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ABSTRACT 

 

In the present study, a method for detecting protein unfolding events and evaluating protein stability and 

kinetics from relaxation Molecular Dynamics (rMD) simulations has been fine tuned. In particular, a 

2D-root mean square deviation (RMSD)-based clustering was performed on trajectories generated by 

rMD simulations for the protein α3D under a broad range of temperatures and two different force fields: 

CHARMM27 and AMBER99SB-disp. The half-life of unfolding was measured from the clustering plots 

and its value was used to compute the conformational stability of the protein extrapolated at 298 K by 

means of an empirical model previously developed by the research group. Ladder- and ramp-based 

temperature scanning simulations were also explored to assess the optimum simulation approach in 

terms of computational resources, accuracy, and adequacy for the kind of protein stability and unfolding 

kinetics analyses here envisioned. Furthermore, the performance (accuracy and reliability) of the above-

mentioned force fields was assessed in estimating protein stability. 
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1. INTRODUCTION 

1.1 Background 

The conformational stability of a protein refers to the free energy difference between the folded 

and unfolded protein conformations, in a population of folded and unfolded protein molecules that are 

in equilibrium (Huyghues-Despointes, Pace, Englander, & Scholtz, 2001; Sancho, 2013). In this context, 

studying conformational stability can provide valuable insights about protein structure and function 

(Sancho, 2013; Tokuriki & Tawfik, 2009). To do so, protein stability can be determined experimentally 

by using spectroscopic, calorimetric techniques or Nuclear Magnetic Resonance (Huyghues-Despointes, 

Pace, Englander, & Scholtz, 2001; Sancho, 2013; Tayyab, Siddiqui, & Ahmad, 1995); or it can be 

estimated computationally through Molecular Dynamics (MD) simulations (Galano-Frutos & Sancho, 

2019; Sancho, 2013). 

Molecular Dynamics is a computational technique in which biomolecules are simulated as 

multi-particle mechanical systems subject to the Newtonian laws of motion within a solvent box 

(Kumari & Akhter, 2017). As a technique performed in virtual environments, MD simulations are time 

and cost effective as compared with the traditional approach of carrying out experimentally the gene 

expression, the protein purification and activity assays (Kumari & Akhter, 2017). So far, MD simulation 

has been regarded as a reliable technique capable of providing precise results in studies of protein 

conformation and stability, thanks to the accuracy and development achieved by current force fields and 

the growth in computing power (Galano-Frutos, García-Cebollada, & Sancho, 2019; Hospital, Goñi, 

Orozco, & Gelpí, 2015). 

In particular, MD simulations have been used to investigate the unfolding process of proteins 

through thermal and chemical denaturation (Daggett & Levitt, 1993; Day, Bennion, Ham, & Daggett, 

2002; Rocco, et al., 2008). In these studies simulations normally proceed from a well-defined starting 

structure (the folded state) where the protein is surveyed over a period of simulation time in which 

conformational transitions take place until the structure is “completely” disrupted (the unfolded state) 

(Daggett & Levitt, 1993). 

To describe the unfolding kinetics for a given protein, some parameters are used such as the 

unfolding rate constant and the half-life of unfolding (Tang & Pikal, 2005). In this context, an empirical 

model (fitted from both experimental and in silico data) for the calculation of conformational stability 

of proteins has been developed, which links the conformational stability of a protein at 298 K to the 

half-life of unfolding (Galano-Frutos, García-Cebollada, & Sancho, 2019): 

∆𝐺𝑈 = 3.97 + 0.74 ∗ log(𝜏1 2⁄ ) (1) 
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In particular, the former empiric equation for estimating ∆𝐺𝑈 (in kcal/mol) through 𝜏1 2⁄  (in 

seconds) has been determined from the folding and unfolding rate constants of 89 two-state proteins 

normalized at 25.0 °C (Galano-Frutos, García-Cebollada, & Sancho, 2019). The linear fitting is shown 

in the Figure 1. 

 

Figure 1. Correlation plot between protein conformational stability and the logarithm of unfolding half-life 

(Galano-Frutos, García-Cebollada, & Sancho, 2019). 

It is known that the time required (𝜏𝑥𝑈) to obtain a given fraction (𝑥𝑈) of unfolded molecules 

starting from a population of fully folded proteins can be described as: 

𝜏𝑥𝑈 = − 𝜏1 2⁄ ∗ ln (1 − 𝑥𝑈)/ln (2) 

∴ 𝜏1 2⁄ = −
𝜏𝑥𝑈 ∗ ln(2)

ln(1 − 𝑥𝑈)
(2) 

 Moreover, 𝜏1 2⁄  can also be calculated according to the rate law for a first-order reaction 

(Wittung-Stafshede, 2004): 

𝜏1 2⁄ =
ln(2)

𝑘𝑈
(3) 

 So, by combining (2) and (3): 

−
𝜏𝑥𝑈 ∗ ln(2)

ln(1 − 𝑥𝑈)
=
ln(2)

𝑘𝑈
 

∴ 𝑘𝑈 = −
ln(1 − 𝑥𝑈)

𝜏𝑥𝑈
(4) 
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On the other hand, from the Eyring equation we can extrapolate the unfolding kinetic constant 

of a protein that has been obtained at a temperature different from 298 K to this referential temperature 

(Galano-Frutos, García-Cebollada, & Sancho, 2019): 

𝑘𝑈
298

𝑘𝑈
=
298 𝐾

𝑇
∗ 𝑒

(
∆𝐺‡

𝑅 )(
1
𝑇
 − 

1
298 𝐾

)
 

∴ 𝑘𝑈
298 = 𝑘𝑈 ∗

298 𝐾

𝑇
∗ 𝑒

(
∆𝐺‡

𝑅 )(
1
𝑇
 − 

1
298 𝐾

)
(5) 

In Galano-Frutos et.al. (2019), ∆𝐺‡ was estimated by analyzing the experimental data of 11 

proteins from 48 to 118 amino acid residues; obtaining an average activation free energy of unfolding 

of 19.71 ± 0.87 kcal/mol.  

Then, substituting (4) in (5): 

𝑘𝑈
298 = −

ln(1 − 𝑥𝑈)

𝜏𝑥𝑈
∗
298 𝐾

𝑇
∗ 𝑒

(
∆𝐺‡

𝑅 )(
1
𝑇
−

1
298 𝐾

)
(6) 

And (6) in (3): 

𝜏1 2⁄ = −
ln(2)

ln(1 − 𝑥𝑈)
𝜏𝑥𝑈

∗
298 𝐾
𝑇

∗ 𝑒
(
∆𝐺‡

𝑅
)(
1
𝑇
−

1
298 𝐾

)

(7)
 

 Finally, substituting (7) in (1): 

∴ ∆𝐺𝑈 = 3.97 + 0.74 × log

(

 
 
−

ln(2)

ln(1 − 𝑥𝑈)
𝜏𝑥𝑈

∗
298 𝐾
𝑇 ∗ 𝑒

(
∆𝐺‡

𝑅
)(
1
𝑇
−

1
298 𝐾

)

)

 
 

(8) 

In this way, by means of Equation (8), if we are able to measure the half-life of an unfolded 

protein fraction at a given temperature, we may compute the conformational stability of the protein at 

298 K.   

This semi-empirical model, however, may have the limitation of being dependent of the 

simulation temperature on the one hand, and on the other of being fitted with an empirical ∆𝐺‡ average 

which was obtained from a limited set of proteins and on which we cannot say anything about its 

matching with the in silico value. In this work, thus, we will explore the in silico temperature dependence 

in the estimation of proteins half-live, in order to optimize or reformulate, if it is the case, our original 

model for computing the conformational stability of proteins. At the same time, we propose a couple a 
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MD-based temperature scanning “experiments” that may reduce the cost of the analysis in terms of 

computational resources and/or even lead to more accurate results in the estimation of protein kinetics.  

 

1.2 Objectives 

1.2.1 General objective 

To fine tune a MD-based method for evaluating protein stability and kinetics. 

 

1.2.2 Specific objectives 

The specific objectives are: 

• To check the in silico temperature dependence in estimating half-life through relaxation MD 

simulations on a model protein. 

• To conduct ladder- and ramp-based temperature scanning MD simulations to assess their 

accuracy and precision in estimating unfolding kinetics (half-life and in silico mid-denaturation 

temperature) of proteins. 

• To explore the differences obtained in the results when a special-purpose force field like 

AMBER99SB-disp (designed both for structured and unstructured proteins) is used in 

comparison with what is obtained with CHARMM27. 

 

1.3 Hypothesis  

The most appropriate developed force field for structured and unstructured proteins (AMBER99-disp) 

affects the accuracy and reliability of the stability and kinetic analyzes. 
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2. THEORETICAL FRAMEWORK 

2.1 Protein stability and unfolding kinetics 

Proteins are polypeptides with a defined amino acid sequence that perform most the biological functions 

in living beings (Mathews, van Holde, & Ahern, 2002). In this sense, “protein molecules embody a 

remarkable relationship between structure and function at the molecular level” (Dill & MacCallum, 

2012). As such, the ability of a protein to carry out its biological tasks depends on its tridimensional 

structure and the stability thereof (Sancho, 2013). 

Even though the term “protein stability” may associate to phenomena such as chemical stability 

or kinetic stability, conformational or thermodynamic stability refers to the free energy difference 

between the fully folded (𝐹) and fully unfolded (𝑈) protein conformations in a population of folded and 

unfolded identical protein molecules that are in equilibrium (Huyghues-Despointes, Pace, Englander, & 

Scholtz, 2001; Sancho, 2013).  

The simplest scheme of transition between the 𝐹 and 𝑈 states is given by the two-state model 

(Castillo-Cano, 2012), which is often followed by small proteins (Sancho, 2013): 

𝐹 ↔  𝑈 

When this process happens under ambient conditions, such as room temperature and neutral pH, 

the free energy differences of the chemical reaction can be estimated as follows (Huyghues-Despointes, 

Pace, Englander, & Scholtz, 2001): 

∆𝐺𝑈 = 𝐺𝑈 − 𝐺𝐹 

∆𝐺𝐹 = 𝐺𝐹 − 𝐺𝑈 

where ∆𝐺𝑈 is free-energy change of the unfolding reaction; ∆𝐺𝐹, free-energy change of the folding 

reaction; 𝐺𝑈, free-energy of the unfolded state; and 𝐺𝐹, free-energy of the folded state. 

It is considered that the major factors promoting protein conformational stability are van der 

Waals forces, hydrophobic interactions, hydrogen bonds, disulphide bonds and histidine ionization (Day 

A. , 1995; Deller, Kong, & Rupp, 2016; Huyghues-Despointes, Pace, Englander, & Scholtz, 2001). For 

instance, the burial of hydrophobic moieties and the formation of intramolecular H-bonds are processes 

that contributes significantly into the stabilization of a folded protein (Day A. , 1995; Huyghues-

Despointes, Pace, Englander, & Scholtz, 2001). Whereas main destabilization factors are 

conformational entropy and unfavorable burial of peptide and polar groups (Day A. , 1995; Huyghues-

Despointes, Pace, Englander, & Scholtz, 2001).  
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In this sense, the conformational stability of a protein is given by the net protein stability 

between the stabilizing (𝐺𝐹) and destabilizing (𝐺𝑈) interactions within the protein, and among the latter 

and the solvent (Day A. , 1995; Deller, Kong, & Rupp, 2016; Galano-Frutos & Sancho, 2019). A 

representation of this phenomenon can be visualized in Figure 2. 

 

Figure 2. Cancellation of stabilizing and destabilizing interactions leading to a marginal net protein stability. 

Adapted from Deller, Kong, & Rupp (2016). 

As shown in Figure 1, the stability of the folded conformation of a protein is a delicate balance 

between compensating forces. Thus, the overall free energy of a folded state is given by the small 

difference between two large numbers (the bulk of stabilizing and destabilizing interactions) that yields 

a marginal net protein stability, generally of about 5-15 kcal/mol under native conditions (Huyghues-

Despointes, Pace, Englander, & Scholtz, 2001). 

This phenomenon, historically, has hindered the quantitative computational calculation of 

protein stability (Day A. , 1995) as highly accurate 𝐺 values for both the folded and the unfolded states 

are required. Only in the recent years, more refined computational approaches have been developed and 

applied successfully for quantitatively calculating the folding energetics of model proteins within the 

experimental error (Galano-Frutos & Sancho, 2019). 

