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MULTIVARIATE AFFINE FRACTAL INTERPOLATION

M. A. NAVASCUÉS, S. K. KATIYAR, AND A. K. B. CHAND

Abstract. Fractal interpolation functions capture the irregularity of some
data very effectively in comparison with the classical interpolants. They yield
a new technique for fitting experimental data sampled from real world signals,

which are usually difficult to represent using the classical approaches. The
affine fractal interpolants constitute a generalization of the broken line inter-
polation, which appears as a particular case of the linear self-affine functions
for specific values of the scale parameters. We study the Lp convergence of

this type of interpolants for 1 ≤ p < ∞ extending in this way the results
available in the literature. In the second part, the affine approximants are
defined in higher dimensions via product of interpolation spaces, considering
rectangular grids in the product intervals. The associate operator of projec-

tion is considered. Some properties of the new functions are established and
the aforementioned operator on the space of continuous functions defined on
a multidimensional compact rectangle is studied.

Keywords Iterated Function System. Fractals. Fractal Interpolation Functions.
Smooth Fractal Function. Fractal Operator.
MSC 28A80. 26C15. 41A20. 41A05. 46B15

1. Introduction

The features of many real phenomena such as financial series, the distribution of
galaxies, the spread of bacterial colonies, real time image synthesis, turbulence of
fluids, climate data, bioelectric recordings, snowflake, coastlines, Brownian motion,
the surface shapes of mountains, topographies, rocks, clouds and fractures, etc can
not be apprehended effectively with the help of the classical interpolant methods
because they may not provide an interpolant/approximant with a desired precision.
The method of iterated function systems (IFSs) supports the understanding and
processing of complex sets with the help of Collage Theorem [1]. To analyze self-
referential sets and deal with highly irregular data, Barnsley [1] in 1986 first put
forward the concept of fractal functions as the fixed point of the Read-Bajraktarević
operator defined on a suitable space of functions. It has become a very powerful
tool in areas such as signal processing, multiwavelets, computer graphics, electro-
chemistry, financial series, acoustics, sociology, and weather forecasting. Due to
its potential application in various fields, it has attracted numerously authors, see
for example [2, 3, 4, 5, 6, 7, 8, 9, 10, 11] and references quoted therein. A fractal
interpolation function [1] is very different from the traditional functions considered
so far. It may interpolate a specified data set and has non-integer Hausdorff and
Minkowski dimensions. The power of fractal interpolation allows us to generalize

2000 Mathematics Subject Classification. 28A80, 58C05, 65D05, 65D10, 26A18.
Key words and phrases. Iterated Function Systems, Fractal Interpolation Functions.
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2 M. A. NAVASCUÉS, S. K. KATIYAR, AND A. K. B. CHAND

any other interpolant, both smooth and non-smooth [12, 13]. Barnsley [1] intro-
duced affine fractal interpolation functions (AFIFs) which are obtained as attractors
of affine transformations in the plane. The AFIFs have non-integral dimension and
can be computed easily. The graphs of these AFIFs can be effectively utilized to
approximate image components such as the tops of clouds, the profiles of mountain
ranges, horizons over forests, etc. Therefore, it is not surprising that the AFIFs
are receiving an increasing intensity of investigation even after three decades of its
first pronouncement (see for instance [8, 9, 11, 14, 15, 16, 17, 18]; and references
therein). Recent applications of this theory include modeling of discrete sequences
as in [19], modeling of speech signals as in [20] and compression of static images
as in [21]. In many problems arising in day to day life as in engineering and sci-
ence, we require approximation methods to reproduce physical reality as close as
possible. Fractal functions are not well explored in the field of shape preserving
interpolation/approximation. Motivated by theoretical and practical needs, the au-
thors have initiated the study of shape preserving interpolation and approximation
using fractal functions [22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32].

