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Abstract
The ReactiveX API, also known as the Reactive Extensions in the .NET world, is a popular func-
tional reactive programming framework for asynchronous, event-based, multithreaded programming.
Although Ada built-in tasking reduces the dire needs for additional multithreading support of some
other languages, the reactive approach has properties that are well-suited to the safety and maintain-
ability culture predominant in the Ada world, such as complexity reduction, well-defined concurrency
semantics, and enhanced legibility by means of concise and explicit information flows appealing to
imperative reasoning. This work presents the design of a ReactiveX Ada implementation that aims to
balance desirable library properties such as compile-time type-safety, amount of user-required generic
instantiations, and a smooth learning curve for both library clients and maintainers. Concurrency de-
sign aspects of the library are detailed, showing how the Flat_Map and Thread abstractions have been
implemented following Ada programming expectations, in particular with regard to task termination.
In the intervening time from its first presentation, the library has gained implemented operators to
the point of having all fundamental building blocks available. With RxAda, the Ada programmer can
henceforth benefit from the abundant documentation existing for the language-agnostic ReactiveX
approach without stepping out of the Ada tool chain.

1. Introduction
Modern applications are becoming increasingly complex,

in many cases driven by external events with unpredictable
latencies caused by user interaction, external sources of in-
formation, or remote components in distributed systems, for
example. Such changes, in turn, require modifications to lo-
cal states and may generate new internal or remote events.
The reactive programming paradigm [12] arises as a response
to the challenge of implementing such systems, in which im-
perative languages have shown shortcomings: the traditional
model in which the program imposes the control flow is re-
versed, becoming a loop that waits for events to which it is
necessary to react. This inversion of control presents chal-
lenges [1], like poor understanding by novice programmers,
unresponsive systems that fail to exploit concurrency, con-
voluted state management, among others. A traditional ap-
proach has been callbacks, which hamper scalability. The in-
teractions between callbacks through shared states can rapid-
ly become too complex, and callbacks themselves can be
spread through many locations, complicating maintenance.
The term callback hell [4] is not unheard of.

The reactive paradigm is not particularly novel; formal-
ization efforts have been shown [17], and proposals using
the Ada syntax have been described [16]. It is, however, rel-
atively recently that reactive programming has become pop-
ular, with examples like the .NET standard reactive exten-
sions [14], subsequently ported to many languages, and the
publication of the ReactiveManifesto [2]. At least part of the
appeal in reactive programming is the ability for the imper-
ative programmer to represent logical sequences much like
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in typical imperative syntax, while retaining control of the
concurrency involved, and without requiring complex state
management.

By generalizing the observer pattern [6], in contraposi-
tion to the iterator pattern [8], the ReactiveX approach [14]
to reactive programming provides composable abstractions
[5, 9] that allow programmers to represent responses to events
as complete information flows. These flows or sequences
transform data in apparent imperative fashion, thanks to their
declarative style. The configurable asynchronicity of flows
in regard to their point of declaration allows the programmer
to dispense with blocking concerns from particular threads
(typically the user interface thread). Mutual exclusion guar-
antees within a flow, in turn, can be relied on when designing
the multithreading architecture of applications.

This work presents a high-level port of the ReactiveX
framework to the Ada 2012 language, named as RxAda [10,
11], focusing on design aspects of the implementation. Com-
pared to the work in [11], this article delves deeper in the
concurrency design of the library, detailing aspects of its
Flat_Map and Thread implementation, and also presents sev-
eral concurrency patterns through a practical application con-
sisting on hashing the files found in a folder tree, using stan-
dard Rx operators and schedulers already implemented in
RxAda.

The current version of Ada lacks functional facilities of
other languages like lambda functions and implicit instan-
tiation. These limitations challenge a practical ReactiveX
implementation which have been addressed by means of a
combination of object-oriented and generics-based design.
The article is written assuming some knowledge of Ada 2005
and no prior knowledge of the ReactiveX framework (al-
though familiar readers will be able to contrast the RxAda
idioms versus other language implementations). The focus is
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Listing 2.1: Ada interfaces for the Rx contract.

generic
type T (<>) is private; -- T is the user type to be pushed down

package Rx.Contracts is

type Observer is interface;
-- Someone interested in receiving data.

procedure On_Next (This : in out Observer; V : T)
is abstract;
-- Delivers one item.

procedure On_Complete (This : in out Observer)
is abstract;
-- Called upon subscription completion.

procedure On_Error (This : in out Observer;
Error : Errors.Occurrence)

is abstract;
-- Errors encapsulate an upstream Exception_Occurrence.

type Observable is interface;
-- An emitter of data to which an observer can subscribe.

procedure Subscribe (Producer : in out Observable;
Consumer : in out Observer'Class)

is abstract;
-- Begins a subscription on the upstream source observable.

end Rx.Contracts;

placed on aspects of the library that are relevant to prospec-
tive users, and that could also be interesting to Ada architects
and practitioners in general. The examples for common con-
currency patterns highlight how the RxAda way can supple-
ment traditional Ada multitasking features.

