finite element approximation is:

Mü + I = F (32)

where F is the vector of externally applied forces, I is the vector of internal element forces,
M is the lumped mass matrix and ü is the accelerations vector.

The algorithm defined by Hilber et al. [23] is:

Mü(i+1) + (1 + α)Ku(i+1) − αKu(i) = (1 + α)F(i+1) − αF(i) (33)

where u is the displacement vector and maintaining Newmark’s assumption that the
acceleration ü varies linearly over the time step [13]:

u(i+1) = u(i) + ∆tu̇(i) + ∆t2
[(

1
2
− β

)
ü(i) + βü(i+1)

]
(34)

u̇(i+1) = u̇(i) + ∆t
[
(1− γ)ü(i) + γü(i+1)

]
(35)

being u̇ the velocities vector and

β =
1
4
(1− α)2; γ = 1/2− α; −1

3
≤ α ≤ 0 (36)

α = −0.05 is chosen by default in ABAQUS/Standard as a small damping term to remove
the high frequency noise without affecting the lower frequency response [15]. Taking α = 0,
the Newmark method is obtained. For the algorithmic implementation, it is necessary to
obtain ü(i+1) from Equation (34) :

ü(i+1) =
1

β∆t2 ∆u− 1
β∆t

u̇(i) − 1− 2β

2β
ü(i) (37)

where ∆u = u(i+1) − u(i). Substituting this expression into Equation (33) and taking
I(i) = Ku(i) yields:

∆u = (K∗)−1F∗ (38)

with the algorithmic tangential stiffness matrix

K∗ = (1 + α)K +
1

β∆t2 M (39)

and the vector F∗ defined as:

F∗ = (1 + α)F(i+1) − αF(i) − I(i) + M
(

1
β∆t

u̇(i) +
1− 2β

2β
ü(i)
)

(40)
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Three factors should be considered when selecting the maximum allowable time
step size: the rate of variation of the applied loading, the complexity of the nonlinear
damping and stiffness properties and the typical period of vibration of the structure [17].
A maximum increment versus period ratio ∆t/T < 1/10 is recommended for obtaining
reliable results [17], where T is the period of typical modes of response. The Hilber et al. [23]
α-method time integration scheme for solving the implicit problem can be summarized as:

1. Initialize u0, u̇0 and I0

2. Compute the mass matrix M
3. For each time step increment:

(a) Initialize the displacement increment ∆u0 and the internal force I(i+1)
0 = I(i)

(b) Iterations j = 0, . . . for finding “dynamic equilibrium” within the time step
increment:

• Compute tangential stiffness matrix: Kj

• Compute the algorithmic stiffness matrix: K∗j = (1 + α)Kj +
1

β∆t2 M

• Compute F∗j = (1 + α)F(i+1) − αF(i) − I(i)j + M
(

1
β∆t u̇(i) + 1−2β

2β ü(i)
)

• Solve the linear system: duj+1 = (K∗j )
−1F∗j

• Update the displacement increments: ∆uj+1 = ∆uj + duj+1

• For each integration point k:

– Compute the strain increment: ∆uj+1 → ∆εk,j+1

– Compute the stress increment: ∆εk,j+1 → ∆σk,j+1

– Compute the total stress: σk,j+1 = σ
(i)
k + ∆σk,j+1

• Compute internal force: I(i+1)
j+1

• Compute accelerations: ü(i+1)
j+1 = 1

β∆t2 ∆uj+1 − 1
β∆t u̇(i) − 1−2β

2β ü(i)

• Compute residual: r∗j+1 = (1 + α)F(i+1) − αF(i) − I(i+1)
j+1 −Mü(i+1)

j+1

• Check convergence: if
∥∥∥r∗j+1

∥∥∥ < η, with η the convergence tolerance, go
to Step (c).