In this paper, we study the Lp convergence of affine fractal interpolants for
1 ≤ p < ∞ extending in this way the results available in the literature. We also
find the Lp-estimates of the affine interpolation error. We define bi-affine fractal
functions and the operator Dαβ of bi-affine fractal interpolation. We prove that
Dαβ(f) ∈ Lip1 with some restrictions on scale vectors. We also prove that the
operator Dαβ is linear, bounded, projection, compact, and has a closed range. We
also define the adjoint operator of Dαβ as (Dαβ)∗ and claim that it is also com-
pact and has closed range. The possibility is given to construct tensor product of
affine fractal interpolants for the approximation of functions with several variables
f(x1, x2, . . . , xd).

In Section 2.2, we review briefly the notion of FIFs including some basic results
and notation of the IFSs. In Section 3, we extend the results of the reference [16]
and we study the Lp-convergence of affine fractal interpolants for 1 ≤ p < +∞.
We also provide Lp-estimates of the affine interpolation error. We define two-
dimensional fractal interpolants (bi-affine fractal functions) in Section 4 and find
some analytical properties of the operator of bi-affine fractal interpolation. We leave
the possibility to extend and construct tensor product of affine fractal interpolants
for the approximation of functions with several variables f(x1, x2, . . . , xd) in Section
5.

We have used the following notation throughout the article. Denote by N the set
of natural numbers. For any r ∈ N, let Nr denote the segment of N containing the
first r numbers and N0

r := Nr ∪ {0}. Let us denote ∀ f ∈ C(I), ∥f∥∞ = sup{|f(t)| :
t ∈ I} and let ∥ · ∥ be the norm of an operator with respect to ∥ · ∥∞ in C(I). Let
us define |α|∞ = max{|αn| : n ∈ NN}. For 1 ≤ p < +∞, let us define the Lp-norm:

∥f∥p =
( ∫ b

a
|f(t)|pdt

)1/p
.

2. Background and preliminaries

2.1. Iterated Function Systems. An IFS supplies a framework for generating
self-referential sets such as fractals which are seen as the attractors of specific IFSs.

Definition 2.1. Let (X, d) be a complete metric space with metric d. If wn : X →
X, n ∈ NN are continuous functions, then I = {X;wn : n ∈ NN} is called an
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MULTIVARIATE AFFINE FRACTAL INTERPOLATION 3

Iterated Function System or IFS for short. If, in addition, each wn, n ∈ NN in I
is a contraction map then the IFS I is called contractive or hyperbolic.

Let H(X) = {A : A ̸= ∅, A is compact in X} be the family of all nonempty compact
subsets of X. It is well known from [1] that H(X) is complete with respect the
Hausdorff metric dH : H(X) × H(X) → [0,∞) defined by

dH(B,C) = max
{
max
b∈B

min
c∈C

d(b, c),max
c∈C

min
b∈B

d(b, c)
}
.

Define W : H(X) → H(X) by W (B) =
N∪

n=1
wn(B) ∀ B ∈ H(X). For all k ∈ N, let

W k be the k-fold autocomposition of W and let W 0 be the identity map.

Definition 2.2. The set A ∈ H(X) is said to be an attractor or a determin-
istic fractal of the IFS I if lim

k→∞
W k(B) = A for each B ∈ H(X), where the

limit is taken with respect to the Hausdorff metric, i.e., lim
k→∞

W k(B) = A ⇔
lim

k→∞
dH

(
A,W k(B)

)
= 0. The fixed point A is also sometimes called invariant set

or self-referential set as A = W (A) =
N∪

n=1
wn(A).

We quote a basic result in the theory of IFS as follows.

Theorem 2.3. (Barnsley [1]). If the IFS I is contractive (hyperbolic), then I has
a unique attractor A satisfying W (A) = A.

