
On the integration of Cid’s radial intermediary

Alberto Abad1

Universidad de Zaragoza, 50009 Zaragoza, Spain.

Manuel Calvo1

Universidad de Zaragoza, 50009 Zaragoza, Spain.

Antonio Elipe1,∗

Universidad de Zaragoza, 50009 Zaragoza, Spain.

Abstract

This paper deals with the integrations of homogeneous quasi-Keplerian Hamil-

tonians, that is, perturbed Kepler Hamiltonians which perturbation is of the

form
∑N
j=2Aj/r

j with Aj constant. Although there are many applications of

these Hamiltonians in Physics, Astronomy and Astrodynamics, we focus our

interest on a particular case in the core of Artificial Satellite Theory, the Cid’s

radial intermediary. For this problem, we integrate the equations of motion in

two different ways, by means of the elliptic P-Weierstrass function and by us-

ing the Krilov-Bogoliubov averaging method to integrate a perturbed harmonic

oscillator. In this case, the resulting solution is given in terms of the classi-

cal Kepler’s equation, with no need of introducing more complex generalized

Kepler’s equation.
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1. Introduction.

Hamiltonians of the type

H =

N∑
j=0

Hj = HK +

N∑
j=2

Aj
rj
, (Aj constant) (1)

are known as quasi-Keplerian Hamiltonians since they are extensions of the

Kepler problem (HK).

The first case we find in the literature was given by Newton in Liber II,

Propositio XLIV of his Philosophiae Naturalis Principia Mathematica ([27]).5

Indeed, a short sentence at the end of Corollarium 2 of Propositio XLV reveals

that Newton considered to explain departures in the orbit of the Moon from a

mere Keplerian orbit as the effect of an additional central repulsion. The result

is that the motion was not a pure ellipse but a precessing ellipse, originating a

rosette-like orbit.10

Manev potential [23, 24]

U = −Gm1m2

r

(
1 +

3G(m1 +m2)

2c2r

)
,

with G the Gaussian constant, m1 and m2 the masses of the two particles

and c light’s speed was introduced to describe the secular motions of Mercury’s

perihelium. Though simple, this work appeared at the same period as Einstein’s

General Relativity and no much attention was paid to it at that time. The use

of Manev-like potential

U = −A
r
− B

r2
(2)

was reintroduced by Hagihara [17] and since then, many papers dealing with

Manev-like potentials have appeared [25, 21, 5, 6, 7].

Potentials of Schwarzschild-type [26] also belong to quasi-Keplerian poten-

tials. They are of the form

U = −A
r
− B

r3
, (3)

With A, and B non negative constants. Although it has been extensively used

in problems related with black holes, it has also many applications in other fiels,

like, for instance, the photogravitational effect on planets or artificial satellites.15
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Another example of quasi-Keplerian problem is the Fock’s potential, that

may be put in the form

U = −µ
r

1 +

3∑
j=0

Aj
rj

 , (4)

made of the Keplerian part plus the relativistic perturbation.

In Artificial Satellite Theory (AST) we find potentials of the above types

when some Lie-transforms are applied to the main-problem, that is, when only

the influence of the oblateness (the second zonal harmonic term in the expan-

sion of the potential) is considered. They are what Deprit [13] dubbed radial20

intermediaries. We will mention later on the ones obtainend by Deprit [13] (of

Manev’s type) and Cid [12] (of Schwazrschild’s type). This type of Hamiltoni-

ans was one of the main goals of Deprit philosophy, how to obtain (helped by

mathematics and computing science) simpler Hamiltonians containing most of

the dynamics of the original Hamiltonian, which in Deprit’s words was Simplify25

or Perish [14]. There are many examples in AST were these intermediaries

have been used. Let us mention for instance a recent work of Lara and Gurfil

[20] where they used Cid’s intermediary in a formation flihgt problem in which

two spacecraft describe neighbouring orbits with the same period so that they

remain close for long time intervals. To simplify the study of this problem30

the above mentioned authors have considered Cid’s intermediary instead of the

general satellite equations.