The article is structured as follows: Section 2 introduces
with examples the basics of the ReactiveX framework. Sec-
tion 3 discusses RxAda design challenges and the solutions
adopted with its advantages and drawbacks. Concurrency
design details and use is seen through examples using DirX,
a RxAda-based alternative to Ada.Directories, in Section 4.
Next, Section 5 presents library organization details of rele-
vance to users and maintainers. Lastly, concluding remarks
close the article in Section 6.

2. Reactive Extensions Overview
The definitions of the main concepts that transpire the

ReactiveX API are presented now, before some introductory
examples1. In the following presentation, italized words are
Rx-specific jargon with precise meaning, whereas fixed-size
font is used for Rx types and subprograms. Since RxAda
has followed where possible the RxJava specification [7],
its documentation would be the most useful to new RxAda
users. Also, some Java examples are provided for compari-
son.

The foundation of the ReactiveX approach are the Ob-
servable and Observer interfaces, along with the Rx gram-
mar (also referred to as the reactive contract [15]). An ob-
server subscribes to an observable, after which it may re-
ceive at any time a new datum (an item) from the observable
via a call to the observer On_Next subprogram. The RxAda
implementation of these interfaces is shown in Listing 2.1.

1In-depth documentation is available at the official website [14].

Listing 2.2: Separate chain building and subscription.

declare
S1, S2 : Rx.Subscriptions.Subscription;

-- A subscription is returned when subscribing to allow
-- asynchronous premature cancellation of a flow.

Chain : Rx.Std.Integers.Observable'Class :=
Rx.Std.Integers.From (1, 2, 3, 4, 5)

-- "From" emits these five integers in sequence.
& Rx.Std.Integers.Filter (Is_Even'Access)

-- "Filter" drops items not passing the test
-- function Is_Even (I : Integer) return Boolean
-- declared elsewhere.

& Rx.Std.Count;
-- "Count" emits the count of items received when
-- On_Complete arrives, and then completes itself.

begin
S1 := Chain

& Subscribe (On_Next => Rx.Debug.Print'Access);
-- Will print a 2.

S2 := Chain
& Subscribe (On_Next => Rx.Debug.Print'Access);
-- Will print a 2, too.

end;

Per the reactive contract (in POSIX-like regular expression
syntax),

On_Next* ( On_Complete | On_Error )?,
after subscribing, the observer may receive any number of
On_Next calls (including none), possibly followed by either
On_Complete, to mark the end of the sequence, or On_Error,
if something untoward happened upstream, but not both, and
never more than once. Also part of the contract is that these
three methods will always be called in mutual exclusion in a
given observer, thus freeing users from concerns with con-
current access to local state. Since data propagation is per-
formed by the observable calling On_Next on its observer, Rx
is a push-based framework. Observers cannot know when a
new item will arrive, nor can they request items at will.

Although superficially similar to traditional callback pro-
gramming with an enriched dynamic behavior, the true ex-
pressiveness of the Rx approach emanates from its opera-
tors, which are themselves both observables and observers
that can be composed one after another, with each operator
implementing a modification to be applied to the items trav-
eling through them. In other words, a chain or sequence of
observables can be built, rooted at some source observable.
When an observer subscribes to this chain, the root observ-
able will begin emitting data by calling the On_Next in the
next operator in the chain. Operators apply their action and
push down the item until it reaches the subscriber.

A first example of a chain is shown in Listing 2.2, and
comparable examples in both Java and Ada are presented
side-by-side in Listing 2.3. It is worth stressing that concate-
nating operators does not trigger a subscription. Thus, op-
erators are passive elements that by themselves do not cause
an observable to start emitting items2. Also, the operators
code is not executed until a subscription is performed.

Listing 2.2 exemplifies the two separate phases in the
process of chain building and subscription. Each subscrip-

2A related Rx concept that does create a subscription is a Subject, that
is out of the scope of this introduction. This is of importance for cold/hot
observables, which is another Rx concept left out of this introduction.
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Listing 2.3: Rx Java/Ada example. Appropriate functions in the Ada example are assumed to exist, and “use” clauses are omitted.
The complete example can be found online at https://github.com/mosteo/rxada/blob/jsa2019/src/main/rx-jsa2019.adb.

{
rx.Observable

.interval(1, TimeUnit.SECONDS)
// The interval observable is a counter that emits successive
// values separated by the given time period in a
// background Thread.

.observeOn(Schedulers.computation())
// Switch the data flow to a computation thread.

.map(Object::toString)
// Method reference notation.

.map(s -> s.hashCode())
// Lambda notation.

.observeOn(Schedulers.io())
// Switch to an Input/Output thread.

.subscribe(System.out::println);
}
// Java allows ignoring the returned subscription, whereas the Ada
// example has to explicitly capture it.
// Java benefits from implicit instantiation and in-line lambda
// expressions, introduced with Java 8.

declare
S : Subscription :=
Interval (First => 1, Period => 1.0)

-- The RxAda Interval observable uses Duration as the time
-- unit, and uses Ada tasks to implement Rx threads.

