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Abstract—This paper presents a novel state estimator for short-
stroke reluctance actuators, intended for soft-landing control
applications in which the position cannot be measured in real
time. One of the most important contributions regards the system
modeling for the estimator. The discrete state of the hybrid
system is treated as an input. Moreover, the model is simplified to
facilitate the identification of parameters and the implementation
of the estimator. Thus, auxiliary variables are added to the state
vector in order to indirectly account for modeling errors. Another
important contribution is the state estimation approach. It is
based on the Rauch–Tung–Striebel fixed-interval smoother, which
allows refining past data from later observations. Numerous
simulations are performed to analyze and compare the proposal
and several alternatives. In addition, experimental testing is
presented to evaluate and validate the estimator. As the simulated
and experimental analyses demonstrate, the combined effect of
the novel additions results in significantly smaller estimation
errors of position and velocity.

I. INTRODUCTION

Reluctance actuators are a type of electromagnetic devices
in which the positioning is mainly governed by magnetic re-
luctance forces. They are used in a wide range of applications
due to their high force densities and low heat dissipation. For
switch-type electromagnetic devices, small short-stroke single-
coil reluctance actuators are preferable over other solutions
because of their relatively low cost. However, in many cases,
they are discarded because of the strong impacts during
commutations. In consequence, there is a great interest in
achieving soft landing when switching in order to reduce
bouncing and clicking noise, lengthen their service life, and
make them suitable for a wider range of applications.

In numerous publications, soft-landing controllers have been
presented for reluctance actuators. Several authors propose
tracking the position with nonlinear feedback controllers based
on feedback linearization [1], [2], [3], or sliding-mode tech-
niques [4], [5], among other alternatives. To circumvent the
need of measuring or estimating the position in real time,
some works focus on designing open-loop control methods
based on optimal control [6], [7], or flatness-based feedforward
controllers [8]. In order to improve the robustness of the
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controllers against estimation, measurement, modeling or other
errors, some proposals exploit the repetitive operations with
cycle-to-cycle adaptations of feedback [9], open-loop [10] or
feedforward [11], [12], [13] controllers.

Most of the proposed soft-landing solutions use some kind
of position feedback loop. However, measuring the position
during motion is impractical in many scenarios, especially
when using low-cost reluctance actuators. In those cases,
position sensors tend to be too expensive in relation to the de-
vices themselves. Alternatively, the position may be estimated
from other measurements. Different estimation techniques
have been designed for reluctance actuators. One approach
is estimating the inductance of the coil from the electrical
measurements, and then relating it to a certain position using
an inverse model [14] or a look-up table [15]. A similar idea
is calculating the position from an estimated magnetic flux
and a measured current [16]. These techniques are open loop,
and rely solely on the characterization of the inductance—
or magnetic flux—for every position and current. Therefore,
they are very sensitive to any errors in that mapping. Fur-
thermore, generating bijective maps between position and
inductance—or flux—is only possible when neglecting certain
phenomena, e.g. eddy currents and magnetic hysteresis. Then,
some proposals directly account for the motion dynamics
by including a model of the mechanical subsystem. These
are based on traditional state observers, such as sliding-
mode observers [17], or Kalman filter extensions for nonlinear
systems [18], [19]. Nonetheless, these observers still neglect
certain electromagnetic phenomena, most notably the magnetic
hysteresis. Still, there are examples of position estimators that
take into account this complex phenomenon using heuristic
models. For example, [20] proposes an open-loop estimator
based on a Preisach model.

Nevertheless, designing position estimators for low-cost
reluctance actuators is still a very challenging problem. Ideally,
they should be based on a complex and accurately identified
model. However, as their dynamics are very fast (commuta-
tions typically last few milliseconds), the implementation cost
of these complex estimators with a high enough sampling
rate is usually prohibitive. Additionally, simplified models are
much easier to identify. This is especially relevant for cost-
effective manufacturing processes in which each ensemble
of actuators has a substantial unit-to-unit variability, which,
in turn, implies that model parameters must be estimated or
adapted for every single device.

Then, this paper proposes a novel position estimator for
reluctance actuators, introducing three ideas that have not been
previously explored for these devices. First, the state estima-
tion is approached as a smoothing problem of a stochastic
process, in which the state at a given time is refined by
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Fig. 1. Schematic representation of a single-coil reluctance actuator.

using future observation samples. Although smoothers are not
causal, they are more precise than their filter counterparts. Be-
sides, they can be formulated and used in repetitive operations,
as in the cycle-to-cycle learning strategies commonly pro-
posed for many real devices, such as the reluctance actuators
under study. The second main contribution is the purposely
simplified estimator model. On the one hand, it neglects
important electromagnetic phenomena—especially magnetic
hysteresis—to make it simpler and more efficient. On the other
hand, it incorporates auxiliary variables in order to account
for modeling errors during the estimation process. Regarding
the third main contribution of this paper, the estimator model
is designed assuming a novel set of observable variables. In
addition to the electrical signals, commonly considered as the
input and output of the system, the proposed estimator uses
discrete information related to its state, in particular whether
the armature is resting at one of the contacts or moving.

The paper is structured as follows. Section II describes the
actuators through a generalized dynamical model and presents
its adaptation for state estimation. Then, III describes the esti-
mation algorithm. In Section IV, simulated and experimental
results are presented to analyze the proposal and compare it
with other alternatives. Finally, the conclusions are included
in Section V.

II. ACTUATOR DESCRIPTION

The class of actuators under study is schematically repre-
sented in Fig. 1. It is essentially a magnetic core divided into
a mover and a stator. The current through the coil generates a
magnetic flux through the core parts and the air gaps between
them, which results in a magnetic force that tends to attract the
mover toward the stator. Single-coil actuators cannot generate
magnetic forces in the opposite direction, so they require
passive forces to separate the mover from the stator (e.g. elastic
forces).