(c) Compute the velocities and displacements at the end of the time step:

- Velocities: u̇(i+1) = u̇(i) + ∆t
[
(1− γ)ü(i) + γü(i+1)

]
- Displacements u(i+1) = u(i) + ∆u

2.4. Explicit Solution Method

The explicit dynamics analysis procedure in ABAQUS/Explicit is established by an
explicit integration rule together with the use of diagonal or “lumped” element mass
matrices. The equations of motion for the body are integrated using the explicit central
difference integration rule as follows:

u(i+1) = u(i) + ∆t(i+1)u̇(i+ 1
2 ) (41)

u̇(i+ 1
2 ) = u̇(i− 1

2 ) +
∆t(i+1) + ∆t(i)

2
ü(i) (42)

The superscripts i, i− 1
2 and i + 1

2 refer to the increment number and mid-increment
numbers. The state of the analysis is advanced by assuming constant values for the
velocities, u̇, and the accelerations, ü, across half time intervals [16]. The accelerations are
computed at the start of the increment by:

ü(i) = M−1(F(i) − I(i)) (43)
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As the lumped mass matrix is diagonalized, it is a trivial process to invert it, unlike
the global stiffness matrix in the implicit solution method. Therefore, each time increment
is computationally inexpensive to solve. Several possibilities of this lumping process are
available, such as nodal quadrature, row-sum lumping, or a “special lumping technique”
where only the latter method produces positive lumped masses for any element type [13].
A stability limit determines the size of the time increment:

∆t ≤ 2
ωmax

(44)

where ωmax is the maximum element eigenvalue. A conservative and practical method of
implementing the above inequality is:

∆t = min
Le

cd (45)

where Le is the characteristic element length and cd is the dilatational wave speed:

cd =

√
λ + 2µ

ρ
(46)

λ and µ are the Lamé elastic constants and ρ is the material density.
To maintain efficiency of the analysis, it is important to ensure that the sizes of the

elements are as regular as possible since one small element reduces the time increment for
the whole model [16]. If the inertia effects in the model are negligible or can be considered
as quasi-static, it is not useful to maintain the stable time increment as the simulation
would take too long. One method that can be used to artificially reduce the runtime of
the simulation involves scaling the density of the material in the model. According to
Equations (45) and (46), when the density is scaled by a factor, f 2, the runtime is reduced
by a factor f . ABAQUS introduces in the explicit solver a bulk viscosity parameter, which
introduces damping associated with the volumetric straining to improve the high speed
dynamics simulations [17]. Two types of bulk viscosity parameter are considered: the
linear set to 0.03 in this study and the quadratic set to 1.2.

The central difference time integration scheme for non-linear problems employed in
most explicit computer codes [13] can be resumed in the following steps:

1. Initialize u0 and u̇0

2. Compute the mass matrix M

3. Compute u̇(
1
2 ) = u̇0 + ∆t(1)

2
(
M−1(F0 − I0))

4. For each time step increment:

(a) Solve for total displacements: u(i+1) = u(i) + ∆t(i+1)u̇(i+ 1
2 )

(b) Compute the displacement increment: ∆u = u(i+1) − u(i)

(c) For each integration point j:

• Compute the strain increment: ∆u→ ∆εj

• Compute the stress increment: ∆εj → ∆σ j

• Compute the total stress: σi+1
j = σ j + ∆σ j

(d) Compute the internal force vector: I(i+1)

(e) Solve for the new accelerations: ü(i+1) = M−1
(

F(i+1) − I(i+1)
)

(f) Compute the velocities at new mid-time: u̇i+ 3
2 = u̇i+ 1

2 + ∆t(i+1)+∆t(i)
2 ü(i)

2.5. Development of User Material Subroutine

The active behavior of the muscle is not provided in the libraries of the commercial
finite element codes. It is therefore necessary to implement the active behavior in the form
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of a user-defined stress update algorithm. This was implemented in the finite element code
ABAQUS/Standard by means of a UMAT. Additionally, for ABAQUS/Explicit, a VUMAT
was also developed. Much of the coding involved in the two algorithms is the same but
there are several key issues that must be addressed to maintain consistency of the results
between the two solvers. These subroutines, written in Fortran, implemented the behavior
of the material in the form of a stress update algorithm that is called at each integration
point for every iteration during the finite element simulation. At these integration points,
it is also necessary to define the anisotropy of the material to form the different tensors
and to obtain the set of invariants. The subroutines were able to read a discretized fiber
orientations from an external file during the first time increment.