The main characteristic of problems with quasi-Keplerian potentials is that

they are integrable, since they are problems of one-degree of freedom in r. How-

ever, the solution usually is not easy to find, since in most cases, it is given in35

terms of rather involved expressions of elliptic functions, and from the practi-

cal point of view not very useful due to the high computational cost. Hence

although for low powers in the potential it is feasible to have the solution di-

rectly by quadrature, in practice, alternative solutions are sought. Even for the

classical Kepler problem, which solution does not involve elliptic functions but40

circular ones for negative energies, a direct integration to obtain r = r(t) from
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the first integral of energy does not provide r as a function of time that is the

main interest but the inverse function, t as a function of r. To get explicit ex-

pressions of r in terms of time t, this is usually achieved by the anomalies (true

or eccentric ones) and their relation with the independent variable is expressed45

through Kepler’s equation.

For more general potentials like (3) some authors [20] have studied the in-

tegration of the energy integral with B � A obtaining the time in terms of

an integral of a cubic quadrature that also requires the introduction of elliptic

integrals.50

One way of finding the solution of Hamiltonian (1) is by regularization and

linearization techniques, which, essentially consist of a change of the indepen-

dent variable (t 7→ τ) by the relation dt = g(r) dτ in order the equation of

motion be reduced to a harmonic oscillator. There are two difficulties: Firstly

to ensure the existence and practical calculation of g(r), and secondly to obtain

the explicit relation between t and τ from

dτ

dt
=

1

g(r(t))
.

For instance, Cid, Ferrer and Elipe [10] for the potential

U =

n∑
j=1

aj
rj
,

proposed the regularizing function gn(r) = rn/2
(
rn−2 + α1r

n−3 + · · ·+ αn−2
)−1/2

and the equation of motion is reduced to

d2r

dτ
= 2c1r + c2,

which corresponds to a harmonic oscillator. Note that αj , c1 and c2 are defined

by a set of non linear equations and hence, it is not clear the existence of a

real solution. However, for α1 = 1 and all remaining αj sufficiently small, by

application of the theorem of implicit functions there exists a real solution for

αj , c1 and c2.55

Similar linearizing function was given by Ferrándiz [15] and obtained the

expression of the independent variable (t) in terms of elliptic functions.
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In a recent paper, López, Hautesserres and San-Juan [22] dealt with first

order of perturbation Deprit’s intermediary (we recall, it is of the type (2)), and

after an appropriate change of variables, they end up with a perturbed harmonic60

oscillator. To it, they applied the Krylov-Bogoliubov-Mitropolski perturbation

method and obtained the independent variable (t) by means of a generalized

Kepler’s equation, in the same way as it was done in [3] for the second order

of perturbation Deprit’s intermediary. More recently, the authors [1], with a

similar technique to the one used in this paper, were able to provide the solution65

of Deprit’s intermediary, and determined the physical time t by means of the

classical Kepler’s equation, which solution has been well studied along the years,

with no need of introducing a generalized Kepler’s equation. This last work

motivated the present paper, the obtaining of a solution of Cid’s intermediary

by making use of the classical Kepler’s equation instead of a generalizad Kepler’s70

equation.

The paper is organized as follows: In the next Section we summarize the two

most used intermediaries, namely Deprit’s and Cid’s ones in such a way that

both intermediaries are presented in a unique formula. Since Deprit’s intermedi-

ary was integrated elsewhere [1], we focus our interest only in Cid’s intermediary.75

The integration is carried out in Section 3. By means of an appropriate change

of variables, including the independent variable, we are able to put the equa-

tions of motion in the form of a perturbed harmonic oscillator. Note at this

point that we do not use a classical function linearization transformation like

Sundman’s one [28], but two transformations, one changing the radial distance80

by its inverse and a second one changing the physical time by the polar angle.

