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Miromehanis Contribution to CoupledTransport and Mehanial Properties ofFratured GeomaterialsE. Lemarhand, C.A. Davy, L. Dormieux, W. Chen & F. SkozylasSeptember 25, 2009AbstratThe present paper is devoted to the modelling of interdependent me-hanial and hydrauli behaviors of geomaterials in presene of a singlethrough-wall frature by means of miromehanis arguments. Experi-mental results of fratured onrete samples show non linear evolutionsfor both mehanial and hydrauli behaviors with respet to on�nementintensity. These non linear responses are interpreted by the progressivelosure of rak-like pores de�ning the pore volume of the frature interfa-ial domain. Disregarding tortuosity e�ets, we adopt a 2D representationfor these raks. The key role of the frature initial porosity is also em-phasized. It allows to disuss the shape of the distribution of the loalapertures distribution funtion lassially used, interepted here in termsof the distribution of initial rak aspet ratio within the frature do-main. Appliation on fratured onrete samples shows the apability ofthe theoretial model to aurately reprodue the experimental results.1 IntrodutionIn the ontext of nulear energy use for eletriity generation, radioativity on-�nement is of paramount importane, both during nulear reator exploitationand long-term nulear waste storage. In both life yle phases, onrete is usedfor reator strutures as well as in nulear waste pakages [Davy et al., 2007℄.In partiular, every ten years, EDF (Frenh Company for Eletriity Supply) isompelled to subjet nulear reator onrete vessels to air pressurizing and tohek for any gas leakage. Test analysis and identi�ation of physial meha-nisms of �ow through porous or even fratured medium should enable to proveif, under aidental onditions, gas leakage would remain below a given seurelevel or not. Nevertheless, full sale experiments are omplex and their interpre-tation is deliate, due to the great amount of parameters involved. A more loalunderstanding strategy, at the material sale, should therefore be onsidered.Fluid �ow in natural or arti�ially-indued fratures has been reognizedfor a long time as a key issue in geophysial and geomehanial engineer-1



ing ([Iwai, 1976℄, [Wanfang et al., 1997℄,[Berkowitz, 2002℄). The variability offratures geometry and its possible evolution under progressive on�nementmake it di�ult to propose a theoretial analysis, partiularly if aountingfor atual ouplings between mehanial and hydrauli responses. To simulatethe mehanial and hydrauli responses of fratures, experimental proeduresmay be developed at the laboratory sale on irular ylindrial samples witha length-to-diameter ratio (L/2R) of about 2 at least in order to limit end ef-fets [Davy et al., 2007℄. Then, a Brazilian splitting test is performed in orderto reate a frature along the sample diametral plane. Being a brittle failuretest, the obtained frature has a notable variability from one sample to another,see Figure 1. This is in aordane with the expeted in situ variability.

Figure 1: Photograph of various samples after Brazilian splitting test, whihshows the variability in the initial frature: (a) onrete samples; (b): Callovo-Oxfordian argillite.From a phenomenologial point of view, a frature is usually interpreted as a 2Dinterfae of in�nitesimal thikness λ representing the average frature aperture(Figure 2). During marosopi tensile or ompressive loadings, denoted by Σ,the urrent frature aperture is updated aording to :
λ(Σ) = λ0 − cc(Σ) ; cc(Σ0) = 0 (1)2
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exFigure 2: Shemati representation of a fratured samplewhere λ0 = λ(Σ = Σ0) denotes the average frature aperture in the refereneon�guration Σ = Σ0, and cc(Σ) aounts for the evolution of the spae in be-tween the frature faes under on�nement intensity Σ. From a physial pointof view, cc(Σ) represents the marosopi mehanism of the frature geomet-rial evolution, that is the frature relosure law for the marosopi triaxialompressive loadings onsidered hereafter.Still in this phenomenologial ontext, determination of the hydrauli ondutiv-ity of a frature is usually assoiated with the Poiseuille law [Gueguen and Paliauskas, 1992℄,leading to the following intrinsi permeability (kF=[m2℄) de�nition :
k

F = kF (1− n ⊗ n) ; kF =
λ2

12
(2)Realling that the frature volume fration is written ϕF = 2λ/(πR), and ne-gleting the ontribution of the unfratured solid matrix, i.e. ks ≪ kF [Walters and Wong, 1999℄,the marosopi permeability tensor K

hom = ϕF
k

F reads :
K

hom =
λ3

6πR
(1 − n ⊗ n) (3)In (3), the in-plane marosopi permeability of a fratured sample appearsas a ubi funtion of the average frature aperture, generally referred to asthe ubi law. Aording to the fat that this ubi law is diretly assoiatedwith the parallel planes assumption, resorting to this law for real geomate-rials [Witherspoon et al., 1980℄ seems questionable as regards the rough-walledfrature surfaes widely observed experimentally ([Tsang and Tsang, 1987℄, [Tsang and Tsang, 1989℄,3