The most important difference between the two programmed subroutines is that the
explicit one does not update the tangential stiffness matrix. Nevertheless, when writing the
implicit subroutine this matrix should be accurately represented to obtain correct solutions.
The initial time increment used in ABAQUS/Standard is chosen by the user, and subsequent
increments are controlled by an automatic incrementation control. To determine the size of
the initial time increment in ABAQUS/Explicit a bogus set of tiny strain increments are
passed to the VUMAT at the start of the analysis. From the stress response of the material,
a conservative value for the stable time increment is calculated [16].

2.6. Eyeball and EOM Finite Element Model

The geometrical data of the model were obtained from the database of
Mitsuhashi et al. [24], which was created from a whole-body set of 2 mm interval MRI im-
ages of a male volunteer. Some adjustments to the surfaces were made by hand to remove
discontinuities and increase smoothness. The contours of the right eyeball and the four
recti muscles were defined. As intorsion and extorsion movements were not considered
in this study, the oblique muscles were not included in the model [10] To prevent the eye
muscles from slipping away while the globe rotates, connective tissue surrounds the globe
and stabilizes the muscles acting as pulleys and serving as functional EOM origins [25].

Figure 2 shows the finite element mesh used in the model. Solid hexahedral finite
elements were used to mesh the eyeball and the EOMs, whereas one-dimensional truss
elements simulated the action of the connective tissue pulleys. In Table 1, the number of
nodes and elements of the solid parts of the model are shown together with their volume
and mass according to the eyeball density [26] and muscle density [27].

Table 1. Mesh size, volume and mass of the model parts.

Part Nodes Elements Volume (mm3) Mass (g)

Eyeball 2686 2211 8134 8.134
Lateral EOM 2573 1920 488 0.517
Inferior EOM 2291 1680 576 0.611
Medial EOM 1953 1440 419 0.444

Superior EOM 1377 936 461 0.489

The set of mechanical properties used for the muscle material behavior is included
in Table 2. Both passive and active parameters were adapted from a previous work [19].
The passive properties of connective tissues such as the tendon ends of the EOMS and the
pulleys were taken from Calvo et al. [5]. For the latter, circular sections of 1 mm radius
were applied to the truss elements and a rigid body constraint was applied to the eyeball.
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Figure 2. Finite element mesh of the right eyeball, the EOMs and the zones of tendinous insertions
obtained from Mitsuhashi et al. [24] incorporating connector elements to simulate the action of soft
tissue pulleys.

Table 2. Parameters considered in the model for the material behavior of the skeletal-muscle
tissue [19].

Parameters

Passive behavior

c1 = 0.008837 MPa
c3 = 0.00987 MPa

c4 = 2.23787
c5 = 3.06367 MPa

c6 = −4.75963 MPa
c7 = −2.76353 MPa

Ī40 = 1.25638
Ī4re f = 1.25638

Maximum isometric stress P0 = 0.1 MPa

Force length relationship
λ=1

λopt = 1
ξ = 0.1

Force time relationship α = 1
s1= variable

To account for the anisotropy present in the muscles due to the presence of fibers, a
set of directions was generated inside the volume of the EOMs (Figure 3). These direc-
tions define both the passive behavior of the tissue and the direction in which the active
contraction occurs.

Each of the ends of the EOMs in contact with the eyeball was tied, fixing the three
degrees of freedom of both surfaces. The nodes of the other end of the muscles were
clamped, restraining all movements. No contact was considered between the surfaces
of the model since no interaction of the different parts of the model was detected in the
movement. The truss elements connected nodes of the EOMs to a common node that was
pinned. Finally, a rigid solid constraint was applied to the eyeball fixing an instant center
of rotation at the center of the sphere.
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Figure 3. Representation of the muscle and collagen fiber orientations.

3. Results

As the maximum time increment in a dynamic implicit algorithm depends on the
typical period of vibration of the system, the natural frequencies and mode shapes were
obtained for the model of the right eyeball, the pulleys and the EOMs. The initial four mode
shapes are represented in Figure 4 which correspond to bending shapes of the four different
muscles at frequencies from 55.33 to 84.16 Hz. The lower natural frequency corresponds to
the inferior EOM muscle which is the muscle with the largest volume. Taking the largest
characteristic frequency obtained, a maximum recommended increment for an implicit
dynamic simulation should be less than 0.001 s.