Then, we proceed to the integration, firstly in terms of elliptic functions, in par-

ticular the P-Weierstrass funcion (Subsection 3.1), and secondly, by means of

the KB-averaging method [18] (Subsection 3.2). For this averaged solution, we

manage to relate the time and a elliptic-type anomaly by a Kepler’s equation,85

which has been well studied for more than three centuries. It is worth to note

that the KB-averaging method provides some bounds to the obtained solution,

which makes it very convenient for the long term integration.
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2. Radial intermediaries in AST

In the Main Problem of the artificial satellite that describes the motion of90

a satellite around an Earth–like planet taking into account only the J2 effect

(planet’s oblateness) considered a perturbation to the two-body problem. The

use of first order perturbation theories in the case of elliptic type orbits leads to

a perturbation of Kepler’s equation that must be solved to define the position

of the satellite at each required time. The way to reach the perturbed harmonic95

oscillator is not unique; it depends on the type of variables used and also on the

different transformations employed to eliminate some variables which leads to

what is called intermediaries [13].

The Hamiltonian of the main problem in Whittaker (also known as polar-

nodal) variables (r, θ, ν, R,Θ, N) is

Hm =
1

2

(
R2 +

Θ2

r2

)
− µ

r
+ ε

µ

r

(α
r

)2
P2(sin I sin θ), (5)

where ε = J2 is considered a small parameter, α the equatorial radius of the

planet, I the inclination (cos I = N/Θ), µ the gravitational parameter, and100

P2(x). the Legendre polynomial of second degree. Note that we only consider

Θ > 0, hence rectilinear orbits are excluded.

An intermediary is a simplification, in the sense that it is made of an inte-

grable Hamiltonian, the dominant part, whereas the remainder is a perturbation

affecting the intermediary. For details see the seminal Deprit’s paper [13] or the105

most recent article by Lara [19]. The two radial intermediaries most used are

those named after Deprit and Cid. Let us schematically see how to obtain them.

Deprit’s intermediary. It is obtained after the application of two Lie tran-

forms to the Hamiltonian (5), namely the elimination of the parallax [13] and

the elimination of the perigee [4]. The resulting Hamiltonian is

Hd(r,R) =
1

2

(
R2 +

Θ2

r2

)
− µ

r
+ ε

ΦD
r2
, (6)

with

ΦD = Θ2

(
α

p

)2(
1

2
− 3

4
sin2 I

)
=
α2µ2

Θ2

(
1

2
− 3

4
sin2 I

)
,
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and p is the semi-latus rectum.

Cid’s intermediary. The two Lie tranforms to be applied to Hamiltonian (5),

are firstly the elimination of the latitude (θ) and then, the elimination of the

perigee. The result is the Hamiltonian

Hc(r,R) =
1

2

(
R2 +

Θ2

r2

)
− µ

r
+ ε

ΦC
r3
, with ΦC = −µα2

(
1

2
− 3

4
sin2 I

)
.

(7)

For details, the reader is addressed to [12], [11] and [9]. Note that when

comparing ΦC with he expression H0,1 of [9, p. 245] or with [11, Eq. (12)],110

there is a difference on the sign, due that in our work we take ε = J2, but in

the mentioned papers they took ε = −J2. Besides, in those papers, α = 1 since

it was taken as the length unit.

In both cases the two angular variables, (θ, ν), have been eliminated from

the Hamiltonian (5), and therefore their conjugate momenta, (Θ, H), are con-115

stant and the intermediaries only depend on (r,R), hence the name of radial

intermediaries, which we may write in a unique formula as

Hr(r,R) =
1

2

(
R2 +

Θ2

r2

)
− µ

r
+ ε

(
ΦD
r2

+
ΦC
r3

)
, (8)

When ΦC = 0 and ΦD as in Eq. (6) we have Deprit’s intermediary. When

ΦD = 0 and ΦC as in Eq. (7) we have Cid’s one. Note also that ΦD and ΦC are

constant.120

The integration of Deprit’s radial intermediary has been solved in [1]. By

means of some appropriate change of variables, including the independent vari-

able t, the problem is reduced to a Keplerian problem. Integration of Cid’s

intermediary case is more involved and two different ways of obtaining it will

be presented in the next sections.125
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3. Integration of Cid’s radial intermediary

Hamilton’s equations corresponding to the one-dimensional Hamiltonian (7)

can be reduced to the second order differential equation in r = r(t)

d2r

dt2
=

Θ2

r3
− µ

r2
+ 3 ε

Φ

r4
. (9)

where we put Φ = ΦC since we are dealing only with Cid’s intermediary.

