

Caracterización termofísica de ésteres de cadena corta

Trabajo de Fin de Máster

Christian Reinado Salinas

Dirigido por:

Héctor Artigas Lafaja

Carlos Enrique Lafuente Dios

Departamento de Química Física

Facultad de Ciencias, 28/06/2021

<u>ÍNDICE</u>

1.	Resumen/Summary	1
2.	Introducción	2
3.	Equipos utilizados	4
	3.1.Densímetro	4
	3.2. Analizador de la velocidad de propagación del sonido	5
	3.3.Refractómetro	5
	3.4. Viscosímetro	6
	3.5. Tensiómetro	6
	3.6. Ebullómetro	7
4.	Tratamiento y correlación de los datos experimentales	8
	4.1.Propiedades derivadas de nuestras medidas	8
	4.1.1. Compresibilidad isoentrópica	8
	4.1.2. Expansibilidad térmica	8
	4.1.3. Entalpía superficial	8
	4.1.4. Entropía superficial	8
	4.1.5. Entalpía de vaporización	8
	4.2. Correlación de los datos experimentales	9
5.	Discusión de resultados experimentales	11
	5.1.Resultados experimentales vs resultados bibliográficos	11
	5.1.1. Densidad y tensión superficial vs Vogel	11
	5.1.2. Densidad e Índice de refracción vs literatura	12
	5.1.3. Presión de vapor vs datos bibliográficos	13
	5.2.Influencia de los iones en las medidas	13
	5.2.1. Densidad	14
	5.2.2. Velocidad de propagación del sonido	15
	5.2.3. Compresibilidad isoentrópica	16
	5.2.4. Indice de refracción	17
	5.2.5. Viscosidad	18
	5.2.6. Tensión superficial	19
	5.2.7. Presión de vapor	20
	5.3.Propiedades derivadas	21
6.	Conclusiones	22
7.	Bibliografía	23
8.	Anexo	

1. RESUMEN

En este trabajo vamos a realizar una caracterización termofísica de ésteres de cadena corta. Los ésteres sobre los que vamos a trabajar son los siguientes: butirato de etilo, isobutirato de etilo, isovalerato de metilo y valerato de metilo.

Sobre estos ésteres vamos a calcular las siguientes propiedades en un rango de 278,15-338,15 K a una presión de 0,1 MPa: Densidad, velocidad de propagación del sonido, índice de refracción, tensión superficial, viscosidad y presión de vapor. A partir de estas propiedades podemos determinar otras magnitudes derivadas con el fin de aumentar el espectro de propiedades termofísicas.

Posteriormente realizaremos un análisis estadístico de nuestros valores frente a los valores obtenidos en la literatura, además, desarrollaremos una hipótesis de cómo los cambios en la estructura de una molécula afectan a sus propiedades termofísicas.

1. SUMMARY

In this project, we do a thermophysic characterization of a few short-chain esters. These esters are: ethyl butyrate, ethyl isobutyrate, methyl isovalerate and methyl valerate.

On these esters, we are going to measure some properties in a range of 278,15-338,15 K at 0,1 MPa. Properties measured are the following: density, speed of sound, refractive index, surface tension, viscosity and vapor pressure. From these experimental properties, we can obtain other functions by different thermodynamic relations.

In addition, we are going to make a statistical analysis of our data by comparing them against the literature. Besides, we are going to develop a hypothesis that explains how changes in the molecular structure affect thermophysic properties.

2. INTRODUCCIÓN

El trabajo fin de máster (TFM a partir de ahora) es el punto final a nuestra vida académica, y un buen ejemplo de lo que es un trabajo enfocado a la investigación (doctorado), así pues, en la mayoría de los casos ayuda a los alumnos a decidirse entre un posible doctorado o un trabajo en la industria.

La oferta de trabajo que he escogido pertenece al mismo grupo de investigación con el que trabajé durante el grado, evidentemente, la temática del TFM no podía ser la misma que la del trabajo fin de grado, pero sí que podía estar relacionada, con el fin de aprovechar el conocimiento que ya había adquirido previamente sobre el uso de algunos instrumentos para hacer un estudio exhaustivo de las propiedades termofísicas de diversos compuestos.

El trabajo no se iba a enfocar desde un punto de vista puramente académico y destinado a la investigación, sino que, tratándose de un máster sobre la Química Industrial, queríamos trabajar sobre compuestos que realmente tuvieran una aplicación en la industria y las propiedades termofísicas a determinar fueran especialmente importantes en sus usos industriales.

El trabajo se centra en realizar una caracterización termofísica de ésteres de cadena corta. Estos compuestos se caracterizan principalmente por poseer un olor especialmente agradable, además de aportar sabores también a los alimentos a los que se le añaden. Estos aromas y sabores se relacionan habitualmente con frutas como la piña, el plátano, la frambuesa, la pera, el melocotón, etc.

Fruta		Nombre Del Ester
Piña	*	Hexanoate el alílico
Pera, Fresa Y Jazmín		acetato de benzyl
Fresa		Formato ethyl
Manzana	-	Isovalerate Ethyl
Uva		Nonanoate Ethyl
Cereza	-	Butirato geranyl
Melocotón	Ó	Butirato Linalyl

Imagen 1: Aromas de varios ésteres de cadena corta

También concretamos los objetivos a alcanzar durante el TFM, que son:

Objetivo uno: Alcanzar un grado de autosuficiencia para trabajar en un laboratorio convencional de medidas termofísicas, que implica tener un conocimiento amplio sobre el funcionamiento de los instrumentos de análisis, de los cuales algunos ya los habíamos empleado durante el trabajo de fin de grado, pero otros eran completamente desconocidos para mí.

Objetivo dos: Caracterizar de manera correcta las propiedades termofísicas de dichos ésteres de cadena corta y compararlos con datos bibliográficos para garantizar la calidad de los datos. Dichas propiedades termofísicas por lo general serán caracterizadas en un rango de temperaturas que abarca desde 278,15 K a 338,15 K a presión atmosférica. Exceptuando la medida de la presión de vapor que sigue un patrón distinto, en el que calcularemos la temperatura de equilibrio entre la fase vapor y la fase líquida en ebullición en función de la presión.

Objetivo tres: Relacionar la variación de las propiedades termofísicas de los ésteres en función de sus sustituyentes, para poder desarrollar una justificación que nos permita prever cómo van a ser las propiedades de los ésteres en función de la estructura adoptada.

Los ésteres de cadena corta con los que vamos a trabajar son los siguientes:

Imagen 2: Butirato de etilo

Imagen 3: Isobutirato de etilo

Imagen 4: Valerato de metilo

Imagen 5: Isovalerato de metilo

Nombre	Fórmula molecular	Pureza	Número CAS	Casa Comercial
Butirato de etilo	$C_6H_{12}O_2$	99,8%	105-54-4	Aldrich
Isobutirato de etilo	$C_6H_{12}O_2$	99,8%	97-62-1	Aldrich
Valerato de metilo	$C_6H_{12}O_2$	99,8%	624-24-8	Sigma Aldrich
Isovalerato de metilo	$C_6H_{12}O_2$	99,7%	556-24-1	Sigma Aldrich

Como podemos apreciar, los cuatro ésteres son isómeros estructurales. Este hecho lo vamos a utilizar para explicar de manera posterior cómo las propiedades termofísicas de estos isómeros varían en función de la estructura.