2.2. Fractal Interpolation Functions. Let t0 < t1 < ... < tN be real numbers,
and I = [t0, tN ] be the closed interval that contains them. Let a set of data points
D = {(tn, xn) ∈ I × R : n ∈ N0

N} be given. Set In = [tn−1, tn] and let Ln : I → In,
n ∈ NN be contractive homeomorphisms such that

(1) Ln(t0) = tn−1, Ln(tN ) = tn,

(2) |Ln(c1) − Ln(c2)| ≤ l |c1 − c2| ∀ c1, c2 ∈ I

for some 0 ≤ l < 1. Define F = I ×K, where K is a suitable compact set in R and
N continuous mappings, Fn : F → R be defined such that:

(3) Fn(t0, x0) = xn−1, Fn(tN , xN ) = xn, n ∈ NN ,

(4) |Fn(t, x) − Fn(t, y)| ≤ r|x− y|, t ∈ I, x, y ∈ R, 0 ≤ r < 1.

Now define functions wn(t, x) = (Ln(t), Fn(t, x)), ∀ n ∈ NN .

Theorem 2.4. ([1]): The IFS {F ; wn : n ∈ NN} defined above admits a unique
attractor G. G is the graph of a continuous function g : I → R which obeys
g(tn) = xn for n ∈ N0

N .

The previous function is called a FIF corresponding to {(Ln(t), Fn(t, x))}N
n=1 and

it is unique satisfying the functional equation in [1] as

(5) g(t) = Fn(L−1
n (t), g ◦ L−1

n (t)),
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4 M. A. NAVASCUÉS, S. K. KATIYAR, AND A. K. B. CHAND
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Figure 1. Graph of an affine fractal interpolation function.

for n ∈ NN and t ∈ In = [tn−1, tn]. The most widely studied FIFs in theory and
applications so far are defined by the IFS

(6)

{
Ln(t) = ant+ bn,

Fn(t, x) = αnx+ qn(t),

where −1 < αn < 1 and the coefficients an and bn of the affine maps Ln are
determined through the conditions given in (1) as

(7) an =
tn − tn−1

tN − t0
and bn =

tN tn−1 − t0tn
tN − t0

.

αn is called the vertical scaling factor of the transformation wn and α = (α1, α2, . . . , αN )
is the scale vector of the IFS. If qn(t) is a line, the FIF is termed affine fractal in-
terpolation function (AFIF). In this case, by equation (3), qn(t) = cnt+ dn, where

(8) cn =
xn − xn−1

tN − t0
− αn

xN − x0

tN − t0
,

(9) dn =
tNxn−1 − t0xn

tN − t0
− αn

tNx0 − t0xN

tN − t0
.

This type of functions are non-smooth in general. The Figure 1 represents an AFIF
defined on I = [0, 1], N = 10, with respect to the data: D = {(0, 0.2), (0.1, 1), (0.2, 2.3),
(0.3, 2), (0.4, 1), (0.5, 3), (0.6, 1), (0.7, 1.2), (0.8, 2), (0.9, 1), (1, 3)} and the scale vec-
tor α = (0.2,−0.3, 0.1,−0.2, 0.3,−0.3, 0.1, 0.2,−0.3, 0.2). According to (5), an affine
fractal interpolant satisfies the functional equation:

(10) g(t) = g(t) + αn(g − r) ◦ L−1
n (t)

for t ∈ In = [tn−1, tn], where g is the polygonal whose vertices are the data (tn, xn)
and r is the line passing through (t0, x0) and (tN , xN ). The details can be read in
([17], Lemma 3.2). This type of functions have also been discussed in [16]. In [17]
several ways of obtaining the scaling factors from the data were presented.

AC
CE

PT
ED

M
AN

US
CR

IP
TAccepted manuscript to appear in FRACTALS

Fr
ac

ta
ls

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 C
O

R
N

E
L

L
 U

N
IV

E
R

SI
T

Y
 o

n 
08

/2
8/

20
. R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



MULTIVARIATE AFFINE FRACTAL INTERPOLATION 5

Remark 2.5. If αn = 0 ∀ n ∈ NN in (10) then we get g(t) = g(t) and g is piecewise
linear (polygonal or broken line interpolant) with vertices (tn, xn).