Note that since the independent variable t does not explicitly appear in Eq.

(9), the problem has the energy as a first integral

H

(
dr

dt
, r

)
=

1

2

((
dr

dt

)2

+
Θ2

r2

)
− µ

r
+ ε

Φ

r3
= H

(
dr

dt
(t0), r(t0)

)
= h̃ (10)

for all t0 and t.

Next we introduce in Eq. (9) a new independent variable θ = θ(t) along

each solution r = r(t) defined by

dθ

dt
=

Θ

r(t)2
, θ(0) = 0, (11)

so that

θ(t) =

∫ t

0

Θ

r(s)2
ds,

is a monotonic increasing function of t.

Denoting by u = u(θ) the function of the new independent variable θ such

that

u(θ(t)) =
1

r(t)
,

we have
du

dθ
= − 1

Θ

dr

dt
,

d2u

dθ2
= − r

2

Θ2

d2r

dt2
.

Hence in view of (9) we get

d2u

dθ2
= −u+

µ

Θ2
− ε 3Φ

Θ2
u2, (12)

that is the differential equation of a non linear harmonic oscillator.130
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3.1. Solution of Cid’s intermediary by elliptic functions

We consider the general case in which 0 ≤ |ε| � 1. To give an explicit form

of the solution of (12) observe that after multiplication by 2(du/dθ) we have the

first integral (
du

dθ

)2

= −u2 +
2µ

Θ2
u− ε 2Φ

Θ2
u3 +K0 (13)

where K0 is a constant of integration related to the energy (10): h̃ = H(R0; r0)

by

K0 =
2h̃

Θ2
.

Then, we have (
du

dθ

)2

= F (u) ≡ −u2 +
2µ

Θ2
u− ε 2Φ

Θ2
u3 +

2h̃

Θ2
, (14)

Next following the ideas of the unperturbed case ε = 0 (see e.g. [16]) we

introduce instead of h̃ and Θ the alternative constants

ã = − µ

2h̃
,

1

p
=

µ

Θ2
, ẽ =

(
1 +

2h̃Θ2

µ2

)1/2

(15)

that satisfy

p = ã(1− ẽ2). (16)

We also assume that the initial conditions satisfy h̃ < 0 and 0 ≤ ẽ < 1.

Note that ã and ẽ reduce to the semimajor axis and eccentricity respectively

in the case ε = 0 but now the orbit is no longer a conic and does not make sense

to use these names.135

With the notations (15), (16) the function F (u) of Eq. (14) becomes

F (u) = −u2 +
2

p
u− ε 2Φp

µ
u3 − 1− ẽ2

p2
, (17)

Let us introduce the change

v = p u, and ε̃ = −ε2Φ

µ
,

then

F (u) = −u2 +
2

p
u+ ε̃ p u3 − 1− ẽ2

p2
, (18)

9



and the return points are the roots of the cubic equation F (u) = 0, or equiva-

lently the roots of

F̃ (v) = p2 F (u) = ε̃ v3 − v2 + 2 v − (1− ẽ2). (19)

The discriminant ∆ of the cubic polynomial F̃ (x) is

∆ = 4 ẽ2 + 4(1− 9 ẽ2)ε̃− 27(1− ẽ2)2 ε̃2, (20)

and F̃ (x) has three real and distinct real roots if and only if their coefficients

satisfy ∆ > 0. Next, we will assume that the initial conditions in addition of

H0 < 0 satisfy this condition. Note that the case of F̃ (x) with a double root

(∆ = 0) , i.e., circular solutions could be also studied, although this case is not

considered here.140

In this setting the cubic equation F̃ (v) = 0 has three real roots, let us say

vs , vp, and va, such that when ε̃→ 0

vs → ±∞, vp → 1 + ẽ, va → 1− ẽ.