[Wanfang et al., 1997℄, [Walters and Wong, 1999℄, [Sausse, 2002℄). In partiu-lar, these surfae irregularities make it di�ult to properly de�ne parameter λ(or λ0) that should be used in the ubi law.For ompressive loadings the progressive frature relosure law cc(Σ) is non-linear in nature. This non linearity is diretly related to a omplex mehanismof frature geometry evolution, whih suggests a physial analysis at the saleof the interfaial geometrial irregularities. As a onsequene, both mehani-al and hydrauli responses of fratured geomaterials are expeted to be on-trolled by the same physial mehanism. However, the onsequenes of thisloal mehanism may be ompletely di�erent depending on the property stud-ied, the open question being related to the existene, or not, of a orrelationbetween the (mehanial) roughness and the (hydrauli) tortuosity. The twoparallel planes assumption allowing the derivation of the hydrauli ubi law,albeit mathematially powerful, is physially not able to aount for any me-hanial response of the frature. Indeed, this very spei� morphology doesnot allow to inorporate matter in between the two parallel planes. Moreover,by nature, the ubi law is not able to disuss any physis relative to sur-fae irregularities responsible for (mehanial) roughness and (transport) tor-tuosity ([Tsang, 1984℄,[Walters and Wong, 1999℄). To overome this limitation,many authors ([Snow, 1965℄,[Zimmerman and Bodvarsson, 1996℄ among others)have proposed to ouple the ubi law with a non-linear frature relosure law
cc(Σ). Although these models proved to be e�ient, the lak of physial orre-lation between mehanial and hydrauli evolutions is frustrating. This is dueto the fat that they are both ontrolled by the physis that takes plae at thesale of frature asperities [Oron and Berkowitz, 1998℄.In this ontext, many authors have proposed improvements of the physi-al analysis of fratures behavior by onsidering that a frature an be inter-preted as a porous medium with a pore spae made up of pores whih mor-phology is likely to evolve under marosopi on�nement ([Hsieh et al., 1985℄,[Moreno et al., 1988℄, [Walsh et al., 1997℄, [Wanfang et al., 1997℄). Among thoseauthors, Myer [Myer, 2000℄ modelled a frature by olletions of raks in orderto aount for the progressive frature relosure. In the present paper, althoughtreated in a more general miromehanis ontext, our approah is similar tothis morphologial representation. The proposed miromehanis modelling willprove to be able to provide a physial de�nition of frature aperture distri-bution, that has been introdued by many authors ([Neuzil and Tray, 1981℄,[Tsang, 1984℄, [Tsang and Tsang, 1987℄, [Zhou and Wheater, 1995℄ among oth-ers.) in order to take frature surfaes roughness into aount. Besides restrit-ing our analysis to monotoni ompressive loadings, irreversibility phenomenamay be disregarded and the frature behavior is assumed non linear elasti.2 A Miromehanis-based analysisFor pratial purposes, non linear mehanial response of fratured geomaterialsan be aounted for, in a 2D model of the frature, by a non linear relationship4



between the frature losure and the applied stress. The frature losure cc(Σ)is de�ned as the average of the normal omponent of the displaement jumpover the frature, symbolized here by F (see Fig. 2):
cc = −

1

2RL

∫

F

[ξ] · ndS (4)where 2R = D and L are respetively the sample diameter and the samplelength, while dS is a di�erential surfae element.Still, from a physial point of view, the losure of the pore spae within the fra-ture lips is likely to be the mehanism responsible for this non linearity (see Fig.2). In order to apture the pore spae losure mehanism in a miromehanisframework, a 3D model of the frature is due. At the mirosopi sale, that isthe one whih reveals surfae irregularities, the frature of dimension 2R×L×λis interpreted as a porous medium made up of an elasti solid matrix and a fully�uid-saturated pore spae (see Fig. 3) .
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Figure 3: Marosopi frature interpreted as a porous medium (ΩF = Ωs

⋃

Ωp)2.1 A 3D de�nition of the fratureLet Ωs (resp. Ωp) be the solid (resp. �uid) phase domain within the fratureand V s (resp. V p) its assoiated volume in the urrent on�guration. In itsurrent on�guration, the frature domain is de�ned by ΩF = Ωs

⋃

Ωp. Itsurrent (resp. initial) volume V F = V s + V p (resp. V F
0 = V s

0 + V p
0 ), i.e. theurrent (resp. initial) volume is given by :

V F = 2RLλ (V F
0 = 2RLλ0) (5)By de�nition, λ is a parameter of the frature geometry in its three dimensionaldesription. The 2D displaement jump [ξ] and the 3D displaement �eld U are5



related by (Fig. 3):
[ξ] = U(λ) − U(0) (6)At the frature level, the frature relosure law cc(Σ) may be diretly related tothe volume fration of the pore spae within the frature domain. Let ϕ denotethe frature porosity de�ned with respet to the urrent on�guration of thefrature domain:

ϕ = V p/V F (7)We also introdue the normalized pore volume φ de�ned as :
φ = V p/V F

0 = Jϕ (8)where J = λ/λ0 is the jaobian of the transformation.Miromehanis applied to two-phase porous medium made up of an elasti solidmatrix weakened by rak-like pores may prove1 that the volume strain withinthe solid phase is negligible when ompared to the volume strain in the raks,provided that ϕ ≪ 1. When ϕ = O(1), this result requires the solid phaseinompressibility (νs = 1/2). Let us onsider an isohori transformation ofthe solid matrix (V s ≡ V s
0 ) in the frature domain. In this ase, we eventuallyhave :

φ(Σ) =
λ0 φ0 − cc(Σ)

λ0
; ϕ(Σ) =

λ0 φ0 − cc(Σ)

λ0 − cc(Σ)
(9)where φ0 is the frature porosity in the referene on�guration.Therefore, the evolution of the frature pore spae may be derived from the fra-ture relosure law cc(Σ). In a wide range of experimental results, the evolutionlaw cc(Σ) follows a trend that may be �tted by the non-linear law :

∀Σ ≥ Σ0 , cc = c∞c

(

1 − exp

(

Σ0 − Σ

Σ∞

)) (10)In pratie, the slope at the origin (Σ → Σ0) and the asymptote for in�nitevalues of Σ allow the determination of both parameters c∞c and Σ∞.From (10) analytial de�nitions of frature porosity ϕ and normalized porevolume φ are derived. Assuming a omplete relosure of the frature pore spaefor in�nite value of the marosopi on�ning pressure Σ, (9) and (10) yield:
lim

Σ→∞
ϕ = 0 ⇔ φ0 =

c∞c
λ0

(11)so that (9) may be rewritten as :














φ(Σ) = φ0 exp((Σ0 − Σ)/Σ∞)

ϕ(Σ) =
φ0 exp((Σ0 − Σ)/Σ∞)

1 − φ0 (1 − exp((Σ0 − Σ)/Σ∞))