From now on we denote gα an AFIF with scale vector α, in order to display the
dependence with respect to the vectorial parameter. Let us consider a partition of
I = [a, b], ∆ : a = t0 < t1 < . . . < tN = b, and a scale vector α = (α1, . . . , αN ).

Definition 2.6. Let us consider the data Dk = {(tn, δkn)}N
n=0, where δkn = 1 if

k = n and 0 otherwise. The k-th AFIF fα
k with respect to the scale vector α ∈ RN

and the partition ∆ is defined by the equalities

(11) fα
k (tn) = δkn ∀ n ∈ N0

N ,

that is to say, fα
k is the AFIF corresponding to Dk.

In the reference [16], Theorem 3.5, it is proved that the functions {fα
k }N

k=0 constitute
a nodal basis of the AFIFs so that any other AFIF gα (with respect to the scale
vector α ∈ RN and the partition ∆) can be expressed as

(12) gα =
N∑

k=0

xkf
α
k ,

where xk = fα(tk). The family {fα
k }N

k=0 is an orthonormal system with respect to
the form

(13) < p, q >=

N∑

k=0

p(tk)q(tk).

Let Bα
∆ be the set of AFIFs associated to the partition ∆ with scale vector α ∈ RN .

The system {fα
k }N

k=0 is a basis of the linear space Bα
∆.

Remark 2.7. Bα
∆ is a space of finite dimension. As a consequence, if Bα

∆ is
considered as subspace of C(I) with the uniform norm, Bα

∆ is a closed complete
subset and so a Banach space.

In the same way, we define the operator of affine fractal interpolant (AFI) Aα

associated to ∆ and α, Aα : C(I) → C(I) defined for f ∈ C(I) and t ∈ I as

(14) Aα(f)(t) =
N∑

k=0

f(tk)fα
k (t).

The main properties of Aα can be found in ([16]) as:
(i) Aα is linear, bounded and

(15) ∥Aα∥ ≤ 1 + |α|∞
1 − |α|∞

.

(ii) Aα is a projection (Aα = Aα ◦ Aα).

3. Lp-convergence of affine interpolants

In this section, we extend the results of the reference [16] and we study the Lp-
convergence of affine fractal interpolants for 1 ≤ p < +∞. Let us consider f ∈ C(I)
and let f be the piecewise linear and continuous (polygonal) function whose vertices
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6 M. A. NAVASCUÉS, S. K. KATIYAR, AND A. K. B. CHAND

are (tn, f(tn)), where n ∈ N0
N . Let us define the modulus of continuity of g, ωg (δ),

as

(16) ωg(δ) = sup
|ϵ|≤δ

|g(t+ ϵ) − g(t)|,

where t, t+ ϵ are in the domain of g.

Lemma 3.1. If h is the diameter of the partition ∆ : a = t0 < t1 < . . . < tN = b,
that is to say, h = max{tn − tn−1}, for 1 ≤ p ≤ +∞,

(17) ∥f − f∥p ≤ ωf (h)(µ(I))1/p

where µ(I) = b− a.

Proof. It is well known that ∀ t ∈ I,

(18) |f(t) − f(t)| ≤ ωf (h),

obtaining the result for p = +∞. For 1 ≤ p < +∞, using (18),

(19) ∥f − f∥p
p =

∫

I

|f(t) − f(t)|pdt ≤ (ωf (h))pµ(I)

The statement of Lemma 3.1 is an immediate consequence of this inequality. �

Lemma 3.2. Let Aα(f) be the affine interpolant of f with respect to ∆ and the
scale vector α as defined in (14) and let r be the line passing through (t0, f(t0)) and
(tN , f(tN )). For 1 ≤ p ≤ +∞,

(20) ∥Aα(f) − f∥p ≤ |α|∞
1 − |α|∞

∥f − r∥p.