We do not include here an explicit expression of these roots that can be ob-

tained with an algebraic manipulator, e.g. with Mathematica, because it is

quite complicated, but the first order terms of their series expansions in powers

of ε̃ are

vs =
1

ε̃
− 2− (3 + ẽ2) ε̃− 2(5 + 3ẽ2) ε̃2 +O(ε̃3),

va = (1− ẽ)− (1− ẽ)3

2ẽ
ε̃+

(1− ẽ)5(1 + 5ẽ)

8ẽ3
ε̃2 +O(ε̃3)

and vp is obtained from va substituting ẽ by −ẽ.

Now in the (u = p v)-variable, they correspond to the values

us = p vs, up = p vp, ua = p va.

And the oscillatory motions occur for u between ua and up so that the angle Tθ

to go from ua → up → ua is

Tθ = 2

∫ up

ua

du√
F (u)

,
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with F (u) given by Eq. (18). Note that if Tθ is a rational multiple of 2π the

orbit is closed and the motion is periodic.

Note that vs is the spurious root in the sense that appears when the leading

coefficient of F̃ (v) of the cubic term tends to zero and F̃ (v) becomes a second145

order polynomial. The other two roots vp and va , because v = pu = p/r tend

to the corresponding values at perigee and apogee respectively.

Now since F (u) > 0 for u ∈ [ua, up], the equation(
du

dθ

)2

= F (u) (21)

defines θ as a function of u by the integral

θ =

∫ u

ua

F (ξ)−1/2 dξ, for u ∈ [ua, up]. (22)

To give an explicit expression of the inverse function u = u(θ) of the above

Eq. (22) observe that the elliptic Weierstrass function P = P(z;w1, w2) with

periods w1, w2 (see [29, Chapter XX, page 429]) satisfies the differential equation

(
dP
dz

)2

= 4 P3 − g2 P − g3 (23)

where g2, g3 are the so called invariants that depend on w1, w2. Since Eq. (13)

after a trivial change of variable u → α1u + α0 can be written in the form

(23), it is clear that the solution of (22) can be written explicitly in terms of P150

functions.

In fact, an explicit expression can be given by using section 20.6 of [29],

pages 452-453 which proves:

Proposition 1. Let

a0t
4 + 4a1 t

3 + 6a2 t
2 + 4a3 t+ a4 = G(t)

be any quartic polynomial which has no repeated factors. Let its invariants be

g2 = a0a4 − 4a1a3 + 3a22,

g3 = a0a2a4 + 2a1a2a3 − a32 − a0a23 − a1a4.
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If G(a) = 0 then

z =

∫ x

a

G(t)−1/2 dt

defines the function x = x(z) by

x = a+
(1/4)G′(a)

P(z; g2, g3)− (1/24)G′′(a)
. (24)

Now since from (21) (du/dθ)2 = F (u) and the relations v = pu, and F̃ (v) =

p2F (u), we have (
dv

dθ

)2

= F̃ (v) = ε̃v3 − v2 + 2v − (1− ε̃2)

Then we apply Eq. (24) with

a = va, x = v, G = F̃ ,

i.e.,

a0 = 0, a1 = ε̃/4, a2 − 1/6, a3 = 1/2, a4 = −(1− ẽ2),

obtaining

u =
1

p

(
va +

(1/4)F̃ ′(va)

P(θ; g2, g3)− (1/24)F̃ ′′(va)

)
,

with

g2 =
1

12
(1− 6ẽ), g3 =

1

216
(1 + 35ẽ− 54ẽ3),

F̃ ′(va) = 2− 2a+ 3ε̃a2, F̃ ′′(va) = 2(−1 + 3ε̃a),

that is the explicit equation of the orbit u = u(θ) where u = 1/r, the solution

of (14) in terms of the elliptic Weierstrass function P(θ; g2, g3).155

Incidentally, let us mention that another analytic expression of the orbit can

be given by using elliptic Jacobian functions. To this task we recall some results

of elliptic functions.