& Observe_On (Schedulers.Computation)
-- Switch to a computation task.

& Map (Image'Access)
-- Image takes an Integer and returns its String image.

& Map (String_Hash'Access)
-- E.g. instance of System.String_Hash,
-- returns an Integer.

& Observe_On (Schedulers.Input_Output)
-- Switch to an input/output thread.

& Subscribe (Put_Line'Access);
begin

null; -- At this point the previous chain is already subscribed
-- and hence active.

end; -- In RxAda, lambda functions are replaced by either accesses
-- to functions or overridable interfaces from Rx.Actions.

Figure 1: Anatomy of a data chain in RxAda (based on Listing 2.3). The relevant interfaces for each stage are indicated after
the object name. Rounded boxes are used to indicate passive chains, whereas sharp ones indicate a live subscription.

tion causes the From observable to emit its items, and both
subscribers will see the same final count, since a fresh Count
operator instance is created for each subscription. A conse-
quence is that chain building is synchronous (that is, it hap-
pens as the program execution reaches that point), but the
subscription flow may be asynchronous to the program flow,
which is sometimes a confusing point for beginners. For
example, in Listing 2.3, one item is emitted per second, in
some unspecified Rx task, whereas the main program task
can be anywhere else. Another important property is that
fresh operators are used for each subscription, meaning that
both subscribers in Listing 2.2 will see the same final count
instead of a cumulative count. This initialization property al-
lows the preparation of partial pipelines that can be later in-
terconnected, attached to observables, and finally subscribed
when convenient, with pristine operator chains for every sub-
scription.

Figure 1 details these aspects of Rx operation. During
the setup phase (leftmost column), operators are concate-
nated one after the other with the “&” function, hence the
program flow goes from top to bottom. When a consumer
observer (sink) subscribes (center) using the overloaded “&”
function, the subscription progresses from bottom to top via
Subscribe calls until reaching the source observable, that
emits the items. It is at this time that operators are copied and
initialized, so that each subscribed chain is made of pristine
operators. Once the subscribed phase starts, item propaga-
tion takes place from source observable to subscribed ob-
server, with each operator in turn applying its operation be-
fore pushing down the item.

Another characteristic is that Rx is lazy in regard to task
creation [15], so the user should assume that tasks are reused
unless explicitly requested by scheduling operators or other-
wise necessary for the operator proper working (as in the
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Listing 3.1: Map operator definition in RxJava

public class Observable<T> {
// T is the type emitted by this observable.

public final
<R> Observable<R> map(Func1<? super T,? extends R> func);

// R is the result of "func", and the type emitted by the
// observable returned by "map". Hence, each T produces an R.

// Other operators omitted.
}

Interval example in Listing 2.3). That is, in the example
in Listing 2.2, all data emission, filtering, counting and out-
put will happen in the task that performs the subscription,
because no scheduling operators like Observe_On have been
used.

Going back to the basic example in Listing 2.3, the main
visual difference is that Java uses dot notation to create Rx
chains (also called flows), whereas in Ada the "&" opera-
tor has been chosen. The reasons will become apparent in
the next section, stemming from the Ada freezing rules for
primitive tagged type operations.

To summarize this Rx introduction:
• Any data source that can be wrapped as an observable

can serve as the root of a chain.
• There are two distinct setup and subscribed phases.
• A chain is a pipeline through which items are sent, in

mutual exclusion, to subscribers.
• Operators are composable and, during the subscribed

phase, perform operations on the items, either to each
one individually or doing some kind of reduction.

• Each subscribed chain is built with new operator in-
stances, seeing the same initial state from Rx opera-
tors as other subscriptions made to the same chain.

• Once a flow completes or errs, no further data will
reach the downstream subscriber.

The takeaway from this Rx introduction is that operator
chains allow the representation of item transformations in
a naturally ordered flow with cohesive temporal logic that
includes task switching. Hence, operators can take as much
time as neededwithout blocking concerns and spaghetti call-
back jumps, letting the user focus on the application logic.

3. RxAda Design
This section discusses some all-pervasive design deci-

sions. More precisely, the generic model of the library is
first introduced. This model in turn affects the library imple-
mentation facilities and the way clients can use the library.
Concurrency aspects of the notable Merge and Flat_Map op-
erators are presented next. The general dependency archi-
tecture of RxAda packages is summarized last.

Listing 3.2: Possible definition not requiring generic user types

package Rx.Contracts is -- No longer generic.

type Rx_Item is interface;

type Observer is interface;
-- Someone interested in receiving data.

procedure On_Next (This : in out Observer; V : Rx_Item'Class)
is abstract;

3.1. Typed Operators
As evidenced by Listing 2.1, observers receive items of

a single type in On_Next calls. Observables, in turn, must be
aware of this type to be able to call On_Next on subscribers.
Seemingly nothing untowards (any collection library has the
stored type as a generic formal), the challenge arises from
operators that transform the type being emitted. Operators
exhibit both observable and observer interfaces, but not nec-
essarily of the same type. For example, the Map operator al-
lows the conversion or processing of a type into another by
means of a function parameter that, given the upstream in-
coming type, returns a possibly different type that is passed
downstream. Listing 3.1 shows the Java specification.