Proof. According to the equation (10) ∀ t ∈ In,

Aα(f)(t) − f(t) = αn (Aα(f) − r) ◦ L−1
n (t),

∥Aα(f) − f∥p
p =

N∑

n=1

∫ tn

tn−1

|αn|p|(Aα(f) − r) ◦ L−1
n (t)|pdt.

The change of variable t̃ = L−1
n (t) provides

∥Aα(f) − f∥p
p =

N∑

n=1

an|αn|p
∫ b

a

|(Aα(f) − r)(t̃)|pdt̃,

(21) ∥Aα(f) − f∥p
p =

N∑

n=1

an|αn|p∥Aα(f) − r∥p
p.

Again,

∥Aα(f) − f∥p
p ≤

N∑

n=1

an|α|p∞∥Aα(f) − r∥p
p.

Since according to (7),
N∑

n=1

an =
N∑

n=1

tn − tn−1

tN − t0
= 1,

one has

(22) ∥Aα(f) − f∥p ≤ |α|∞ ∥Aα(f) − r∥p,
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MULTIVARIATE AFFINE FRACTAL INTERPOLATION 7

∥Aα(f) − f∥p ≤ |α|∞ (∥Aα(f) − f∥p + ∥f − r∥p),

and the result follows for p < +∞. The case p = +∞ is proved in Lemma 4.1 of
[17]. �

With the help of the former lemmas, the next theorem provides Lp-estimates of the
affine interpolation error.

Theorem 3.3. Let Aα(f) be the affine interpolant of f with respect to ∆ and the
scale vector α, let r be the line passing through (t0, f(t0)) and (tN , f(tN )) and f be
the polygonal whose vertices are (tn, f(tn)) where n ∈ N0

N . Then, for 1 ≤ p ≤ +∞,

(23) ∥Aα(f) − f∥p ≤ |α|∞
1 − |α|∞

∥f − r∥p + ωf (h)(µ(I))1/p

Proof. It is a consequence of the triangular inequality

(24) ∥Aα(f) − f∥p ≤ ∥Aα(f) − f∥p + ∥f − f∥p

and Lemmas 3.1-3.2. �

Corollary 3.4. If f ∈ C(I), then

(25) ∥Aα(f) − f∥∞ ≤ ωf (h) +
2|α|∞

1 − |α|∞
∥f∥∞.

where h is the diameter of the partition ∆.

Proof. It is a consequence of the former theorem in the case p = +∞, considering
that

∥f − r∥∞ ≤ ∥f∥∞ + ∥r∥∞ ≤ 2∥f∥∞.

�

Theorem 3.5. (Sufficient condition of convergence). If the scale factors are chosen
so that |α|∞ = O(hq), where q > 0 (or any other infinitesimal of h), then the affine
fractal interpolant of f tends to f in the Lp-norm as h tends to zero.

Proof. It is a consequence of the Theorem 3.3. As f is uniformly continuous,
wf (h) → 0 as h tends to zero ([33]). At the same time f tends to f ([33]) and the
first term goes to zero with α. �

4. Bi-affine fractal interpolation functions

Given a partition ∆1 : a = x0 < x1 < . . . < xM = b of the interval I = [a, b], and a
partition ∆2 : c = y0 < y1 < . . . < yN = d of the interval J = [c, d], let us consider
the grid ∆ = ∆1 × ∆2 of I × J and the data {(xi, yj , zij) : i ∈ N0

M ; j ∈ N0
N}. We

seek an interpolant f̂ : I × J → R such that f̂(xi, yj) = zij for all i, j. We define
a two-dimensional fractal interpolant in the following way. Let α ∈ (−1, 1)M and
β ∈ (−1, 1)N be scale vectors for ∆1 and ∆2 respectively and let us consider the

spaces of affine interpolation Bα
∆1

and Bβ
∆2

with respect to I and J , with nodal

bases {ϕα
i }M

i=0 and {ψβ
j }N

j=0 such that

(26) ϕα
i (xk) = δik and ψα

j (yl) = δjl,

where δik is the delta of Kronecker, δik = 1 if i = k and δik = 0 otherwise (Defini-
tion 2.6).
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8 M. A. NAVASCUÉS, S. K. KATIYAR, AND A. K. B. CHAND

Figure 2. A bi-affine fractal interpolation surface.