Proposition 2. Integrals of cubic radicals.

For solving the integral

I(y) =

∫ y

c

dz√
(a− z)(b− z)(z − c)

12



where a, b, an c are real constants with a > b ≥ y > c, in [8, §233, p. 72] the

authors propose the following change of variable z → ξ defined by

sn2(ξ; k) =
z − c
b− c

, k2 =
b− c
a− c

,

i.e.,

z = c+ (b− c) sn2(ξ; k).

Then

I(y) = g w1 = g sn−1(sinψ; k) = g F (ψ; k),

where

g =
2√
a− c

, ψ = am(w1) = arcsin

(√
y − c
b− c

)
, snw1 = sinψ.

Then since by (14)

θ =

∫ u

up

du√
F (u)

=

∫ v

vp

dv√
F̃ (v)

,

with F̃ (v) given by the cubic polynomial (19) that has three real roots vs, va, vp,160

assuming ε̃ > 0, we may use the above change of variables to give an explicit

expression of θ = θ(u). The main drawback here is that we need an analyt-

ical expression of vs, va, vp in terms of initial conditions (or the constants of

integration) from solving the cubic expression.

3.2. Solution of Cid’s Radial Intermediary with an eccentric-type anomaly165

Let us find an approximate solution of Cid’s radial intermediary by using the

Krylov-Bogoliubov averaging method. Such a solution in the case ε = 0 reduces

to the solution of Kepler’s problem in terms of the eccentric anomaly. We start

again with the second order equation in the radius vector (9) and the energy

integral (10). Next, we will convert the mentioned equation of motion (9) into170

another one corresponding to a perturbed harmonic oscillator. A traditional way

in obtaining this goal is by means of the Sundman regularizing transformation

dt = rdE, where E is the eccentric anomaly [28, p. 127]. In our case, we
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shall proceed in a different way, first changing the radial distance, and second,

introducing as independent variable the polar angle θ.175

In this context, we introduce along a solution r = r(t) of (9) a new indepen-

dent variable τ = τ(t) defined by

dτ

dt
=

1

r(t)
> 0, τ(0) = 0, (25)

i.e., τ is a monotonic function of t given by

τ = τ(t) =

∫ t

0

ds

r(s)
.

By the chain rule, the derivatives of r(t) can be written as

dr

dt
=

1

r

dr

dτ
,

d2r

dt2
=

1

r2
d2r

dτ2
− 1

r

(
dr

dt

)2

,

Putting ρ = ρ(τ) so that ρ(τ(t)) = r(t) we have

d2r

dt2
=

1

ρ2
d2ρ

dτ2
− 1

r

(
dr

dt

)2

,

and substituting into (9) and taking into account the energy integral (10) we

have
d2ρ

dτ2
= µ+ 2 h̃ ρ+ ε

Φ

ρ2
. (26)

Therefore, the differential equation satisfied by ρ = ρ(τ) is a perturbed harmonic

oscillator. Hereafter we will assume that the energy h̃ < 0 and then for ε = 0

the orbit is τ–periodic with frequency w =
√
−2h̃.

To approximate the solution of Eq. (26) we use Krylov–Bogoliubov averaging

method [18] that we recall here. For details on this averaging method, see e.g.180

[1].

Proposition 3. The KB averaging method.

Suppose that w > 0 and µ > 0 are given constants and 0 ≤ ε � w a small

parameter. Let ρ = ρ(τ ; ε) be the solution of
d2ρ

dτ2
+ w2ρ = µ+ ε f(ρ),

ρ(0) = ρ0,
dρ

dτ
(0) = ρ′0

(27)
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with f(ρ) a sufficiently smooth function.