A. Generalized dynamics

The dynamical system is divided into two coupled parts: the
electromagnetic and the mechanical subsystems. Regarding the
former, the dynamics of the magnetic flux φ is given by the
electrical circuit equation,

υcoil = R ιcoil +N φ̇, (1)

where υcoil is the voltage between the coil terminals, ιcoil is the
current through the coil, R is the internal resistance of the coil,
and N is the number of coil turns. Additionally, the magnetic
flux is related to the current given Ampere’s circuital law. It

states that the integrated magnetic field strength H through a
path δΣ is equal to the current passing through its enclosed
surface Σ. Choosing δΣ as the path of the magnetic flux, as
presented in Fig. 1, the derived relation is∫

δΣgap

H dl +

∫
δΣcore

H dl = N ιcoil + ιeddy, (2)

where the core δΣcore and gap δΣgap paths are integrated
separately. Moreover, note that the total current includes ιeddy,
which represents the net eddy current generated in the core.
To model the eddy currents, it is assumed that the magnetic
flux is uniform within the cross section of the core. This first-
order approximation results in a current proportional to the
time derivative of the magnetic flux,

ιeddy = −keddy φ̇, (3)

in which keddy is a constant that depends on the geometry and
conductivity of the core [21].

With respect to the magnetic field strength H , it can be
directly related to the magnetic flux through Hopkinson’s law,

R =

∫
H dl

φ
=

∫
dl

µA
, (4)

where R is the magnetic reluctance, A is the cross-sectional
area, and µ is the magnetic permeability of the air. Then, for
the air gap, the integral is simplified to∫

δΣgap

H dl = Rg(z)φ. (5)

where Rg is the magnetic reluctance of the gap, which is a
function of the position of the mover z.

On the other hand, the relation between φ and H in the core
presents a hysteresis. Thus, it cannot be accurately modeled
with a direct mapping as in Hopkinson’s law. For now, the
integral expression is simplified to∫

δΣcore

H dl = Hc lc, (6)

where Hc is the average magnetic field strength across the
core length lc.

Then, by substituting equations (1), (3), (5) and (6) into
(2), the current ιcoil is expressed as a function of the other
variables,

ιcoil = fι(z, φ,Hc, υcoil)

=
N (Rg(z)φ+Hc lc)

N2 +Rkeddy
+

keddy

N2 +Rkeddy
υcoil. (7)

The input of the dynamical system is the voltage υcoil,
whereas z, φ and Hc are variables whose dynamics should
be defined. First, the magnetic flux derivative can be obtained
directly from (1) and (7),

φ̇ = fφ(z, φ,Hc, u) =
υcoil −Rfι(·)

N
. (8)

Secondly, in order to characterize the dynamics of the
magnetic field strength in the core, magnetic hysteresis and
saturation should be taken into account. Due to its complexity,
magnetic hysteresis is most commonly ignored in this class
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q = 2 (motion)

ż = v

v̇ = fv(z, v, φ)

q = 1 (lower limit)

ż = 0

v̇ = 0

q = 3 (upper limit)

ż = 0

v̇ = 0

z = zmax ∧ v > 0

⇒ v+ = 0

z = zmin ∧ v < 0

⇒ v+ = 0

fv(x) > 0 fv(x) < 0

Fig. 2. Diagram of the hybrid automaton modeling the mechanical system.

of actuators, even if its effect is not negligible. Still, there
are some proposals for integrating magnetic hysteresis models
into the dynamic system of reluctance actuators [22], [23].
Following the approach from [23], the differential permeability
µ∆ = dBc/dHc—which provides the relation between the
core magnetic flux density Bc and field strength Hc—can
be expressed as a piecewise function of φ, Hc and φ̇ (with
different behavior for increasing and decreasing magnetic
flux),

µ∆(φ,Hc, φ̇) =

{
µ+

∆(Hc, φ), if φ̇ ≥ 0

µ−∆(Hc, φ), if φ̇ < 0
. (9)

Then, the differential equation of Hc is defined following
the same form as (8),

Ḣc = fHc
(z, φ,Hc, u) =

fφ(·)
Ac µ∆

(
φ,Hc, fφ(·)

) . (10)

Regarding the mechanical subsystem, there are two state
variables: the mover position z and its velocity v. The subsys-
tem is modeled as a mass-spring-damper in which the external
force is the magnetic force. Then, the differential equation of
the velocity is defined as follows:

v̇ = fv(z, v, φ) =
1

m

(
ksp (zsp−z)−cf v+Fmag(z, φ)

)
, (11)

being ksp the spring stiffness, zsp the spring resting position, cf
the damping coefficient, and Fmag the magnetic force, which
is a function of the position and magnetic flux [24],

Fmag(z, φ) = −1

2
R′g(z)φ2, R′g(z) =

∂Rg(z)

∂z
. (12)

Note that the stroke of these actuators is limited. Thus, the
position dynamics must be static when reaching the lower
(z = zmin) or upper limit (z = zmax). This is achieved by
representing the dynamics of z and v with a hybrid automaton,
as depicted in Fig. 2. The discrete state is q ∈ {1, 2, 3}, which
designates the dynamic mode of the system. Each transition
between two modes is accompanied by its guard condition. In
the case of transitioning to q = 1 or q = 3, there is also a
reset function: v+ = 0.

B. Estimator model

The previous dynamical model is very accurate. It is also
computationally efficient compared to other models of similar
accuracy (i.e. including magnetic hysteresis, saturation and
eddy currents). However, it is still quite complex, with many

parameters that need to be identified. Thus, introducing some
simplifications to the model gives relevant advantages for the
position estimation.

To reduce the number of parameters, auxiliary parameters
and variables are used. First, the position z and velocity v are
normalized,

z∗ =
z − zmin

lz
, v∗ =

v

lz
, (13)

where lz = zmax − zmin. Thus, the new position variable
is bounded such that z∗ ∈ [0, 1]. Secondly, the flux linkage
λ = N φ is used as the third state variable. Then, the current
function is simplified by neglecting both magnetic hysteresis
and eddy currents,

ιcoil = f∗ι (z∗, λ, eι) =
(
R∗g(z∗) +R∗c(λ)

)
λ+ eι, (14)

where the auxiliary functionR∗g(z∗) = Rg(z)/N2 is an scaled
reluctance of the gap and R∗c(λ) is an scaled reluctance of the
core. It is modeled based on Fröhlich–Kennelly relation, which
takes into account the magnetic saturation,

R∗c(λ) =
R∗c,0

1− λ/λsat
, (15)

where the constant R∗c,0 is the value of the scaled reluctance
when λ = 0, and λsat is the saturation value of λ. Note
also the addition of eι, which considers the modeling errors
of the current function. This was previously proposed for an
Unscented Kalman Filter [19].