Definition 4.1. The space of bi-affine fractal interpolation functions with respect

to the grid ∆ and the scale vectors α and β is the tensor product of Bα
∆1

and Bβ
∆2

,

T αβ
∆ = Bα

∆1
⊗ Bβ

∆2
= span{ϕα

i (x)ψβ
j (y) : i ∈ N0

M ; j ∈ N0
N}

.

Remark 4.2. T αβ
∆ is a linear subspace of C(I × J) whose basis is {ϕα

i (x)ψβ
j (y)}.

Remark 4.3. In the particular case α = β = 0, the basic functions ϕ0
i and ψ0

j are
polygonal (Remark 2.5) and we obtain the space of piecewise bilinear interpolants.

Definition 4.4. The operator of bi-affine fractal interpolation is defined as Dαβ :

C(I × J) → T αβ
∆ expressed by

(27) Dαβ(f)(x, y) =
M∑

i=0

N∑

j=0

f(xi, yj)ϕ
α
i (x)ψβ

j (y)

Definition 4.5. The graph of Dαβ(f) for any f ∈ C(I × J) is a bi-affine fractal
interpolation surface.

The Figure 2 represents a bi-affine fractal interpolation surface on [0, 1] × [0, 1] for
M = 5, N = 4, α = (0.3,−0.3, 0.2,−0.1, 0.2) and β = (0.2,−0.3, 0.3,−0.1).

Definition 4.6. A function f ∈ C(I × J) is Hölder or Lipschitz continuous with
exponent q (f ∈ Lipq) if ∃ K ≥ 0 such that ∀ (x, y), (x′, y′) ∈ I × J

|f(x, y) − f(x′, y′)| ≤ K∥(x, y) − (x′, y′)∥q

The set Lipq is a linear subspace of C(I × J). For a single variable function the
definition is analogous substituting ∥ · ∥ by an absolute value.
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MULTIVARIATE AFFINE FRACTAL INTERPOLATION 9

Lemma 4.7. If f1 : I → R ∈ Lipq and f2 : J → R ∈ Lipq, then f1(x)f2(y) ∈ Lipq.

Proof. It is an easy exercise, bearing in mind that f1, f2 are continuous on compact
intervals and thus bounded. Moreover,

|f1(x)f2(y)−f1(x′)f2(y
′)| ≤ |f1(x)f2(y)−f1(x)f2(y′)|+ |f1(x)f2(y′)−f1(x′)f2(y

′)|.
�

Let us consider the modulus of continuity for functions of several variables:

Definition 4.8. The modulus of continuity of a function f ∈ C(I × J), along the
direction of e ∈ R2 (where ∥e∥ = 1), with respect to the uniform norm, is defined
as

(28) ωf (δ; e) = sup{|f(t+ he) − f(t)| : |h| ≤ δ},
and, independently of the direction,

(29) ωf (δ) = sup{ωf (δ; e); ∥e∥ = 1},
that is to say,

(30) ωf (δ) = sup{|f(x, y) − f(x′, y′)| : ∥(x, y) − (x′, y′)∥ ≤ δ}.
Remark 4.9. We reserve the notation ω for the modulus of functions with one
single variable. In the former definitions we assume, of course, that t, t+he ∈ I×J .

We note some properties of the modulus from ([34]) as (i) ωf (δ) ≤ ωf (δ′) if δ ≤ δ′

(ii) f ∈ Lipq ⇔ ωf (δ) ≤ Kδq. These items are true for functions with single vari-
able as well.