Let ρ(τ ; 0) be the solution of (27) corresponding to ε = 0 that is an harmonic

oscillator and can be written in the form

ρ(τ ; 0) =
µ

w2
+A0 cos(wτ +B0)

with A0 and B0 constants of integration given by the initial conditions

µ

w2
+A0 cosB0 = ρ0, −A0 w sinB0 = ρ′0,

or equivalently

A0 = ±
√(

ρ0 −
µ

w2

)2
+
ρ′20
w2

, tanB0 =
ρ′0w

µ− ρ0w2
.

Then, the so called averaged solution of (27) is given by

ρ̃(τ ; ε) =
µ

w2
+ Ã cos(wτ + B̃), (28)

with

Ã = Ã(τ, ε), B̃ = B̃(τ, ε) (29)

satisfying the differential equations

dÃ

dτ
= −

( ε

2πw

)∫ 2π

0

sinϕ f(µ/w2 + Ã cosϕ) dϕ,

dB̃

dτ
= −

(
ε

2πwÃ

)∫ 2π

0

cosϕ f(µ/w2 + Ã cosϕ) dϕ,

(30)

where now Ã is held fixed during the integration in the right hand side of (30).

It has been proved that the averaged solution ρ̃(τ ; ε) defined by (28) and

(30) satisfies

|ρ(τ ; ε)− ρ̃(τ ; ε)| ≤ C1 ε (31)

for τ ∈ [0, C2/ε] for some constants C1, C2 independent of ε.185

Let us apply this averaging method to Eq. (26). In our case f(y) = 1/y2

and, firstly, for |ν| < 1, we compute the quadratures

1

2π

∫ 2π

0

sinϕ

(1 + ν cosϕ)
2 dϕ = 0, and

1

2π

∫ 2π

0

cosϕ

(1 + ν cosϕ)
2 dϕ = Ψ(ν),
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with

Ψ(ν) = − ν

(1− ν2)(3/2)
.

Taking into account these values of the quadratures, and putting

ν =
Ãw2

µ
,

where we assume |ν| < 1, for the first equation of (30), we have

dÃ

dτ
= − ε

2πw

w4

µ2

∫ 2π

0

sinϕ

(1 + ν cosϕ)2
dϕ = 0;

then, Ã = Ã(0) = Ã0 (constant).

For the second equation of (30), there results (see Appendix A)

dB̃

dτ
= − ε

2πwÃ

w4

µ2

∫ 2π

0

cosϕ

(1 + ν cosϕ)2
dϕ = − εw

3

Ãµ2
Ψ(ν), (32)

and therefore, if B̃(0) = B̃0,

B̃(τ, ε) = B̃0 −
εw3

Ãµ2
Ψ(ν) τ.

In conclusion, the averaged solution is

ρ̃(τ ; ε) =
µ

w2
+ Ã0 cos(w̃ τ + B̃0), (33)

with

w̃ = w − εw3

Ã0µ2
Ψ(ν).

Next, to obtain the relation between the regularizing variable τ and the

physical time t, observe that ρ dτ = dt can be written as( µ
w2

+ Ã0 cos(w̃ τ + B̃0)
)
dτ = dt,

and integrating both sides( µ
w2

)
τ +

Ã0

w̃

(
sin(w̃τ + B̃0)− sin B̃0

)
= t. (34)

Introducing instead of τ the new variable

Ẽ = w̃ τ + B̃0,

16



and the constants

ẽ = − Ã0w
2

µ
, ñ =

w2 w̃

µ
, t̃ = − µ

w2w̃
B̃0 −

Ã0

w̃
sin B̃0,

equation (34) becomes

Ẽ − ẽ sin Ẽ = ñ(t− t̃) (35)

that for each physical time value t defines Ẽ and consequently τ = (Ẽ − B̃0)/w̃

that gives the corresponding radius vector.

Note that assuming 0 ≤ ẽ < 1 this is a Kepler’s type equation that can be

solved by means of the standard solvers.190

Taking into account the r2 dθ/dτ = Θ and proceeding as in the Kepler’s

problem to relate the true and the eccentric anomaly, it can be seen that

tan(θ/2) =

√
1− ẽ
1− ẽ

tan(Ẽ/2).