Therefore, as a thermodynamic property, protein conformational stability can be defined as the 

difference in Gibbs free energy upon folding (∆𝐺𝐹) and calculated by using the Lewis equation 

(Sánchez-Ruiz, 2010; Sancho, 2013): 

∆𝐺𝐹 = −𝑅 𝑇 ln (𝐾𝐹) 

where 𝑅 is the gas constant (0.001987 kcal/K*mol), 𝑇 is the absolute temperature, and 𝐾𝐹 is the 

equilibrium constant that models the fraction of molecules that are folded (𝑥𝐹) relative to those unfolded 

(𝑥𝑈) (Sancho, 2013).  
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Alternatively, the conformational stability is also described and reported in the literature as the 

free energy of unfolding (∆𝐺𝑈) (Galano-Frutos, García-Cebollada, & Sancho, 2019; Tayyab, Siddiqui, 

& Ahmad, 1995), and can also be evaluated using the relationship (Huyghues-Despointes, Pace, 

Englander, & Scholtz, 2001; Saboury & Moosavi-Movahedi, 1995): 

∆𝐺𝑈 = −𝑅 𝑇 ln (𝐾𝑈) 

where 𝐾𝑈 is the equilibrium constant between the fraction of molecules that are unfolded (𝑥𝑈) relative 

to those folded (𝑥𝐹) (Tayyab, Siddiqui, & Ahmad, 1995). 

In this last case, ∆𝐺𝑈, or also called free energy of stabilization, is the energy required to 

transform a population of folded proteins in solution into a population of completely unfolded proteins, 

and its value is positive for stable proteins (Sancho, 2013). 

In this context, 𝐾𝐹 and 𝐾𝑈 can be calculated as a function of the fraction of molecules that are 

folded (𝑥𝐹) and unfolded (𝑥𝑈) in a given population of proteins as follows (Sancho, 2013; Saboury & 

Moosavi-Movahedi, 1995): 

𝐾𝐹 =
𝑥𝐹
𝑥𝑈

=
𝑥𝐹

1 − 𝑥𝐹
,           𝑥𝑈 + 𝑥𝐹 = 1 

𝐾𝑈 =
𝑥𝑈
𝑥𝐹
=

𝑥𝑈
1 − 𝑥𝑈

,           𝑥𝑈 + 𝑥𝐹 = 1 

On the other hand, protein unfolding can be understood as the process in which a folded protein 

loses its native conformation to become an unfolded, structureless polypeptide chain (Tayyab, Siddiqui, 

& Ahmad, 1995). This unfolded state being characterized by many different conformations with similar 

free energies (Piana, Klepeis, & Shaw, 2014). 

In this way, kinetic stability, while formally defined as the free-energy barrier separating the 

folded state from the unfolded state (Sánchez-Ruiz, 2010), it can be understood as a measure of how 

rapidly a protein unfolds (Day A. , 1995). 

So, for a given reaction of folding/unfolding of a protein following the two-state model, if the 

transition is reversible, the equilibrium can be written as follows (Saboury & Moosavi-Movahedi, 1995): 

𝐹 
𝑘𝑈
⇌
𝑘𝐹

 𝑈 

where 𝑘𝑈 and 𝑘𝐹 are the rates of unfolding and folding, respectively. 

In this case, ∆𝐺𝑈 is not relevant but the free energy difference between the folded and the 

transition state, also known as activation free energy (∆𝐺‡), as the magnitude of this difference is the 



8 

 

one that determines the rate of unfolding (Day A. , 1995), as shown in the Eyring equation, assuming 

transition-state theory (Bilsel & Matthews, 2000; Sánchez-Ruiz, 2010): 

𝑘𝑈 =
𝑘𝐵 𝑇

ℎ
∗ 𝑒

−(
∆𝐺‡

𝑅𝑇 )
 

where 𝑘𝑢 is the kinetic constant of protein unfolding; 𝑘𝐵, Boltzmann’s constant; ℎ, Planck’s constant; 

𝑇, temperature; ∆𝐺‡, free energy of activation; and 𝑅, ideal gas constant.  

Graphically, it is possible to represent both conformational and kinetic stability as a funnel-

shaped energy landscape with many high-energy unfolded structures and only a few low-energy folded 

proteins (Figure 3). 

 

Figure 3. Energy landscape of protein molecules and conformational stability (Dill & MacCallum, 2012).  

As shown in Figure 2, folded conformations are at the bottom of the energy landscape and have 

a narrower space in comparison with the broader space for unfolded structures (Dill & MacCallum, 

2012). Thus, the conformational stability of a certain protein can be quantified by measuring ∆𝐺𝑈, the 

free energy difference between the folded and unfolded states; whereas the kinetic stability is estimated 

by measuring ∆𝐺‡, the free energy difference between the folded and the transition states (Day A. , 

1995; Sánchez-Ruiz, 2010; Sancho, 2013). 

In particular, it has been written in the literature that the unfolding rate (𝑘𝑈) depends on topology 

of the backbone, the oligomerization state, the presence of bound ligands, local sequence-structure 

propensities and the protein environment (Ramakrishnan, et al., 2012).  

On the other hand, 𝑘𝑈 can be used to estimate the half-life of unfolding (𝜏1 2⁄ ) of a given protein, 

which is defined as the time it takes for half the molecules to unfold according to the rate law for a first-

order reaction (Wittung-Stafshede, 2004): 
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𝜏1 2⁄ =
ln(2)

𝑘𝑈
 

In this order of ideas, it is possible to relate the equilibrium constants 𝐾𝐹 and 𝐾𝑈 to the rates of 

unfolding and folding, the concentration of the states and the population fractions as follows (Castillo-

Cano, 2012): 

𝐾𝐹 =
[𝐹]

[𝑈]
=
𝑥𝐹
𝑥𝑈

=
𝑘𝐹
𝑘𝑈

 

𝐾𝑈 =
[𝑈]

[𝐹]
=
𝑥𝑈
𝑥𝐹
=
𝑘𝑈
𝑘𝐹

 

Thus, the protein conformational stabilities could be calculated through the derived expressions 

(Galano-Frutos, García-Cebollada, & Sancho, 2019; Wittung-Stafshede, 2004): 

∆𝐺𝐹 = −𝑅 𝑇 ln (
𝑘𝐹
𝑘𝑈
) 

∆𝐺𝑈 = −𝑅 𝑇 ln (
𝑘𝑈
𝑘𝐹
) 

So, as the conformational stability of a protein is the net effect of the folding and unfolding 

rates, an increased protein stability will be reflected in the kinetics as a slower unfolding (𝑘𝑈), a faster 

folding (𝑘𝐹) or a combination of both (Wittung-Stafshede, 2004). 

From a dynamical point of view, equations for the rate that govern the folding and unfolding 

processes can be written as follows (Zwanzig, 1997): 

𝑑𝑥𝐹
𝑑𝑡

= 𝑘𝐹 𝑥𝑈 − 𝑘𝑈 𝑥𝐹 

𝑑𝑥𝑈
𝑑𝑡

= 𝑘𝑈 𝑥𝐹 − 𝑘𝐹 𝑥𝑈 

The solution of this set of equations reads as follows: 

𝑥𝐹(𝑡) =
𝑘𝐹

𝑘𝐹 + 𝑘𝑈
+ (𝑥𝐹(0) −

𝑘𝐹
𝑘𝐹 + 𝑘𝑈

) ∗ 𝑒−(𝑘𝐹+𝑘𝑈) 𝑡 

𝑥𝑈(𝑡) =
𝑘𝑈

𝑘𝐹 + 𝑘𝑈
+ (𝑥𝑈(0) −

𝑘𝑈
𝑘𝐹 + 𝑘𝑈

) ∗ 𝑒−(𝑘𝐹+𝑘𝑈) 𝑡 

The case of three-state and more-state proteins is discussed in the literature (Sancho, 2013). 
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Another key concept in the quantification of the stability of proteins is the mid-denaturation 

temperature (Tm) that is defined as the temperature at which the concentration of the protein in its folded 

state equals the concentration of the protein in its unfolded protein, i.e., the temperature at which 50% 

of a protein population is unfolded (Ku, et al., 2009; Miotto, et al., 2019).  

Finally, conformational and kinetic stability can be determined experimentally by using 

spectroscopic, calorimetric techniques or NMR (Huyghues-Despointes, Pace, Englander, & Scholtz, 

2001; Sancho, 2013; Tayyab, Siddiqui, & Ahmad, 1995), or it could be estimated in silico through 

Molecular Dynamics simulations (Galano-Frutos & Sancho, 2019; Sancho, 2013). 

 

2.2 Molecular Dynamics simulations 

Molecular Dynamics (MD) simulations, first developed at the end of the 70s (McCammon, Gelin, & 

Karplus, 1977), are a computational technique that allows the simulation of biomolecules as multi-

particle mechanical systems (Kumari & Akhter, 2017) by using numerical methods (Vlachakis, 

Bencurova, Papangelopoulos, & Kossida, 2014). This kind of simulations has evolved into a mature 

technique that can be used effectively to simulate ensembles of 50,000–500,000 atoms (Hospital, Goñi, 

Orozco, & Gelpí, 2015). MD simulations can be applied to protein systems, lipid bilayer membranes, 

carbohydrates and nucleic acids (Kumari & Akhter, 2017); and, nowadays, MD is also employed to 

describe protein properties and behavior, drug-receptor interactions, the solvation of molecules, and the 

conformational changes that a protein or molecule may undergo under various conditions (Vlachakis, 

Bencurova, Papangelopoulos, & Kossida, 2014). 

As such, MD is based on the movement of biomolecules in a solvent box, wherein the movement 

is modeled through the Newtonian laws of motion of classical Physics. Starting structures in MD 

simulations requires either experimentally solved structural data or comparative modeling data 

(Hospital, Goñi, Orozco, & Gelpí, 2015). The details of the simulated systems can be defined at different 

extents; nonetheless, very often, an all-atom representation along with an explicit representation of the 

solvent molecules will yield more accurate results (Galano-Frutos & Sancho, 2019), at the expense of 

using more computational resources (Hospital, Goñi, Orozco, & Gelpí, 2015). Notwithstanding the 

above, the rougher coarse-grained representations are also useful for very large systems or long 

simulations (Hospital, Goñi, Orozco, & Gelpí, 2015). 

Forces acting on every atom in MD simulations are obtained by applying the so-called force 

fields, which are a set of equations (also called potential or energy functions) that derive the potential 

energy of the system based on the molecular structure thereof (Hospital, Goñi, Orozco, & Gelpí, 2015) 

and parametrized interactions (Lindahl, Abraham, Hess, & van der Spoel, 2020).  
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As such, a force field represents two groups of molecular properties: (1) bonded interactions, 

which characterize stretching of bonds, bending of valence angles, and rotation of dihedrals; and (2) 

non-bonded interactions that evaluate electrostatic interactions, Pauli exclusion and dispersion, whose 

addition yields the total potential energy of the system (Vlachakis, Bencurova, Papangelopoulos, & 

Kossida, 2014): 

𝐸𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 = 𝐸𝑏𝑜𝑛𝑑𝑒𝑑 + 𝐸𝑛𝑜𝑛𝑏𝑜𝑛𝑑𝑒𝑑 

For instance, the energy function for the CHARMM force field has the following form 

(MacKerell, et al., 1998): 

𝐸𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 = ∑ 𝐾𝑏(𝑏 − 𝑏0)
2

𝑏𝑜𝑛𝑑𝑠

+∑𝐾𝑈𝐵(𝑆 − 𝑆0)
2

𝑈𝐵

+ ∑ 𝐾𝜃(𝜃 − 𝜃0)
2

𝑎𝑛𝑔𝑙𝑒𝑠

+ ∑ 𝐾𝜒[1 + cos(𝑛𝜒 − 𝛾)]

𝑑𝑖ℎ𝑒𝑑𝑟𝑎𝑙𝑠

+ ∑ 𝐾𝑖𝑚𝑝(𝜑 − 𝜑0)
2

𝑖𝑚𝑝𝑟𝑜𝑝𝑒𝑟𝑠

+ ∑ 𝜖 [(
𝑅𝑚𝑖𝑛𝑖𝑗
𝑟𝑖𝑗

)

12

− (
𝑅𝑚𝑖𝑛𝑖𝑗
𝑟𝑖𝑗

)

6

]

𝑛𝑜𝑛𝑏𝑜𝑛𝑑

+
𝑞𝑖𝑞𝑗

𝜖1𝑟𝑖𝑗
 

where 𝐸𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 is the total potential energy of the system; 𝐾𝑏, 𝐾𝑈𝐵, 𝐾𝜃, 𝐾𝜒, and 𝐾𝑖𝑚𝑝 are the bond, 

Urey-Bradley, angle, dihedral angle, and improper dihedral angle force constants, respectively; 𝑏, 𝑆, 

𝜃, 𝜒, and 𝜑 are the bond length, Urey-Bradley 1,3-distance, bond planar angle, dihedral angle, and 

improper torsion angle, respectively, with the subscript zero representing the equilibrium values for the 

individual terms; 𝜖, Lennard-Jones well depth; 𝑅𝑚𝑖𝑛𝑖𝑗, distance at the Lennard-Jones minimum; 𝑞𝑖, 

partial atomic charge on atom 𝑖; 𝜀1, effective dielectric constant; and 𝑟𝑖𝑗, the distance between atoms 𝑖 

and 𝑗. 