The model was analyzed under four different movement scenarios characterized by
the evolution of the activation function in Equation (11) along time. Figure 5a shows the
activation function f2(t) considering four s1 parameters that will induce eyeball movements
from a very slow one s1 = 10 to an intended nearly instantaneous s1 = 100. Although all
the muscles contribute in a certain way to the eyeball movements (elevation–depression
and abduction–adduction), the results presented in this work are those obtained for the
single activation of the medial EOM (adduction), as shown in Figure 5b. In this figure,
the distribution of the maximum principal stress is presented. As can be observed, the
maximum values are reached in the medial EOM at the final point of the simulation at
t = 0.3 s.

The inertia of the system provides a response slower than the activation function,
as shown in Figure 6a. The displacement in the x direction is represented for a point
located at the center of the pupil area in the simulated eyeball. Implicit and explicit results
are presented for the four activation function parameters. Comparing both algorithms,
differences under 3% at the end of the simulations were found. Figure 6b shows the x
displacement field at the end of the adduction movement considering s1 = 10 for the
implicit simulation.

To compare the performance of both methodologies, the evolution of the total strain
energy (Figure 7a) and total kinetic energy (Figure 7b) was analyzed in the model. The
total strain energy accumulated by the model for both algorithms and for all the activation
signals is nearly the same at the beginning of the simulation. In contrast, at the end of
the simulation, the models calculated with the explicit algorithm show an extra level of
internal energy compared with the implicit simulations. As can be observed, the total
energy is higher when the contraction velocity increases induced by the activation function.
These higher levels of total energy are a consequence of a greater amount of kinetic energy
when increasing the contraction velocity. The total kinetic energy is shown in Figure 7b
and again the explicit results outperform the implicit ones.
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(a) (b)

(c) (d)

Figure 4. Initial four mode shapes obtained for the right eyeball and EOMs system. These modes
correspond with bending of the EOMs at natural frequencies of: (a) 55.33 Hz for the inferior EOM;
(b) 72.57 Hz for the lateral EOM; (c) 72.84 Hz flexion mode for the superior EOM; and (d) 84.16 Hz
for the medial EOM.

(a) (b)

Figure 5. (a) Evolution of the activation function f2(t) with α = 1 for different s1 parameter values simulating four
contraction velocities; and (b) maximum principal stress distribution for the medial EOM activation with s1 = 10.
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(a) (b)

Figure 6. (a) Evolution of the displacement of a node located at the center of the surface of the mesh where the pupil is
located for all the activation signals considered using both algorithms; and (b) displacement field in the x direction for an
implicit simulation with s1 = 10 at t = 0.3 s.

(a) (b)

Figure 7. (a) Evolution of the total strain energy for all the activation signals considered using both algorithms; and
(b) evolution of the total kinetic energy for all the activation signals considered using the implicit algorithm.

Finally, a comparative analysis of the computational time is summarized in Table 3.
As can be seen, the implicit algorithm takes only a 5% of the time spent with the explicit
algorithm without mass scaling. A series of global mass scaling factors was applied to the
model. Increasing this factor, higher values of fictitious mass are added, penalizing the
range of motion of the system. Although a factor of 100 notably reduces the simulation
time to levels near that of the implicit algorithm, the maximum displacement at the end of
the simulation differs by 36.5% with respect to that obtained with no mass scaling.
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Table 3. Computational time in percent relative to the dynamic explicit simulation without mass
scaling (m.s.) for both algorithms and incorporating different m.s. factors.

Mass Added (%) Calculation Time
(%)

Maximum
Displacement
Reduction (%)

Implicit 0 5 1.13
Explicit no m.s. 0 100 0

Explicit m.s. factor 1.01 1 99 0.05
Explicit m.s. factor 1.1 10 96 0.52
Explicit m.s. factor 4 300 53 0.9
Explicit m.s. factor 6 500 35 1.6
Explicit m.s. factor 10 900 30 3.1