Lemma 4.10. [35] Let g be a FIF defined by (6) where qn are arbitrary but sat-
isfying qn(t) ∈ Lip δn, 0 < δn ≤ 1. Let δ = min{δn : n ∈ NN} then if |α|∞ < hδ,
g ∈ Lip δ.

Lemma 4.11. If the diameter of the partition ∆ is h, and g is an affine fractal
interpolant with respect to ∆ and a scale vector such that |α|∞ < h, then g ∈ Lip1.

Proof. In our case the maps qn are linear, thus qn ∈ Lip1. Let us consider Lemma
4.10 for δn = 1. If |α|∞ < h, then g ∈ Lip1. �

Let hx, hy be defined as hx = max{xi − xi−1 : i ∈ NM}, hy = max{yj − yj−1 : j ∈
NN}.

Proposition 4.12. If |α|∞ < hx and |β|∞ < hy then Dαβ(f) ∈ Lip1.

Proof. According to the former Lemma, ϕα
i and ψβ

j belong to Lip1 and so Dαβ(f)

(Lemma 4.7). �

Let us consider the operator Aα
I of AFIF corresponding to I, ∆1 and α, along with

its analogue Aβ
J with respect to J , ∆2 and β. According to (14), bearing in mind

that {ϕα
i } is a basis of AFIF on I, for g : I → R, Aα

I (g) : I → R is defined as

(31) Aα
I (g)(x) =

M∑

i=0

g(xi)ϕ
α
i (x),
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10 M. A. NAVASCUÉS, S. K. KATIYAR, AND A. K. B. CHAND

and likewise, for g′ : J → R, Aβ
J(g′) : J → R,

(32) Aβ
J(g′)(y) =

N∑

j=0

g′(yj)ψ
β
j (y).

Let us consider the transformations Âα
I , Âβ

J : C(I × J) → C(I × J) defined as

Âα
I (f)(x, y) = Aα

I (fy)(x),

Âβ
J(f)(x, y) = Aβ

J (fx)(y),

where fx(y) = f(x, y) = fy(x), that is to say ((31), (32)),

(33) Âα
I (f)(x, y) =

M∑

i=0

fy(xi)ϕ
α
i (x) =

M∑

i=0

f(xi, y)ϕ
α
i (x).

(34) Âβ
J(f)(x, y) =

N∑

j=0

fx(yj)ψ
β
j (y) =

N∑

j=0

f(x, yj)ψ
β
j (y).

Lemma 4.13. Dαβ = Âα
I ◦ Âβ

J = Âβ
J ◦ Âα

I .

Proof. For instance, using (33) and (34),

Âα
I (Âβ

J (f))(x, y) = Âα
I (

N∑

j=0

f(x, yj)ψ
β
j (y)) =

M∑

i=0

(
N∑

j=0

f(xi, yj)ψ
β
j (y))ϕα

i (x) =
M∑

i=0

N∑

j=0

f(xi, yj)ϕ
α
i (x)ψβ

j (y).

�

Theorem 4.14. Dαβ is linear, bounded and ∥Dαβ∥ ≤
( 1+|α|∞

1−|α|∞
)( 1+|β|∞

1−|β|∞
)
, where

∥ · ∥ represents the norm of the operator with respect to the uniform norm in the
spaces of functions.

Proof. The first property is evident according to the definition (27). Moreover,

∥Âα
I (f)∥∞ = max{|Âα

I (f)(x, y)| : (x, y) ∈ I × J},
= max{|Aα

I (fy)(x)| : (x, y) ∈ I × J},
= max{∥Aα

I (fy)∥∞ : y ∈ J},
≤ ∥Aα

I ∥max{∥fy∥∞ : y ∈ J},
≤ ∥Aα

I ∥∥f∥∞.