While such a specification is par for the course with im-
plicit instances in Java or C++, in Ada this requires explicit
instances with two formal parameter types, or two instances
with the second one nested inside the first one. While ex-
plicit instances may be clearer about intended code purpose,
they are in this case an obstacle to the use of dot notation,
which in Ada only works with primitive subprograms. This
issue is further explored in Sec. 3.2.

An alternative design was considered: a root interface
type could be declared, like demonstrated in Listing 3.2. This
approach is superficially tempting since it removes the need
for user instantiations when using the library, allowing the
use of dot notation for all operators. The price to pay is the
lack of type consistency checks between chained operators
at compile time, since all of them would deal with the same
Rx_Item’Class classwide data.

Furthermore, user types would have to be made descen-
dants of the root Rx_Item interface, which is a distributed
pollution imposed outside of the library that may discom-
fort users. In addition, user functions should either perform
casts that could fail at runtime or generic marshallers should
be instantiated for convenience (that could not be compile-
time checked anyway).

This approach was not adopted for the stated shortcom-
ings, and consequently one instantiation is needed per user
type involved in a chain. Since some operators emit known
data types (e.g., Count emits integers), String, Integer and
Float types come preinstantiated and ready for use in the
package Rx.Std.

The materialization of a user type, from an RxAda inter-
nal point of view, is in package Rx.Impl.Typed. This pack-
age is used as a generic formal through the rest of the im-
plementation, and contains information about a user type in
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Listing 3.3: RxAda root package for a user type

generic
with package Type_Traits is new Rx.Traits.Types (<>);
-- Traits are used to efficiently work with both
-- definite and indefinite user types.

package Rx.Impl.Typed is

subtype T is Type_Traits.T; -- T (<>) is the user supplied type.

-- Following packages are typed instances for the user type T.

package Contracts is new Rx.Contracts (T);
package Actions is new Rx.Actions.Typed (T);

subtype Observable is Contracts.Observable;
subtype Observer is Contracts.Observer;

-- And more...

Listing 3.4: RxAda root package for operators

generic
with package From is new Rx.Impl.Typed (<>); -- Upstream
with package Into is new Rx.Impl.Typed (<>); -- Downstream

package Rx.Impl.Transformers is

-- The package receives its name from the fact that the
-- input and output types can be different.

type Operator is new -- Base null operator helper type.
From.Contracts.Observer and -- Observes data of From.T type.
Into.Contracts.Observable -- Emits data of Into.T type.
with private;

overriding
procedure On_Next (This : in out Operator;

V : From.T)
is abstract;

-- Observes pushed data of From.T type.

overriding
procedure Subscribe (This : in out Operator;

Observer : in out Into.Observer'Class);
-- Can be subscribed to by observers of Into.T type.

function "&" (Producer : From.Contracts.Observable'Class;
Consumer : Operator'Class)
return Into.Contracts.Observable'Class;

-- With asymmetric "&", type-checked chains can be set up.
-- This operator is also renamed as Concatenate.

relation with the Rx contract that other parts of the RxAda
implementation require. A traits-based approach [3] is used
for user types, enabling storage control. See Listing 3.3 for
details.
3.2. Type Transformations

Once established that observers are statically typed, the
issue of chaining operators arises. In Java, as seen in the
Map example, operators are a primitive operation of the Ob-
servable class. In Ada, primitive operations must be de-
clared in the same package as the type. Hence, to use the
same dot notation for operator chaining, all operators should
be declared within the same Observable package. Unfortu-
nately, when two types are involved, a second instantiation is
required, which no longer provides primitive subprograms.
Two-type (observable/observer) generic packages would not
work either, because the downstream type must be able to
become the upstream type, and generics in Ada cannot ref-

Listing 3.5: Detail of “&”-related types with explicit package
names
-- A fictitious syntax is used in the following comments to indicate
-- both the base interface of the types and the user type (between
-- parentheses) with which the packages are instantiated (through
-- instances of package Typed).

-- package Rx.Std contains instances for Integer and String types.

package Integers renames Rx.Std.Integers;
package Strings renames Rx.Std.Strings;
package Int_To_Str renames Rx.Std.Integer_To_String;
package Str_To_Int renames Rx.Std.String_To_Integer;

S : Rx.Subscriptions.Subscription :=
-- Allows termination and liveness checking.
Integers.Interval (First => 1, Period => 1.0)

-- Contracts (Integer).Observable'Class
& -- Concatenation using Preservers (Integer)."&"
Integers.Observe_On (Rx.Schedulers.Computation)

-- Preservers (Integer).Operator'Class
& -- Concatenation using Transformers (Integer, String)."&"
Int_To_Str.Map (Image'Access)

-- Transformers (Integer, String).Operator'Class
& -- Concatenation using Preservers (String)."&"
Str_To_Int.Map (String_Hash'Access)

-- Transformers (String, Integer).Operator'Class
& -- Concatenation using Preservers (Integer)."&"
Integers.Observe_On (Schedulers.IO)

-- Preservers (Integer).Operator'Class
& -- Subscription using Contracts (Integer)."&"
Integers.Subscribe (Put_Line'Access);

-- Contracts (Integer).Sink'Class

erence instances of themselves, or circularly refer to them-
selves through a chain of generic specifications.