<u>3. EQUIPOS UTILIZADOS</u>

En este apartado se describirán de manera breve los equipos utilizados para la obtención de las medidas termofísicas de los ésteres de cadena corta. Una descripción más detallada de los mismos se puede encontrar en la referencia [1]

3.1- Densímetro

Imagen 6: Anton Paar DSA-5000

La medición tanto de la densidad como de la velocidad de propagación del sonido se realiza con el instrumento denominado *Anton Paar DSA-5000*. La metodología empleada por este instrumento para la obtención de la densidad es la medición

electrónica de la oscilación de la muestra, la cual es introducida en un tubo con forma de U.

La incertidumbre asociada a la determinación de las densidades mediante este instrumento es de $\pm 5 \cdot 10^{-6}$ g·cm⁻³.

El control de la temperatura viene dado por un dispositivo *Peltier* incorporado al equipo, cuya incertidumbre asociada de medida es \pm 0,001 K.

3.2- Analizador de la velocidad de propagación del sonido

La determinación de la velocidad de propagación del sonido en la muestra se calcula mediante la medida de la velocidad de pulsos ultrasónicos que atraviesan nuestra muestra de manera longitudinal a lo largo de una determinada distancia dentro del equipo. La incertidumbre asociada a esta medida es de $\pm 0,1 \text{ m} \cdot \text{s}^{-1}$.

El control de la temperatura viene dado por un dispositivo interno asociado al instrumento, cuya incertidumbre de medida es $\pm 0,002$ K.

3.3- Refractómetro

Imagen 7: Refractómetro Abbemat HP

Para la determinación del índice de refracción de la muestra, vamos a emplear el refractómetro *Abbemat HP* del *Dr Kernchen*.

Para la obtención de esta propiedad, se introduce la muestra con una pipeta Pasteur en la cavidad del instrumento, formada por una superficie lisa de prisma de zafiro sintético. Sobre esta muestra se hace incidir un rayo cónico de luz de longitud de onda 589,3 \pm 0,1 nm (línea D del sodio). La incertidumbre asociada a esta medida es de \pm 5 \cdot 10⁻⁶.

De igual manera, el control de la temperatura se lleva a cabo mediante un dispositivo *Peltier* incorporado al equipo, cuya incertidumbre es de \pm 0,002 K.

3.4- Viscosímetro

Imagen 8: Viscosímetro Ubbelohde acoplado a la celda de la unidad automática de medida (izquierda) y dispositivo Julabo MC (debajo)

Para la obtención de la viscosidad empleamos un viscosímetro capilar *Ubbelohde* este viscosímetro se conecta a una unidad automática de medición del tiempo de flujo (*AVS 440*).

La incertidumbre de la medida del viscosímetro es de \pm 1%.

La temperatura durante la medición de la viscosidad es controlada mediante un baño termostatizado por un dispositivo *Julabo MC*, cuya incertidumbre en la temperatura es de \pm 0,01 K.

3.5- Tensiómetro

La determinación de la tensión superficial de la muestra es llevada a cabo por el tensiómetro de volumen de gota *Lauda TVT-2*, que lleva integrado a su vez un termostato *Lauda E-200* para controlar la temperatura del equipo.

Imagen 9: Tensiómetro Lauda TVT-2

La incertidumbre de la tensión superficial obtenida es de \pm 0,1 mN \cdot m⁻¹ mientras que la incertidumbre de la temperatura es de \pm 0,01 K.

3.6- Ebullómetro

Imagen 10: Ebullómetro Fischer-Labodest

La obtención de la presión de vapor de las muestras a distintas temperaturas es llevada a cabo con un ebullómetro basado en un método dinámico de recirculación de fases Fischer-Labodest.

Este ebullómetro permite trabajar en un amplio rango de presiones y temperaturas. En nuestro caso, vamos a evaluar las condiciones de equilibrio líquido-vapor entre presión y temperatura para las muestras desde una presión aproximada de 1 kPa hasta la presión atmosférica de 101,325 kPa intentando que la variación de temperatura sea constante y de aproximadamente 4 grados.

4. TRATAMIENTO Y CORRELACIÓN DE LOS DATOS EXPERIMENTALES

4.1 Propiedades derivadas de nuestras medidas

A partir de los datos que hemos obtenido (propiedades), podemos obtener otro tipo de propiedades derivadas de nuestro líquido mediante relaciones matemáticas basadas en diferentes relaciones físicas, lo cual nos va a permitir ampliar el espectro de propiedades físico-químicas de nuestra muestra.

4.1.1. Compresibilidad isoentrópica

Obtenida mediante la ecuación de Newton-Laplace. La compresibilidad isoentrópica se obtiene realizando la inversa de la densidad por la velocidad de propagación del sonido al cuadrado, considerando la absorción ultrasónica despreciable.

$$\kappa_s = 1/\rho u^2 \tag{1}$$

4.1.2. Expansibilidad térmica

Para su obtención, utilizamos la variación de la densidad con la temperatura a presión constante, referencia el cambio de volumen molar respecto de la temperatura.

$$\alpha_{p} = \frac{1}{V} \left(\frac{\partial V}{\partial T} \right)_{p} = \frac{1}{\rho} \left(\frac{\partial \rho}{\partial T} \right)_{p}$$
(2)

4.1.3. Entalpia superficial

Para su obtención empleamos la tensión superficial de la muestra y su variación respecto de la temperatura.

$$\Delta H^{\sigma} = \sigma - T \left(\frac{\partial \sigma}{\partial T} \right)_{p} \tag{3}$$

4.1.4. Entropía superficial.

Esta propiedad referencia la variación de la tensión superficial respecto de la temperatura.

$$\Delta S^{\sigma} = \left(\frac{\partial \sigma}{\partial T}\right)_{p} \tag{4}$$

4.1.5. Entalpía de vaporización

$$ln(p_{vap}) = -\frac{\Delta H^{vap}}{RT} + B \tag{5}$$

4.2 Correlación de los datos experimentales

A la hora de representar nuestras propiedades frente a la temperatura, encontramos que la correlación entre ellas no es siempre lineal, dando lugar a ajustes que difieren del primer orden (polinómicos, exponenciales, etc.)

Para propiedades como la densidad, la velocidad de propagación del sonido, el índice de refracción y la tensión superficial encontramos ajustes lineales que se ajustan a la siguiente ecuación:

$$Y = A \cdot T + B \tag{6}$$

donde Y es la propiedad estudiada, T la temperatura en absoluta, y A y B son parámetros ajustables.

Para la viscosidad dinámica, realizamos un ajuste según la ecuación de Vogel-Fulcher-Tammann (VFT) [2,3,4].

$$\eta = \eta_0 \cdot exp\left(\frac{B}{T - T_0}\right) \tag{7}$$

donde η_0 (*A* en la tabla), *B* y T₀ (*C* en la tabla) representan parámetros ajustables sacados de la ecuación de Arrhenius. η_0 representa la viscosidad mínima a una temperatura hipotética infinita. *B* es el resultante del producto de la división entre

 $\left(\frac{E_a}{k_B}\right)$ donde E_a es la energía de activación del proceso y k_B la constante de

Boltzmann.