On the other hand, the acceleration is given by the following
function,

v̇∗ = f∗v (z, v, λ, eF )

=
1

m∗

(
k∗sp (z∗sp − z)− c∗f v∗ −

1

2
R′g
∗
(z∗)λ2 + eF

)
,

(16)

where the auxiliary parameters and functions are

m∗ = mlz
2, k∗sp = ksp lz

2, c∗f = cf lz
2,

z∗sp = (zsp − zmin)/lz, R′g
∗
(z∗) = R′g(z) lz/N

2,
(17)

and the variable eF is another error term. Note that f∗v is only
valid during motion, so eF acts as the normal force when the
mover is in contact with one of the limits. It is also useful for
compensating for modeling errors.

Given the newly defined functions, we express the dynamic
system with a discrete-time nonlinear model,{

xk+1 = f(xk,uk) +wk,

yk = h(xk,uk) + νk,
(18)

where xk, uk and yk are the state, input and output vectors;
wk and νk are the process and observation noise vectors;
and f and h are the transition and observation functions. The
noise terms wk and νk are assumed to be independent zero-
mean random vectors. Note that the errors eι and eF may
be considered part of those noise terms, but treating them as
white noise is a very poor approximation. Instead, they are
also incorporated into the state vector,

xk =
[
z∗k z∗k−1 λk eι,k eF,k

]T
. (19)
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Note also that the previous position z∗k−1 replaces the velocity
as the second state variable. This allows the numerical reso-
lution of the motion dynamics using Verlet integration [25].

Moreover, the addition of errors in the state vector may seem
comparable to an error-state formulation of a Kalman filter,
most commonly applied to inertial navigation systems [26].
However, there are very important differences between that
state-of-the-art formulation and the proposal. The proposed
auxiliary state variables account for errors in the transition
and output functions, instead of errors in the nominal state.
While the state error formulation is intended to mitigate some
linearization issues of nonlinear extensions of Kalman filters,
the proposed function errors are formulated to circumvent
issues caused by modeling simplifications and inaccuracies.

Then, for clarity purposes, the components of f and wk are
represented based on their corresponding state variables,

f(·) =


fz∗(z

∗
k, z
∗
k−1, λk, eF,k, qk)
fz∗k−1

(z∗k)

fλ(z∗k, λk, eι,k, υcoil,k)
feι(eι,k)
feF (eF,k)

, wk =


wz∗,k
wz∗k−1,k

wλ,k
weι,k
weF ,k

. (20)

To improve the accuracy of the estimator, we propose to
use not only the voltage and current, but also the contact
information. In that case, the input of the estimator may consist
of the voltage and the discrete state of the hybrid automaton
(see Fig. 2),

uk =
[
υcoil,k qk

]T
. (21)

The first element of the state function f corresponds to the
position transition. The discretization is performed using Verlet
integration where, in the case of qk = 1 or qk = 3, z∗k and v∗k
are replaced by their real values. Consequently, fz∗ is defined
as a piece-wise function,

fz∗(·) =


0 + Ts

2 f∗v (0, 0, λk, eF,k), if qk = 1

2 z∗k − z∗k−1

+ Ts
2 f∗v (z∗k, v

∗
k, λk, eF,k), if qk = 2

1 + Ts
2 f∗v (1, 0, λk, eF,k), if qk = 3

, (22)

where Ts is the sampling period. Note that, although the
velocity is not treated as a state variable in this discrete form,
it is still required for computing the acceleration by means of
the function f∗v (16). Thus, the velocity v∗k is calculated as the
average velocity in the previous time interval,

v∗k =
z∗k − z∗k−1

Ts
. (23)

Note that, as the modeling and discretization errors are ac-
counted for by eF,k, there is no need for an additional process
noise, i.e. wz∗,k = 0, for all k.

The main advantage of the chosen integration method is its
simplicity. Specifically, the transition of the previous position
is trivial,

fz∗k−1
(·) = z∗k, wz∗k−1,k

= 0, ∀k. (24)

The third element of the transition function (f ) of the
corresponds to the flux linkage, which is defined using the
forward Euler method,

fλ(·) = λk + Ts

(
υcoil,k +Rf∗ι (z∗k, λk, eι,k)

)
. (25)

Analogously to the continuous model, the current is not treated
as a state variable, but its value is required for the transition of
the flux linkage and calculated via the auxiliary function f∗ι .
While the modeling errors in the current function are already
considered through the state variable eι,k, the truncation errors
of the transition function fλ are accounted for by the process
noise wλ,k 6= 0.

Regarding the auxiliary variables eι,k and eF,k, there is
no prior information about their dynamics. The best possible
assumption for a generalized case, without requiring more
model parameters or state variables, is that their expectations
are equal to the previous ones,

feι(·) = eι,k, feF (·) = eF,k. (26)

Then, the errors introduced by this assumption are accounted
for by their process noises weι,k, weF ,k 6= 0.

The estimator requires comparing the output of the model
with the measured one, and then correcting the state vector
accordingly. During motion (qk = 2), the only output is the
current. On the other hand, if qk = 1 or qk = 3, the contact
information can also be exploited to correct the estimated
position. Thus, the observed output vector is

yk =


[
ιcoil,k 0

]T
, if qk = 1

ιcoil,k, if qk = 2[
ιcoil,k 1

]T
, if qk = 3

. (27)

Correspondingly, the model-based output function must be

h(xk,uk) =

{
f∗ι (·), if qk = 2[
f∗ι (·) z∗k

]T
, if qk 6= 2

, (28)

and the observation noise must be

νk =

{
νι,k, if qk = 2[
νι,k 0

]T
, if qk 6= 2

, (29)

where νι,k is the observation error of the current ιcoil (not to
be confused with the modeling error eι,k). It is noteworthy that
the dimension of the output terms depends on the input. Apart
from that unconventional aspect, it is a standard discrete-time
model that can be used to design estimators.