These reasons preclude a natural Ada solution that uses
dot notation. The adopted solution in RxAda is the use, as
in the C++ implementation, of a binary operator function.
Whereas C++ uses the pipe “|” operator, in Ada the “&”
operator was chosen, which furthermore already conveys the
sense of concatenation to Ada programmers. This is realized
as seen in Listing 3.4 where the root Operator class of RxAda
is defined.

As evidenced by the parameters accepted by “&”, users
have to perform an instantiation for every conversion be-
tween types, in the proper From→Into direction of transfor-
mation. And, since “&” is defined for two precise types, the
proper consistency checks for operators forming a chain are
performed at compile time. The second parameter of “&” is
returned under its Observable’Class view, to be used as the
first parameter of a subsequent “&” call. Listing 3.5 shows
again the initial example of Listing 2.3, this time detailing
the different types involved.
3.3. Type-Preserving Operators

While, in the general case, operators such as Map involve
two different types for upstream and downstream, many other
operators are only meaningful within a single type. For ex-
ample, Filter lets items through depending on some test
performed on the item. In the particular case of these opera-
tors, both upstream and downstream types match. In RxAda
the Preserver class is the Transformer specialization for
such case, as shown in Listing 3.6.
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Listing 3.6: Specialization for type-preserving operators

generic
with package Typed is new Rx.Impl.Typed (<>);
-- Where in Transformer From and Into had to be provided, here
-- Typed suffices, since both received and emitted types are
-- one and the same.

package Rx.Impl.Preservers is

package Transform is new Rx.Transformers (Typed, Typed);
-- The same type is received and emitted.

subtype Operator is Transform.Operator; -- Just a shortcut.

function "&" (Producer : Typed.Contracts.Observable'Class;
Consumer : Operator'Class)
return Typed.Contracts.Observable'Class

renames Transform. "&";

Listing 3.7: Subscription-related declarations

type Sink is abstract new Observer with private;
-- Specialized type to recognize subscription intent and store a
-- shared Subscription. Such subscription is returned by the
-- following "&" function.

function "&" (Producer : Observable'Class;
Consumer : Sink'Class) return Subscription;

-- The actual function that calls to Producer.Subscribe (Consumer).

function Subscribe (Using : Observer'Class) return Sink'Class;
-- Function that wraps a regular Observer into a Sink.
-- A version taking procedure accesses for On_Next, On_Complete and
-- On_Error is also available. See Rx.Subscribe for details.

3.4. Executing the Subscription
Previous examples ended the chain with the Subscribe

function (e.g., Listing 3.5). In RxAda, to distinguish be-
tween a regular operator concatenation and an actual sub-
scription, and for uniformity, the “&” symbol is used with a
different parameter profile. As shown in Listing 3.7, a spe-
cific Sink interface is used that disambiguates for the com-
piler the precise “&” being called. The returned Subscrip-
tion is in practice a hidden reference-counted pointer to a
shared atomic boolean that can be used to externally and
asynchronously terminate a subscription, or check its live-
ness.
3.5. Dependencies and User Instantiations

To conclude this section, dependencies between the al-
ready seen parts of the library are graphically depicted in
Figure 2. Going from bottom to top, Rx.Contracts declares
the interfaces for the Reactive Contract, whereas the generic
package Rx.Traits.Types enables the user to specify a defi-
nite representation for an indefinite type, and the proper con-
versions. The Rx.Impl.Typed package takes a user type and
combines it with the Rx contract via implementation pack-
ages, not shown in the figure. The rest of Rx.Impl.* pack-
ages depicted are successive specializations of the Operator
implementation infrastructure. The Rx.Op.* packages are
the actual Rx operator implementations, which in turn can
be instantiated directly by an advanced user, or through the
convenience packages seen in the top layer.

At this point the readermight rightfullywonder howmany

Figure 2: Dependencies between some RxAda packages. This
partial view of the package hierarchy represents the basic in-
teractions described in Section 3.

and of which package instances should be created to be able
to use RxAda. To ease the initial learning curve and for sim-
ple use cases, RxAda provides two packages that take care of
the finer details with sensible defaults, so the new user needs
only to choose between Rx.Definites or Rx.Indefinites
as the entry point into RxAda. These packages take as for-
mal only the user type (see Listing 3.8) and create instances
of all single-type observables, ready for use. Finer storage
control is available through Rx.Types. The Rx.Operators
package, in turn, instantiates operators that transform be-
tween types (called also transformers in RxAda). For even
finer control, the user can dive into the individual operator
packages, whose organization is described in Section 5.