(12)1by resorting to miromehanis analysis (Mori-Tanaka's sheme for instane)6



It is important to note that experimental results allow to determine the evolutionof the volume fration of the frature pore spae with respet to the ompressiveloading intensity. Sine we are dealing with a given displaement-stress relation-ship rather than a strain-stress relationship, one information is still missing forthe marosopi behavior desription. Indeed φ0 (or equivalently λ0) appearsin (12) as an unknown parameter that still has to be determined, or at leastestimated. In partiular, its �titious nature does not permit a reliable mea-surement of φ0.Moreover, it should be emphasized that (11) introdues a strong link betweenmaterial e�ets, through φ0, and strutural e�ets, through λ0. From (11),those e�ets annot be onsidered separately. For any value of φ0 orresponds aunique value of λ0 onsistent with the frature relosure mehanism experimen-tally identi�ed (c∞c ). This ompetition between material and strutural e�etsis expeted to in�uene both mehanial and hydrauli behaviors.2.2 A miromehanis modelFollowing the morphologial representation of frature aperture distribution pro-posed by Myer ([Myer, 2000℄, [Jaeger et al., 2007℄), we assume from now on thatthe frature pore spae is made up of a distribution of rak-like pores havingdi�erent initial aspet ratios. As a onsequene, frature porosity is ompletelydetermined by the total raks volume V p = V c. This morphologial assump-tion allows to address the progressive frature relosure along the applied on-�ning pressure, on the basis of the progressive relosure of loal raks, fromthe smaller to the higher aspet ratios.
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Figure 4: The frature modelled as a distribution of disrete parallel ylindersIn view of applying Eshelby's work [Eshelby, 1957℄, a rak is here modelledas a ylindrial inlusion [Horii and Nemat-Nasser, 1983℄, of length L, with an7



elliptial setion embedded in a solid matrix (see Fig. 4). These inlusions areintrodued so as to aount for the anisotropi situation where parallel raksare uniformly distributed. The unit normal vetor n = ez is the same for allraks. Crak radius is denoted by a and rak half-opening by c. Crak aspetratio is denoted by X = c/a ≪ 1. For the sake of simpliity, raks are assumedto have the same radius a, so that a rak family is ompletely de�ned by itsinitial aspet ratio.Let ν(X0) be the distribution funtion of rak aspet ratios in the initial state.By de�nition, ν(X0)dX0 stands for the number of raks per unit length (i.e.diameter 2R in the frature plane) whih initial aspet ratio lies in between X0and X0 + dX0. Aording to (8) where V p = V c, the inremental pore volumefration is then given by :
dϕ =

X

J
ǫ(X0)dX0 ; ǫ(X0) =

πa2

λ0
ν(X0) (13)where ǫ(X0) is a 2D rak density parameter, whih is similar to the rakdensity parameter introdued by [Budiansky and O'Connell, 1976℄. (13) thenallows us to give a miromehanis de�nition for the frature volume frationintrodued in (7) :

ϕ(Σ) =
1

J(Σ)

∫

O(Σ)

Xǫ(X0)dX0 (14)where O(Σ) formally represents the set of open raks for a marosopi stressintensity Σ, i.e. integrations are made over the initial aspet ratio of raksfamilies still open for on�ning pressure intensity Σ.2.2.1 Loal rak losure lawAording to the fat that raks are likely to undergo non-in�nitesimal deforma-tions under marosopi ompressive stresses, we have to resort to a rate-basedformulation of the onstitutive equations. In this framework, it is then possibleto derive an estimate for the relation existing between the loal strain rate dprevailing within a rak and the marosopi applied stress rate Σ̇. Let usonsider a representative element volume of the frature made up of an elastisolid matrix (volume fration fs = 1 − ϕ, elasti sti�ness tensor Cs) and iden-tial oriented raks (total volume fration fc = ϕ, elasti sti�ness tensor C
c)submitted to a marosopi strain rate D. In ontinuum miromehanis, useof an elasti tensor Cc allows aounting for di�erent behavior of the raks.For instane [Dormieux et al., 2006℄, Cc = 0 for open raks, while Cc 6= 0 mayrepresent losed raks. In this latter ase, Cc is de�ned in order to aount forthe behavior (fritionless or not) of the raks.The linearity of the problem addressed in rate formulation allows us to relatelinearly the mirosopi and marosopi strain rates aording to2 :

d
α = A

α
: D (15)2yβ denotes the average of y over domain Ωβ (β = s, c, F ))8



where A
α denotes the average onentration tensor overdomain Ωα (α = s (resp.

c) for the solid phase (resp. raks)). Estimates for these onentration tensorsare derived frommiromehanis homogenization shemes ([Mura, 1987℄,[Dormieux et al., 2006℄).In the framework of the Mori-Tanaka sheme, estimates for loalization tensorsread :
{

A
c

= (I + Ps
c : (Cc − Cs))

−1
: Ã

A
s

= Ã
(16)where I and Ps

c are the fourth order identity tensor and Hill's tensor assoi-ated with a ylindrial inlusion of elliptial ross-setion embedded in the solidmatrix of sti�ness tensor Cs respetively, while
Ã

−1 = fs I +
1

J

∫

O(Σ)

X(I + P
s
c : (Cc − C

s))−1ǫ(X0)dX0 (17)is introdued so as to satisfy the strain rate average rule d
F

= D. Consideringopen raks, we have Cc = 0 so that the strain rate in a rak may be estimatedas [Dormieux et al., 2006℄ :
d

c = (I − S
s
c)

−1 : Ã|Cc=0 : D (18)where Ss
c = Ps

c : Cs is the Eshelby tensor.De�ning the rate of the marosopi stress as the average over the r.e.v. of theloal stress rates, say Σ̇ = σ̇
F , it is found that the frature behavior itself takesan hypoelasti form (Shom

t = (Chom
t )−1) :

Σ̇ = C
hom
t : D or D = S

hom
t : Σ̇ (19)where homogenized sti�ness tensor Chom

t = C : A
F

= (1 − ϕ) Cs : A
s. Forhydrostati loading onditions, (19) allows us to relate the frature strain rate

D to the rate of the marosopi on�ning pressure Σ̇ = −Σ̇1 (Σ > 0 forompression) as :
D = −Σ̇ S

hom
t : 1 (20)Combining (16), (18), (19) and (20), the rak losure law an be derived fromthe relation n ⊗ n : d

c = dc
nn = ċ/c [Deudé et al., 2002℄ :

Ẋ =
ċ

a
= Xdc

nn = −αs
n

Σ̇

1 − ϕ(Σ)
(21)where possible rak propagation is disregarded (ȧ = 0) and where oe�ient

αs
n is given by :

αs
n = n ⊗ n : X(I − S

s
c)

−1 : S
s : 1 (22)Interestingly, one an prove (see for instane [Dormieux et al., 2006℄) that Ts =

X(I − Ss
c)