III. STATE ESTIMATOR

Bayesian theory provides a powerful tool for the state esti-
mation of stochastic systems. In particular, Bayesian smooth-
ing is a class of recursive Bayesian estimation in which the
state at a given time is reconstructed by using future obser-
vation samples [27]. In order to rigorously solve a smoothing
problem, the complete probability distributions of the state
may be recursively calculated through numerical integration.
However, this approach is generally intractable in control ap-
plications. Therefore, it is necessary to simplify the Bayesian
estimation problem and reduce its computational complexity.
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Specifically, we propose to use an extension of the Rauch–
Tung–Striebel smoother [28] for nonlinear systems. It is a
fixed-interval smoother, suitable for estimating the switching
operations of reluctance actuators because their duration is
bounded. This estimator consists of two processes: a forward
and a backward recursion.

A. Forward pass
The first part of the algorithm is equivalent to an extended

Kalman Filter (EKF). It is arguably the most popular stochastic
observer for nonlinear systems, due to its simplicity and
performance. It may be interpreted as a simplified version
of the Bayesian filtering technique, in which the probability
distributions are assumed to be Gaussian,

xk|u0,y0, . . . , uk,yk ≈ xEKF
k|k ∼ N

(
x̂k|k, Pk|k

)
, (30)

and the transition and output functions are linearized,

Fk =
∂f

∂x

∣∣∣∣
x̂k−1|k−1,uk−1

, Hk =
∂h

∂x

∣∣∣∣
x̄k|k−1,uk

. (31)

The partial derivatives can be solved symbolically, but
note that the derived expressions depend on the scaled gap
reluctance R∗g, and its derivatives R′g

∗ and R′′g
∗. If R∗g is

approximated with an algebraic expression, it must be twice
differentiable with respect to the position z∗. If, instead, look-
up tables are used, the derivatives must be included.

The algorithm for the forward filter is divided into three
steps: prediction (a priori), update (a posteriori) and projection
(to guarantee state constraints).
1) Prediction. The kth a priori state estimation (x̄k|k−1,
Pk|k−1) is derived from the (k−1)th projected a posteriori
state estimation (x̂k−1|k−1, Pk−1|k−1),

x̄k|k−1 = f(x̂k−1|k−1,uk−1), (32)

Pk|k−1 = Fk Pk−1|k−1 Fk
T +Q, (33)

being Q the covariance of the process noise wk.
2) Update. The a priori prediction is refined by taking into

account the observation yk. The updated estimation is the
a posteriori state (x̄k|k, Pk|k),

x̄k|k = x̄k|k−1 +Kk

(
yk − h(x̄k|k−1,uk)

)
, (34)

Pk|k = Pk|k−1 −KkHk Pk|k−1, (35)

where Kk is the Kalman gain. It is defined as

Kk = Pk|k−1Hk
T
(
Hk Pk|k−1Hk

T +Rk

)−1
, (36)

being Rk the covariance of the observation noise νk. Note
that Rk ∈ R1×1 or Rk ∈ R2×2, depending on qk (29).

3) Projection. The state estimation must be corrected when
it is outside bounds. There are multiple ways of enforcing
linear constraints in Kalman filters [29]. For this problem,
a very simple and effective approach is to project the
mean state vector based on its covariance. To obtain
the maximum likelihood estimate of the state subject to
inequality state constraints, the problem is formulated as

x̂k|k = arg min
xk

(xk − x̄k|k)TPk|k
−1(xk − x̄k|k) (37a)

subject to Axk ≤ b. (37b)

In general, this is a quadratic programming problem. In our
case, only the position needs to be constrained between 0
and 1, which means that

A =

[
−1 0 0 0 0
+1 0 0 0 0

]
, b =

[
0
1

]
. (38)

This is easily solved because both constraints—
corresponding to each row ofA and b—cannot be active at
the same time. Thus, it can be reformulated as an equality
constrained quadratic programming problem,

x̂k|k = arg min
xk

(xk − x̄k|k)TPk|k
−1(xk − x̄k|k) (39a)

subject toAk xk = bk, (39b)

where Ak and bk correspond to the active constraint,

Ak =


[
− 1 0 0 0 0

]
, if z̄∗k|k < 0

00×5, if 0 ≤ z̄∗k|k ≤ 1[
+ 1 0 0 0 0

]
, if z̄∗k|k > 1

, (40)

bk =


0, if z̄∗k|k < 0

00×1, if 0 ≤ z̄∗k|k ≤ 1

1, if z̄∗k|k > 1

, (41)

where the position z̄∗k|k is the first element of the state
vector x̄k|k. The problem can be solved algebraically,
resulting in the following projected state estimation:

x̂k|k = x̄k|k

− Pk|kAk
T
(
Ak Pk|kAk

T
)−1

(Ak x̄k|k − bk). (42)

To simplify the algorithm and facilitate its implementation,
the covariance matrix is not updated after the projection.
It is a conservative approximation because the updated
covariance matrix would be smaller.

B. Backward pass

The complete algorithm is the Extended Rauch–Tung–
Striebel Smoother (ERTSS). Equivalently to the EKF, the
ERTSS is an approximated version of the recursive Bayesian
smoothing [30], in which the transition function is linearized
(31), and the probability distributions are assumed to be
Gaussian,

xk|u0,y0, . . . , ukf ,ykf ≈ xERTSS
k|kf ∼ N (x̂k|kf ,Pk|kf ),

(43)
where kf represents the final sample of the smoothed interval.

The algorithm includes the previous steps from the forward
pass and two additional ones that constitute the backward pass:
4) Smoothing: As the chosen notation already suggests, the

filtered estimation at k = kf is equal to the smoothed
one (x̂kf |kf , Pkf |kf ). Then, starting at kf , past states are
smoothed through a backwards recursion,

x̄k|kf = x̂k|k +Gk (x̂k+1|kf − x̄k+1|k), (44)

Pk|kf = Pk|k +Gk (Pk+1|kf − Pk+1|k)Gk
T, (45)

where Gk is the smoother gain,

Gk = Pk|k Fk+1
TPk+1|k

−1. (46)
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(a) Schematic representation. (b) Photo.

Fig. 3. Plunger-type solenoid valve used to identify the model parameters.