4. Concurrency in RxAda
This section delves into details of concurrent program-

ming with RxAda, relying on an example using DirX. This
companion library enables the use of Ada.Directorieswith
RxAda, by providing observables for the standard-defined
Directory_Entry_Type values. Before that, some neces-
sary concepts and scheduling operators in Rx are introduced.
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Listing 3.8: Basic packages for user instantiations

generic
with package Type_Traits is new Rx.Traits.Types (<>);
-- The user has control via traits of definite storage for
-- indefinite types, and conversions between them.

package Rx.Types is

package Typed is new Rx.Impl.Typed (Type_Traits);
-- This package encapsulates the Rx contracts and other
-- supporting facilites. It is normally not needed unless
-- the user wants to create new operators.

package Observables is new Rx.Observables (Typed);
-- This package contains sources and type-preserving operators.

end Rx.Types;

generic
type T is private;

package Rx.Definites is
-- This package contains default operator instantiations
-- with sensible defaults for definite types for users
-- without specific memory management needs.

package Defaults is new Rx.Traits.Definite_Defaults (T);
package Instance is new Rx.Types (Defaults.Type_Traits);
-- Preparatory instances with defaults for definite types.

package Observables renames Instance.Observables;
-- Sources and type-preserving operators ready for use.

end Rx.Definites;

generic
type T (<>) is private;

package Rx.Indefinites is
-- This package follows a similar structure as Rx.Definites.
-- Holders for indefinite types are used to wrap the user type.
-- Those are used transparently for the user, which always deals
-- directly with its indefinite type T (<>) in operators.

-- Contents omitted.
end Rx.Indefinites;

generic
with package From is new Rx.Observables (<>);
with package Into is new Rx.Observables (<>);

package Rx.Operators is
-- This package provides the type-transforming operators.
-- The user instantiates it with the previous instances for
-- individual types, obtained for example with the packages
-- described above.

-- Count, Flat_Map, Map, etc. declarations omitted here.
end Rx.Operators;

4.1. Thread Management and Schedulers
Rx uses the Scheduler abstraction to represent threads3,

thread pools and trampolines. A few tasking-specific opera-
tors use a scheduler parameter to switch the running thread,
as seen in Listing 2.3. Per Rx specification, using such oper-
ators returns a particular task into which the execution flow
will jump when an item is passed to the operator. This kind
of single-threadmanagement is useful, for example, in frame-
workswhere blocking calls are forbidden in particular threads.
(For example, in Android, blocking networking calls are for-
bidden in the main thread). It is, in general, a simple way of
keeping the main task unblocked, akin to the use of futures.

Schedulers may encapsulate a single new thread, a spe-
3Since RxAda uses regular Ada tasks for Rx threads, these two terms

are used interchangeably.

Listing 4.1: Standard Schedulers provided by RxAda

package Rx.Schedulers is

type Thread is private;
-- A wrapper for an actual Ada task.

type Scheduler is tagged private;
-- A wrapper for a thread pool.

function Get_Thread (This : Scheduler) return Thread;
-- Obtain a thread from this scheduler pool.

-- Default schedulers are provided by Rx implementations.
-- Custom schedulers can be created, e.g., to define thread
-- pools with particular properties or allocation policies.
-- Default schedulers in RxAda that are listed next return
-- threads in round-robin order when Get_Thread is called.

function Computation return Scheduler;
-- Backed by a thread pool with one thread per CPU.

function IO return Scheduler;
-- Backed by an unbounded thread pool that returns an idle
-- thread, when available, or a new one otherwise.

function New_Thread return Scheduler;
-- Always returns a new thread.

function Immediate return Scheduler;
-- Special scheduler that does not switch to a new thread.
-- Code is executed in the same calling thread without delay.
-- Scheduling future events with it is a bounded error.

Listing 4.2: Operators for task switching

generic
-- Formals omitted.
package Rx.Observables is

function Observe_On (Scheduler : Rx.Schedulers.Scheduler)
return Operator'Class;

-- This operator passes the item received during its own
-- On_Next call to the thread obtained from the argument.
-- Thus, the upstream operator preceding an Observe_On operator
-- will see its On_Next call return immediately.
-- The Scheduler thread, as soon as it becomes idle, will call
-- On_Next in the operator following the Observe_On operator.
-- On_Complete and On_Error calls are similarly relayed.

function Subscribe_On (Scheduler : Rx.Schedulers.Scheduler)
return Operator'Class;

-- This operator works in the opposite direction to Observe_On.
-- Where Observe_On is useful during the Subscribed phase, and
-- acts only on the On_* calls of the Rx contract, Subscribe_On
-- acts during the Subscribe calls in the subscribing phase.
-- When this operator Subscribe is called, it relays its call
-- to the upstream operator Subscribe to the given thread.
-- This way, the chain source operator thread can be selected.