−1 is a tensorial funtion independent of rak aspet ratio providedthat the latter is small enough X ≪ 1 (whih is true for raks by de�nition)and funtion of the solid matrix Poisson ratio νs only. For parallel ylindrial9



inlusions of elliptial setion with aspet ratios X ≪ 1 (unit normal n = ez) inan isotropi solid matrix, one gets :
αs

n = 2 (1 − ν2
s )/Es (= (1 − νs)/µs) (23)Interestingly enough, (23) proves that the loal mehanial response (rak lo-sure law) is mainly ontrolled by the solid matrix Young modulus. Therefore,solid matrix inompressibility assumption (νs = 1/2) may be used without mod-ifying the result (see setion 2.1).Time integration of (21) yields the evolution law of rak aspet ratio withrespet to the applied loading 3 :

X = 〈X0 − Xcℓ
0 (Σ)〉+ with Xcℓ

0 (Σ) = αs
n

∫ Σ

Σ0

ds

1 − ϕ(s)
(24)where X0 = X(Σ0) is the rak aspet ratio in the referene on�guration

Σ = Σ0. Xcℓ
0 (Σ) represents the initial aspet ratio of the raks whih losewhen the on�ning pressure reahes Σ. In other words, for a given value of Σ,raks whih are still open are those whih initial aspet ratios greater than thethreshold value Xcℓ

0 (Σ). Taking advantage of (12), Xcℓ
0 (Σ) may also be written :

Xcℓ
0 (Σ) = αs

n ((Σ − Σ0) − η(Σ)) , ∀Σ ≥ Σ0 (25)where η(Σ) = Σ∞ (φ(Σ) − φ0) / (1 − φ0). Therefore, at on�ning pressure Σ,the set of open raks O(Σ) introdued in (14) gathers raks with initial aspetratio satisfying the ondition X0 > Xcℓ
0 (Σ), where Xcℓ

0 (Σ) is given in (25). Asa onsequene, the frature porosity now reads :
ϕ(Σ) =

1

J(Σ)

∫ ∞

Xcℓ

0
(Σ)

(X0 − Xcℓ
0 (Σ)) ǫ(X0)dX0 (26)Conversely, the losure of a given rak family (X = 0) ours as soon as theapplied stress reahes Σcℓ(X0) satisfying Xcℓ

0 (Σ = Σcℓ(X0)) = X0. Aordingto (25), Σcℓ(X0) reads :
Σcℓ(X0) = Σ0 − Σ∞

(

h(X0) − W

(

φ0

1 − φ0
eh(X0)

)) (27)where h(X0) = φ0

1−φ0

− X0

αs
n
Σ∞

, while the Lambert funtion W (x) satis�es :
W (x) × exp(W (x)) = x (28)Taking advantage of (12), the rak density parameter ǫ(X0) may easily be de-rived from a double derivative ([Morlier, 1971℄, [Jaeger et al., 2007℄, [Deudé et al., 2002℄)of (26) with respet to Σ as :

ǫ(X0) =
φ0

Σ2
∞

exp((Σ0 − Σcℓ(X0))/Σ∞)

×

[

(

dXcℓ
0

dΣ
+ Σ∞

d2 Xcℓ
0

dΣ2

)

/

(

dXcℓ
0

dΣ

)3
]

|Σ=Σcℓ(X0)

(29)3〈·〉+ stands for the �positive part of� 10



Although diretly linkted to the frature relosure law (12), (29) proves thatthe initial rak aspet ratio distribution only requires an estimate for the rakaspet ratio threshold Xcℓ
0 (Σ).Use of (25) together with (27) in (29) yield the rak density parameter :

ǫ(X0) =
1 − φ0

(αs
nΣ∞)2

ϕ(Σcℓ(X0))
[

1 − ϕ(Σcℓ(X0))
]2 (30)Remarkably, the Mori Tanaka e�etive media theory provides a miromehanisinterpretation of the mehanial response of the frature using the rak relo-sure law (25) and the initial rak aspet ratio distribution (30). In partiular,(30) proves that ǫ(X0) depends upon three parameters: αs

n, Σ∞ and φ0. Assum-ing that the solid matrix elasti oe�ients (Es, νs = 1/2) are given quantities,
αs

n is estimated by (23). The shape of ǫ(X0) is then ontrolled by Σ∞ and φ0.Interestingly, as in [Oron and Berkowitz, 1998℄ the derived initial rak aspetratio distribution shows that ontat points having zero aperture in fraturesare naturally managed by our miromehanis modelling whatever the value of
φ0 6= 0. For onveniene, we introdue from now on the normalized initial rakaspet ratio distribution ǫ̂(X0) = ǫ(X0)/ǫ(0).A simple derivation of (30) proves that the normalized rak density parameter
ǫ̂(X0) may exhibit a maximum value ǫ̃ = ǫ̂(X0 = X̃0) at ϕ = 1/3:

ǫ̃ =
4

27

1

φ0(1 − φ0)2
(31)Introduing u = 2φ0/(1 − φ0), the initial rak aspet ratio X̃0 assoiated with

ǫ̃ also reads :
X̃0 = (αs

nΣ∞)/2 × (u − 1 + 2 ln(u)) (32)Due to the (required) positivity of X̃0, the existene of ǫ̃ is only ensured for
1/3 ≤ φ0 ≤ 1. When φ0 ≤ 1/3, the maximum value is ǫ̃ = 1.2.2.2 E�et of φ0 on the initial rak aspet ratio distributionAs previously mentionned, φ0 ontrols the intensity (31) and the position (32) ofthe peak of the initial aspet ratio distribution. In partiular, depending upon
φ0, funtion ǫ̂(X0) may take di�erent shapes as shown in Fig. 5 for Σ∞ = 1MPa and αs

n = 5.10−5 MPa−1.
• if φ0 < 1/3, see Fig. 5(), the miromehanis model suggests a dereasingfuntion of an exponential type. As φ0 → 0, this result beomes inreasinglyequivalent to the one obtained by assuming non-interative rak-like pores as
φ0 → 0 (see appendix).
• if 1 > φ0 > 1/3, the miromehanis model produes a trunated-gaussiantype funtion, see Fig. 5(b). The latter has been measured experimentally([Billaux et al., 1984℄, [Gentier, 1986℄, [Walters and Wong, 1999℄) and ommonly�tted by gamma or log-normal funtions in theoretial or numerial approahesfor de�ning loal apertures distribution of real fratures ([Neuzil and Tray, 1981℄,[Tsang and Tsang, 1987℄, [Renshaw, 1995℄).11



• if φ0 → 1, a skewed, almost gaussian, funtion is obtained, see Fig. 5(a). Thistype of funtion has also been used by several authors as the loal apertures dis-tribution assoiated with fratures ([Tsang, 1984℄,[Pyrak-Nolte and Morris, 2000℄).It has also been obtained following numerial simulations ([Tsang and Tsang, 1989℄,[Unger and Mase, 1993℄, [Oron and Berkowitz, 1998℄).2.2.3 Charaterization of φ0Interestingly, whatever the value of φ0, when the normalized rak density pa-rameter ǫ̂(X0) is an input of the problem, the latter may provide a harateri-zation of φ0, provided that Σ∞ and αs
n are given quantities.