TABLE I
PARAMETERS OF THE COMPLETE MODEL

Parameter Value

m 1.6× 10−3 kg
ksp 61.8 N/m
zsp 0.0192 m
cf 0.8 N s/m
zmin 4× 10−4 m
zmax 1.4× 10−3 m
N 1200
R 48 Ω

Parameter Value

keddy 1630 Ω−1

lc 0.055 m
Ac 1.26× 10−5 m2

Msat 1.45× 106 A/m
b 2.45× 10−3 T
c 0.736
κ 942 A/m
α 3.66× 10−3

Notice that this process requires the state estimates from
the forward pass for all k, so they should be stored or
recalculated.

5) Projection: Equivalently to the third step in the EKF, the
smoothed state estimation is projected to satisfy the state
constraints. The reasoning is equivalent, so this is per-
formed using (40) to (42), but replacing x̂k|k, x̄k|k, Pk|k
and z̄∗k|k with x̂k|kf , x̄k|kf , Pk|kf and z̄∗k|kf , respectively.

The purpose of the smoothing backward recursion is to
correct past estimates. Note that it must be computed offline,
so it cannot be directly used for feedback control. Nonetheless,
it can be exploited for controlling switch-type actuators due to
the repetitive operations. Some possible applications are cyclic
adaptation strategies of real-time controllers or observers.

IV. ANALYSES

In this section, the performance of the proposed estimator
is analyzed via simulations.

A. Reference simulations

The continuous-time model presented in Section II-A in-
cludes the most important electromagnetic phenomena. As
shown in [23], it matches real measurements with high ac-
curacy. Thus it is considered the reference, emulating the
real system, for analysis purposes. The parameters have been
estimated through an identification process of a linear travel
solenoid valve (see Fig. 3), and their values are presented in
Table I. Furthermore, the gap reluctance and its derivatives for
different positions are stored in look-up tables, and depicted
in Fig. 4.

In Fig. 5, we present an ideal solution of the soft-landing
problem for a making (closing) and breaking (opening) cycle,
based on the corresponding position trajectories. Note that, the

Fig. 4. Gap reluctance and its derivative with respect to the position.

TABLE II
PARAMETERS OF THE REDUCED MODEL

Parameter Value

m∗ 1.6× 10−9 kg m2

k∗sp 6.18× 10−8 N m

z∗sp 18.8

Parameter Value

c∗f 8× 10−7 N m s
R∗

c,0 1.75 H−1

λsat 0.0238 Wb

trajectory design is a critical aspect of the soft-landing control
of reluctance actuators. Some works focus on finding feasible
solutions [8], [31], [32], while others propose to optimize
some particular variables, e.g. transition time [6], mean power
consumption [33], or expected contact velocities [7]. In this
paper, the position trajectories for both operations are designed
with fifth-degree polynomials (see Fig. 5a), but other solutions
may also be valid. As boundary conditions the initial and final
positions are set to zmax or zmin (depending on the operation
type), while the velocities and accelerations are set to zero.
The motion duration for each operation is set to 4 ms. Then,
Figs. 5b, 5d and 5c depict the required magnetic flux, coil
voltage and coil current signals, respectively, for moving the
actuator as desired. Note that there is an interval before the
start of motion (at t = 1 ms and t = 11 ms) that allows the coil
to energize or de-energize until the magnetic force manages
to compensate the spring force. Then, after the landing (at
t = 5 ms and t = 15 ms), the voltage is set to a constant
value which guarantees that the mover is fixed at the desired
position. Finally, Fig. 5e shows the φ–Hc hysteresis curve. As
can be seen, this phenomenon is not negligible. The lack of
a proper hysteresis model in the estimator model will be a
source of estimation errors even when the rest of parameters
fit perfectly the ones from the reference model.

The simulations are used to set the estimator constants and
analyze the proposal. The parameters of the estimator model
(Section II-B) are fitted to the simulated signals and presented
in Table II. Moreover, the state vector of the discretized
estimator model xk (19) is derived as a reference for analysis
purposes. To this end, the signals are discretized such that
tk+1 = tk + Ts, where the chosen sampling period is set as
Ts = 20 µs. Then, the estimator state variables are calculated
based on their definitions,

z∗k = (z(tk)− zmin)/(zmax − zmin), (47a)
λk = N φ(tk), (47b)
eι,k = ιcoil,k − f∗ι (z∗k, λk, 0, υcoil,k), (47c)

eF,k = m∗
(
z∗k+1 − fz∗

(
z∗k, z

∗
k−1, λ, 0, qk

))
. (47d)
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(a) Position.

(b) Magnetic flux.

(c) Voltage (input).

(d) Current (output).

(e) Magnetic flux with respect to the magnetic field strength in the
core.

Fig. 5. Simulation results using the complete model. The wide lines
correspond to the motion intervals.

B. Observability analysis

In order to check the suitability of the proposed estimator
model and position trajectory, an observability analysis is
proposed and applied. For this type of analysis, the estimator
model is treated as deterministic, i.e. wk = 0 and νk = 0 for
all k.

Consider that the intention is to check if a state vector at
k = i is observable by measuring the outputs yi to yj , where
j ≥ i. Note that, when the armature is resting in one of the

limits, it is impossible to estimate the second state variable—
i.e. the previous position z∗i−1—from yi and any number of
subsequent outputs. Nonetheless, in practice, it is not an issue
because the second state variable is only necessary during
motion. In any case, to analyze the observability of the entire
state vector, the previous position z∗k−1 is considered an output
that is available for the observation of the state vector xi.
Taking that into consideration, the vector of available outputs
is defined as follows:

Y j
i =

{[
yi

T yi+1
T · · · yjT

]T
, if qi−1 = 2[

z∗i−1 yi
T yi+1

T · · · yjT
]T
, if qi−1 6= 2

,

(48)
where each output yk can be expressed in terms of the state
vector xk, which, in turn, can be expressed in terms of xi and
a number of consecutive inputs,

yk = h
(
f
(
f
(
· · · f(xi,ui) . . . ,uk−2

)
,uk−1

)
,uk

)
. (49)

Having defined the vector output Y n
i in terms of the state

vector xi, an observability matrix can be computed as its
Jacobian,

Oj
i = Oj

i (xi,ui,ui+1, . . . ,uj) =
∂Y j

i

∂xi

∣∣∣∣∣
xi

. (50)