On the other hand, the energy function for the AMBER force field has the following form 

(Cornell, et al., 1995): 

𝐸𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 = ∑ 𝐾𝑏(𝑏 − 𝑏0)
2

𝑏𝑜𝑛𝑑𝑠

+ ∑ 𝐾𝜃(𝜃 − 𝜃𝑒𝑞)
2

𝑎𝑛𝑔𝑙𝑒𝑠

+ ∑
𝐾𝜒

2
[1 + cos(𝑛𝜒 − 𝛾)]

𝑑𝑖ℎ𝑒𝑑𝑟𝑎𝑙𝑠

+∑𝜖 [
𝐴𝑖𝑗

𝑟𝑖𝑗
12
−
𝐵𝑖𝑗

𝑟𝑖𝑗
6
+
𝑞𝑖𝑞𝑗

𝜖1𝑟𝑖𝑗
]

𝑖<𝑗

 

As seen above, force fields are complex equations that encompass each intramolecular 

contribution (bond stretching, angle bending and dihedral and improper torsions of bond rotations), 

repulsive interactions (van der Waals), as well as electrostatic interactions modeled through Coulomb’s 

law (Pinak, 2006; Hospital, Goñi, Orozco, & Gelpí, 2015; Kumari & Akhter, 2017). They are 

approximations of the reality and can differ in accuracy and realism. 
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Once the forces acting on each atom are estimated, classical Newton’s law of motion is applied 

to the system in order to compute accelerations and velocities and to update the atom 

coordinates/positions (Hospital, Goñi, Orozco, & Gelpí, 2015). This way, the spatial distribution of 

biomolecules’ atoms defined by these force fields allows to generate a new set of coordinates thereof in 

terms of energy of the system in an iterative process (Kumari & Akhter, 2017). 

The integration of the atoms’ movement is performed through numerical methods. So, a time 

step shorter than the fastest movements in the biomolecule should be used to avoid numerical instability, 

which is about 1 and 2 fs for full atomistic simulations (Hospital, Goñi, Orozco, & Gelpí, 2015). 

In summary, the basic algorithm for a MD simulation is shown in Figure 4. 

 

Figure 4. Basic algorithm for a MD simulation, where Epot is potential energy; t, simulation time; dt, iteration 

time; x, atom coordinate; F, forces component; a, acceleration; m, atom mass; and v, velocity (Hospital, Goñi, 

Orozco, & Gelpí, 2015). 

Nowadays, some of the most used codes for performing MD simulations are AMBER, 

CHARMM, GROMACS, and NAMD (Hospital, Goñi, Orozco, & Gelpí, 2015); while the most popular 

force fields for the simulation of biomolecules are CHARMM, AMBER, and GROMOS (Vlachakis, 

Bencurova, Papangelopoulos, & Kossida, 2014).  

In MD simulations, it is noteworthy that statistical mechanics ensembles such as microcanonical 

(constant NVE), canonical (constant NVT), grand canonical (constant μVT) and isobaric-isothermal 

(constant NPT) are employed to produce the points of the simulation, so that they exhibit the same 

conditions of temperature, pressure or number of particles, depending on the ensemble used. To maintain 

constant properties like temperature and/or pressure in a simulation, barostats and/or thermostats should 

be setup (Berendsen, Postma, van Gunsteren, DiNola, & Haak, 1984; Parrinello & Rahman, 1981). 
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In addition, to properly simulate a biomolecular system, it is often necessary to mimic the 

environment. The usage of Periodic Boundary Conditions (PBC) is most often recommendable, which 

implies using a solvation box replicated in all directions so that continue solvation is mimicked and edge 

effect are minimized (Katiyar & Jha, 2018). With PBC applied, a molecule exiting the box by one side 

will enter simultaneously by the opposite one, keeping the number of molecules inside the box constant 

during the whole simulation. A visual representation of the Periodic Boundary Conditions is shown in 

Figure 5. 

 

Figure 5. Visual representation of the Periodic Boundary Conditions (Katiyar & Jha, 2018). 

The scheme of a MD simulation involves a more or less specific sequence of steps. First, the 

geometry of the biomolecule is retrieved from databases such as PDB or built in a molecule builder 

program (a good homology model if suitable). If necessary, the biomolecule geometry must be corrected 

and fixed. Then, a specific force field is selected, which will define the interatomic bonded and non-

bonded parameters. Next, a simulation box is created (defined shape and size), PBC are usually setup 

and the box filled with solvent (water, ions and other relevant chemical species). An energy 

minimization step should be performed to relax the biomolecule’s structure and to better accommodate 

water molecules in its surface (remove overlaps between molecules that results in high interatomic 

forces and avoid numerical instabilities). Subsequently, equilibration steps are performed from the 

minimized configuration to achieve a state of “thermodynamic equilibrium”, in which the property of 

interest appears to converge to an average value. Once this thermodynamic equilibrium is attained, the 

productive step is carried out through a longer simulation that allows to sample many equilibrium 

configurations. Finally, the analysis is done to determine the properties of interest from the trajectories 

generated (Katiyar & Jha, 2018). The representation of a general MD simulation scheme is shown below 

(Figure 6). 
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Figure 6. General MD simulation scheme. Own elaboration. 

Advantageously, MD simulations are time and cost effective as compared with the experimental 

approach of performing gene expression, protein purification and activity assays (Kumari & Akhter, 

2017).  

Nevertheless, the unfolding process of a medium-size protein takes place in the order to 

milliseconds, or faster, under denaturing conditions (Daggett & Levitt, 1993). This timescale is 

accessible in experimental settings but not always achievable with present computer power due, in part, 

to the necessary extremely short iteration time (Hospital, Goñi, Orozco, & Gelpí, 2015) and the lack of 

new algorithms that can speed up the calculations (Galano-Frutos & Sancho, 2019). Therefore, to 

investigate the protein unfolding within the timescale available to MD simulations with explicit solvent, 

elevated temperatures have been used to speed up the process (Daggett & Levitt, 1993; Day, Bennion, 

Ham, & Daggett, 2002; Rocco, et al., 2008). This procedure has been deemed suitable for elucidating 

the details of protein unfolding without affecting the unfolding pathway, with a reduced computational 

cost (Day, Bennion, Ham, & Daggett, 2002). 

On the other hand, the unfolded state of a protein is usually characterized by a huge number of 

different conformations with comparable free energies (Piana, Klepeis, & Shaw, 2014). So, small force 

field inaccuracies can significantly alter the structural and dynamical properties of the unfolded state 

(Piana, Klepeis, & Shaw, 2014). Nonetheless, overall, MD simulations are considered a reliable 

computational technique capable of providing accurate results in studies of protein conformation and 

stability, especially when using highly realistic settings such as all-atom representations, explicit solvent 

and specific solution conditions (Galano-Frutos, García-Cebollada, & Sancho, 2019; Hospital, Goñi, 

Orozco, & Gelpí, 2015).  
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2.4 Protein stability and unfolding analysis from MD simulations 

There are several approaches in which MD simulations could be used to explore and sample the 

conformational space of a given protein (Galano-Frutos, García-Cebollada, & Sancho, 2019; Hospital, 

Goñi, Orozco, & Gelpí, 2015; Kirkpatrick, Gelatt, & Vecchi, 1983). In this sense, one the most used 

approaches involve starting from a native conformation for a given protein to then evaluate its evolution 

in time by MD simulations. This approach has been described as relaxation Molecular Dynamics (rMD) 

simulations as they deal with the relaxation of the protein native structure over time at a fixed 

temperature (Galano-Frutos, García-Cebollada, & Sancho, 2019). 

On the other hand, ladder- and ramp-based temperature scanning MD simulations are also other 

types of MD experiments that involves the simulation of a given protein but in evolving temperature 

conditions. Having chosen a temperature range [𝑇𝑚𝑖𝑛, 𝑇𝑚𝑎𝑥], ladder-based temperature scanning MD 

simulations require the simulation of a temperature ladder (𝑇1 = 𝑇𝑚𝑖𝑛, 𝑇2, … , 𝑇𝑁 = 𝑇𝑚𝑎𝑥) (Denschlag, 

Lingenheil, & Tavan, 2009); while ramp-based temperature scanning MD simulations involve the 

simulation of a slow temperature ramp from 𝑇𝑚𝑖𝑛 to 𝑇𝑚𝑎𝑥 at a given rate (Reyes, et al., 2018). 

The folded state’s stability and the unfolding process of a given protein are commonly analyzed 

through the description of the structural fluctuations of the macromolecule (Martínez L. , 2015). Some 

of the most common measures of structural fluctuations are the Root-Mean-Square-Deviation (RMSD), 

the Root-Mean-Square-Fluctuations (RMSF), the Radius of gyration (Rg), the Hydrogen bonds (H-

bonds), the Native contacts (Nc), the Solvent Accessible Surface Area (SASA) and the Template 

Modelling score (TM-score) (Arnittali, Rissanou, & Harmandaris, 2019; Durham, Dorr, Woetzel, 

Staritzbichler, & Meiler, 2009; Martínez L. , 2015; Zhang & Lazim, 2017; Zhang & Skolnick, 2004). 

The RMSD is the average displacement of the atoms at an instant of the simulation relative to a 

reference structure, which is usually the first frame of the simulation or the crystallographic structure 

(Martínez L. , 2015), and it is commonly based only on the Cα atoms (Arnittali, Rissanou, & 

Harmandaris, 2019). So, in simpler terms, the RMSD is measure of the difference between two 

overlapping structures; and the smaller the deviation, the more spatially equivalent the two compared 

structures are (Arnittali, Rissanou, & Harmandaris, 2019). It is given by the equation (Arnittali, 

Rissanou, & Harmandaris, 2019): 

𝑅𝑀𝑆𝐷 = √
∑ 𝑚𝑖 (𝐫𝑖 − 𝐫𝑟𝑒𝑓)

2𝑁
𝑖=1

∑ 𝑚𝑖
𝑁
𝑖=1

 

where 𝑚𝑖 is the mass of atom 𝑖, 𝐫𝑖 = (𝑟𝑖,𝑥 , 𝑟𝑖,𝑦, 𝑟𝑖,𝑧) are the coordinates of atom 𝑖 at a certain instance, 

𝐫𝑟𝑒𝑓 = (𝑟𝑟𝑒𝑓,𝑥, 𝑟𝑟𝑒𝑓,𝑥, 𝑟𝑟𝑒𝑓,𝑧) are the coordinates of atom 𝑖 at its reference state. 
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 The RMSD is useful for the analysis of time-dependent motions of the structure, and it can be 

used to assess whether a structure is stable in the timescale of the simulation or if it is fluctuating from 

its initial configuration and position (Martínez L. , 2015). However, even though the RMSD is 

commonly used to compare protein structures, because all atoms in the structures are equally weighted 

in the calculation, one of the major drawbacks of this metric is that it becomes more sensitive to the 

local structure deviation than to global deviation when the RMSD value is big (Xu & Zhang, 2010). So, 

for instance, the RMSD of two protein structures could be high if the tails or some loops have a different 

orientation despite the global topology of the core part being the same (Xu & Zhang, 2010). Thus, based 

on the RMSD value alone, it is difficult to distinguish if two structures have completely different 

conformations. 

To address traditional RMSD deficiencies, a two-dimensional RMSD (2D-RMSD) analysis 

involves calculating the RMSD of each frame in a trajectory to all other frames in the same or in another 

trajectory, thus providing more information (Wang, et al., 2020). In this way, a 2D-RMSD of a trajectory 

to itself can be used to gain insight into the conformational convergence of the simulation; whereas, 

when a 2D-RMSD is calculated to another trajectory, this analysis can be used to compare the similarity 

of two conformational ensembles to a more accurate extent (Wang, et al., 2020). 

 On the other hand, the RMSF is a measure of the displacement of a particular atom, or group of 

atoms, relative to the reference structure, averaged over the number of atoms (Martínez L. , 2015). This 

measurement allows to assess local fluctuations on the protein, and it is useful for proteins in which the 

global structure may not vary significantly but do it in a specific region thereof (Blasco-Puyuelo, 2019). 

The Rg is an indicator of the size and the compactness of a protein, and it is calculated using the 

formula (Arnittali, Rissanou, & Harmandaris, 2019): 

𝑅𝑔 = √
∑ 𝑚𝑖 𝑟𝑖

2𝑁
𝑖=1

∑ 𝑚𝑖
𝑁
𝑖=1

 

where 𝑚𝑖 is the mass of the atom 𝑖, 𝑟𝑖 is the distance of atom 𝑖 from the center of mass of the protein. 