• when 1/3 ≤ φ0 ≤ 1, we make use of the existene of a maximum of ǫ̂(X0).It is then straightforward to determine φ0 by using (32) sine X̃0 is herean input of the problem.
• when φ0 ≤ 1/3, we make use of the slope at the origin of ǫ̂(X0), denotedby η. Aording to (30), the latter takes the form:

η =
dǫ̂

dX0 |X0=0

=
1

αs
nΣ∞

(2 W (g(u)) − 1)

(W (g(u)) + 1)2
(33)where g(u) = u

2 exp(u
2 ) with u = 2φ0/(1 − φ0).More generally, determination of φ0 from a purely mehanial analysis requiresthree informations:

• the solid matrix (assumed isotropi elasti) behavior providing αs
n,

• the experimental frature relosure law providing Σ∞ aording to theanalytial approximation introdued in (10),
• the initial rak aspet ratio distribution ǫ(X0), similar to loal fratureapertures distribution, provided by experimental haraterization teh-niques.2.2.4 E�et of Σ∞ on the nature of a fratureIn [Tsang, 1984℄, an interesting qualitative lassi�ation of geometrial fra-ture states is given, depending upon the shape of the frature aperture densityfuntion. Sharply peaked aperture distributions, whether gaussian or skewed(see Fig. 5 a) and b)) are harateristi of very well mathed fratures, whileill-mated fratures are rather assoiated with �at and broad apertures distribu-tion ([Tsang, 1984℄,[Berkowitz, 2002℄).Our miromehanis modelling has been developped in a su�iently large frame-work to manage any type of frature. Assuming that αs

n is a given quantity, theinitial rak aspet ratio distribution depends upon φ0 and Σ∞. As previouslypresented, φ0 provides the trend of the initial rak aspet ratio distribution.12



0 0.1 0.2 0.3 0.4
0

100

200

300

X̃0

X0 [×10−2℄
ǫ̂

(a)

φ0 → 1 (φ0 = 0.98)

0 0.1 0.2 0.3 0.4
0

0.2

0.4

0.6

0.8

1.0

1.2

X̃0

X0 [×10−3℄
ǫ̂

(b) 1/3 < φ0 < 1 (φ0 = 0.5)

0 0.1 0.2 0.3 0.4
0

0.5

1.0

X0 [×10−3℄
ǫ̂

(c) φ0 → 0 (φ0 = 0.1)
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n = 5e−5MPa−1,Σ∞ = 1.MPa) 13



However, there is no way to assoiate the value of the initial frature pore vol-ume φ0 to the well-mathed or ill-mated state of the frature. By ontrast,depending on parameter Σ∞, (30) may exhibit a sharply peaked shape (Σ∞small enough) or a �at and broad shape (Σ∞ su�iently high). This is illus-trated in �gure 6 where we used Σ∞ = 1MPa (resp. 5MPa) for the peaked(resp. �at) distribution. Obviously, the proposed miromehanis approah isable to retrieve lassial frature apertures distribution shape [Tsang, 1984℄. Inaddition, this model allows us to give a qualitative and quantitative explanationto the well-mathed or ill-mated de�nition of a frature. Let us onsider that themarosopi frature relosure ours for a on�ning pressure Σ = Σ∗ = 7MPa.Let us also onsider two di�erent values for Σ∞ = 1MPa, 5MPa respetively.Aording to (25) with φ0 = 0.5 and αs
n = 5e− 5MPa−1, the initial aspet ratiothreshold satis�es :

Xcℓ
0 (Σ∗) =

{

4e−4 forΣ∞ = 1 MPa
5.38e−4 forΣ∞ = 5 MPa

(34)Therefore, for Σ∞ = 1 MPa (resp. 5 MPa) the frature relosure at on�ningpressure Σ∗ = 7 MPa is assoiated with the relosure of the raks with aninitial aspet ratio X0 ≤ 4e−4 (resp. X0 ≤ 5.38e−4). From �gure 6, Σ∞ = 1MPa yields a omplete relosure of the loal rak-like pores, onsistent with awell-mathed de�nition of the frature. By ontrast, Σ∞ = 5 MPa yields a par-tial relosure of the loal rak-like pores, whih an be related to an ill-matedfrature. This result an also be interpreted through the de�nition of X̃0 givenin (32). When Σ∞ inreases, the maximum value ǫ̃ is assoiated with a highervalue of X̃0. Hene, a higher value of the on�ning pressure is required for theomplete losure of the loal rak-like pores.When φ0 < 1/3, the same onlusion is obtained. Aording to (33), for in-reasing values of Σ∞, the initial rak aspet ratio distribution tends towardthe line ǫ̂ = 1.Whithin our analysis, determination of both rak relosure law (25) andinitial rak aspet ratio distribution (30) has to be understood as the key ofthe miromehanis interpretation of the frature relosure mehanism. In par-tiular, the proposed analysis proves that, whatever φ0, we are able to build aninitial rak aspet ratio distribution ǫ(X0) that is ompatible with the observedmarosopi behavior (frature relosure). This result is a diret onsequene ofthe relation between φ0 (material e�ets) and λ0 (strutural e�ets) expressedin (11). Whenever the material (φ0) is modi�ed, the initial frature thikness(λ0) itself is modi�ed in suh a way that they are still assoiated with the samemarosopi behavior.Hene, the mehanial analysis does not allow the determination of φ0, exeptedthe situation where all needed informations are known as mentionned in setion2.2.3. In order to overome this indetermination on φ0, we may take advan-tage of the hydrauli behavior of fratured geomaterials. This point is adressedin the next setion, where permeability evolution of fratured geomaterials areestimated in the ontext of miromehanis arguments, still based on the Mori-Tanaka e�etive media theory. 14
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n = 5e−5MPa−1, φ0 = 0.5)2.3 frature permeability estimatesWe take here advantage of lassial rok joints ondution laws as proposed inRok Hydraulis ([Gueguen and Paliauskas, 1992℄, [Dormieux and Lemarhand, 2001℄).The idea is as simple as onsidering a rak as a system of two parallel planes,of width 2c. In between these two planes, the �uid obeys a Poiseuille ondu-tion law that linearly relates the �ltration veloity and the pressure gradient.It is therefore possible to de�ne a �titious porous medium of permeability kc,that is equivalent to the real rak as regards the linear relationship between�ltration veloity and pressure gradient. Realling that ex and ey are the twoorthonormal vetors in the rak plane, and n = ez the outward unit normal tothis plane, we may write :