Explicit m.s. factor 100 9900 11 36.5

4. Discussion

When studying extraocular mechanics, muscle activation and deformation are im-
portant parameters to characterize the movement of the eyeball [11]. In this paper, the
activation of the medial EOM is analyzed under four activation signals which induce
increasing contraction velocities. This function was simplified unlike more realistic previ-
ous models [8,9,19] to reduce the computation of unnecessary terms. This was assumed
considering that all muscle fibers are recruited during activation (tetanic contraction). The
range of motion associated with the region that represents the pupil in the model is in good
agreement with those reported previously in the literature [4,10], although other authors
simulated even larger angles of rotation [11]. The maximum horizontal or x displacement
in Figure 6a can be translated according to the position of the instant center of rotation to
a rotational angle of 7.4 degrees, which is far from the 20 degrees simulated in the work
of Wei et al. [11]. Differences in the maximum isometric stress and in the force length
relationship could be responsible for this disagreement since the properties of the muscle
active behavior incorporated in this model were taken from a previous work [19]. The
use of a single model with a particular geometry also limits the comparison with previous
results but, on the other hand, it proves the potential of the methodology to develop a
functional model based on medical image.

The results obtained for the four activation signal paths (Figure 6a) show that the
predictions of the two algorithms differ at the end of the simulations. Larger time in-
crements in the implicit method could lead to underestimating the contraction velocity
(Equation (21)) implemented in the user subroutine, and consequently the muscle contracts
more slowly.

Using the explicit analyses, the mass-scaling option is available to increase the stable
time increment by artificially adding mass to the system. Although mass-scaling could
decrease the mean computational time in the simulation of the eyeball movement (see
Table 3), the range of motion is reduced drastically. It has been suggested in the literature
that mass-scaling results are acceptable when the proportion of kinetic energy to strain
energy is less than 5% [12]. In this case, the dynamic effect is negligible and problems
can be solved with quasi-static solutions. As can be observed in Figure 7, this ratio is not
satisfied in this model at the beginning of the simulations. Future analysis should consider
increasing the maximum isometric stress developed by the activated muscle to explore
whether it is possible to balance the addition of mass to obtain more realistic results.

As pointed out by other authors [12,16] and indicated by the results in Table 3, for
simpler loading conditions, the implicit method takes a shorter solution time. In the case
of loading conditions involving contact between the muscles and the eyeball or even
incorporating the orbital fat, the explicit method will be the preferable choice [14,15].
Furthermore, the problem solved with this method can be easily parallelized in separated
computer processors since the inverse of the lumped mass matrix can be split in decoupled
set of equations.
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5. Conclusions

In this paper, a comparison between implicit and explicit dynamic algorithms is
presented and applied to model the 3D motion of the eyeball subjected to the action of
EOMs. Our high-speed simulations showed that the dynamic implicit algorithm offers
a substantial reduction in the required computational time in a model with no contact
interactions between the surfaces. Although mass-scaling can provide a reduction in the
computational time with the explicit algorithm, it is not recommended for high-speed
movements taking into consideration the activation of the muscle tissue, due to the system
increment of mass inertia.

Author Contributions: Conceptualization, methodology, and writing—review and editing, J.G. and
B.C.; software, J.G.; and project administration, B.C. Both authors have read and agreed to the
published version of the manuscript.

Funding: This research was funded by Spanish Ministerio de Ciencia, Innovación y Universidades
grant number DPI2017-84047-R and the Department of Industry and Innovation (Government of
Aragon) through the research group Grant T24-20R (co-financed by Feder 2014-2020: Construyendo
Europa desde Aragon). Part of the work was performed by the ICTS “NANBIOSIS” specifically
by the High Performance Computing Unit (U27), of the CIBER in Bioengineering, Biomaterials &
Nanomedicne (CIBER-BBN at the University of Zaragoza).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Shumway, C.L.; Motlagh, M.; Wade, M. Anatomy, Head and Neck, Eye Superior Rectus Muscle; StatPearls Internet: Treasure Island,

FL, USA, 2020.
2. Clark, R.A. The Role of Extraocular Muscle Pulleys in Incomitant Non-Paralytic Strabismus. Middle East Afr. J. Ophthalmol. 2015,

22, 279–285. [CrossRef] [PubMed]
3. Gao, Z.; Guo, H.; Chen, W. Initial tension of the human extraocular muscles in the primary eye position. J. Theor. Biol. 2014, 353,