 The H-bonds refer to the number of formed hydrogen bonds in the structure. They are commonly 

defined based on a geometric criterion: the donor-acceptor distance must be less than or equal to 0.35 nm 

and the hydrogen-donor-acceptor angle must be less than or equal to 30°. The simultaneous compliance 

of these two conditions implies the existence of a hydrogen bond (Arnittali, Rissanou, & Harmandaris, 

2019). As this kind of interactions play an important role in the maintenance of the secondary structure 

of a protein, they could be used a good approximation to assess any structural fluctuation of the 

macromolecule (Arnittali, Rissanou, & Harmandaris, 2019). 
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 Native contacts are a measure of the number of interactions between spatially closed amino 

acids, which are not sequentially next to each other in the primary sequence of the protein (Zhang & 

Lazim, 2017). Thus, proteins that are unfolding exhibit a significant loss in native contacts over the 

simulation. 

 The SASA is a geometric measure of the degree to which the protein core is exposed to the 

solvent environment (Durham, Dorr, Woetzel, Staritzbichler, & Meiler, 2009). So, when a protein is 

experiencing an unfolding process, the SASA increases, making the hydrophobic core of the protein to 

be in contact with the solvent. It can be estimated through several algorithms such as the maximal speed 

molecular surfaces or statistical approximations (Durham, Dorr, Woetzel, Staritzbichler, & Meiler, 

2009). 

 The TM-score is a scoring function given by the equation (Zhang & Skolnick, 2004): 

𝑇𝑀 − 𝑠𝑐𝑜𝑟𝑒 = 𝑀𝑎𝑥

[
 
 
 
1

𝐿𝑁
∑

1

1+ (
𝑑𝑖
𝑑0
)
2

𝐿𝑇

𝑖=1
]
 
 
 

 

where 𝐿𝑁 is the length of the native structure, 𝐿𝑇 is the length of the aligned residues to the template 

structure, 𝑑𝑖 is the distance between the 𝑖th pair of aligned residues and 𝑑0 is a scale to normalize the 

match difference. 𝑀𝑎𝑥 denotes the maximum value after optimal spatial superposition. The value of the 

TM-score always lies between [0, 1], with better templates having higher TM-scores (Zhang & Skolnick, 

2004). In particular, values above 0.5 can be deemed as the same conformation. 

 Finally, a clustering analysis is a technique in which a set of data points is partitioned into a 

disjoint collection of data sets called clusters where, ideally, the points in one cluster are more similar 

to each other than to the points from other clusters (Shao, Tanner, Thompson, & Cheatham, 2007). This 

tool has been successfully implemented for grouping together similar conformations visited during a 

MD simulation, by using several algorithms such as hierarchical, centroid-based or density-based 

clustering (Shao, Tanner, Thompson, & Cheatham, 2007).  
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3. MATERIALS AND METHODS 

3.1 Computational resources and programs 

MD simulations were performed on the computer cluster called Cierzo. Cierzo is a distributed memory 

supercomputer designed for high performance computing (Peak performance of 85.87 TeraFLOPs and 

2.38 GigaFLOPS per watt consumed), from the Aragon Supercomputing Center (Cesar) hosted at the 

Institute for Biocomputation and Physics of Complex Systems (BIFI) of the University of Zaragoza. In 

particular, Intel Xeon E5-2680v3 2.5GHz cores were used, in a scheme of 96 processors per job in the 

production step. 

Regarding the software, GROMACS 5.1.4 (Abraham, et al., 2015) and its whole set of analysis 

programs (version 5.0 or later) was used. For trajectory analyses  a battery of Python 3 (Van Rossum & 

Drake, 2009) and BASH scripts were implemented. For visualizing MD trajectories and properties plots 

VMD 1.9.3 (Humphrey, Dalke, & Schulten, 1996), UCSF Chimera 1.14 (Pettersen, et al., 2004) and 

GRACE 5.1.22 (Stambulchik, 2008) were employed. 

 

3.2 Protein 

To carry out the objectives posed in this work the protein α3D was selected, whose features and reported 

experimental unfolding conditions are shown in the Table 1: 

Table 1. Features and reported experimental unfolding conditions of the protein α3D. 

Protein 
PDB 

code 
Class 

No. of 

Residues 

𝐥𝐧(𝒌𝑼) 

at 298 K 
𝒌𝑼 (s

-1) 
Temperature 

(K) 
pH Reference 

De novo 

bundle 

α3D 

2A3D 𝛼 73 7.7 2114 298 2.2 
(Zhu, et al., 

2003) 

 

Protein α3D is a single chain three-helix bundle designed to be stabilized by the packing of 

hydrophobic side chains. It lacks buried polar residues or structured loops that might introduce 

significant kinetic barriers to folding, so this protein adopts a well-defined tertiary structure (Zhu, et al., 

2003). It was selected due to its small size, suited for all-atom simulations in explicit solvent, the 

considerable magnitude of its rate of unfolding and because it has been described as a two-state folding 

state protein (Zhang & Luo, 2011; Zhu, et al., 2003). 
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3.3 Molecular Dynamics simulations 

3.3.1 Simulations conditions 

The protein was simulated using the force fields CHARMM27 (Brooks, et al., 2009; MacKerell, et al., 

1998) and AMBER99SB-disp (Robustelli, Piana, & Shaw, 2018), under the temperature and during the 

time described in Table 2. 

Table 2. Production simulation conditions for rMD simulations. 

Force field Temperature* (K) Time (µs) pH 

CHARMM27 

360 2.0 2.2 

380 0.5 2.2 

400 0.5 2.2 

420 0.5 2.2 

450 0.5 2.2 

500 0.5 2.2 

AMBER99SB-disp 

360 2.0 2.2 

380 0.5 2.2 

450 0.5 2.2 

500 0.5 2.2 

*Ten replicas each.  

The generation of the topologies was carried out trying to reproduce the conditions (protonation 

states according to the reported pH) under which the experimental unfolding parameters were obtained 

for the protein (Zhu, et al., 2003). Thus, the residues of histidine, aspartic acid and glutamic acid were 

protonated, yielding a total charge of +12.0 e.  

 Furthermore, ladder- and ramp-based temperature scanning MD simulations were carried out 

for both CHARMM27 and AMBER99SB-disp, five replicas each. The ladder-based temperature 

scanning MD simulations increased their temperature in 10 K from 298 K to 488 K each 50 ns, yielding 

a total of 1 µs of simulation. On the other hand, in the ramp-based temperature scanning MD simulations 

their temperature was increased from 298 K to 498 K at a rate of 1 K/ns during a time span of 200 ns 

(by using simulated annealing) (Kirkpatrick, Gelatt, & Vecchi, 1983). 

  

3.3.2 Preparation phase 

For each structure, the topology file was created with the corresponding force field and water model: 

TIP3P for CHARMM27 (Jorgensen, Chandrasekhar, Madura, Impey, & Klein, 1983) or TIP4Pdisp for 

AMBER99SB-disp (Robustelli, Piana, & Shaw, 2018).  
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Each protein was first minimized in vacuum by using the steepest descent minimization method 

during 5000 steps with the Verlet cut-off scheme for neighbor searching, with 1 nm for both the van der 

Waals cut-off and the Coulomb cut-off. 

Next, each structure was centered in a truncated dodecahedron simulation box with a minimal 

distance of 1 nm from the box edges to the protein, solvated with the selected water model, and 

neutralized with Na+ and Cl− counterions. 

 

3.3.3 Minimization step 

The solvated systems were taken to its minimal energy with the steepest descent minimization algorithm, 

by using a tolerance buffer of 1 kJ/mol∙nm and a maximum of 20000 steps of 0.001 ps (a total 

minimization timespan of 20 ps under completion). 

Moreover, regarding the non-bonded interactions, Particle-Mesh Ewald (PME) electrostatics 

with 1 nm cut-off for coulombic short-range interactions and a van der Waals cut-off scheme (1 nm) 

with the Potential-shift-Verlet modifier for short-range interactions were used. Periodic boundary 

conditions were setup. These parameters were identically settled in all next simulation steps. 

 

3.3.4 Heating step 

The heating process was performed using a canonical ensemble (constant NVT) with position restraints. 

In particular, each system was heated gradually from an initial temperature to its final temperature by 

increasing the temperature with a 50/60 K-ladder every 50 ps (25000 steps of 0.002 fs each tier).  

For integrating Newton’s equations of motion in this step and in the subsequent ones, the 

leap-frog algorithm was used. The temperature was controlled using the modified Berendsen thermostat 

with velocities rescaling (Berendsen, Postma, van Gunsteren, DiNola, & Haak, 1984; Bussi, Donadio, 

& Parrinello, 2007), using a time constant for coupling of 0.1 ps. The atom velocities were generated 

according to the Maxwell distribution. 

 

3.3.5 Equilibration steps 

Once the systems were taken to the desired temperature, they were stabilized through two sequential 

equilibration phases performed with the isobaric-isothermal ensemble (constant NPT). 
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The first equilibration phase was carried out with position restraints on the heavy atoms during 

250 ps (125000 steps of 0.002 fs each), whereas the second one was done without any restraint during 

500 ps (250000 steps of 0.002 fs each). Both equilibration phases utilized the modified Berendsen 

thermostat with velocities rescaling  (Berendsen, Postma, van Gunsteren, DiNola, & Haak, 1984; Bussi, 

Donadio, & Parrinello, 2007) for temperature coupling (using a time constant for coupling of 0.1 ps), 

and the Parrinello-Rahman barostat (Parrinello & Rahman, 1981) for isotropic pressure coupling 

(employing a time constant for coupling of 5 ps and reference pressure of 1 bar). No velocities were 

generated but were taken from the system resulted from the previous phase. 

 

3.3.6 Production phase 

The production phase was carried out in an isobaric-isothermal ensemble (constant NPT, same 

parameters as in the previous equilibration phase), during the established time in Table 2 (time steps of 

0.002 fs). The coordinates, velocities and forces in each simulation were stored every 100 ps. 

 

3.4 Analysis of trajectories 

An integrated analysis of the trajectories was performed by using several tools from GROMACS 

(Abraham, et al., 2015) through a script built in Python3 (see Annex II). There, RMSD, Rg, RMSF, H-

bonds, SASA, native contacts, TM-scores, and secondary structure plots were obtained and analyzed. 

As a reference structure for computing the RMSD, the one obtained from NMR was used (Walsh, 

Cheng, Bryson, Roder, & DeGrado, 1999). 

Moreover, a 2D-RMSD-based clustering was performed to compute the RMSD of the structure 

in each frame when aligned and compared to the remaining frames of the trajectory. A cutoff of 0.6 nm 

(Reva, Finkelstein, & Skolnick, 1998) was set to carry out the clustering. , which was implemented in 

another specific Python3 script (see Annex III). To group the clusters, an agglomerative hierarchical 

clustering with average linkage was used.. 

Trajectory analyses were complemented with the visualization thereof in VMD (Humphrey, 

Dalke, & Schulten, 1996) and UCSF Chimera 1.14 (Pettersen, et al., 2004). 
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3.5 Estimation of the half-life of unfolding and conformational stability from 

relaxation MD simulations 

The half-lives of unfolding at the temperature of simulation (𝜏1 2⁄ ) were estimated from the 

2D-RMSD-based clustering plots with ImageJ (Schneider, Rasband, & Eliceiri, 2012), by estimating 

the point in the time axis in which new clusters deviated significantly from the reference cluster (see, 

for instance, Figure 8). 

Then, the rate of unfolding at the simulation temperature (𝑘𝑈), the rate of unfolding at 298 K 

(𝑘𝑈
298), the half-life of unfolding at 298 K (𝜏1/2

298), and the conformational stability at 298 K (∆𝐺𝑈) were 

computed with the Equations (3), (6), (7) and (8), respectively, according to the empirical model 

previously developed in the research group (Galano-Frutos, García-Cebollada, & Sancho, 2019). 

 

3.6 Estimation of the temperature of unfolding from ladder- and ramp-based 

temperature scanning MD simulations 

Finally, in the ladder- and ramp-based temperature scanning MD simulations, the temperature of 

unfolding was also estimated from the 2D-RMSD-based clustering plots with ImageJ, by measuring the 

point in time the clusters grouped from the conformations of the protein deviated significantly from the 

initial conformation, i.e., the time of unfolding (𝑡𝑈); and then evaluating said value into the function of 

temperature 𝑇(𝑡𝑈) of the corresponding simulation: 

𝑇𝑅(𝑡𝑈) = 𝑡 + 298 

for the ramp-based temperature scanning MD simulations; and  

𝑇𝐿(𝑡𝑈) =

{
 
 

 
 

298 𝐾   𝑖𝑓   0 < 𝑡 ≤ 50 𝑛𝑠
308 𝐾   𝑖𝑓   50 < 𝑡 ≤ 100 𝑛𝑠
318 𝐾   𝑖𝑓   100 < 𝑡 ≤ 150 𝑛𝑠 

⋮
478 𝐾   𝑖𝑓   900 < 𝑡 ≤ 950 𝑛𝑠
488 𝐾   𝑖𝑓   950 < 𝑡 ≤ 1000 𝑛𝑠

 

for the ladder-based temperature scanning MD simulations.
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4. RESULTS AND DISCUSSION 

4.1 Determination of the adequate conditions in rMD simulations 

It is considered that the best conditions for the analysis of the protein unfolding simulations are those in 

which it is possible to watch the whole process, from the native conformation of the protein to the one 

in which it is considered unfolded. 