Finally, let us remark that due to the simplicity of the KB averaged solution

the calculation of both position and velocity at any physical time is compu-

tationally equivalent to the same calculation in a pure Kepler’s problem. In

particular for each time one has to solve a Kepler’s equation for which there

exist a well developed collection of methods with good accuracy and efficiency.

Furthermore, since the exact solution of (26), r = ρ(τ, ε) and the averaged

solution r = ρ̃(τ, ε) satisfy

|ρ(τ, ε)− ρ̃(τ, ε)| ≤ C1 ε

for τ ∈ [0, C2/ε) with constants C1, C2 independent of ε, the same bounds

(although with different constants) hold for the radius vectors as functions of

the “eccentric” anomaly (Ẽ) and the physical time (t), in intervals of lengths

C2/ε.

In conclusion, the averaged solution provides a first order approximation195

to the exact solution that holds true in time intervals of size 1/ε and this ac-

curacy may be sufficient for many applications like mission analysis or orbit

design, where fast evaluation is preferred to high accuracy and where long time

propagation is required (see e.g. [2]).
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4. Conclusions200

We present two solutions of the Cid’s radial intermediary problem: An exact

solution of the polar equation of the orbit r = r(θ) in which 1/r is expressed in

terms of Weierstrass P(θ; g2, g3) functions where the invariants g2, g3 depend on

the eccentricity e. An alternative expression of the exact solution is also given

in terms of elliptic Jacobian functions.205

An approximate solution is derived by using the KB-averaging method. We

showed that Cid’s radial intermediary can be reduced to a pure Kepler-type

problem, and hence, there is no need to introduce generalized Kepler equations,

because the time position on the orbit can be obtained from the classical Kepler’s

equation.210

KB-averaging method provides error bounds for the solution in time intervals

of size 1/ε, and it is quite convenient for studies which require long time intervals

because its complexity is similar to use a pure Kepler’s problem.
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Appendix A. The computation of Ψ = Ψ(ν)

First of all observe that the function g1(x; ν) defined by the integral

g1(x; ν) =

∫
dx

(1 + ν cosx)
with |ν| < 1

satisfies that

g2(x; ν) = −∂g1(x; ν)

∂ν
=

∫
cosx dx

(1 + ν cosx)2
(A.1)

which is the integral that appears in Ψ(ν) (see Eq. (30)).305

Now it can be easily obtained that

g1(x; ν) =
2√

1− ν2
arctan

(√
1− ν
1 + ν

tan(x/2)

)

and then from (A.1) to obtain the explicit expression of g2

g2(x; ν) =
−1

1− ν2

[
ν g1(x; ν)− sinx

(1 + ν cosx)

]
.

But the point here is that both functions g1(x; ν) and g2(x; ν) are discontin-

uous of x in the interval [0, 2π] at x = π. Hence Barrow’s rule cannot be applied

in the whole interval and then we should decompose in the two subintervals∫ 2π

0

dx

1 + ν cosx
=

∫ π

0

dx

1 + ν cosx
+

∫ 2π

π

dx

1 + ν cosx
,

But because the 1/(1 + ν cosx) is an even and 2π-periodic function,∫ 2π

0

dx

1 + ν cosx
= 2

∫ π

0

dx

1 + ν cosx
= 2

[
g1(π−; ν)− g1(0; ν)

]
with

g1(π−; ν) = lim
x→π,x<π

g1(x; ν) =
π√

1− ν2
, g1(0; ν) = 0,

then ∫ 2π

0

dx

1 + ν cosx
=

2π√
1− ν2

(A.2)

By the same token, we obtain that∫ 2π

0

cosxdx

(1 + ν cosx)2
= 2[g2(π−; ν)− g2(0; ν)] =

−2πν

(1− ν2)3/2
. (A.3)

that leads easily to the result in Eq. (32).
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