-- Other declarations omitted.
end Rx.Observables;

cific existing thread, or even a thread pool (see Listing 4.1).
Despite that, a key property is that the thread used by the
thread-switching operators (see Listing 4.2) is guaranteed
to be the same one for all items in a subscription. (Oth-
erwise, that would force every operator to be thread-safe,
which would be a breach of the Rx contract and an oner-
ous distributed overhead.) In practice, the operators in List-
ing 4.2, Observe_On and Subscribe_On, achieve this prop-
erty by picking the thread from the Scheduler within their
Subscribe call, which occurs only once per operator.
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So, even if a thread pool scheduler is given to Observe_On,
all items in the same subscription are processed by the same
thread from the pool. Thus, by themselves, these opera-
tors do not enable parallel computation in the sense of, e.g.,
concurrent producers and consumers of data. For that, the
Flat_Map operator is necessary aswill be exemplified in Sub-
section 4.4. In preparation, the next subsection details Rx-
Ada Thread implementation, followed by the semantics and
internals of the Flat_Map and related operators in Subsec-
tion 4.3.
4.2. Scheduler Implementation in RxAda

Schedulers are the basic Rx types used for thread cre-
ation and dispatching. To keep the RxAda implementation
within the spirit of the Ada language, care has been taken to
prevent deadlocking and manage termination of tasks. For
example, in RxJava, when the main task exits, all other tasks
are terminated too, which may cause pending events to go
unprocessed, thus forcing the user to manually manage life-
times. In RxAda, a single Thread is implemented by two
Ada tasks. This is done in order to attain two objectives.
Firstly, that no deadlock be possible because of convoluted
use of Observe_On/Subscribe_Onwith the same Schedulers
as arguments. Secondly, that tasks finish gracefully when all
of them have an open terminate alternative. Thus, subscrip-
tions in background threads will not be aborted prematurely,
yet the user does not need to explicitly request to shutdown
all pending tasks (although the Rx.Schedulers.Shutdown
procedure exists for when premature aborting is wanted).

Fig. 3 details the implementation of an Rx thread and
the responsibilities of each of its two tasks, which can be
summarized as a queue manager and a code runner. On the
left, the Queuer task awaits the arrival of events via its En-
queue entry. An event received while Idle can be immedi-
ately dispatched for execution, while events arriving while
Busy will be queued in the priority queue of the Queuer task.
Whenever an event is completed in the Runner task, Reap
is accepted so the Queuer task can dispatch a new pending
event (via the Run entry), or return to Idle state if the queue
is empty.

Note that theQueuer is always ready to accept new events
(at worst, after the bounded time of the Enqueue and Reap
transitory states), even while Runner is executing an event.
Hence, no deadlock is possible even if a Runner calls its
own Queuer’s Enqueue entry (e.g., through a downstream
Observe_On with the same scheduler as argument). Finally,
since both tasks block in accept statements that have termi-
nate alternatives when Idle, this scheme allows clean, auto-
matic shutdown managed by the Ada runtime.
4.3. Observers of multiple upstream subscriptions

Although the operators described in Subsection. 4.1 al-
low switching the current thread in a subscription, by them-
selves they do not allow injecting concurrencywithin a chain,
as there is only one flow from source to sink. To escape
this limitation, some operators, like Merge or Flat_Map, can
observe items coming from several observables at the same

Figure 3: A single RxAda scheduler thread (implemented in
Rx.Dispatcher.Single), backed by two Ada tasks. This Petri
Net with inhibitor arcs describes the possible states and inter-
actions among the tasks.

time. Flat_Map, furthermore, can create new secondary sub-
scriptions in the context of another, main subscription. This
capacity is the key to achieve concurrency.

The confluence of several subscriptions in a same chain
might seem to break the Rx promise of proper interleaving of
items without overlapping, specially if concurrency can be
created by Flat_Map. This subsection addresses the conun-
drum, explaining the internals of these operators in RxAda,
and how they can achieve the Rx goal of providing concur-
rency in the context of the Rx contract.

The Merge operator, in its simplest signature, merges two
observables’ emissions into a single downstream chain. Nat-
urally, both upstream observables must emit the same type of
items. Generalizations of Merge take arrays of observables
instead of a fixed number of them.

Flat_Map is possibly the most interesting and powerful
operator in Rx, and also the most challenging one to Rx new-
comers. The simplest signature of Flat_Map takes a function
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Figure 4: Inner design details of the Merge and Flat_Map operators. During subscription, the single operator seen by the user
gets transparently replaced by the internal sequence of operators depicted in the respective subscribed phases.

argument that, given an item, returns a new observable de-
rived from the item. When subscribed to, Flat_Map as ex-
pected subscribes itself to its upstream observable. We can
refer to this subscription as the main, or primary subscrip-
tion.