In our simulations, rMD simulations at 360K and 380K (with both force fields: CHARMM27 

and AMBER99-disp) did not exhibit relevant unfolding for any of the simulated replicas. While 

simulations at 400K and 420 K (only performed with the CHARMM27 force field) showed in some 

replicas relevant unfolding events. Unfortunately, due a lack of time, the corresponding simulations at 

400K and 420 K with AMBER99-disp could not be completed. On the other hand, at 450K it was 

possible to see the process of unfolding for all the simulated replicas with both force fields here selected. 

Instead, in simulations at 500 K the protein experienced a fast process of unfolding from the beginning 

of the production phase, making difficult to measure the half-life of unfolding. 

 

4.2 Protein unfolding analysis 

To detect the unfolding events from the native conformations for each rMD simulation, the 2D-RMSD-

based clustering was used. The clustering plots of all the replicas are shown in the Annex I. 

 

4.2.1 2D-RMSD-based clustering with CHARMM27 

In the case of the rMD simulations using the CHARMM27 force field, the trajectory of the replica r1 at 

380K was used as the reference for performing the clustering analysis at the temperatures of 380 K, 400 

K, 420 K, 450 K, and 500 K due to its stability profile. The simulations performed at the temperature of 

360 K were excluded from this analysis since they were run on a different time length (2 µs) and did not 

show any relevant sign of unfolding. 

So, in order to save space and as an example of the results obtained, the plot from the 2D-

RMSD-based clustering for the replica 1 at 380 K using the CHARMM27 force field is shown in 

Figure 7, (see the clustering plots for all the replicas in the Annex I). 
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Figure 7. 2D-RMSD-based clustering plot for the replica 1 at 380 K using the CHARMM27 force field. 

From the Figure 7, it is possible to observe that the protein did not exhibit any relevant structural 

difference in comparison with the native conformation along the time span of the simulation. This 

behavior was consistent in all simulated replicas (see Annex I).   

As an example of the results obtained, the plot from the 2D-RMSD-based clustering for the 

replica 2 at 400 K using the CHARMM27 force field is shown in the Figure 8 (see the clustering plots 

for all the replicas in the Annex I). 

 

Figure 8. 2D-RMSD-based clustering plot for the replica 2 at 400 K using the CHARMM27 force field. 
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 In this case, the replica 2 with the CHARMM27 force field at 400 K exhibited a structural 

variation from the native conformation at the 253.33 ns of the simulation. Nevertheless, at this 

temperature, only 2 replicas (r2 and r8) out of 10 showed some noticeable degree of unfolding within 

the 500 ns of the simulation (see Annex I).   

As an example of the results obtained, the plot from the 2D-RMSD-based clustering for the 

replica 8 at 420 K using the CHARMM27 force field is shown in the Figure 9 (see the clustering plots 

for all the replicas in the Annex I). 

 

Figure 9. 2D-RMSD-based clustering plot for the simulations at 420 K using the CHARMM27 force field, 

replica 8. 

At the temperature of 420 K, the rMD simulation in the replica 8 was able to generate a trajectory 

for which numerous conformations could be grouped in clusters, suggesting the occurrence of an 

unfolding process for the protein. It is noteworthy that this force field yielded a trajectory in which the 

structure returned to the native conformation in several moments during the simulation; even though its 

conformation changed repeatedly across the simulation. Furthermore, at this temperature and within the 

time span of 500 ns, 4 replicas (r3, r6, r8 and r10) out of 10 showed some noticeable degree of unfolding 

(see Annex I). 

It is noteworthy that the 2D-RMSD-based clustering allowed to reduce the variability that it is 

characteristic of the 1D-RMSD plots (see Annex I), thus allowing to more easily identify the clusters of 

similar conformations visited during the timespan of the simulation. 

As an example of the results obtained, the plot from the 2D-RMSD-based clustering for the 

replica 4 at 450 K using the CHARMM27 force field is shown in the Figure 10 (see the clustering plots 

for all the replicas in the Annex I). 
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Figure 10. 2D-RMSD-based clustering plot for the replica 4 at 450 K using the CHARMM27 force field. 

 From Figure 10, it is possible to see that the protein experienced relevant changes in its structure 

due to the formation of numerous clusters far from the reference cluster. In particular, once the structure 

experienced a process of unfolding, it was not able to return to its native conformation later in the 

simulation, yielding a half-life of 55.92 ns. Nonetheless, the rest of replicas returned to a native-like 

conformation briefly, after crossing the border of their half-life (see Annex I). In this sense, from 

Figure 11 it is possible to observe the supposed unfolded state of the protein with CHARMM, in which 

the α-helix structures remain intact even though they are unpacked. So, it may be possible that this 

behavior is related with the well-known backwards that have been described for CHARMM27 in relation 

with the α-helix overstabilization they present (Gao, et al., 2015; Lindorff-Larsen, et al., 2012). 

Figure 10 also suggests the formation of some recurring conformations that are often adopted 

by the unfolded structure, for instance, the cluster 18. This behavior is also consistent with the one 

observed for other replicas (see Annex I). 

So, in order to better understand the results from this MD simulation, some frames of the 

trajectory of the replica 4 at 450 K using the CHARMM27 force field is shown in the Figure 11.  
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Figure 11. Protein conformations at 10 ns (top left), 50 ns (top center), 100 ns (top right), 200 ns (bottom left), 

300 ns (bottom center) and 450 ns (bottom right) for the replica 4 at 450 K using the CHARMM27 force field. 

Figure 11 shows the progression over time of the conformation of α3D at 450 K of the replica 10 

as an example of the ten simulated replicas (see Annex I for the unfolding analysis plots of the other 

replicas), ranging from the native conformation at the first 50 ns to an unfolded structure after the half-

life of unfolding of 55.92 ns. In this case, it is possible to see that the disordered conformation mostly 

consists in the rupture of the packing of the α-helix structures, to give place to a more extended 

conformation but without losing the wholeness of the native α-helixes. At the temperature of 450 K and 

within the time span of 500 ns, 10 replicas out of 10 that were run showed a noticeable degree of 

unfolding (see Annex I), yielding an average half-life of 46.26 ± 13.34 ns. 

Finally, as an example of the results obtained, the plot from the 2D-RMSD-based clustering for 

the replica 4 at 500 K using the CHARMM27 force field is shown in the Figure 12 (see the clustering 

plots for all the replicas in the Annex I). 
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Figure 12. 2D-RMSD-based clustering plot for the replica 4 at 500 K using the CHARMM27 force field. 

As with the results of 2D-RMSD-based clustering plot at 450 K, Figure 12 showed that, at 

500 K, a similar behavior was observed, except that the time in which the unfolding was detected was 

smaller.  

On the other hand, the half-life of unfolding for the replica 4 (2.27 ns) was smaller than that 

obtained at 450 K (55.92 ns). In this way, this 2D-RMSD-based analysis method allowed to clearly 

identify the point in which rMD trajectories of proteins deviate from the native conformation. 

To assess whether at higher temperatures the α-helix structures observed at 450 K remained 

intact or unfolded, some frames of the trajectory are shown in the Figure 13.  
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Figure 13. Protein conformations at 1 ns (top left), 25 ns (top center), 50 ns (top right), 100 ns (bottom left), 300 

ns (bottom center) and 450 ns (bottom right) of the replica 4 at 500 K using the CHARMM27 force field. 

Figure 13 shows the progression over time of the conformation of α3D at 500 K, going from the 

native conformation at the first few frames of the simulation to an ensemble of unfolded structures after 

the half-life of unfolding of 2.27 ns.  

In comparison to the trajectory obtained at 450 K, it is possible to observe that, besides the 

disruption of the hydrogen bonds of the bundle of α-helix, some sections of the α-helix structures were 

also unfolded giving rise to a more disordered structure than the one obtained at 450 K. However, it is 

noteworthy that, for the most part of the simulation, significant portions of the α-helix structures were 

conserved by the force field CHARMM27. 

At the temperature of 500 K and within the time span of 500 ns, 10 replicas out of 10 showed 

the same noticeable degree of unfolding (see Table 3 below), yielding an average half-life of 

4.52 ± 0.72 ns. 

 

4.2.2 2D-RMSD-based clustering with AMBER99SB-disp 

On the other hand, regarding the rMD simulations using the AMBER99SB-disp force field, the 

trajectory of the replica r6 at 380K was used as the reference for performing the clustering analysis at 

temperatures 380 K, 450 K and 500 K. Again, the trajectories at the temperature of 360 K were excluded 

due to identical reasons to those stated for the simulations with CHARMM27. 
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So, as an example of the results obtained, the plot from the 2D-RMSD-based clustering for the 

replica 5 at 380 K using the AMBER99SB-disp force field are shown in the Figure 14 (see the clustering 

plots for all the replicas in the Annex I). 

 

Figure 14. 2D-RMSD-based clustering plot for the replica 5 at 380 K using the AMBER99SB-disp force field. 

From Figure 14, it is possible to observe that the protein did not exhibit any relevant sign of 

unfolding. This outcome was consistent in all simulated replicas (see Annex I).   

On the other hand, as an example of the results obtained, the plot from the 2D-RMSD-based 

clustering at 450 K using the AMBER99SB-disp force field are shown in the Figure 12 (see the 

clustering plots for all the replicas in the Annex I). 

 

Figure 15. 2D-RMSD-based clustering plot for the replica 5 at 450 K using the AMBER99SB-disp force field. 
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Figure 15 shows the unfolding process of the protein at 450 K, exhibiting a half-life of unfolding 

of 80.28 ns. It is noteworthy that the profile of clustering build based on the trajectory generated by 

AMBER99SB-disp force field is slope-shaped, unlike the pattern generated by using the CHARMM27, 

which tend to have considerably more fluctuations. 

This outcome is common in all the simulated replicas (see Annex I), in which, after a certain 

point after the starting of the process of unfolding. The simulations using the AMBER99SB-disp force 

field at 450 K yielded an average half-life of 58.05 ± 11.91 ns. 

In order to assess whether a complete process of unfolding took place as suggested by the 

clustering method, more analyses were carried out. So, the RMSD, RMSF and TM-score for the replica 5 

with AMBER99SB-disp at 450 K are shown in the Figure 16. 

 

Figure 16. RMSD, RMSF and TM-score for the replica 5 at 450 K using the AMBER99SB-disp force field. 

 Indeed, from Figure 16, it is possible to see that the values of the RMSD increased from about 

0.5 to 2.5 after approximately 100 ns of simulation, which implies that the average displacement of the 

atoms is significative in comparison with the NMR structure. On the other hand, the TM-score reduced 

its value from 1 in the first moments of the simulation to about 0.2 after approximately 100 ns, which 

means that the conformation of the protein after the half-life of unfolding of 80.28 ns is significatively 

different from the original conformation. Finally, the RMSF results suggested that, relative to the native 

conformation, the displacements or fluctuations of the first and last residues of the structure were 

important. 

On the other hand, the H-bonds, native contacts and SASA estimations for the replica 5 with 

AMBER99SB-disp at 450 K are shown in the Figure 17. 
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Figure 17. H-bonds, Native contacts and SASA for the replica 5 at 450 K using the AMBER99SB-disp force 

field. 

 In agreement with the above results, from Figure 17 it is possible to observe that, after the 

identified half-life of unfolding of 80.28 ns, intra protein H-bonds decreased significantly while the 

protein-water H-bonds showed a contrary behavior. As the H-bonds play an important role in the 

maintenance of the secondary structure of a protein (Arnittali, Rissanou, & Harmandaris, 2019), the 

drastic change in their numbers suggested that the protein lost important part of its secondary structure. 

In this sense, the diminution of the native contacts between spatially closed amino acids that are not 

sequentially next to each other in the primary sequence of the protein (Zhang & Lazim, 2017), and the 

increase in the SASA measure due to the exposition of the hydrophobic protein core to the solvent 

environment (Durham, Dorr, Woetzel, Staritzbichler, & Meiler, 2009), also supported the idea that the 

protein unfolded.  

 Moreover, the Rg and the secondary structure for the replica 5 using the AMBER99SB-disp 

force field at 450 K are shown in the Figure 18. 

 

Figure 18. Rg, and secondary structure for the replica 5 at 450 K using the AMBER99SB-disp force field. 

 From the raise in the value of the Rg shown in the Figure 18, it is possible to state that the size 

and the compactness of a protein have notably diminished after approximately 100 ns of simulation. 