If the rank of the observability matrix Oj
i is equal to the

dimension of the state vector, it is observable. Note that, in
theory, j may be arbitrarily large. In any case, it is interesting
to determine the minimum number of measurements necessary
to ensure observability of a certain state. Formally, we define
it as follows:

∆kobs = min(j − i+ 1) such that rank(Oj
i ) = 5. (51)

It represents the number of consecutive current measurements
required to estimate the state vector xi. It can be computed
for any state vector and set of consecutive inputs and out-
puts. In particular, for the reference state, inputs and outputs
(Section IV-A), ∆kobs is calculated for every sampled instant
and depicted in Fig. 6. When the actuator rests in the lower
or upper limit, only two current measurements are required
for estimating the state, as the position is already known.
During motion, on the other hand, five current measurements
are required, coinciding with the state vector dimension.
There are transitions in which only some outputs include the
position due to being in the lower or upper limit and, thus,
∆kobs is between two and five. Notice that there is also a
sample for each switching operation in which the state is not
observable, i.e. ∆kobs is infinite. It corresponds to the first
sample after the impact or landing. The reason is that the
second state variable, the previous position z∗k−1, cannot be
inferred from electrical current measurements after the contact
instant. Nevertheless, pragmatically, this is not problematic
because it can be estimated from previous data.

C. Model perturbation and specification

For the following analyses, the system stochasticity is con-
sidered. Specifically, numerous simulations are performed, in
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Fig. 6. Minimum number of consecutive samples to ensure observability.

which the model parameters for the estimators are perturbed.
Consider p to be the vector of perturbed parameters,

p =
[
m∗ k∗sp z∗sp c∗f R∗c,0 λsat mean(R∗g) mean(R′g

∗
)
]T
.

(52)
Note that the average of both R∗g and its derivative is

included. Formally, their mean values are calculated with
respect to the position,

mean(R∗g)=

∫ 1

0

R∗g(z∗) dz∗, mean(R′g
∗
)=

∫ 1

0

R′g
∗
(z∗) dz∗.

(53)
Then, the parameter values are perturbed in each run.

Formally,
pj = pnom

j (1 + εj), (54)

where pj denotes the jth component of p, pnom
j is the

corresponding nominal parameter values and εj is the relative
error. On the one hand, the nominal parameters are fitted to the
simulation results from Section IV-A and presented in Table II.
On the other hand, every relative error is randomly selected in
each run according to a continuous uniform probability density
distribution with an interval length ∆ε,

εj ∼ unif
(
1−∆ε/2, 1 + ∆ε/2

)
. (55)

The errors ε7 and ε8 serve to modify the mean values of
R∗g and R′g

∗ (52). Then, with some simple manipulations, it
is possible to derive their perturbed values for any position,

R∗g(z∗) = R∗g
nom(z∗) + mean

(
R∗g

nom) ε7
+ (z∗ − 1/2) mean

(
R′g
∗nom)

ε8, (56)

R′g
∗
(z∗) = R′g

∗nom
(z∗) + mean

(
R′g
∗nom)

ε8. (57)

Apart from the model parameters, the estimators also require
setting the covariance of the process and observation noises.
On the one hand, the observation covariance Rk (36) depends
only on the measurement errors of the current. To emulate
this type of error, white noise is added to the current ιcoil

every sample of every run, with a standard deviation of σi =
2 × 10−3 A. Then, according to (29), the covariance Rk is
defined as

Rk =


σι

2, if qk = 2[
σι

2 0

0 0

]
, if qk 6= 2

. (58)

On the other hand, the process noise covariance Q (33)
is highly dependent on the errors of the parameters, so it is
calculated for each ∆ε. First, based on the definition of the
state transition (18), each process noise is determined as

wn
k = xk+1 − fn(xk,uk), (59)

where xk+1 is the reference state vector (47) and
n ∈ {1, 2, . . . , Nsim} represents the distinction between sim-
ulation runs of the Monte Carlo method, in which the model
parameters are perturbed. For this and the following sections,
the number of simulation runs is set as Nsim = 10 000. Then,
as the process noise is assumed to be zero-mean, its covariance
is defined as

Q =
1

Nsim (kf + 1)

Nsim∑
n=1

kf∑
k=0

wn
k

(
wn
k

)T
. (60)

As explained in Section II-B, the first two components of the
process noise vector are zero by definition. Moreover, in order
to further simplify the matrix, the process noises are assumed
uncorrelated, so every entry outside the diagonal is set to zero.
Thus, the number of nonzero elements in the matrix is reduced
to only three. Note that this is advantageous for the covariance
estimation and fine-tuning in real applications.

Furthermore, the initial state is initialized in each simu-
lation. It is assumed that both current and flux are zero at
the start, so eι,0 is also zero. As the coil is de-energized,
the mover is initially in the upper limit, i.e. z∗0 = 1. The
initial acceleration is zero, so eF,0 must compensate exactly
the estimated force of the spring (based on the perturbed
parameters k∗sp and z∗sp). Ultimately, the mean state and
covariance is initialized as

x̂0|0 =
[
1 1 0 0 −k∗sp (z∗sp − 1)

]T
, P0|0 = 0. (61)

Note that the initial magnetic flux is not exactly zero in the
reference (see Fig. 5e). Technically, its initial variance should
be positive to account for that discrepancy. Nonetheless, for
the sake of simplicity, we have decided to set it to zero.

D. Consistency analysis

The proposed estimator is a suboptimal extension of a linear
fixed-interval smoother (see Section III). In addition, several
model simplifications have been proposed (see Sections II-B
and IV-C) to further facilitate its initialization and implemen-
tation. Due to these reasons, the consistency of the estimated
covariance matrices cannot be theoretically guaranteed.

A consistency analysis is provided based on the presented
Monte Carlo method, in which the interval length of the
parameter errors is set to ∆ε = 1 %. The position from Fig. 5a
is estimated by using the electrical signals from Figs. 5c
and 5d. The chosen sampling period is Ts = 20 µs. As only
the motion operations are of interest, the smoothing algorithm
is applied only on those intervals. In that regard, for each
operation, the last motion sample (in which qk = 2) is treated
as kf−1, marking the start of the backwards smoothing. Then,
the algorithm stops when qk 6= 2.