kc =
c2

3
(ex ⊗ ex + ey ⊗ ey) + ksn ⊗ n (35)where arbitrarily de�ned parameter ks may be hosen as the (isotropi) perme-ability of the unraked solid matrix ks = ks 1 [Dormieux and Kondo, 2004℄.It is readily seen that the marosopi permeability tensor K

hom is stronglya�eted by the presene of rak through the fat that it loally enhanes (if
c2 ≫ ks) the �uid motion in the (ex, ey) plan. By ontrast, its e�et on the�uid �ow in the normal diretion n is negligible. From a physial point of view,replaing the �uid domain in a rak by a �titious porous medium, of perme-ability kc, is onsistent with the fat that the linearity of the loal ondutionlaw is preserved. On a mathematial point of view, this substitution is verypowerful. Indeed, it replaes the di�ult task of the homogenization proess ofa Stokes problem over a representative element volume (r.e.v.) by the one of anheterogeneous darean medium with heterogeneous permeability k(z). Consid-ering again a ontinuous distribution of initial rak aspet ratios, eah rak15



family (F j) aounts for one distint phase as regards the heterogeneous de-sription of Dary's law within the r.e.v..With the assumption that ks ≈ 0 [Walters and Wong, 1999℄, miromehanistools then allow to derive frature permeability as the average over the r.e.v.,denoted by 〈·〉, aording to :
k

F = 〈k ·A〉 =
1

J

∫ ∞

Xcℓ

0
(Σ)

kc · Ac Xǫ(X0)dX0 (36)As the seond order onentration tensor reads4 Ac = ex ⊗ ex with the mor-phology assumption made in setion 2.2, tortuosity e�ets annot be aountedfor in the present analysis [Dormieux and Lemarhand, 2000℄. Therefore, (36)redues to :
k

F =
1

J

∫ ∞

Xcℓ

0
(Σ)

c2

3
Xǫ(X0)dX0 ex ⊗ ex (37)At the sample sale, as we hose a spei� two layers omposite morphology(see Fig. 3), the marosopi permeability tensor is derived by a simple mixturelaw :

K
hom = ϕF

k
F ; ϕF = 2λ/(π R) (38)Combining Eqns (37) and (38) �nally yields a longitudinal marosopi perme-ability oe�ient estimated by :

Khom
xx =

2a2λ0

3π R

∫ ∞

Xcℓ

0
(Σ)

X3ǫ(X0)dX0 (39)This is similar to the marosopi permeability proposed in [Tsang and Witherspoon, 1983℄.Hene, resorting to mixture law estimates yields a marosopi longitudinal per-meability oe�ient de�ned as a ubi funtion of rak aspet ratio, lassiallyreferred to as a �loal ubi law� ([Neuzil and Tray, 1981℄,[Wanfang et al., 1997℄,[Berkowitz, 2002℄).One may also use a normalized longitudinal marosopi permeability oe�ientde�ned as :
Khom

xx

Khom
xx,0

=

∫ ∞

Xcℓ

0
(Σ)

X3ǫ(X0)dX0

∫ ∞

0

X3
0 ǫ(X0)dX0

(40)Clearly enough, permeability ouplings with mehanial frature relosure isompletely aounted for by both the initial rak aspet ratio distributionfuntion ǫ(X0) and the loal rak relosure law Xcℓ
0 (Σ). The originality ofour ontribution lies in the fat that both ǫ(X0) and Xcℓ

0 (Σ) are exlusivelyidenti�ed from the mehanial frature relosure law measured experimentally.4onsistent with the Mori Tanaka sheme
16
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Figure 7: E�et of φ0 on the normalized permeability evolution, Σ∞ = 6MPa)2.3.1 E�et of φ0 on the normalized permeability evolutionAs for the mehanial analysis developed in the previous setion, the e�etof φ0 may already be disussed. For αs
n = 5e−5MPa−1 and Σ∞ = 6MPa,normalized permeability oe�ient (40) is plotted vs on�ning pressure intensityfor di�erent values of φ0 in �gure 7. The following omments an be made:

• in the range 0 ≤ φ0 ≤ 1/3, theoretial estimates are very lose to eahother. Therefore, if theoretial estimates are lose to the experimental re-sults whatever φ0 ∈]0, 1/3], it is possible to predit the hydrauli responseof fratured materials diretly from the mehanial frature relosure lawidenti�ed experimentally. Indeed, in this ase experimental results may befairly well approximated by the estimate obtained in the limit ase φ0 → 0(Dilute sheme approximation [Lemarhand et al., 2007℄) realled in (49).The latter only requires the determination of parameter Σ∞.
• when φ0 > 1/3, there is no way to predit the hydrauli behavior from themehanial one sine φ0 is still unknown. By ontrast, hydrauli behaviorallows the determination of φ0 by best-�tting proedure.2.3.2 E�et of Σ∞ on the normalized permeability evolutionEvolution of the normalized permeability oe�ient with respet to the on�ningpressure is displayed in �gure 8 for di�erent values of parameter Σ∞ when