Para la presión de vapor, vamos a realizar una representación de la presión de vapor frente a la temperatura donde vamos a encontrar un ajuste exponencial, del que vamos a extraer los parámetros ajustables "*A*, *B* y *C*" que podemos relacionar con la ecuación de Antoine, que relaciona la presión de vapor de los compuestos puros con la temperatura.

$$log(p) = A - \frac{B}{t+C}$$
(8)

siendo p la presión en kPa, t la temperatura en Celsius y A, B y C parámetros ajustables.

Para evaluar la fiabilidad de los datos desde un punto de vista estadístico, en todos los casos se calcula la desviación relativa cuadrática media (DRCM) entre los datos experimentales y los correlacionados.

$$DRCM (\%) = 100 \cdot \left(\frac{1}{n} \left[\sum_{i} \left(\frac{Y_i^{exp} - Y_i^{corr}}{Y_i^{exp}} \right) \right]^2 \right)^{1/2}$$
(9)

siendo Y_i^{exp} la medida experimental, Y_i^{corr} la magnitud correlacionada y *n* el número de datos experimentales. La DRCM se utiliza para validar la correlación respecto de la propiedad, siendo esta mejor cuanto menor sea la DRCM. En la siguiente tabla podemos observar los ajustes realizados para cada propiedad, así como su valor de la DRCM.

Compuesto	Propiedad	A	В	С	DRCM/%
Butirato de etilo	$ ho/(g\cdot cm^{-3})$	-0,0010651	1,1912		1,2
	n_D	-0,0004992	1,5387		0,017
	$u / \text{m} \cdot \text{s}^{-1}$	-4,4193	2412,0		0,090
	$\sigma (mN \cdot m^{-1})$	-0,1001	53,89		0,23
	η⁄ mPa∙s	0,0150	1064,2	13,29	0,20
	p / kPa	5,858	1199,3	190,73	0,89
Isobutirato de etilo	$ ho/(\mathrm{g}\cdot\mathrm{cm}^{-3})$	-0,0010897	1,1881		0,37
	n _D	-0,0005124	1,5377		0.28
	$u / \mathrm{m} \cdot \mathrm{s}^{-1}$	-4,1285	2359,2		0.083
	$\sigma mN \cdot m^{-1}$	-0,1046	53,77		0,17
	η⁄ mPa∙s	0,0182	946,70	9,673	0,24
	p / kPa	6,000	1244,1	201,41	0,29
Valerato de metilo	$ ho/(\mathrm{g}\cdot\mathrm{cm}^{-3})$	-0,0010225	1,1898		0.089
	nD	-0,0004849	1,5393		0.34
	$u / \text{m} \cdot \text{s}^{-1}$	-3,9157	2377,3		0.15
	$\sigma/\text{ mN}\cdot\text{m}^{-1}$	-0,1013	55,43		0,16
	η∕ mPa∙s	0,0159	1055,5	15,40	0,29
	p / kPa	5,301	936,55	156,84	0,85
Isovalerato de metilo	$ ho/(\mathrm{g}\cdot\mathrm{cm}^{-3})$	-0,0010396	1,1838		1,4
	n _D	-0,0004897	1,5365		0,23
	$u / \mathrm{m} \cdot \mathrm{s}^{-1}$	-4,0106	2358,1		0,091
	$\sigma mN \cdot m^{-1}$	-0,09852	52,94		0,22
	η⁄ mPa∙s	0,0148	1047,0	19,87	0,20
	p / kPa	5,679	1099,0	182,27	0,86

Tabla 1. Parámetros de ajuste de las propiedades respecto de la temperatura a una presión de 0,1 MPa

5. DISCUSIÓN DE LOS RESULTADOS EXPERIMENTALES

En este apartado, vamos a realizar una comparación exhaustiva con los datos encontrados en la literatura además de una justificación de cómo afecta la disposición estructural a las propiedades termofísicas medidas.

5.1. Resultados experimentales vs resultados bibliográficos

Este apartado se va a dividir en tres subapartados, en los que vamos a realizar una comparación de nuestros valores de densidad y tensión superficial de los cuatro ésteres de trabajo frente a los valores obtenidos por Vogel a esas mismas temperaturas. También compararemos de manera extensa los valores de densidad e índice de refracción a 293,15 y 298,15 K con los encontrados en la literatura, y además compararemos las presiones de vapor obtenidas con los resultados extraídos de la bibliografía, de este modo abarcamos un contraste de cuatro de las seis propiedades termofísicas que hemos obtenido experimentalmente. La calidad de los datos obtenidos será evaluada mediante la desviación relativa cuadrática media, ya definida anteriormente (DRCM).

5.1.1. Densidad y tensión superficial vs Vogel.

Esta referencia [5] abarca un análisis amplio de densidad y tensión superficial para una gran cantidad de ésteres carboxílicos alifáticos, dentro de los cuales, entran los cuatro ésteres de cadena corta con los que estamos trabajando.

Compuesto	DRCM / %				
compuesto	$ ho/(\mathrm{g\cdot cm^{-3}})$	$\sigma/(\mathrm{mN}\cdot\mathrm{m}^{-1})$			
Butirato de etilo	1,437	0,967			
Isobutirato de etilo	0,483	0,365			
Valerato de metilo	0,098	0,290			
Isovalerato de metilo	1,149	0,656			

Tabla 2. Comparación entre datos experimentales y bibliográficos [5]

Los valores de tensión superficial experimentales son más parecidos a los bibliográficos que los valores de la densidad. La correlación de nuestros datos con los datos aportados por la referencia [5] es excelente para el caso del valerato de metilo (0,098 % DRCM para la densidad, 0,290 % DRCM para la tensión

superficial), mientras que para el butirato de etilo empeora, no llegando a superar en todo caso el 1,5 % de DRCM.

5.1.2. Densidad e índice de refracción vs literatura

En este subapartado, como hemos comentado anteriormente, vamos a realizar una extensa comparación de los valores de densidad e índice de refracción de nuestros cuatro ésteres de trabajo con los datos de la bibliografía [5-24] a las temperaturas de 293,15 y 298,15 K y a presión atmosférica, con el fin de evaluar la calidad de nuestros resultados.

T / V		ho / (g·cm ⁻³)		nD
<i>I /</i> K	Exptl.	Lit.	Exptl.	Lit.
		Butirato de etilo		
293,15	0,87897	0,8685 [5]	1,3923	1,3922[5]
298,15	0,87369	0,87394 [6] 0,87432[7] 0,8733 [8] 0,873668 [9] 0,87347 [10] 0,87442 [11] 0,8735 [12] 0,87356 [13] 0,87349[14]	1,3898	1.3904 [6] 1,3903[7] 1,3896 [15]
		Isobutirato de etilo		
293,15	0,868645	0,8685 [5] 0,8709 [16] 0,8710 [17] 0,86831 [18]	1.387444	1,3869 [5] 1,38708[16]
		Valerato de metilo		
293,15	0,89010	0,8895[5] 0,88975 [19]	1,397166	1,3969 [5]
298,15	0,88504	0,88469 [19] 0,88466 [20]	1.394766	1,3953 [21] 1,3947 [22]
		Isovalerato de metilo		
293,15	0.8790385	0,8807 [5] 0,8808 [23] 0,8808 [24]	1,392968	1,3969 [5]
298,15	0.873901	0,8785 [23]	1,390553	1,390 [23] 1,3910 [21]

Tabla 3. Comparación de densidad e índice de refracción a temperaturas de 293,15K y 298,15 K a presión atmosférica con la literatura.