The normalized estimation error squared (NEES) of the
entire state vector is calculated for every simulation run and
sample k as follows:

NEES =
(
x̂k|kf − xk

)T
Pk|kf

−1
(
x̂k|kf − xk

)
, (62)

where x̂k|kf and Pk|kf are the estimated expectation and
covariance of the state vector, while xk is the corresponding
reference vector (47).
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(a) NEES of xk (making). (b) NEES of xk (breaking).

Fig. 7. Mean and 5–95th percentile intervals of the normalized estimation
errors squared.

The mean and 5–95th percentile intervals of NEES are
represented in Fig. 7 as functions of time for the making and
breaking operations. Note that, under the initial hypothesis that
the estimation errors are realizations of a zero-mean random
vector, NEES should be chi-square distributed with 5 degrees
of freedom. Fittingly, 89.56 % of all values are inside the 90 %
confidence interval, which is approximately [1.145, 11.070].
Moreover, the overall average of NEES is 4.9477, very close
to its expectation, which is exactly 5. In that regard, the
estimation errors are very consistent with the true covariance
matrix. Nonetheless, there is a noticeable dependency on time
and type of operation. The NEES are considerably larger in
average at the start of each operation, i.e. the estimations are
initially overconfident.

Another useful metric for analyzing the consistency is the
normalized estimation error (NEE) of each state variable xk,i.
Formally, it is calculated for each simulation run and sample
k as

NEEi =
(
x̂k|kf ,i − xk,i

)
/
√
Pk|kf ,ii. (63)

The mean and 5–95th percentile intervals of every NEE are
represented in Fig. 8 for both operation types. In theory,
NEE values should be consistent with a standard normal
distribution. However, there is a noteworthy time-dependent
bias for each state variable, as the mean values of NEE
indicate. Furthermore, focusing on the position estimations,
most NEE1 values are inside the 90 % confidence interval for
a standard normal random variable, which is approximately
[−1.655, 1.655]. This means that the ERTSS estimation of
the position variance is overly conservative or, in other words,
the position estimation errors are smaller than expected.

In any case, note that the estimation consistency is not
as critical for the intended application as in scenarios in
which the state of the system is estimated indefinitely. The
estimator is a fixed-interval smoother intended for determining
the position trajectories during the motion intervals. Moreover,
given the repetitive nature of the switching operations, the
estimation can be reset after each operation (or making and
breaking cycle), so there is effectively no divergence risk due
to estimation inconsistencies.

E. Simulated comparison

The most important performance indicators are the es-
timation errors. Based on those, the proposal is analyzed

(a) NEE of z∗k (making). (b) NEE of z∗k (breaking).

(c) NEE of z∗k−1 (making). (d) NEE of z∗k−1 (breaking).

(e) NEE of λk (making). (f) NEE of λk (breaking).

(g) NEE of eι,k (making). (h) NEE of eι,k (breaking).

(i) NEE of eF,k (making). (j) NEE of eF,k (breaking).

Fig. 8. Mean and 5–95th percentile intervals of the normalized estimation
errors for each state variable.

and compared with three other alternatives under the same
conditions:

• EKF: The second estimation algorithm is an extended
Kalman filter, as described in Section III-A.

• ERTSS\eι: The third estimator uses the same procedure
as the proposed ERTSS, but with a slightly simplified
model: the auxiliary state variable eι is set to zero, i.e.

feι(·) = 0, weι,k = 0. (64)

• ERTSS\eF : Similarly, a fourth ERTSS is designed by
changing the model. In this case, the other auxiliary
variable eF is set to zero:

feF (·) = 0, weF ,k = 0. (65)

Note that eF does not only represent force deviations due
to parametric or discretization errors, but also accounts
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for the normal forces during contact. As such, the tran-
sition function of the position (22) must also be tweaked
to circumvent the removal of eF ,

fz∗(·) =


0, if qk = 1

2 z∗k − z∗k−1 + Ts
2 f∗v (·), if qk = 2

1, if qk = 3

. (66)

The comparison between EKF and ERTSS is useful for
quantifying the accuracy increase of the smoother. On the
other hand, the results from ERTSS\eι and ERTSS\eF serve
to determine the overall improvement of the estimations due
to these proposed additions.

For each one of the estimators, and for different error inter-
val lengths ∆ε, 10 000 Monte Carlo simulations are performed.
To summarize and compare the results, normalized root-mean-
square errors (NRMSE) of the position are calculated for each
operation,

NRMSEz =

√√√√∑n

∑
k

(
ẑ∗nk − z∗k

)2
Nsim

∑
k

(
z∗k
)2 , (67)

where ẑ∗nk is the estimated normalized position for each
sample k and Monte Carlo run n, and z∗k is the normalized
reference position (47a). Note that the position errors are zero
outside the motion intervals, so only the samples k in which
qk = 2 are used to compute each NRMSEz .

The errors are represented in Figs. 9a and 9b for the making
and breaking operations, respectively. The advantage of the
proposed ERTSS over a more traditional EKF is quite evident,
with smaller errors for every ∆ε. There is also a notable
improvement over ERTSS \eι and ERTSS\eF , which justifies
the addition of the auxiliary variables eι and eF . On the
one hand, eF mainly accounts for modeling errors in the
force characterization, so its usefulness is clearer for larger
parameter errors. On the other hand, the main motivation for
adding eι is to account for current errors due to the lack of
a hysteresis model. Thus, as the graphics confirm, it is useful
even for negligible parameter errors.

As the goal is to reduce impact velocities, the estimation
of the velocity is also very important for soft-landing control.
Then, in an equivalent fashion, the velocity estimation errors
NRMSEv are calculated and presented in Figs 9c and 9d. The
velocity errors are consistently larger, but for ∆ε < 10 % the
proposed ERTSS is still very accurate.

To better understand why the fixed-interval smoother
(ERTSS) is so much better than its filter counterpart (EKF),
Fig. 10 depicts the full position evolution of the worst-case
scenario for ∆ε = 10 % (of all 10 000 ERTSS runs with 2
operations each, the one with the maximum NRMSEz is se-
lected). As explained in Section III, the forward filter recursion
of the ERTSS is precisely the EKF. The real advantage of the
ERTSS is that, once the landing occurs, the position estimate
can be corrected. Then, the backwards smoothing recursion
serves to correct past data based on the position correction at
the contact instant.