φ0 = 0.5. Clearly enough, when Σ∞ dereases the permeability oe�ientdereases more rapidly. This result is onsistent with the aforementionned e�etof Σ∞ on the initial aspet ratio distribution, where higher values of Σ∞ areassoiated with ill-mated fratures. 17
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Figure 8: E�et of Σ∞ on the normalized permeability evolution, φ0 = 0.5)3 Appliation3.1 ExperimentsThe experimental method is fully desribed in [Davy et al., 2007℄, as appliedto Callovo-Oxfordian argillite, whih is a deep geologial formation privilegedfor deep underground nulear waste storage. The results presented here areupon industrial high performane onretes whih are studied by Andra (FrenhAgeny for Nulear Waste Management) in similar ontext (i.e. deep nulearwaste storage), and also by EDF (Frenh Eletriity Supply Company) for nu-lear reator vessels. Both onretes, labelled CEM I and CEM V respetively,are made of 4-12 mm alareous aggregates, of CEM I-type or alternately CEMV-type ement, of a water proportion on the order of 40 % ement mass (i.e.water-to-ement ratio W/C ≈ 0.4) and of a superplastiizer, in proportions asrequested by ANDRA. For theoretial purpose, onrete behavior is assumedisotropi elasti: Young's modulus Es = 30GPa and Poisson's ratio νs = 0.5.Sample Referene Con�guration Final Con�gurationnumber Σ0 ∆c
0 Kxx,0 Σmax ∆c

max Kxx,max[MPa℄ [10−5m℄ [10−15m2℄ [MPa℄ [10−5m℄ [10−15m2℄Sample 1 1.8 0 32 43.2 3.91 1.3Sample 2 3.6 1.9 0.88 45.1 5.4 0.022Table 1: Gas permeability test results on fratured onrete samples subjetedto hydrostati pressure Σ. Gas pressure for permeability assessment is of 1 MPain both ases.A Brazilian splitting test reprodues a frature along the diametral plane ofa irular ylindrial speimen, see Figure 1(b). All speimens have a length-18
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Kxx is not normalized by sample diameter D so as to get a frature permeabil-ity, we rather work with apparent fratured sample permeability (expressed inm2). Moreover, while ∆c is measured instantaneously, permeability measure-ments Kxx are onduted at stabilized values of on�ning pressure Σ. Initial(referene state) and asymptoti values are summarized in Table 1.As shown in Figure 9, when applying hydrostati pressure loading up to 45 MPa,a progressive rak losure of great amplitude (of 40 or 50 µm) ours. Similarobservations are made for gas permeability relationship with hydrostati load-ing: a sharp derease of the normalized permeability oe�ient Kexp

xx /Kexp
xx,0 isobtained for both samples, see Figure 10. Disparities in permeability and raklosure amplitude between samples may be aounted for by the variability gen-19
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With these values in hand, we are able to de�ne the initial rak aspet ratiodistribution (30) and the rak losure law (25) as funtions of the unknowninitial frature pore volume fration φ0. The latter is sought in order to getthe best �t between experimental and miromehanis results obtained for thenormalized permeability oe�ient evolution (40) as displayed in Figure 12.Obviously, miromehanis-based theoretial estimates are able to reprodue theexperimental evolution of the normalized longitudinal permeability oe�ient.More preisely, the Mori-Tanaka estimate (40) provided by our modelling �tsexperimental results, at least in the range Σ : 0 → 20MPa, for φ0 = 0.33 (resp.
φ0 = 0.37) for Sample 1 (resp. Sample 2).Therefore, the mixture law (39), onsistent with a loal ubi law of the per-meability evolution with respet to rak aspet ratio, is apable of aountingfor the physial mehanism, revealed by experimental evidenes, that ontrolsboth mehanial and hydrauli behaviors of the tested fratured onrete sam-ples.Besides, experimental results suggest that the marosopi on�ning pres-sure leads to a derease of the permeability almost perfetly orrelated withmehanial frature relosure. More preisely, for the very �rst loading val-ues Σ − Σ0 ≈ 10 MPa, the normalized permeability oe�ient dereases from1 to 0.19 (Fig. 10) while, at the same time, the normalized frature losure
(c∞c − cc)/c∞c dereases from 1 to 0.17 (Fig. 9 - Fig. 10). These experimentalresults are at the origin of the good agreement between experiments and theo-retial estimates derived by the dilute approximation (φ0 → 0). The latter asehas already been solved in [Lemarhand et al., 2007℄ (see appendix). It yieldsan a�ne relationship between the normalized permeability and the normalizedfrature relosure of the form :