En la tabla 3 podemos apreciar una extensa comparación de nuestros valores experimentales con los valores aportados por la literatura, obteniendo para la gran mayoría de ellos valores muy similares.

5.1.3. Presión de vapor vs datos bibliográficos

En este subapartado, vamos a comparar nuestros datos de presión de vapor con los datos bibliográficos.

Tabla 4: Comparación de los datos experimentales de la presión de vapor frente a los datos obtenidos por la literatura

Compuesto	DRCM (%)
Butirato de etilo	6,379 [25]
Isobutirato de etilo	3,755 [25]
Valerato de metilo	4,635 [26]
Isovalerato de metilo	3,744 [25]

En todos los casos las mayores diferencias se observan a bajas temperaturas y en consecuencia a bajas presiones. En estas condiciones la determinación experimental tiene una mayor incertidumbre.

5.2. Influencia de la estructura en las medidas

Para ello vamos a realizar representaciones gráficas de las propiedades en función de la temperatura. Vamos a superponer las medidas de los cuatro isómeros y justificaremos cómo su estructura hace que varíe la propiedad. Recordemos que el rango de temperaturas sobre el que trabajamos es de 278,15-338,15 K, y la mayoría de las propiedades medidas varía de forma lineal con la temperatura, exceptuando la presión de vapor que sigue una representación exponencial (8) y la viscosidad que sigue la ecuación VFT (7).

5.2.1. Densidad

Figura 1: Representación de la densidad de [■] [Butirato de etilo] [●] [Isobutirato de etilo] [◀] [Valerato de metilo] [▲] [Isovalerato de metilo] respecto de la temperatura a 0,1 MPa

Como podemos observar, la densidad disminuye de manera lineal con la temperatura en ese rango de temperaturas a presión atmosférica. Realizando una comparación de los valores de la propiedad, observamos cómo una ramificación en la cadena del carbonilo disminuye la densidad notablemente, ya que disminuye la compactación del compuesto (la forma "iso" presenta menor densidad que la cadena lineal en ambos casos). Además, observamos que el valerato de metilo es el de mayor densidad, mientras que el isobutirato de etilo es el de menor densidad. También podemos justificar que un aumento en la cadena del carbonilo va a aportar más densidad que un aumento en la cadena enlazada al oxígeno, es decir, si partes de butirato de metilo, una introducción de "-CH3" en la parte del butirato, aumentará más la densidad que una introducción en la parte del metilo.

5.2.2. Velocidad de propagación del sonido

Figura 2: Representación de la velocidad de propagación del sonido de [■] [Butirato de etilo] [●] [Isobutirato de etilo] [◀] [Valerato de metilo] [▲] [Isovalerato de metilo] respecto de la temperatura a 0,1 MPa

En esta gráfica observamos un comportamiento similar al de la densidad, ya que la velocidad de propagación del sonido disminuye de forma lineal con la temperatura en estas condiciones de trabajo. En cuanto a la justificación de cómo la estructura afecta a las propiedades medidas, observamos el mismo patrón que hemos comentado anteriormente para la densidad, observando que una ramificación en la cadena disminuirá la propiedad ya que disminuye su compactación y por tanto su velocidad de propagación del sonido, ya que esta propagación se lleva a cabo mediante choques entre las moléculas del compuesto. Observamos también que un aumento en la cadena del carbonilo aumentará más la compactación que un aumento en la cadena al oxígeno.

5.2.3. Compresibilidad isoentrópica

Figura 3: Representación de la compresibilidad isoentrópica de [■] [Butirato de etilo] [●] [Isobutirato de etilo] [◀] [Valerato de metilo] [▲] [Isovalerato de metilo] respecto de la temperatura a 0,1 MPa

La compresibilidad isoentrópica es mayor cuanto menor es la compactación del compuesto, cosa que podemos apreciar perfectamente en la figura 3, donde el isovalerato de metilo, que es el compuesto menos compacto de los cuatro según los razonamientos anteriores, es el que mayor compresibilidad isoentrópica presenta.

5.2.4. Índice de refracción

De modo semejante a los anteriores, el índice de refracción disminuye de manera lineal con la temperatura en nuestras condiciones de trabajo. El índice de refracción, en teoría, aumenta cuando disminuye el volumen molar reducido, que es el volumen restante entre el volumen molar y el volumen no ocupado, de tal modo, cuanto más empaquetado resulta nuestro compuesto, mayor índice de refracción tendrá.

Figura 4: Representación del índice de refracción de [■] [Butirato de etilo] [●] [Isobutirato de etilo] [◀] [Valerato de metilo] [▲] [Isovalerato de metilo] respecto de la temperatura a 0,1 MPa

Este hecho se puede observar en la figura 4, donde el valerato de metilo es el que mayor índice de refracción presenta y el isobutirato de etilo es el que menor índice de refracción presenta. Si observamos la diferencia entre el butirato de etilo y el isovalerato de metilo, observamos que la compactación del compuesto (ya sea justificado por esta medida o por las anteriores) es levemente superior en el isovalerato de metilo, pero de este hecho no podemos extraer ninguna conclusión determinante ya que la justificación de la compactación de estos ésteres va a ir variando en función de la propiedad medida.

5.2.5. Viscosidad

Figura 5: Representación de la viscosidad de [■] [Butirato de etilo] [●] [Isobutirato de etilo] [◀] [Valerato de metilo] [▲] [Isovalerato de metilo] respecto de la temperatura a 0,1 MPa

En este caso nos alejamos de un comportamiento lineal como veníamos haciendo hasta ahora, ya que el ajuste de la viscosidad se realiza por la ecuación VFT (7), donde observamos una disminución exponencial de la misma en función de la temperatura en nuestras condiciones de trabajo. La viscosidad depende fundamentalmente del empaquetamiento del compuesto, por lo que sí observamos un patrón de comportamiento similar a los anteriores en cuanto al razonamiento del por qué obtenemos dichos valores de viscosidad, obteniendo una menor viscosidad en el compuesto menos compacto y una mayor viscosidad en el compuesto más compacto, con valores muy similares en el caso del butirato de etilo y del isovalerato de metilo.

5.2.6. Tensión superficial

Figura 6: Representación de la tensión superficial de [■] [Butirato de etilo] [●] [Isobutirato de etilo] [◀] [Valerato de metilo] [▲] [Isovalerato de metilo] respecto de la temperatura a 0,1 MPa

Volvemos a tener una propiedad que disminuye linealmente con la temperatura en las condiciones de trabajo. La tensión superficial está relacionada con las interacciones presentes entre las moléculas de nuestro compuesto. La energía de las partículas en el seno de la disolución es menor que en la superficie, y por tanto tienden a encontrarse allí. En función de las fuerzas intermoleculares existentes en las moléculas del compuesto, mayor o menor será la fuerza a aplicar para mover una partícula del seno de la disolución hacia la superficie, esa fuerza aplicada es lo que se entiende por "tensión superficial".

Por tanto, cuanto más empaquetado esté nuestro compuesto, mayor tensión superficial tendrá, ya que la fuerza aplicada para mover una partícula del seno de la disolución a la superficie será mayor. Esto lo podemos observar en la figura número 6, donde el compuesto más compacto presenta la mayor tensión superficial mientras que el compuesto menos compacto presenta la menor. En este caso, observamos que el butirato de etilo presenta una mayor tensión superficial que el isovalerato de

metilo, presentando por tanto una mayor compactación, hecho que difiere con algunos de los razonamientos anteriores.