(a) Position errors (making). (b) Position errors (breaking).

(c) Velocity errors (making). (d) Velocity errors (breaking).

Fig. 9. Estimation errors in the making and breaking operations, for different
interval lengths ∆ε. Notice the logarithmic scale of the horizontal axis.

Fig. 10. Worst-case result regarding the position estimation, for ∆ε = 10 %.

F. Experimental validation

To further validate the proposal, the estimators are tested
and compared using an experimental setup, which is displayed
in Fig. 11. The device is a plunger-type reluctance actuator, of
the same type as the one shown in Fig. 3. The movement of
the plunger is measured with a high-speed and high-accuracy
laser displacement sensor (Keyence LK-G5001P controller
with LK-H082 sensor head). On the other hand, the coil
voltage and current are measured with a high-precision PC
oscilloscope with an arbitrary waveform generator (PicoScope
4824).

For the first experimental validation, a single making and
breaking cycle is tested. The voltage signal is displayed in
Fig. 12a. A constant voltage is applied for each operation
(30 V for the making and 0 V for the breaking). Note that
there are small intervals in which the alternative voltage value
is applied (0 V for the making and 30 V for the breaking),
intended for slowing down the actuator and decreasing the im-
pact velocities. The measured current signal is also displayed
in Fig. 12a, whereas the measured position is presented in
Fig.12b. Instead of measuring the contacts, the discrete state
of the hybrid automaton (Fig. 2) is directly derived from the
position measurements as follows:

q =


1, if z ≤ zmin

2, if zmin < z < zmax

3, if z ≥ zmax

, (68)
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Fig. 11. Plunger-type actuator (left) and experimental setup with the actuator,
a laser displacement sensor and a PC oscilloscope (right).

(a) Voltage (input) and current (output).

(b) Position (reference) and discrete state (input).

(c) Position reference and estimates for the making and breaking opera-
tions.

Fig. 12. Experimental test of the proposed estimator.

where the minimum and maximum position values are calcu-
lated with a 2.5 % tolerance in order to filter out measurement
noise and the deformations of the rubber at the end of the
plunger when starting and ending the motion,

zmin = min(z) + 0.025
(
max(z)−min(z)

)
, (69a)

zmax = max(z)− 0.025
(
max(z)−min(z)

)
. (69b)

Then, the position is estimated using the proposed ERTSS,
with the voltage and discrete state as inputs, and current as
output. The parameters and variance values of the estimator
model are taken directly from the simulated cases in which
∆ε = 10 %. Note that one of the main features of the proposal
is its robustness against significant modeling errors. Thus, to
emphasize this, the model parameters are not fine-tuned.

The estimated position for both making and breaking opera-
tions are displayed in Fig 12c. The EKF estimates correspond
to the forward pass of the proposal, whereas the ERTSS esti-
mates correspond to the complete proposal, with the smoothing

Fig. 13. Profile of the voltage applied to the actuator.

(a) Position (making). (b) Position (breaking).

(c) Velocity (making). (d) Velocity (breaking).

Fig. 14. Measured position and velocity trajectories during switching opera-
tions.

backward pass. The effect of the modeling errors are readily
apparent from the EKF results, as the position estimation
errors are very large. ERTSS, on the other hand, manages to
estimate the position much better in both operations.

For certain control scenarios, the voltage applied to the
device would be modified in each iteration. For every case,
the position estimates should be as accurate as possible so that
they can be exploited by a control strategy. On that basis, for a
more thorough validation, the same four estimators compared
in Section IV-E are tested for multiple making and breaking
cycles. The voltages signals are constructed following the
profiles presented in Fig. 13, where the maximum voltage is
set as υmax = 30 V. In addition, the time intervals are modified
such that ∆t1 ∈ {3, 3.5, . . . , 6} and ∆t2 ∈ {1, 1.25, . . . , 2}.
From every one of the possible 35 combinations, the position is
measured and the corresponding velocity is derived. They are
presented in Fig. 14. Then, the estimators are used to calculate
the position trajectories based on the corresponding measured
inputs and outputs. The absolute errors of the position and ve-
locity estimations are condensed in the box plots from Fig. 15.
Focusing on the proposal, most estimation errors are fairly
small (approximately 75 % of the position and velocity errors
are smaller than 0.1 and 130 s−1, respectively). Moreover, as
in the simulated cases, the benefits of the smoothing backward
pass and the incorporation of eι and eF into the model are
clear by comparing the ERTSS results with EKF, ERTSS\eι
and ERTSS\eF , respectively.
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(a) Position errors (making). (b) Position errors (breaking).

(c) Velocity errors (making). (d) Velocity errors (breaking).

Fig. 15. Box plots of estimation absolute errors of position and velocity
for making and breaking operations. The boxes correspond to the 25–75th
intervals, the central red marks indicate the median values, the left and right
whiskers extend to the 5th and 95th percentiles, and the points represent
outliers.

V. CONCLUSIONS

This paper proposes a position estimator for soft-landing
control of short-stroke single-coil reluctance actuators. It is
a Rauch–Tung–Striebel fixed-interval smoother, which uses
the electrical signals and contact information as observable
variables. To facilitate its implementation, it also uses a
deliberately simple model. Despite that, the simulated and
experimental results show that the estimation of both position
and velocity are very accurate, even with large parameter
errors. This is especially evident when compared to other alter-
natives, proving the advantage of the novel ideas. On the one
hand, the incorporation of error terms as state variables serves
to estimate and correct modeling errors. On the other hand, the
backward recursion exploits the information gained after the
contact instant and corrects past estimates correspondingly.

We have proposed to use the discrete state of the hybrid
system—i.e. the dynamic mode of the system—as a second
input of the estimator model. This requires a sensor to know
if the mover is in contact with one of its limits. This is a
compromise between measuring only electrical signals and
measuring directly the position. On the one hand, if only the
current and voltage are measured, the estimator must be based
on a more complex and accurate model, such as the ones
presented in [22] or [23]. This makes the model identification
and estimator implementation much more challenging and
expensive. On the other hand, a full position sensor would not
be affordable, especially for low-cost solutions with simple
reluctance actuators.
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