Furthermore, the gradual increase in the coil structure and the decrease in the α-helix structure after the 

identified half-life of unfolding, also reinforce the conclusion that the protein experienced a process of 

unfolding as suggested by the 2D-RMSD-based clustering analysis. 
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Finally, to further understand this phenomenon, some frames of the trajectory of the replica 5 

using the AMBER99SB-disp force field at 450 K were assessed (Figure 19), as an example of the results 

obtained (see Annex I for the unfolding analysis plots of the other replicas). 

 

Figure 19. Protein conformations at 1 ns (top left), 60 ns (top center), 80 ns (top right), 110 ns (bottom left), 200 

ns (bottom center) and 450 ns (bottom right) of the replica 5 at 450 K using the AMBER99SB-disp force field. 

Figure 19 shows the progression over time of the conformation of α3D at 450 K in the replica 5 

by using the AMBER99SB-disp force field, showing a native conformation at the first 60 ns, a partially 

disordered formation between 80-110 ns, and a completely disrupted structure onwards.  

In this case, after the half-life of unfolding has been reached (see conformation at 110 ns in 

Figure 19) at 80.28 ns, both the tertiary structure of the protein started to disrupt, and the α-helix 

structures started to unfold. Therefore, according to the results from this rMD simulation, the disruption 

of the tertiary and secondary structures operates simultaneously in a process of protein unfolding for 

α3D. 

In this exemplary trajectory, after 200 ns, the protein is completely unfolded, with only some 

small sections of its chains retaining some α-helix structures. This behavior is consistent in all simulated 

replicas (see Annex I) and indicates that the disadvantage of the usual 1D-RMSD analysis of not being 

able to distinguish if two structures have completely different conformations (Xu & Zhang, 2010) have 

been overcome by this analysis. 

To assess if this behavior stands at higher temperatures, and as an example of the results 

obtained, the plot from the 2D-RMSD-based clustering plot for the replica 5 at 500 K using the 
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AMBER99SB-disp force field are shown in the Figure 20 (see the clustering plots for all the replicas in 

the Annex I). 

 

Figure 20. 2D-RMSD-based clustering plot for the replica 5 at 500 K using the AMBER99SB-disp force field. 

As expectable, Figure 20 shows that the half-life of unfolding was sensibly reduced. In the case 

of the replica 5, to 6.57 ns at 500 K. This outcome was common in all the simulated replicas (see Annex 

I).  

It is noteworthy that the identification of the half-life of unfolding was easier in the 

2D-RMSD-based clustering plots when using the AMBER99SB-disp force field, due to the its clustering 

profile. The replicas using the AMBER99SB-disp force field at 500 K yielded an average half-life of 

7.69 ± 1.46 ns. 

Finally, some frames of the trajectory of the protein using the AMBER99SB-disp force field is 

shown in the Figure 21. 
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Figure 21. Protein conformations at 1 ns (top left), 5 ns (top center), 10 ns (top right), 100 ns (bottom left), 300 

ns (bottom center) and 450 ns (bottom right) of the replica 5 at 500 K using the AMBER99SB-disp force field. 

Figure 21 shows the progression over time of the conformation of α3D at 500 K in the replica 5 

by using the AMBER99SB-disp force field (see Annex I for the unfolding analysis plots for the other 

replicas), showing a native conformation at 1 ns, a partially unfolded structure at 5 ns, and a complete 

extended conformation onwards. It is noteworthy that the frame at 5 ns shows a protein that has lost 

most of its secondary structure; however, the 2D-RMSD-based clustering analysis indicates that the 

half-life of unfolding occurs at 6.57 ns, which suggests that the RMSD threshold of 0.6 could be higher 

than needed. 

Again, as in the simulation at 450 K, the process of unfolding for α3D comprised both the 

simultaneously disruption of the tertiary and secondary structure of the protein. So, in the Figure 21, it 

is possible to see that the rupture of the packing of the α-helix structures and the unfolding of the α-

helixes occur at the same time at the 5 ns frame. Noteworthy, and in agreement with the results at 450 K, 

the simulation showed a completely structureless polypeptide chain at 450 ns, without any remaining 

secondary structure. 

Thus, these findings obtained with the AMBER99SB-disp force field contradict the outcome 

from the simulations with the CHARMM27 force field, which suggested that the proteins retained the 

wholeness of the native α-helix structures even at high temperatures like 450 K or 500 K. 

In this context, despite CHARMM27 provides a remarkable description of the folded state of 

proteins (Piana, Klepeis, & Shaw, 2014; Lindorff-Larsen, et al., 2012), it is known that CHARMM27 
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has an α-helical propensity (Gao, et al., 2015) as this force field severely over-stabilizes the formation 

of helical structures, generating unfolded states that are substantially more helical than those found 

experimentally (Lindorff-Larsen, et al., 2012). For instance, a simulation of 10 µs with CHARMM27 of 

human Pin1 WW domain starting from an unfolded conformation resulted in a helical structure, in 

completely disagreement with the native conformation of the protein which is all β-sheets (Freddolino, 

Liu, Gruebele, & Schulten, 2008). On the other hand, another study found that CHARMM27 predicted 

the formation of a helical fraction of about 0.6 in the secondary structure of ubiquitin and GB3 at 370 K, 

whereas the experimental data from NMR showed that there were no α-helix structures whatsoever in 

the proteins (Lindorff-Larsen, et al., 2012).  

Therefore, we have been able to verify within this work the feature of the CHARMM27 force 

field of over-stabilizing α-helical structures. So, even though this forcefield is suitable for simulating 

folded proteins and it has been successfully used for calculating folding energetics (Galano-Frutos & 

Sancho, 2019), reason why this force field was selected in this study, the results from these simulations 

suggest that CHARMM27 is not suitable for simulating unfolded proteins. 

Considering the limitations of CHARMM27 and other current force fields, AMBER99SB-disp 

was developed to provide high levels of accuracy in simulations of disordered protein states while 

maintaining the required accuracy for folded proteins (Robustelli, Piana, & Shaw, 2018). In this sense, 

the results from this work suggest that AMBER99SB-disp is much more suitable to simulate unfolded 

states, as shown in the analysis of RMSD, RMSF, TM-score, H-bonds, Native contacts, SASA, Rg, 

secondary structure and trajectory in the Figures 16-19. 

 

4.3 Protein stability and unfolding kinetics analysis 

4.3.1 Estimation of half-life of unfolding 

Based on the results of the 2D-RMSD-based clustering, the half-life of unfolding was estimated for each 

replica at each temperature for the two force fields, by measuring the time in which the 2D-RMSD-

based clustering plots deviates from the reference cluster (native conformation) with ImageJ. So, the 

half-life of unfolding and the folded and unfolded fractions for the simulations at 380 K, 400 K, 420 K, 

450 K and 500 K performed with the CHARMM27 force field are shown in the Table 3. 
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Table 3. Half-life of unfolding and folded and unfolded fractions for the simulations performed with the 

CHARMM27 force field at 380 K, 400 K, 420 K, 450 K and 500 K. 

 Half-life of unfolding (ns) 

 380 K 400 K 420 K 450 K 500 K 

r1 >500 >500 >500 80.74 4.41 

r2 >500 253.33 >500 102.50 --- 

r3 >500 >500 153.89 33.33 2.26 

r4 >500 >500 >500 55.92 2.27 

r5 >500 >500 >500 16.95 9.72 

r6 >500 >500 467.78 20.28 5.51 

r7 >500 >500 >500 122.96 5.51 

r8 >500 489.99 224.99 5.01 3.33 

r9 >500 >500 >500 14.07 3.33 

r10 >500 >500 98.61 10.83 4.35 

Average >500 >371.66 >236.32 46.26 4.52 

Standard Error --- ~52.92 ~51.47 13.34 0.72 

Folded Fraction 1 0.8 0.6 0 0 

Unfolded Fraction 0 0.2 0.4 1 1 

 

 From the Table 3, the average half-life of unfolding at 450 K and 500 K yielded by the rMD 

simulations with CHARMM27 were 46.26 ± 13.34 ns and 4.52 ± 0.72 ns, respectively. Thus, an increase 

in 50 K implied a reduction in about 10 times the value of the half-life.  

In the case of the temperatures 380 K, 400 K, and 420 K with CHARMM27, it was not possible 

to provide an accurate value for the half-life average since not all the replicas exhibited definitive 

unfolding events within the 500 ns of the simulations. Thus, only a lower limit is described in Table 3.  

On the other hand, in the case of the replica 2 at 500 K, the simulation crashed possibly due to 

the high temperature; thus, it was impossible to estimate a half-life value for that replica. 

 Moreover, with the folded and unfolded fractions versus temperature, it was possible to build 

the following plot (Figure 22). 
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Figure 22. Plot of folded and unfolded fraction versus temperature for the results obtained through the 

CHARMM27 force field. 

 From the Figure 22, it is possible to predict that the temperature at which the half of the replicas 

(Tm) are exhibiting unfolding within the 500 ns of simulation with CHARMM27 is 425 K. 

 On the other hand, the half-life of unfolding, and the folded and unfolded fractions for the 

simulations at 380 K, 450 K and 500 K performed with the AMBER99SB-disp force field are shown in 

the Table 4. 

Table 4. Half-life of unfolding and folded and unfolded fractions for the simulations performed with the 

AMBER99SB-disp force field at 380 K, 450 K and 500K. 

 Half-life of unfolding (ns) 

 380 K 450 K 500 K 

r1 >500 35.93 3.40 

r2 >500 105.28 4.31 

r3 >500 115.55 --- 

r4 >500 15.01 7.69 

r5 >500 80.28 6.57 

r6 >500 32.08 15.37 

r7 >500 15.42 --- 

r8 >500 30.37 14.31 

r9 >500 58.70 4.38 

r10 >500 91.85 5.51 

Average >500 58.05 7.69 

Standard Error --- 11.91 1.46 

Folded Fraction 1 0 0 

Unfolded Fraction 0 1 1 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

370 390 410 430 450 470

F
ra

ct
io

n

Temperature (K)

Folded fraction

Unfolded fraction



39 

 

 From Table 4, the average half-life of unfolding at 450 K and 500 K yielded by the simulations 

with AMBER99SB-disp were 58.05 ± 11.91 ns and 7.69 ± 1.46 ns, respectively, which are in the same 

range as the ones obtained with CHARMM27. Nonetheless, the percentage differences in the half-life 

of unfolding estimated with CHARMM27 and AMBER99SB-disp were 22.6% and 51.9% at 450 K and 

500 K, respectively. So, overall, the simulations with AMBER99SB-disp seems to lead to slightly larger 

values for the half-life of unfolding. Furthermore, unlike with CHARMM27, the increase from 450 K 

to 500 K only decreased the half-life of unfolding in 7.5 times for the simulations with 

AMBER99SB-disp. 

On the other hand, in the case of the replicas 3 and 7 at 500 K, the simulations crashed due to 

the high temperature; thus, it was impossible to estimate a half-life value for these replicas as well. 

 

4.3.2 Estimation of the conformational stability and kinetic unfolding parameters 

Once the values of half-life of unfolding were estimated based on the 2D-RMSD-based clustering 

analysis, equations (3), (6), (7) and (8) from the empirical model (Galano-Frutos, García-Cebollada, & 

Sancho, 2019) were used to calculate the kinetic unfolding parameters for the protein α3D. So, the half-

life of unfolding at the temperature of simulation (𝜏1 2⁄ ), the rate of unfolding at temperature of 

simulation (𝑘𝑈), the rate of unfolding at 298 K (𝑘𝑈
298), the half-life of unfolding at 298 K (𝜏1/2

298), and 

the conformational stability at 298 K (∆𝐺𝑈) estimated with the CHARMM27 force field are shown in 

the Table 5. 

Table 5. Kinetic unfolding parameters for the simulations performed with the CHARMM27 force field at 380 K, 

400 K, 420 K, 450 K and 500 K. 

Temperature 380 K 400 K 420 K 450 K 500 K 

𝝉𝟏 𝟐⁄  (ns) >500.00 >371.66 ± 52.92 >236.32 ± 51.47 46.25 ± 13.34 4.52 ± 0.72 

𝒌𝑼
 a (s-1) <1.39x106 <1.87x106 <2.93x106 1.50x107 1.53x108 

𝐥𝐧 (𝒌𝑼) <14.14 <14.44 <14.89 16.52 18.85 

𝒌𝑼
𝟐𝟗𝟖b (s-1) <11.99 ± 120.60 <68.61 ± 46.26 <45.94 ± 24.70 865.63 ± 1944.40 879.93 ± 1986.09 

𝐥𝐧 (𝒌𝑼
𝟐𝟗𝟖) <2.48 <4.23 <3.83 6.76 6.78 

𝝉𝟏/𝟐
𝟐𝟗𝟖 c (ms) >57.79 ± 581.13 >10.10 ± 6.81 >15.09 ± 8.11 0.80 ± 1.80 0.79 ± 1.78 

∆𝑮𝑼
d 

(kcal/mol) 
>3.05 ± 3.43 >2.49 ± 0.47 >2.62 ± 0.43 1.68 ±0.96 1.67 ± 0.97 

Calculations done with: a Equation (3); b Equation (6); c Equation (7); and d Equation (8). 