5.2.7. Presión de vapor

Figura 7: Representación de la presión de vapor de [■] [Butirato de etilo] [●] [Isobutirato de etilo] [◀] [Valerato de metilo] [▲] [Isovalerato de metilo] respecto de la temperatura a 0,1 MPa.

En este caso tenemos una propiedad que aumenta exponencialmente con la temperatura en nuestras condiciones de trabajo. La presión de vapor está relacionada directamente con la volatilidad del compuesto, es decir, cuanta mayor presión de vapor tenga a una temperatura, más cantidad de compuesto habrá en equilibrio en fase vapor. Por tanto, es de esperar, que cuanto menor sea la compactación del compuesto, mayor será la presión de vapor, y eso es lo que observamos en la figura 7, donde el isobutirato de etilo es el que mayor presión de vapor presenta, y el valerato de metilo es el que menor presión de vapor presenta. En este caso, al igual que en la tensión superficial, observamos que la compactación del butirato de etilo es mayor que la compactación del isovalerato de metilo, hecho que contradice los razonamientos iniciales en propiedades como la viscosidad o el índice de refracción.

5.3. Propiedades derivadas

Como se puede observar, la mayoría de estas propiedades derivadas son dependientes de la temperatura así que vamos a realizar el cálculo únicamente para el valor de temperatura inicial, el valor de temperatura ambiente y el valor de temperatura final.

Tabla 5: Propiedades termofísicas derivadas de las propiedades experimentales de los distintos ésteres de cadena corta, a una presión de 0,1 MPa a tres temperaturas distintas: compresibilidad isoentrópica $\kappa_{\rm S}$, expansibilidad térmica $\alpha_{\rm p}$, entalpía superficial ΔH^{σ} , entropía superficial ΔS^{σ} y entalpía de vaporización $\Delta H^{\rm vap}$.

T/K	$lpha_{ m p}$ / kK ⁻¹	к _S / ТРа ⁻¹	$\Delta H^{\sigma} / (\mathrm{mN} \cdot \mathrm{m}^{-1} \cdot \mathrm{K}^{-1})$	$\Delta S^{\sigma} / (mN \cdot m^{-1})$	ΔH^{vap} / (J·mol ⁻¹)
		Buti	irato de etilo		
278,15	0,00122	705,19	53,86		
298,15	0,00125	829,23	53,95	0,1001	40325
338,15	0,00132	1177,3	53,87		
		Isobu	tirato de etilo		
278,15	0,00124	769,03	53,79		
298,15	0,00127	910,92	53,75	0,1046	38972
338,15	0,00134	1309,8	53,78		
		Valer	rato de metilo		
278,15	0,00110	664,24	55,40		
298,15	0,00112	771,83	55,49	0,1013	41108
338,15	0,00118	1060,8	55,41		
		Isovale	erato de metilo		
278,15	0,00111	722,78	52,83		
298,15	0,00114	847,30	52,98	0,0985	39797
338,15	0,00120	1192,1	52,95		

6. CONCLUSIONES

En este trabajo hemos cumplido con todas las metas marcadas inicialmente, ya que he adquirido cierto grado de autosuficiencia en el laboratorio, realizando las medidas correspondientes de las propiedades termofísicas en un rango que abarca de 5°C a 65°C a una presión de 0,1 MPa de manera independiente; He consolidado los conocimientos de los instrumentos que manejé en el trabajo de fin de grado y he aprendido a manejar algunos nuevos como puede ser el ebullómetro; Por último he analizado los datos obtenidos experimentalmente de dos formas, una primera que básicamente consta de comparar los datos experimentales con los datos encontrados en la literatura, para evaluar la calidad de mis resultados; La segunda y última forma de análisis de mis datos experimentales se basa en un análisis cualitativo de cómo la estructura de cuatro isómeros afecta a sus propiedades termofísicas, desarrollando una hipótesis que permita justificar los cambios observados y que por tanto nos permita pronosticar cómo un cambio en la estructura afectará a las propiedades termofísicas en un futuro.

- **Densidad**: Observamos que la densidad disminuye de manera lineal con la temperatura; Respecto al análisis cuantitativo, observamos una DRCM bastante pequeña para la mayoría de los casos (por debajo del 1%); En el análisis cualitativo hemos justificado que una mayor ramificación en la cadena implica una menor compactación, y por tanto una disminución de la densidad, observando que el isobutirato de etilo es el menos denso y el valerato de metilo es el más denso.

- Velocidad de propagación del sonido: De igual modo, observamos que disminuye de manera lineal con la temperatura; En el análisis cualitativo, siguiendo el mismo razonamiento utilizado en la densidad, al disminuir la compactación, disminuirá la velocidad de propagación del sonido, evidenciándolo de manera experimental.

- **Compresibilidad isoentrópica**: Propiedad derivada que se encuentra relacionada de forma directa con la densidad y la velocidad de propagación del sonido, sigue el mismo patrón de comportamiento que venimos razonando y por tanto reafirma la hipótesis que hemos desarrollado.

- Índice de refracción: Propiedad que disminuye de manera lineal con la temperatura; Análisis cuantitativo excelente ya que todos sus valores de DRCM son

Caracterización termofísica de ésteres de cadena corta

inferiores al 1%; Análisis cualitativo que confirma la hipótesis desarrollada inicialmente mediante evidencias experimentales.

- Viscosidad: En este caso observamos una propiedad que disminuye exponencialmente con la temperatura, alejándose del comportamiento lineal de las propiedades anteriores; No hemos realizado un análisis cuantitativo de esta propiedad; En el análisis cualitativo, conseguimos explicar el comportamiento de la viscosidad en función de su estructura, observando un patrón similar al comentado anteriormente.

- **Tensión superficial**: Volvemos a una propiedad que disminuye linealmente con la temperatura en nuestro rango de trabajo; En el análisis cuantitativo observamos unas DRCMs inferiores al 1% exceptuando un único caso, lo cual nos indica cierta calidad en la determinación; En el análisis cualitativo, por lo general conseguimos justificar la variación de la tensión superficial en función de la estructura del isómero.

- **Presión de vapor**: Propiedad que se sale de la tónica de trabajo que estábamos aplicando ya que no se mide en un rango de temperaturas (5-65 °C), sino que se mide en un rango de presiones (1 kPa-101,325 kPa aprox.). Observamos que el aumento de la presión de vapor frente a la temperatura es exponencial; En el análisis cuantitativo, observamos unas DRCMs relativamente altas, ya que el método de determinación de la presión de vapor es bastante complejo, a pesar de eso, ninguna DRCM supera el 10%, por lo que aceptamos los valores obtenidos experimentalmente como válidos; En el análisis cualitativo, siguiendo el mismo patrón de razonamiento que venimos utilizando, conseguimos justificar cómo la estructura del isómero afecta a la propiedad, certificando la validez de nuestra conjetura.

7. BIBLIOGRAFÍA

[1] Antón Pérez, Víctor. *Estudio termofísico de tiofeno, derivados de tiofeno y ésteres de furfurilo*, Tesis Doctoral, Universidad de Zaragoza, 2018.

[2] Vogel, H. *The temperature dependence law of the viscosity of fluids*; Z. Phys, 1921; pp 645-646.

[3] Fulcher, G.S. *Analysis of recent measurements of the viscosity of glasses.*; Am. Ceram. Soc. J, 1925; pp 339-355.