78–83. [CrossRef] [PubMed]
4. Iskander, J.; Hossny, M.; Nahavandi, S.; Del Porto, L. An ocular biomechanic model for dynamic simulation of different eye

movements. J. Biomech. 2018, 71, 208–216. [CrossRef] [PubMed]
5. Calvo, B.; Ramírez, A.; Alonso, A.; Grasa, J.; Soteras, F.; Osta, R.; Mu noz, M.J. Passive nonlinear elastic behaviour of skeletal

muscle: Experimental results and model formulation. J. Biomech. 2010, 43, 318–325. [CrossRef]
6. Grasa, J.; Ramírez, A.; Osta, R.; Mu noz, M.J.; Soteras, F.; Calvo, B. A 3D active-passive numerical skeletal muscle model

incorporating initial tissue strains. Validation with experimental results on rat tibialis anterior muscle. Biomech. Model.
Mechanobiol. 2011, 10, 779–787. [CrossRef]

7. Hernández-Gascón, B.; Pe na, E.; Grasa, J.; Pascual, G.; Bellón, J.M.; Calvo, B. Mechanical response of the herniated human
abdomen to the placement of different prostheses. J. Biomech. Eng. 2013, 135, 51004. [CrossRef]

8. Hernández-Gascón, B.; Grasa, J.; Calvo, B.; Rodríguez, J.F. A 3D electro-mechanical continuum model for simulating skeletal
muscle contraction. J. Theor. Biol. 2013, 335, 108–118. [CrossRef]

9. Grasa, J.; Sierra, M.; Lauzeral, N.; Mu noz, M.J.; Miana-Mena, F.J.; Calvo, B. Active behavior of abdominal wall muscles:
Experimental results and numerical model formulation. J. Mech. Behav. Biomed. Mater. 2016, 61, 444–454. [CrossRef]

10. Karami, A.; Eghtesad, M.; Haghpanah, S.A. Prediction of muscle activation for an eye movement with finite element modeling.
Comput. Biol. Med. 2017, 89, 368–378. [CrossRef]

11. Wei, Q.; Sueda, S.; Pai, D.K. Physically-based modeling and simulation of extraocular muscles. Prog. Biophys. Mol. Biol. 2010, 103,
273–283. [CrossRef]

12. Naghibi Beidokhti, H.; Janssen, D.; Khoshgoftar, M.; Sprengers, A.; Perdahcioglu, E.S.; Van den Boogaard, T.; Verdonschot, N. A
comparison between dynamic implicit and explicit finite element simulations of the native knee joint. Med. Eng. Phys. 2016, 38,
1123–1130. [CrossRef]

13. Borst, R.; Crisfield, M.; Remmers, J.; Verhoosel, C. Non-Linear Finite Element Analysis of Solids and Structures: Second Edition.
In Non-Linear Finite Element Analysis of Solids and Structures: Second Edition; John Wiley & Sons Inc.: Hoboken, NJ, USA, 2012;
doi:10.1002/9781118375938. [CrossRef]

14. Choi, H.H.; Hwang, S.M.; Kang, Y.H.; Kim, J.; Kang, B.S. Comparison of Implicit and Explicit Finite-Element Methods for the
Hydroforming Process of an Automobile Lower Arm. Int. J. Adv. Manuf. Technol. 2002, 20, 407–413. [CrossRef]

15. Sun, J.; Lee, K.; Lee, H. Comparison of implicit and explicit finite element methods for dynamic problems. J. Mater. Process.
Technol. 2000, 105, 110–118. [CrossRef]

16. Harewood, F.; McHugh, P. Comparison of the implicit and explicit finite element methods using crystal plasticity. Comput. Mater.
Sci. 2007, 39, 481–494. [CrossRef]

http://doi.org/10.4103/0974-9233.159698
http://www.ncbi.nlm.nih.gov/pubmed/26180464
http://dx.doi.org/10.1016/j.jtbi.2014.03.018
http://www.ncbi.nlm.nih.gov/pubmed/24657805
http://dx.doi.org/10.1016/j.jbiomech.2018.02.006
http://www.ncbi.nlm.nih.gov/pubmed/29506760
http://dx.doi.org/10.1016/j.jbiomech.2009.08.032
http://dx.doi.org/10.1007/s10237-010-0273-z
http://dx.doi.org/10.1115/1.4023703
http://dx.doi.org/10.1016/j.jtbi.2013.06.029
http://dx.doi.org/10.1016/j.jmbbm.2016.04.013
http://dx.doi.org/10.1016/j.compbiomed.2017.08.018
http://dx.doi.org/10.1016/j.pbiomolbio.2010.09.002
http://dx.doi.org/10.1016/j.medengphy.2016.06.001
http://dx.doi.org/10.1002/9781118375938
http://dx.doi.org/10.1007/s001700200170
http://dx.doi.org/10.1016/S0924-0136(00)00580-X
http://dx.doi.org/10.1016/j.commatsci.2006.08.002