 

Even though the estimations for ∆𝐺𝑈 are inaccurate for the temperatures 380 K, 400 K and 

420 K due to the impossibility of observe unfolding events for all the replicas within the timespan of the 
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simulation, it is noteworthy that the estimations for ∆𝐺𝑈 coincide for the simulations at 450 K and 500 

K, in a value of about 1.68 ± 0.97 kcal/mol. Moreover, it is also noticeable that the estimations for 

𝑙𝑛 (𝑘𝑈
298) and 𝜏1/2

298 computed from the simulations at 450 K and 500 K also coincide in a value of about 

6.77 and about 0.80 ± 1.79 ms, respectively.  

Finally, the kinetic unfolding parameters for the simulations performed with the AMBER99SB-

disp force field at 380 K, 450 K and 500 K are shown in the Table 6. 

Table 6. Kinetic unfolding parameters for the simulations performed with the AMBER99SB-disp force field at 

380 K, 450 K and 500 K. 

Temperature 380 K 450 K 500 K 

𝝉𝟏 𝟐⁄  (ns) >500.00 58.05 ± 11.91 7.69 ± 1.46 

𝒌𝑼
 a (s-1) <1.39x106 1.19x107 9.01x107 

𝐥𝐧 (𝒌𝑼) <14.14 16.30 18.32 

𝒌𝑼
𝟐𝟗𝟖b (s-1) <11.99 ± 120.60 689.84 ± 1543.22 517.16 ± 1168.47 

𝐥𝐧 (𝒌𝑼
𝟐𝟗𝟖) <2.48 6.54 6.25 

𝝉𝟏/𝟐
𝟐𝟗𝟖 c (ms) >57.79 ± 581.13 1.00 ± 2.22 1.34 ± 3.03 

∆𝑮𝑼
d (kcal/mol) >3.05 ± 3.43 1.75 ± 0.96 1.84 ± 0.96 

Calculations done with: a Equation (3); b Equation (6); c Equation (7); and d Equation (8). 

 

Likewise, even though the estimations for the kinetic unfolding parameters are inaccurate for 

the simulations at 380 K, it is also noteworthy that the estimations for 𝑙𝑛 (𝑘𝑈
298), 𝜏1/2

298 and ∆𝐺𝑈 mostly 

coincide for the simulations at 450 K and 500 K performed with AMBER99SB-disp, in a range of 6.25-

6.54, 1.00-1.34 ms, and 1.75-1.84 kcal/mol, respectively. Remarkably, it is considered that the 

estimation for ∆𝐺𝑈 from both simulations at 450 K and 500 K is consistent as both values of 1.75 ± 0.96 

kcal/mol and 1.84 ± 0.96 kcal/mol are within their respective estimated standard errors. 

 So, in general, the simulations with AMBER99SB-disp yielded higher values of 𝜏1/2
298 and ∆𝐺𝑈 

and smaller values of ln (𝑘𝑈
298) than those obtained with CHARMM27. In particular, for 

AMBER99SB-disp, the values of 𝜏1/2
298 were 25.5% and 70.1% higher at 450 K and 500 K, respectively; 

the values of ln (𝑘𝑈
298) were 3.4% and 7.8% smaller at 450 K and 500 K, respectively; and the values 

of  ∆𝐺𝑈 were 4.3% and 10.2% higher at 450 K and 500 K, respectively. So, AMBER99SB-disp predicts 

a higher conformational stability for α3D than CHARMM27. 

 Nonetheless, the results obtained with CHARMM27 at 450 K and 500 K converged in a more 

precise range of stability, 1.68-1.67 kcal/mol; whereas the simulations with AMBER99SB-disp at the 

same temperatures generated more disperse estimations from 1.75 to 1.84 kcal/mol, within the range of 

standard error though. 
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 On the other hand, from both Table 5 and Table 6, it is noteworthy that both the estimated 

half-life of unfolding at 298K and the calculated conformational stability (∆𝐺𝑈) exhibited a high 

dependence on the temperature of simulation. This behavior could be explained due to the greater 

uncertainties found at the rMD simulations performed at lowest temperatures, in which fewer replicas 

showed unfolding events with defined half-lives. In this sense, we have to rely more on the values of 

the half-life and conformational stabilities observed at the highest temperatures, in which it was possible 

to observe unfolding events for all the simulated replicas. Furthermore, it is remarkable that the stability 

data obtained at these highest temperatures is very similar to the experimental one (Zhu, et al., 2003)  at 

298K shown in Table 7. 

Table 7. Experimental values and percent error of the predicted unfolding kinetic parameters and conformational 

stability with CHARMM27 and AMBER99SB-disp force fields at 450 K and 500 K. 

 

Experimental 

valuesa 

Percent Errorb 

 CHARMM27 AMBER99SB-disp 

 450 K 500 K 450 K 500 K 

𝒌𝑼
𝟐𝟗𝟖 (s-1) 2114 -59.05% -58.37% -67.37% -75.54% 

𝐥𝐧 (𝒌𝑼
𝟐𝟗𝟖) 7.7 -11.66% -11.45% -14.63% -18.39% 

𝝉𝟏/𝟐
𝟐𝟗𝟖  (ms) 0.33 144.21% 140.24% 206.44% 308.76% 

∆𝑮𝑼
 (kcal/mol) 1.39 ± 0.20 20.62% 20.24% 25.86% 32.51% 

a Data measured by time-resolved IR spectroscopy (Zhu, et al., 2003). 

b Percent Error (%E) calculated as: %𝐸 =
𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑣𝑎𝑙𝑢𝑒−𝐸𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙 𝑣𝑎𝑙𝑢𝑒

𝐸𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙 𝑣𝑎𝑙𝑢𝑒
  

 

In this context, Table 7 shows that both force fields have overestimated ∆𝐺𝑈. This is due, in 

turn, to an overestimation of the half-life of unfolding, which may suggest that the RMSD threshold of 

0.6 was higher than needed as delayed the identification of the unfolding events. Nonetheless, it is 

noteworthy that the force field AMBER99SB-disp yielded more inaccurate ∆𝐺𝑈 values than 

CHARMM27, even though AMBER99SB-disp is more suitable for simulating unfolded states of 

proteins. However, it is difficult to draw final conclusions about the accuracy of both force fields with 

only 10 replicas (or less in some cases). 

 Thus, according to these results, it is advisable for future work to perform a 2D-RMSD-based 

clustering with different RMSD thresholds in order to assess whether it is possible to fine tune the 

measurement of 𝜏1 2⁄  in way that the predicted ∆𝐺𝑈 is more accurate and closer to the reported 

experimental data. Moreover, it is also suggestable to perform the 2D-RMSD-based clustering analysis 

with other clustering algorithms like divisive or refinement algorithms (Shao, Tanner, Thompson, & 

Cheatham, 2007), and/or other linkage methods such as single-linkage, centroid-linkage or complete-

linkage clustering, in order to determine which one yields the more accurate results.  
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4.4 Temperature of unfolding in ladder- and ramp-based simulations 

From the rMD simulations whose results are shown above, it was possible to estimate the half-life of 

unfolding as well as the conformational stability of the protein α3D. Nonetheless, in that approach, the 

identification of the right temperature to observe unfolding events required to carry out several 

simulations at different temperatures above 298 K with ten replicas each. Thus, finding the adequate 

temperature of simulation of 450 K demanded the investment of considerable time and computer 

resources. 

 In this context, trying new MD-based approaches that allow us rMD simulation to optimize the 

time and the computer resources required to carry out accurate estimations like those here discussed for 

protein stability and kinetics studies may be actually advantageous.  

 To explore alternatives to rMD simulations, to assess their accuracy and precision in estimating 

unfolding kinetics (half-life and in silico mid-denaturation temperature) of proteins and also to evaluate 

the effect of the CHARMM27 and AMBER99SB-disp force fields in the in silico temperature of 

unfolding, ladder- and ramp-based temperature scanning MD simulations were carried out. Again, 

protein conformations were classified into different groups according to its variability through a 

2D-RMSD-based clustering. The clustering plots of all the replicas are shown in the Annex I. 

 

4.4.1 CHARMM27 

As an example of the results obtained, the plot from the 2D-RMSD-based clustering for the 

replica 5 of the ladder-based temperature scanning MD simulations using the CHARMM27 force field 

is shown in the Figure 23 (see the clustering plots for all the replicas in the Annex I). 
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Figure 23. 2D-RMSD-based clustering plot for the replica 5 of the ladder-based temperature scanning MD 

simulations using CHARMM27. 

 From Figure 23, it is possible to observe that the protein α3D unfolded at the 826.67 ns of 

simulation, which implied a temperature of unfolding of 458 K. This outcome was consistent in most of 

the simulated ladder-based temperature scanning MD simulations, in which four replicas out of five the 

protein unfolded at 458 K. 

Besides, in order to assess whether CHARMM27 still exhibited the identified α-helical 

propensity (Gao, et al., 2015), some frames of the trajectory of the replica 5 of the ladder-based 

temperature scanning MD simulations are shown in the Figure 24.  

 
Figure 24. Protein conformations at 1 ns and 298 K (top left), 500 ns and 398 K (top center), 827 ns and 458 K 

(top right), 833 ns and 458 K (bottom left), 891 ns and 468 K (bottom center) and 1000 ns and 488 K (bottom 

right) for the replica 5 of the ladder-based temperature scanning MD simulations with CHARMM27. 
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 Thus, from Figure 24 it is possible to observe that CHARMM27 still exhibited a tendency in 

over stabilizing α-helixes, as discussed above.  

On the other hand, as an example of the obtained results, the plot from the 2D-RMSD-based 

clustering for the replica 4 of the ramp-based temperature scanning MD simulations using the 

CHARMM27 force field are shown in the Figure 25 (see the clustering plots for all the replicas in the 

Annex I). 

 

Figure 25. 2D-RMSD-based clustering plot for the replica 4 of the ramp-based temperature scanning MD 

simulations using CHARMM27. 

On the other hand, from Figure 25 it is possible to see that the protein α3D unfolded at the 

191.36 ns of simulation at a temperature of unfolding of 489 K, a temperature superior than that obtained 

from the ladder-based temperature scanning MD simulations. 

Likewise, in order to assess the protein conformation evolution in the ramp-based temperature 

scanning MD simulations, some frames of the trajectory of the replica 4 are shown in the Figure 26.  
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Figure 26. Protein conformations at 1 ns and 299 K (top left), 100 ns and 398 K (top center), 150 ns and 448 K 

(top right), 160 ns and 458 K (bottom left), 180 ns and 478 K (bottom center) and 200 ns and 198 K (bottom 

right) for the replica 5 of the ramp-based temperature scanning MD simulations with CHARMM27. 

From the Figure 25, it is possible to watch again the tendency of CHARMM27 in over 

stabilizing the α-helix structures. 

A summary of the times and temperatures of unfolding for both ladder- and ramp-based 

temperature scanning MD simulations with CHARMM27 is shown in the Table 8. 

Table 8. Times and temperatures of unfolding for ladder- and ramp-based temperature scanning MD simulations 

with CHARMM27. 

 
Ladder-based temperature scanning 

MD simulations 

Ramp-based temperature scanning 

MD simulations 

Replica 
Time of unfolding 

(ns) 

Temperature of 

unfolding (K) 

Time of unfolding 

(ns) 

Temperature of 

unfolding (K) 

r1 806.66 458 163.64 462 

r2 813.33 458 167.73 466 

r3 804.44 458 159.55 458 

r4 853.33 468 152.73 451 

r5 826.67 458 191.36 489 

Average 820.89 460 167.00 465 

Standard Error 8.99 2.0 6.57 6.6 

 

 In view of the results from Table 8, it is possible to observe that the average temperature of 

unfolding with CHARMM27 was 460 ± 2.0 K for the ladder-based temperature scanning MD 
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simulations; while it was 465 ± 6.6 K for the ramp-based temperature scanning MD simulations, a 

slightly increase of 5 K, but still within the standard error. 

 It is remarkable that these results are consistent with those from the rMD simulations at 450 K 

and 500 K, in which ten replicas out of ten exhibited unfolding events within the 0.5 µs of simulation; 

whereas in the rMD simulations at 420 K only four replicas out of ten showed a significant degree of 

unfolding.  

 

4.4.2 AMBER99SB-disp 

As an example of the obtained results, the plot from the 2D-RMSD-based clustering for the replica 3 of 

the ladder-based temperature scanning MD simulations using the AMBER99SB-disp force field is 

shown in the Figure 26 (see the clustering plots for all the replicas in the Annex I). 

 

Figure 27. 2D-RMSD-based clustering plot for the replica 3 of the ladder-based temperature scanning MD 

simulations using AMBER99SB-disp. 