23

[4] Tammann, G; Hesse, W. *The dependancy of viscosity on temperature in hypotermic liquids;*. Z. Anorg. Allg. Chem, 1926; pp 254-257.

[5] Vogel, A. I. *Physical properties and chemical constitution. XIII. Aliphatic carboxylic esters* J. Chem. Soc., 1948, pp 624-644

[6] Riddick, J. A.; Bunger, W. B.; Sakano, T. K. Organic Solvents Physical Properties and Methods of Purification, 4th ed.; Wiley Interscience, New York, 1986

[7] Oswal, S. L.; Oswal, P.; Modi, P. S.; Dave, J. P.; Gardas, R. L. Acoustic, volumetric, compressibility and refractivity properties and Flory's reduction parameters of some homologous series of alkyl alkanoates from 298.15 to 333.15 K. Thermochim. Acta 2004, 410, 1–14.

[8] Costa, H. F.; Gardas, R. L.; Johnson, I.; Fonseca, I. M. A.; Ferreira, A. G. M. *PVT Property Measurements for Ethyl Propionate, Ethyl Butyrate, and Ethyl Pentanoate Esters from (298 to 393) K and up to 35 MPa; J. Chem. Eng. Data, 2009, 54, 256-262.*

[9] Malhotra, R.; Woolf, L. A. *PVT Property Measurements for the Liquids Ethyl propionate and Ethyl Butyrate from (298 to 338) K and (0.1 to 380) MPa*; J. Chem. Eng. Data 1996, 41, 1371–1374

[10] Resa, J. M.; Gonzalez, C.; Landaluce, S. O.; Lanz, J. Density, Refractive Index, Speed of Sound, at 298.15 K, and Vapor-Liquid Equilibria at 101.3 kPa for Binary Mixtures of Methanol + Ethyl Butyrate and Vinyl Acetate + Ethyl Butyrate. J. Chem. Eng. Data 2002, 47, 1123–1127.

[11] Djojoputro, H.; Ismadji, S. *Density and Viscosity Correlation for Several Common Fragrance and Flavor Esters* J. Chem. Eng. Data, 2005, 50, 727-731.

[12] Rios, R.; Ortega, J.; Fernandez, L. Measurements and Correlations of the Isobaric Vapor Liquid Equilibria of Binary Mixtures and Excess Properties for Mixtures Containing an Alkyl (Methyl, Ethyl) Butanoate with an Alkan (Heptane, Nonane) at 101.3 kPa J. Chem. Eng. Data, 2012, 57, 3210-3224.

[13] Vidal, M.; Ortega, J.; Placido, J. *Thermodynamic properties of (an ethyl ester* + *n-alkane). IX.-Hm^E* and *Vm^E* for $\{xCH_3(CH_2)_uCOOCH_2CH_3+(1-x)CH_3(CH_2)(2v+1)CH_3\}$ with u = 0 to 5, and v = 1 to 7. J. Chem. Thermodyn. 1997, 29, 47.

[14] Sastry, N. V.; Patel, S. R.; Soni, S. S. *Excess molar volumes, excess isentropic compressibilities, excess viscosities, relative permitivity and molar polarization deviations for methyl acetate+, ethyl acetate+, butyl acetate+, isoamyl acetate+, methyl*

propionate+, ethyl propionate+, ethyl butyrate+, methyl methacrylate+, ethyl methacrylate+, and butyl methacrylate + cyclohexane at T = 298.15 and 303.15 K J. Mol. Liq., 2013, 183, 102-112

[15] Matos, J. S.; Ortega, J. V_m^E of Mixtures Containing Ethyl Propanoate or Ethyl Butanoate with 1-Chloroalkanes J. Chem. Eng. Data, 1988, 33, 260.

[16] Mathews, J. H. *The Accurate Measurement of Heats of Vaporization of Liquids*J.Am. Chem. Soc., 1926, 48, 562-576

[17] Richards, T. W.; Mathews, J. H. *The Relation Between Compressibility, Surface Tension, and Other Properties of Material*J. Am. Chem. Soc., 1908, 30, 8-13.

[18] Comelli, F.; Francesconi, R.; Ottani, S. *Excess Molar Enthalpies of Binary Mixtures Containing Propylene Carbonate + 23 Alkanoates at 298.15 KJ*.Chem. Eng. Data, 1998, 43, 333-336

[19] Trenzado, J. L.; Matos, J. S.; Segade, Luisa; Carballo, E. Densities, Viscosities, and Related Properties of Some (Methyl Ester + Alkane) Binary Mixtures in the Temperature Range from 283.15 to 313.15 KJ. Chem. Eng. Data, 2001, 46, 974-983.

[20] Pintos, M.; Bravo, R.; Baluja, M. C.; Paz Andrade, M. I.; Roux-Desgranges, G.; Grolier, J.-P. E. *Thermodynamics of alkanoate + alkane binary mixtures. Concentration dependence of excess heat capacities and volumes Can.* J. Chem., 1988, 66, 1179-1186.

[21] Hancock, C. K.; Watson, G. M.; Gilby, R. F.*Heats of Combustion of Five-Carbon Fatty Acids and Their Methyl and Ethyl Esters*J. Phys. Chem., 1954, 58, 127-129.

[22] Ortega, J.; Espiau, F.; Tojo, J.; Canosa, J.; Rodriguez, A. Isobaric Vapor-Liquid Equilibria and Excess Properties for the Binary Systems of Methyl Esters + HeptaneJ. Chem. Eng. Data, 2003, 48, 1183-1190.

[23] Munch, J. C. *The Refractometric Determination of Alcohols and Esters in Aqueous and in Cottonseed Oil Solutions* J. Am. Chem. Soc., 1926, 48, 994-1003.

[24] Richards, T. W.; Stull, W. N.; Mathews, J. H.; Speyers, C. L.Compressibilities of Certain Hydrocarbons, Alcohols, Esters, Amines, and Organic Halides.J. Am. Chem. Soc., 1912, 34, 971.

[25] Stull, D.R. *Vapor Pressure of Pure Substances Organic Compounds*, The Dow Chemical Company, Midland, Mich, 1947. 39, 4. 517-536.

[26] Ortega, J. Espiau, F. Isobaric Vapor-Liquid Equilibria and Excess Properties for the Binary Systems of Methyl Esters + Heptane. J. Chem. Eng. Data 2003, 48, 1183-1190

Tabla A1. Propiedades termofísicas experimentales y derivadas de los ésteres a p = 0,1 MPa en función de la temperatura, *T*: densidad, ρ , velocidad de propagación del sonido, *u*, compresibilidad isoentrópica, κ_S , índice de refracción, n_D , tensión superficial, σ , viscosidad cinemática, ν , y viscosidad dinámica, η .^{*a*}