Mathematics 2021, 9, 1024 17 of 17

17. ABAQUS User’s Manual, Version 6.14; Dassault Systèmes Simulia Corp.: Providence, RI, USA, 2014.
18. Stålhand, J.; Klarbring, A.; Holzapfel, G.A. A mechanochemical 3D continuum model for smooth muscle contraction under finite

strains. J. Theor. Biol. 2011, 268, 120–130. [CrossRef]
19. Grasa, J.; Sierra, M.; Mu noz, M.J.; Soteras, F.; Osta, R.; Calvo, B.; Miana-Mena, F.J. On simulating sustained isometric muscle

fatigue: A phenomenological model considering different fiber metabolisms. Biomech. Model. Mechanobiol. 2014, 13, 1373–1385.
[CrossRef]

20. Arruda, E.M.; Mundy, K.; Calve, S.; Baar, K. Denervation does not change the ratio of collagen I and collagen III mRNA in the
extracellular matrix of muscle. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2007, 292, R983–R987. [CrossRef]

21. Ramírez, A.; Grasa, J.; Alonso, A.; Soteras, F.; Osta, R.; Mu noz, M.J.; Calvo, B. Active response of skeletal muscle: In vivo
experimental results and model formulation. J. Theor. Biol. 2010, 267, 546–553. [CrossRef]

22. Weiss, J.A.; Maker, B.N.; Govindjee, S. Finite element implementation of incompressible, transversely isotropic hyperelasticity.
Comput. Methods Appl. Mech. Eng. 1996, 135, 107–128. [CrossRef]

23. Hilber, H.M.; Hughes, T.J.R.; Taylor, R.L. Improved numerical dissipation for time integration algorithms in structural dynamics.
Earthq. Eng. Struct. Dyn. 1977, 5, 283–292. [CrossRef]

24. Mitsuhashi, N.; Fujieda, K.; Tamura, T.; Kawamoto, S.; Takagi, T.; Okubo, K. BodyParts3D: 3D structure database for anatomical
concepts. Nucleic Acids Res. 2009, 37, D782–D785. [CrossRef]

25. Demer, J.L.; Miller, J.M.; Poukens, V.; Vinters, H.V.; Glasgow, B.J. Evidence for fibromuscular pulleys of the recti extraocular
muscles. Investig. Ophthalmol. Vis. Sci. 1995, 36, 1125–1136.

26. Heymsfield, S.B.; Gonzalez, M.C.; Thomas, D.; Murray, K.; Jia, G.; Cattrysse, E. Adult Human Ocular Volume: Scaling to Body
Size and Composition. Anat. Physiol. 2016, 6. [CrossRef]

27. Ward, S.R.; Lieber, R.L. Density and hydration of fresh and fixed human skeletal muscle. J. Biomech. 2005, 38, 2317–2320.
[CrossRef]

http://dx.doi.org/10.1016/j.jtbi.2010.10.008
http://dx.doi.org/10.1007/s10237-014-0579-3
http://dx.doi.org/10.1152/ajpregu.00483.2006
http://dx.doi.org/10.1016/j.jtbi.2010.09.018
http://dx.doi.org/10.1016/0045-7825(96)01035-3
http://dx.doi.org/10.1002/eqe.4290050306
http://dx.doi.org/10.1093/nar/gkn613
http://dx.doi.org/10.4172/2161-0940.1000239
http://dx.doi.org/10.1016/j.jbiomech.2004.10.001

	Introduction
	Materials and Methods
	Muscle Contraction Model
	Principle of Virtual Work and Finite Element Discretization
	Implicit Solution Method
	Explicit Solution Method
	Development of User Material Subroutine
	Eyeball and EOM Finite Element Model

	Results
	Discussion
	Conclusions
	References