 From Figure 27, it is possible to observe that the protein α3D unfolded at the 842.22 ns of 

simulation, which implied a temperature of unfolding of 458 K.  

Likewise, in order to assess whether AMBER99SB-disp simulated unfolding states properly by 

using a ladder-based temperature scanning MD simulations, some frames of the trajectory of the replica 

3 are show in the Figure 28.  
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Figure 28. Protein conformations at 1 ns and 298 K (top left), 500 ns and 398 K (top center), 773 ns and 448 K 

(top right), 831 ns and 458 K (bottom left), 848 ns and 458 K (bottom center) and 1000 ns and 488 K (bottom 

right) for the replica 3 of the ladder-based temperature scanning MD simulations with AMBER99SB-disp. 

 Therefore, from Figure 28 it is possible to declare that AMBER99SB-disp in ladder-based 

temperature scanning MD simulations models properly the unfolded states. Furthermore, it is 

noteworthy how the protein α3D at 773 ns and 448 K started to lose its α-helix structure but at 831 ns 

and 458 K recovered part of the same. Nevertheless, the protein is clearly unfolded at 848 ns and 458 K. 

 On the other hand, as an example of the results obtained, the plot from the 2D-RMSD-based 

clustering for the replica 1 of the ramp-based temperature scanning MD simulations using the 

AMBER99SB-disp force field is shown in the Figure 29 (see the clustering plots for all the replicas in 

the Annex I). 
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Figure 29. 2D-RMSD-based clustering plot for the replica 1 of the ramp-based temperature scanning MD 

simulations using AMBER99SB-disp. 

From Figure 29 it is possible to watch that the protein α3D unfolded at the 149.09 ns of 

simulation at a temperature of unfolding of 447 K. 

Similarly, in order to assess the protein conformation evolution in the ramp-based temperature 

scanning MD simulations, some frames of the trajectory of the replica 4 are shown in the Figure 30.  

 
Figure 30. Protein conformations at 1 ns and 299 K (top left), 120 ns and 418 K (top center), 150 ns and 448 K 

(top right), 160 ns and 458 K (bottom left), 180 ns and 478 K (bottom center) and 200 ns and 498 K (bottom 

right) for the replica 5 of the ramp-based temperature scanning MD simulations with AMBER99SB-disp. 
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From Figure 30, it is possible to state that the ramp-based temperature scanning MD simulations 

with AMBER99SB-disp are also successful in simulating the unfolding states of protein. 

A summary of the times and temperatures of unfolding for both ladder- and ramp-based 

temperature scanning MD simulations with AMBER99SB-disp is shown in the Table 9. 

Table 9. Times and temperatures of unfolding for ladder- and ramp-based temperature scanning MD simulations 

with AMBER99SB-disp. 

 
Ladder-based temperature scanning 

MD simulations 

Ramp-based temperature scanning 

MD simulations 

Replica 
Time of unfolding 

(ns) 

Temperature of 

unfolding (K) 

Time of unfolding 

(ns) 

Temperature of 

unfolding (K) 

r1 893.34 468 149.09 447 

r2 880.01 468 185.91 484 

r3 842.22 458 180.10 478 

r4 875.56 468 >200.00 >498 

r5 851.11 468 194.55 493 

Average 868.45 466 177.41* 480* 

Standard Error 9.47 2.0 9.9* 8.9* 

* r4 was not included in the computation of the average and the standard error for the ramp-based temperature 

scanning MD simulations. 

 According to Table 9, the average temperature of unfolding with AMBER99SB-disp was 

466 ± 2.0 K for the ladder-based temperature scanning MD simulations; and 480 ± 8.9 K for the ramp-

based temperature scanning MD simulations. And, in this case, unlike the simulations with 

CHARMM27, the results from both approaches were not within the standard error. Besides, in the ramp-

based temperature scanning MD simulations, it was not possible to observe unfolding events for all the 

replicas as the replica 4 did not unfolded during the time span of the simulation (see Annex I). 

 

4.5 Comparison of MD-based approaches and fine tuning of the analysis 

method  

rMD simulations are time and computing-demanding due to the timescales required to observe unfolding 

events and due to the necessity of performing several replicas at different temperatures. For that reason, 

in order to optimize resources and fine tune the present analysis method for assessing protein stability 

and unfolding kinetics, temperature ladder- and ramp-based temperature scanning MD simulations were 

performed using the CHARMM27 and AMBER99SB-disp force fields. 
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 A comparison of the folded and unfolded states from the rMD, ladder- and ramp-based 

temperature scanning MD simulations using both force fields is shown in the Figure 31.   

 

Figure 31. Protein conformations with CHARMM27: (A) Folded state, (B) Unfolded state with rMD simulation, 

(C) Unfolded state with ladder-based temperature scanning MD simulations, (D) Unfolded state with ramp-

based temperature scanning MD simulations; and with AMBER99SB-disp: (E) Folded state, (F) Unfolded state 

with rMD simulation, (G) Unfolded state with ladder-based temperature scanning MD simulations, (H) 

Unfolded state with ramp-based temperature scanning MD simulations. 

 From Figure 31, it is possible to observe that no major differences exist between the unfolded 

states from the three types of simulations, for both force fields. In this sense, these results suggest that 

ladder- and ramp-based temperature scanning MD simulations are as suitable as rMD simulations for 

sampling the conformation of proteins and observing unfolding events. 

 On the other hand, in order to further compare the results obtained from rMD, temperature 

ladder- and ramp-based temperature scanning MD simulations with both force fields, the Table 10 shows 

a summary of the average in silico Tm and their standard errors. 

Table 10. Average in silico Tm for rMD, ladder- and ramp-based temperature scanning MD simulations with 

CHARMM27 and AMBER99SB-disp. 

CHARMM27 AMBER99SB-disp 

rMD ladder-based ramp-based rMD ladder-based ramp-based 

<450 ± 0.0 K 460 ± 2.0 K 465 ± 6.6 K <450 ± 0.0 K 466 ± 2.0 K 480 ± 8.9 K 
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From the rMD simulations, it has been confirmed that ten replicas out of ten unfolds within the 

time span of the simulation (0.5 µs) at 450 K. Thus, from Table 10, it is possible to verify that both 

ladder- and ramp-based temperature scanning MD simulations are accurate in estimating the in silico 

mid-denaturation temperature of the model protein α3D, with the estimations obtained with 

CHARMM27 being slightly more accurate than those obtained with AMBER99SB-disp. 

On the other hand, it is also noticeable that the ramp-based temperature scanning MD 

simulations required higher temperatures to observe unfolding events in regard to the ladder- ones, for 

both force fields. However, the estimations of the average temperature of unfolding from ladder- and 

ramp-based temperature scanning MD simulations with CHARMM27 are within the range of standard 

error, whereas the estimations with AMBER99SB-disp are not.  

It is also notably that the ramp-based temperature scanning MD simulations yielded slightly 

higher standard errors than those obtained from the ladder-based temperature scanning MD simulations. 

In this sense, the standard errors of the ramp-based temperature scanning MD simulations with 

CHARMM27 and AMBER99SB-disp were 6.6 K and 8.9 K, respectively; while the standard error of 

the ladder-based temperature scanning MD simulations was 2.0 K for both force fields. Thus, if one type 

of simulation had to be used to determine the temperature of unfolding before running rMD simulations, 

the results from this study suggest using ladder- instead of ramps-based temperature scanning MD 

simulations.  

Furthermore, the estimations of the average temperatures of unfolding obtained with the ladder-

based temperature scanning MD simulations with both force fields, 460 ± 2.0 K for CHARMM27 and 

466 ± 2.0 K for AMBER99SB-disp were closer to the tested temperature of 450 K in rMD simulations, 

which proved adequate to be used for the estimations of the unfolding kinetic parameters and 

conformational stability. On the contrary, the extreme case can be seen with the ramp-based temperature 

scanning MD simulations with AMBER99SB-disp, with an average temperature of unfolding of 480 ± 

8.9 K, much closer to the tested temperature of 500 K in rMD simulations, at which the quantification 

of the conformational stability was more difficult due to the extremely short half-life of unfolding. Thus, 

also from this point of view, the results from this study suggested that ladder- are preferable over ramps-

based temperature scanning MD simulations. 

On the other hand, these findings suggest that the simulations performed with 

AMBER99SB-disp require slightly higher temperatures to give place to unfolding events as the average 

temperature of unfolding in the ladder-based temperature scanning MD simulations with 

AMBER99SB-disp was 466 ± 2.0 K; whereas this value was 460 ± 2.0 K with CHARMM27. This 

behavior is consistent with the results from the ramp-based temperature scanning MD simulations as 

well, where even one replica with simulated with AMBER99SB-disp did not show any unfolding event 

whatsoever. 
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 In this sense, this outcome from the ladder- and ramp-based temperature scanning MD 

simulations agrees with the results from the rMD simulations, which showed that AMBER99SB-disp 

seems to slightly over stabilize the whole protein whereas CHARMM27 seems to over stabilize the α-

helices, as described above (see Table 7). Thus, paradoxically, even though AMBER99SB-disp is a 

force field more suited to simulate both folded and unfolded states, it seems that CHARMM27 could be 

more accurate in estimating half-life of unfolding and conformational stability through the previously 

described empirical model (Galano-Frutos, García-Cebollada, & Sancho, 2019). 

  In this context, based on the results of the present study, to perform stability and kinetics 

unfolding analyses on proteins ladder-based temperature scanning MD simulations could be a solution 

to optimize our methodology in terms of computational resources with the additional advantageous of 

increasing the accuracy in the estimation of the Tm. Importantly, it should be noticed that these results 

have been obtained with only one model protein, and that some other proteins with different sizes should 

also be approached in order to extract more definitive clues and conclusions on the MD-based methods, 

ladder and ramp, here addressed.  

 Even though it is true that the estimation of the half-life of unfolding should have been carried 

out be manually with ImageJ, the 2D-RMSD-based clustering allowed to simplify the interpretation of 

the fluctuations in the protein conformations observed during the simulation, easing the measurement 

of the half-life of unfolding by comparing the clustering profile of a given protein to that of one reference 

properly selected (folded stable protein).  

In this context, a research line currently being developed in the research group is the creation of 

algorithms to automatically detect and account relevant unfolding events in MD trajectories. It should 

be said that this task could more easily accomplished with 2D-RMSD-based clustering performed on 

trajectories generated with AMBER99SB-disp, where the unfolding clustering profiles show steadily 

ascendant behaviours indicating a more extended unfolding process (more unstructured unfolded state) 

in the protein being simulated. 

 As another recommendation for future work, the question remains whether it would be also 

possible to envision a model for accurately estimating the conformational stability of proteins from a 

ladder- or ramp-based temperature scanning MD simulation method, as done for rMD through 

Equation 8. With the rMD approach, it is possible to estimate the half-life of unfolding and the ∆𝐺𝑈 

because simulations are performed in equilibrium and at constant temperature. Nonetheless, this is not 

what happened in ladder- or ramp-based MD simulations, so that, new ideas about how to estimate the 

half-lives and ∆𝐺𝑈 when these methods are implemented should still come out. 
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5. CONCLUSIONS 

 

In the present study, through the realization of multiple relaxation MD simulations at a broad 

range of temperatures with the two force fields CHARMM27 and AMBER99SB-disp, it was possible 

to verify the in silico temperature dependence for estimating half-life on the model protein α3D. This 

behavior could have been due to the greater uncertainties found at the rMD simulations performed at 

lower temperatures, in which fewer replicas showed unfolding events with defined half-lives. In this 

sense, it was necessary to rely more on the values of half-life and conformational stabilities observed at 

higher temperatures, in which it was possible to observe unfolding events for all the simulated replicas. 

Furthermore, it was remarkable that the conformational stability estimations obtained at these higher 

temperatures were very similar to the experimental data.  

Moreover, it was possible to verify that, in comparison with rMD simulations, ladder- and ramp-

based temperature scanning MD simulations were accurate in estimating the in silico mid-denaturation 

temperature of the model protein α3D, with the estimations obtained with CHARMM27 being slightly 

more accurate than those obtained with AMBER99SB-disp. In addition, it was also found that the 

estimations of ladder-based MD simulations were also slightly more accurate than those obtained with 

ramp-based MD simulations. Nevertheless, remains pending the issue of accurately estimating the half-

life and the conformational stability of proteins from these kind of MD methods. 

Finally, the performance of the force fields CHARMM27 and AMBER99SB-disp was assessed 

in simulating structured and unstructured states in rMD, ladder- and ramp-based MD simulations, 

observing that CHARMM27 had a propensity to over-stabilize α-helix structures in unfolded states; 

while AMBER99SB-disp was more adequate in simulating those disordered conformations. 

Nonetheless, even though the CHARMM27 force field exhibited an α-helical propensity, it was able to 

yield more accurate estimations of the conformational stability than AMBER99SB-disp in rMD, which 

seemed to slightly over stabilize the overall protein structure.  
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