<i>T /</i> K	$\rho / (g \cdot cm^{-3})$	$u / (m \cdot s^{-1})$	κ_S / TPa ⁻¹	<i>n</i> _D	$\sigma/\left(\mathrm{mN}\cdot\mathrm{m}^{-1} ight)$	$v/(\mathrm{mm}\cdot\mathrm{s}^{-1})$	$\eta / (mPa \cdot s)$
			Butirato	o de etilo			
278,15	0,89458	1259,03	705,19		26,02	0,9298	0,8318
280,65	0,89214	1248,52	719,08		25,75	0,8984	0,8015
283,15	0,88947	1249,84	719,71	1,397252	25,60	0,8684	0,7724
285,65	0,88685	1227,18	748,74	1,396040	25,38	0,8399	0,7449
288,15	0,88423	1216,52	764,18	1,394802	25,15	0,8135	0,7193
290,65	0,88160	1205,92	779,99	1,393578	24,75	0,7884	0,6951
293,15	0,87897	1195,41	796,15	1,392348	24,46	0,7638	0,6714
295,65	0,87634	1184,85	812,83	1,391114	24,38	0,7412	0,6495
298,15	0,87370	1174,35	829,93	1,389881	24,15	0,7197	0,6288
300,65	0,87106	1163,85	847,54	1,388646	23,70	0,6993	0,6091
303,15	0,86841	1153,39	865,61	1,387401	23,60	0,6796	0,5902
305,65	0,86576	1142,95	884,19	1,386151	23,39	0,6602	0,5716
308,15	0,86310	1132,55	903,28	1,384911	22,85	0,6423	0,5544
310,65	0,86044	1122,09	923,05	1,383666	22,71	0,6251	0,5379
313,15	0,85777	1111,74	943,24	1,382421	22,59	0,6086	0,5220

Tabla A1. Continuación	
------------------------	--

T/K	ho / (g·cm ⁻³)	$u / (\mathbf{m} \cdot \mathbf{s}^{-1})$	κ_S / TPa ⁻¹	n _D	$\sigma/\left(\mathrm{mN}\cdot\mathrm{m}^{-1} ight)$	$v/(\mathrm{mm}\cdot\mathrm{s}^{-1})$	η / (mPa·s)
315,65	0,85510	1101,35	964,12	1,381145	22,08	0,5926	0,5067
318,15	0,85242	1091,07	985,46	1,379912	22,09	0,5773	0,4921
320,65	0,84973	1080,88	1007,31	1,383131	21,87	0,5625	0,4780
323,15	0,84704	1070,64	1029,93	1,377378	21,42	0,5482	0,4643
325,65	0,84434	1060,89	1052,31	1,376098	21,54	0,5343	0,4511
328,15	0,84163	1050,60	1076,48	1,374877	21,11	0,5210	0,4385
330,65	0,83892	1040,71	1100,58	1,373586	20,65	0,5082	0,4263
333,15	0,83620	1030,62	1125,88	1,372344	20,70	0,4966	0,4153
335,65	0,83347	1020,90	1151,18	1,371108	20,28	0,4869	0,4058
338,15	0,83073	1011,19	1177,27	1,369840	20,03	0,4781	0,3972
			Isobutira	to de etilo			
278,15	0,88469	1212,36	769,03		24,70	0,8257	0,7305
280,65	0,88204	1201,76	785,01		24,25	0,8005	0,7061
283,15	0,87937	1191,03	801,65	1,392466	24,18	0,7760	0,6824
285,65	0,87670	1180,41	818,62	1,391222	23,85	0,7507	0,6581
288,15	0,87402	1169,75	836,17	1,389971	23,61	0,7276	0,6359
290,65	0,87134	1159,25	854,00	1,388717	23,38	0,7065	0,6156
293,15	0,86865	1148,80	872,30	1,387444	23,10	0,6862	0,5961
295,65	0,86596	1138,18	891,42	1,386180	22,89	0,6668	0,5774

|--|

T / K	ho / (g·cm ⁻³)	$u / (\mathbf{m} \cdot \mathbf{s}^{-1})$	κ_S / TPa ⁻¹	n _D	$\sigma/\left(\mathrm{mN}\cdot\mathrm{m}^{-1} ight)$	$\nu/(\mathrm{mm}\cdot\mathrm{s}^{-1})$	η / (mPa·s)
298,15	0,86327	1127,68	910,92	1,384915	22,57	0,6488	0,5601
300,65	0,86057	1117,21	930,99	1,383643	22,34	0,6308	0,5428
303,15	0,85786	1106,77	951,63	1,382377	22,10	0,6141	0,5268
305,65	0,85514	1096,31	972,96	1,381080	21,90	0,5977	0,5111
308,15	0,85243	1085,93	994,80	1,379823	21,59	0,5826	0,4966
310,65	0,84970	1075,93	1016,64	1,378527	21,30	0,5675	0,4822
313,15	0,84697	1065,54	1039,90	1,377256	21,03	0,5525	0,4680
315,65	0,84473	1055,23	1063,13	1,375946	20,79	0,5393	0,4556
318,15	0,84149	1044,99	1088,25	1,374669	20,44	0,5289	0,4451
320,65	0,83873	1034,71	1113,63	1,373361	20,25	0,5139	0,4310
323,15	0,83597	1024,48	1139,73	1,372090	19,93	0,5012	0,4190
325,65	0,83320	1014,44	1166,27	1,370783	19,71	0,4895	0,4079
328,15	0,83043	1004,40	1193,67	1,369481	19,42	0,4806	0,3991
330,65	0,82765	994,46	1221,74	1,368212	19,16	0,4720	0,3907
333,15	0,82485	984,63	1250,49	1,366912	18,91	0,4638	0,3826
335,65	0,82205	974,80	1280,18	1,365605	18,67	0,4535	0,3728
338,15	0,81924	965,34	1309,87	1,364301	18,41	0,4441	0,3638
			Isovalerate	o de metilo			
278,15	0,89434	1243,79	722,78		25,44	0,9523	0,8517

T/K	ho / (g·cm ⁻³)	$u / (\mathbf{m} \cdot \mathbf{s}^{-1})$	κ_s / TPa ⁻¹	n _D	$\sigma/\left(\mathrm{mN}\cdot\mathrm{m}^{-1} ight)$	$v/(\mathrm{mm}\cdot\mathrm{s}^{-1})$	η / (mPa·s)
280,65	0,89181	1233,63	736,81		25,26	0,9177	0,8184
283,15	0,88926	1223,39	751,35	1,397774	25,04	0,8866	0,7884
285,65	0,88671	1213,20	766,22	1,396560	24,80	0,8569	0,7598
288,15	0,88416	1203,07	781,43	1,395372	24,55	0,8282	0,7323
290,65	0,88160	1192,80	797,25	1,394167	24,40	0,8008	0,7060
293,15	0,87904	1182,65	813,35	1,392967	24,11	0,7757	0,6819
295,65	0,87647	1172,30	830,21	1,391752	23,88	0,7530	0,6600
298,15	0,87390	1162,12	847,30	1,390555	23,62	0,7266	0,6350
300,65	0,87132	1152,00	864,80	1,389334	23,40	0,7054	0,6146
303,15	0,86874	1140,63	884,75	1,388120	23,08	0,6850	0,5951
305,65	0,86616	1130,89	902,74	1,386909	22,91	0,6657	0,5766
308,15	0,86356	1120,94	921,60	1,385666	22,64	0,6471	0,5588
310,65	0,86097	1111,10	940,82	1,384467	22,40	0,6293	0,5418
313,15	0,85836	1101,11	960,88	1,383224	22,02	0,6122	0,5255
315,65	0,85575	1091,12	981,54	1,382003	21,91	0,5958	0,5099
318,15	0,85313	1081,24	1002,63	1,380753	21,61	0,5800	0,4948
320,65	0,85051	1071,48	1024,12	1,379533	21,38	0,5648	0,4804
323,15	0,84788	1061,77	1046,18	1,378281	21,15	0,5502	0,4665
325,65	0,84524	1051,92	1069,19	1,377063	20,89	0,5355	0,4526