Then, according to (15),

∥Âα
I ∥ ≤ ∥Aα

I ∥ ≤ 1 + |α|∞
1 − |α|∞

.

As a consequence of Lemma 4.13,

∥Dαβ∥ ≤ ∥Âα
I ∥∥Âβ

J∥ ≤
(1 + |α|∞
1 − |α|∞

)(1 + |β|∞
1 − |β|∞

)
.

�
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MULTIVARIATE AFFINE FRACTAL INTERPOLATION 11

Theorem 4.15. For all f, g ∈ C(I × J),

∥Dαβ(f) − Dαβ(g)∥∞ ≤
(1 + |α|∞
1 − |α|∞

)(1 + |β|∞
1 − |β|∞

)
∥f − g∥∞.

Proof. It is a straightforward consequence of the former theorem. �

Lemma 4.16. If f, g ∈ C(I × J) agree at the nodes of the grid ∆ = ∆1 × ∆2, then
Dαβ(f) = Dαβ(g).

Proof. It is evident from the definition of Dαβ as defined in (27). �

Theorem 4.17. The operator Dαβ has the following properties:
(i) Dαβ is a projection, Dαβ = Dαβ ◦ Dαβ ,
(ii) Dαβ has a closed range,
(iii) Dαβ is compact.

Proof. Dαβ(f) and f agree at the nodes of the grid, due to the definition of the nodal
bases, and thus Dαβ(Dαβ(f)) = Dαβ(f) according to the former Lemma 4.13. The

range of Dαβ is contained in T αβ
∆ (Definition 4.1) and hence is finite dimensional

and so closed. The finite dimensionality of Dαβ along with the continuity of the
operator imply that the transformation is compact ([36], Theorem 6.5.2). �

According to the definition of Dαβ , the adjoint operator of Dαβ is defined as

(Dαβ)∗ : (T αβ
∆ )∗ → (C(I × J))∗

where ∗ represents the dual in the spaces of functions. This operator is defined as

([37], Definition 6.5.1) (Dαβ)∗(g∗) = g∗ ◦ Dαβ if g∗ ∈ (T αβ
∆ )∗. (Dαβ)∗ is linear and

bounded and, in this case, has the following properties.

Proposition 4.18. (Dαβ)∗ has closed range, is compact and

∥(Dαβ)∗∥ ≤
(1 + |α|∞
1 − |α|∞

)(1 + |β|∞
1 − |β|∞

)
.

Proof. The space (T αβ
∆ )∗ is finite dimensional and thus its image by (Dαβ)∗. As a

consequence, the range is closed. The finite dimensionality of (Dαβ)∗ along with

the continuity of the operator imply that (T αβ
∆ )∗ is compact ([36], Theorem 6.5.2).

In general, for a linear and bounded operator of a Banach space ∥Dαβ∥ = ∥(Dαβ)∗∥
([37], Theorem 6.5.2) and the Theorem 4.14 implies the inequality proposed. �

5. Multidimensional case

The former results can be extended without difficulty to arbitrary dimensions and it
is possible to construct tensor product of affine fractal interpolants for the approx-
imation of functions with several variables f(x1, x2, . . . , xd). The only requirement
is the domain of f to be a hyperinterval I1 × I2 × . . .× Id of an Euclidean space. In
this case, we would consider a d-dimensional grid ∆ = ∆1 × ∆2 × . . .× ∆d defined
by means of partitions on each orthogonal direction. The space of functions would

be the tensor product Bα1

∆1
⊗ . . .⊗ Bαd

∆d
.
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12 M. A. NAVASCUÉS, S. K. KATIYAR, AND A. K. B. CHAND

References

[1] M. F. Barnsley, Fractal functions and interpolation, Constr. Approx. 2(4) (1986) 303–329.

[2] C. J. G. Evertsz, Fractal Geometry of finacial time series, Fractals 3(3) (1995) 609-616.
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