Khom
xx

Khom
xx,0

= 1 −
cc

c∞c
(41)This orresponds to a perfet orrelation between mehanial and hydrauli re-sponses, whih has been observed for onrete samples.In ontrast with the good agreement obtained between experimental data andtheoretial estimates for on�nement intensity in the range Σ = 0−20MPa, onemay observe a non-negligible disrepany for Σ = 20 to −40MPa (Sample 1).This is a diret onsequene of our morphologial assumption in the de�nition ofthe frature pore volume. Indeed, in addition to stress-sensitive rak-like pores,pores that are stress-insensitive should also be onsidered within the frature do-main. Therefore, these �non-LCL� regions5 ([Wanfang et al., 1997℄,[Oron and Berkowitz, 1998℄,[Berkowitz, 2002℄)are expeted to ontribute to the hydrauli ondutivity in a non negligible way.In partiular, aounting for these pores in our miromehanis approah wouldertainly improve the asymptoti hydrauli behavior estimates.5non Loal Cubi Law regions
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4 Disussion - ConlusionIn the present paper, we proposed a miromehanis modelling of fratured ge-omaterials aounting for interdependent hydrauli and mehanial behaviors.We adressed the question of a single through-wall frature in a non ondutivesolid matrix. For ompressive loadings, experimental results prove that bothhydrauli and mehanial behaviors show a non linear evolution with respetto the on�nement intensity. The observed non linearity of the frature re-losure is physially interpreted as the progressive losure of rak-like poresde�ning the pore spae within the frature domain. This 3D interpretation ofthe marosopi interfae lies in the physial onept of roughness, whih isusually introdued in order to aount for frature surfae irregularities.Disregarding tortuosity e�ets, we assumed a 2D de�nition of rak-likepores, represented by ylinders of elliptial setion normal to the �ow path.In the framework of Mori Tanaka e�etive media theory, we aounted for thepossible interation between these raks for both mehanial and hydraulibehaviors. This miromehanis reasoning is ontrolled by two physial infor-mations, a rak losure threshold Xcℓ
0 (Σ) and a distribution of initial aspetratios ǫ(X0) given in (25) and (30) respetively. To be ompletely determined,both need the experimental mehanial frature relosure law (Σ∞) and theinitial pore volume fration of the frature domain (φ0). While the former isidenti�ed for the two tested onrete samples, the latter has not been measuredexperimentally, thus appearing in our model as an unknown parameter.For onrete samples, best �ts have been obtained with φ0 = 0.33 (Sam-ple 1) and φ0 = 0.37 (Sample 2). Obviously, to be fully preditive, the pro-posed multi-sale modelling needs φ0, or equivalently λ0 owing to (11), notto remain an unknown parameter. This goes through experimental harater-ization of the initial frature pore volume, using imaging tehniques for in-stane [Viggiani et al., 2004℄. From these authors, X-ray mirotomography ob-servations made on �ne-grained geomaterials proved that unon�ned fraturethiknesses are in the order of 10-100 µm. This harateristi size may be inter-preted as that of the grains loated on maro-rak lips whih are responsiblefor the surfae roughness. Aording to (11), its value is onsistent with aninitial frature porosity φ0 ranging from 0.2 to 1 for the tested samples. Val-ues of φ0 ≈ 0.35 that have been obtained by the miromehanis reasoning aretherefore ompatible with these mirostrutural observations. In a �rst approxi-mation, theoretial results derived in the framework of the dilute approximation(no rak interation) de�ned by φ0 ≪ 1 provide a fairly aeptable approxima-tion of experimental data. This is interesting in the sense that the model is thenpreditive as regards the permeability evolution, in spite of the indeterminationon φ0. Aording to our miromehanis modelling, this simpli�ation is diretlyrelated to the obvious orrelation between mehanial and hydrauli behaviorsof the fratured onrete samples. This is related to negligible tortuosity e�etsupon the hydrauli response of the tested samples.Many experimental observations ([Cook, 1992℄ for instane) show that �owthrough a frature may derease more rapidly. [Bernabe and Brae, 1982℄ proved24



that hydrauli behaviors are strongly in�uened by the type of geomaterialsonsidered. Even within the rystalline roks familly, experimental data show astrong disparity. A possible explanation has been given by [Sisavath et al., 2003℄through the study of reeping �ow through a frature of varying aperture byintroduing sinusoidally-varying walls. Our point of view rather onsiders thattortuosity e�ets are responsible for the observed disparity of the hydrauli be-havior of fratured geomaterials. Therefore, in order to disus the e�et of loalraks onnetedness that aounts for the existene of a tortuous �ow pathwithin the frature domain, miromehanis requires a 3D morphologial rep-resentation of these raks [Montemagno and Pyrak-Nolte, 1995℄. While thismorphologial assumption would have negligible impat on the mehanial re-sponse of fratured geomaterials, the derease of hydrauli ondutivities shouldbe enhaned. In partiular, the in�uene of the initial rak aspet ratio dis-tribution should have a strong in�uene [Tsang, 1984℄. In parallel, the questionof hydrauli perolation ([Pyrak-Nolte et al., 1988℄,[Walsh et al., 1997℄) shouldbe adressed in order to explain dereases of several orders of magnitude alongthe progressive relosure of a lass of fratured geomaterials. All these openquestions will be analysed in a further paper.AknowledgmentsThe authors are grateful to both EDF (Frenh Eletriity Supply Company)and Andra (Frenh Ageny for Nulear Waste Management) for funding theexperimental researh program.
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5 AppendixWe reall hereafter the miromehanis de�nition of both mehanial and hy-drauli behaviors of fratured geomaterials when assuming that the rak-likepores within the frature domain do not interat [Lemarhand et al., 2007℄.Conerning the loal mehanism of raks relosure, lassial results ([Neuzil and Tray, 1981℄,[Myer, 2000℄, [Rutqvist and Stephansson, 2003℄) are retrieved.5.1 the mehanial behaviorWithin the dilute approximation, the set of open raks O(Σ) given by (25) inthe limit ϕ ≈ φ0 ≪ 1 is ontrolled by the following rak losure law [Deudé et al., 2002℄:
X = X0 − X0

cℓ(Σ) with X0
cℓ(Σ) = αs

n (Σ − Σ0) (42)Aording to (42), the losure of a given rak family ours as soon as theapplied stress reahes the value Σcℓ(X0) = Σ0+X0/αs
n orresponding to X = 0.Owing to (42), (14) may be rewritten as :

ϕ =

∫ ∞

X0

cℓ
(Σ)

Xǫ(X0)dX0 (43)From (43), we may give another de�nition of the rak density parameter ǫ(X0).Indeed, a double derivative of (43) with respet to Σ yields :
ǫ(X0) =

1

(αs
n)2

d2ϕ

dΣ2 |Σ=Σcℓ(X0)
(44)Eventually, taking advantage of (12) together with the assumption J ≈ 1, (44)may be rewritten as (φ0 ≪ 1) :

ǫ(X0) =
φ0

(αs
n Σ∞)2

exp(−
X0

αs
nΣ∞

) (45)5.2 the hydrauli permeabilityTaking the loal rak losure law (45) into aount, estimate for the longitudinalmarosopi permeability oe�ient given by (39) may be rewritten as :
Khom

xx =
a2φ0

3(αs
nΣ∞)2

∫ ∞

Xcℓ(Σ)

(

X0 − αs
n(Σ − Σ0)

)3
exp(−

X0

αs
nΣ∞

)dX0 (46)The assumed ontinuous distribution of initial rak aspet ratios eventuallyallows us to obtain the monotoni dereasing funtion of Σ :
Khom

xx (Σ) = 2φ0(aαs
nΣ∞)2 exp((Σ0 − Σ)/Σ∞) = 2(aαs

nΣ∞)2ϕ(Σ) (47)The initial longitudinal marosopi permeability oe�ient also reads :
Khom

xx,0 = Khom
xx (Σ = Σ0) = 2φ0(aαs

nΣ∞)2 (48)26



so that the normalized longitudinal marosopi permeability oe�ient is stritlyontrolled by parameter Σ∞ aording to :
Khom

xx

Khom
xx,0

=
ϕ(Σ)

φ0
= exp

(

Σ0 − Σ

Σ∞

) (49)
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