Tabla A1. Continuación

T/\mathbf{K}	ho / (g·cm ⁻³)	$u / (\mathbf{m} \cdot \mathbf{s}^{-1})$	κ_S / TPa ⁻¹	n _D	$\sigma/\left(\mathrm{mN}\cdot\mathrm{m}^{-1} ight)$	$v/(\mathrm{mm}\cdot\mathrm{s}^{-1})$	η / (mPa·s)
328,15	0,84259	1042,19	1092,67	1,375803	20,57	0,5220	0,4398
330,65	0,83993	1032,56	1116,67	1,374578	20,36	0,5092	0,4277
333,15	0,83727	1022,97	1141,32	1,373334	20,07	0,4982	0,4171
335,65	0,83460	1013,51	1166,45	1,372100	19,89	0,4882	0,4075
338,15	0,83192	1004,16	1192,10	1,370844	19,65	0,4798	0,3992
			Valerato	de metilo			
278,15	0,90517	1289,65	664,24		27,23	0,9780	0,8853
280,65	0,90267	1279,66	676,52		26,93	0,9428	0,8510
283,15	0,90017	1269,75	689,03	1,401938	26,79	0,9136	0,8224
285,65	0,89766	1259,46	702,29	1,400746	26,45	0,8811	0,7909
288,15	0,89514	1249,79	715,21	1,399577	26,26	0,8522	0,7628
290,65	0,89262	1239,25	729,48	1,398372	25,92	0,8269	0,7381
293,15	0,89010	1229,40	743,32	1,397167	25,75	0,8024	0,7142
295,65	0,88758	1219,49	757,59	1,395980	25,45	0,7754	0,6882
298,15	0,88505	1209,92	771,83	1,394767	25,29	0,7494	0,6633
300,65	0,88251	1199,93	786,99	1,393566	24,96	0,7266	0,6412
303,15	0,87997	1189,77	802,80	1,392362	24,75	0,7053	0,6206
305,65	0,87743	1179,49	819,22	1,391161	24,48	0,6919	0,6071

Tabla A1.	. Continuación
-----------	----------------

<i>T /</i> K	ho / (g·cm ⁻³)	$u / (\mathbf{m} \cdot \mathbf{s}^{-1})$	κ_S / TPa ⁻¹	n _D	$\sigma/\left(\mathrm{mN}\cdot\mathrm{m}^{-1} ight)$	$v/(\mathrm{mm}\cdot\mathrm{s}^{-1})$	$\eta / (mPa \cdot s)$
308,15	0,87488	1169,58	835,59	1,389948	24,22	0,6717	0,5877
310,65	0,87232	1159,82	852,20	1,388737	24,00	0,6522	0,5689
313,15	0,86976	1149,66	869,88	1,387524	23,71	0,6375	0,5545
315,65	0,86719	1139,64	887,87	1,386300	23,40	0,6198	0,5375
318,15	0,86462	1129,82	906,06	1,385077	23,20	0,6044	0,5226
320,65	0,86204	1120,03	924,73	1,383871	22,89	0,5861	0,5052
323,15	0,85945	1110,32	943,81	1,382648	22,72	0,5711	0,4908
325,65	0,85686	1100,68	963,31	1,381426	22,38	0,5572	0,4774
328,15	0,85426	1091,19	983,13	1,380207	22,21	0,5442	0,4649
330,65	0,85165	1081,55	1003,80	1,379106	21,88	0,5307	0,4520
333,15	0,84904	1075,98	1017,33	1,578042	21,70	0,5220	0,4432
335,65	0,84641	1066,61	1038,50	1,376689	21,41	0,5074	0,4295
338,15	0,84378	1056,99	1060,79	1,375462	21,16	0,4957	0,4183

^{*a*} Las incertidumbres estándar *u* son u(T) = 0,005 K y u(p) = 0,5 kPa para la densidad y la velocidad de propagación del sonido, u(T) = 0,005 K y u(p) = 0,5 kPa para el índice de refracción, para el resto de propiedades son u(T) = 0,01 K, u(p) = 0,5 kPa, y la incertidumbres combinadas expandidas U_c son $U_c(\rho) = 10^{-4}$ g·cm⁻³, $U_c(u) = 0,1$ m·s⁻¹, $U_c(n_D) = 1 \cdot 10^{-5}$, $U_c(\sigma) = 0,1$ mN·m⁻¹, $U_c(v) = 1\%$, $U_c(\eta) = 1\%$ con 0,95 de nivel de confianza (k = 2).

<i>T</i> / K	p / kPa	T / K	p / kPa	<i>T</i> / K	p / kPa	<i>T</i> / K	p / kPa
Butirate	o de etilo	Isobutira	to de etilo	Isovalerate	o de metilo	Valerato	de metilo
293,78	1,547	283,29	1,306	286,76	1,174	296,60	1,256
298,12	2,020	288,80	1,872	289,92	1,433	301,61	1,801
302,19	2,546	293,43	2,452	294,26	1,889	303,51	2,008
307,27	3,334	296,80	2,972	299,06	2,526	308,70	2,673
311,66	4,200	301,21	3,805	302,16	3,075	312,98	3,421
315,52	5,284	305,43	4,749	306,30	3,870	316,53	4,179
319,35	6,308	308,82	5,662	310,91	4,790	318,68	4,911
322,58	7,364	312,42	6,800	314,21	5,793	322,73	5,900
326,03	8,690	317,25	8,558	318,98	7,300	327,52	7,322
329,94	10,238	321,38	10,403	322,63	8,688	331,88	9,060
333,35	12,052	325,78	12,667	326,83	10,515	335,43	10,528
337,90	14,423	329,63	14,996	331,06	12,708	339,52	12,589
341,99	17,256	334,24	18,229	335,15	15,041	341,93	14,099
345,04	19,523	337,37	20,713	338,86	17,589	344,83	16,190
348,95	22,285	340,64	23,602	343,14	20,978	347,97	18,399
351,76	25,311	345,09	28,070	346,71	24,021	351,10	20,501
354,52	28,284	349,09	32,771	350,79	27,930	354,19	22,934
357,76	31,888	353,38	38,330	355,33	33,120	357,52	26,106

Tabla A2. Presiones de vapor, p, de los ésteres en función de la temperatura, T.^{*a*}

Tabla A2.	Continuación.	
-----------	---------------	--

T / K	p / kPa						
360,96	35,514	357,74	44,849	359,52	38,590	361,51	30,103
364,30	40,233	361,64	51,388	363,13	43,720	366,13	35,222
368,98	46,930	365,48	58,331	367,67	50,510	369,68	40,411
372,48	52,763	369,34	66,032	371,59	58,232	373,49	45,742
376,67	60,604	373,12	74,444	374,76	64,801	376,97	51,489
380,55	68,548	376,68	83,155	379,03	73,351	381,14	59,596
384,60	77,627	379,76	91,441	383,32	83,286	385,59	66,300
388,33	86,800	382,71	99,906	386,81	93,227	389,89	75,450
390,87	93,903	382,84	101,325	389,15	99,110	393,65	83,488
392,81	99,440					396,10	89,731
393,41	101,325					399,53	99,153
						400,27	101,325

^{*a*} Las incertidumbres estándar *u* son u(T) = 0,01 K y u(p) = 25 Pa.