When items start to come in via the primary subscrip-
tion, Flat_Map turns these items into observables with its
argument function and, immediately, creates secondary sub-
scriptions to the new observables, merging their emissions
and pushing down their emitted items downstream. Inversely
put, Flat_Map emissions are the merging of all the emis-
sions generated by the subscriptions to the observables cre-
ated from all items arriving from upstream via the primary
subscription.

Equivalently, Flat_Map can take as argument a partial
sequence of operators (without a source of items at the be-
ginning, nor a sink consumer at the end). For each received
item, Flat_Map turns it into an observable that emits only
the item itself4, and subscribes the partial sequence to the
Just (Item) observable, again merging all new emissions
for downstream.

Finally, Expand is a particular case of Flat_Map that not
only emits the items from the newly generated observables,
but it itself subscribes to those observables (which conse-
quently must emit the same upstream incoming item type),
allowing the use of recursivity in Rx streams.

The common trait of all Flat_Map variations is that sec-
ondary subscriptions are created per item received from the
upstream observable. These new subscriptions present an
opportunity to create or reuse other threads besides the one
the primary subscription of Flat_Map is run on, by inter-
spersing the scheduling operators described in the previous
subsection in the chain argument given to Flat_Map.

Remembering that Rx is, by design and by default, lazy
about thread creation, the programmer has to use the schedul-

4This is precisely the purpose of the "Just" operator.

ing operators to achieve concurrency. Once these operators
are introduced, three “sections” can be distinguished in the
pipeline from the source to the sink (presuming, for simplic-
ity, that scheduling operators appear only in the chain argu-
ment passed to Flat_Map):

1. From the source observable to the Flat_Map operator
is a section that is executed in the thread of the primary
subscription.

2. The secondary subscriptions, from their own source to
the moment they are merged by Flat_Map, run on the
thread determined by the use of an explicit scheduling
operator (or the Flat_Map thread otherwise).

3. The merged emissions, down to the downstream sub-
scriber, still run in their own threads, but must not
overlap their calls to the remaining operators between
Flat_Map and the downstream subscriber.

Given the third point, these operators face a situation
that, if unaddressed, would break the Rx contract about non-
overlapping calls to On_Next: the merged subscription emis-
sions, which may come from different threads, have to be
pushed down in mutual exclusion. This synchronization,
in Ada, would typically be achieved with a protected type.
However, there are at least two reasons to avoid this choice in
the RxAda case. Firstly, user-supplied function calls can last
an unknown time, and should consequently not be performed
inside a protected subprogram. Furthermore, if items were
emitted fromwithin a protected subprogram, any call further
down the chain to a blocking operation (for example in other
user-supplied code) would result in a bounded error.

To avoid these risks, and to implement the basic Merge
and Flat_Map operators, RxAda relies itself in other opera-
tors. With these final pieces in place, most others Rx oper-
ators can be implemented by combining existing ones, thus
leveraging Rx own properties for simplicity.

These operators are named Sequential and Funnel. The
Sequential operator applies a semaphore to the Rx contract
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methods, guaranteeing that downstream operators will see
items in mutual exclusion, as required by the contract. Using
semaphores also gives user code complete freedom for its
own locking mechanisms when accessing global data, as it
is not run inside a protected operation.

The Funnel operator is the chosen way in RxAda to mo-
mentarily sidestep the library use of deep-copy semantics.
As each chain is duplicated to get fresh operators upon sub-
scription, the problem in turn is that Flat_Map would use a
new copy of the downstream chain for every secondary sub-
scription, thus breaking the operator semantics. The Fun-
nel operator circumvents those copy semantics by storing
its downstream operator by reference. This way, a chain that
starts at a funnel will not be duplicated during subscription.

All these concepts come together in the implementation
of the Merge and Flat_Map operators. Fig. 4 shows schemat-
ically their building blocks and its assemblage during a sub-
scription. Merge, on the left, funnels together both input ob-
servables, ensuring with a Serialize operator that mutual
exclusion is honored for downstream observers. The inter-
nal Merge_Impl operator ensures that On_Complete is called
only once both upstream observables have completed.

Flat_Map uses the same funneling technique. However,
Flat_Map relies on two, front and back, internal operators.
Front, upstream, is in charge of calling the argument func-
tion that returns an observable per incoming item, and cre-
ating the secondary subscriptions, subscribing the funnel to
these item observables. Back, downstream, is in charge of
completing the subscription only when all generated item
observables, plus the initial upstream source, have completed.

Finally, the internal back-side operators, Merge_Impl and
Flat_Map_Back, being downwards of a Serialize, do not
need to take measures about mutual exclusion for their Rx
contract methods. Only the front-side Flat_Map_Front in-
ternal operator requires a critical section to ensure that cre-
ation and counting of secondary subscriptions is performed
in mutual exclusion.
4.4. Examples of concurrency patterns

This section is devoted to exemplify how the Rxmethod-
ology allows expressing, with small changes and in a concise
way, different typical concurrent producer-consumer config-
urations. The example application5 consists in looking for
all files found at any depth under a certain starting folder,
and listing them with their computed SHA256 hash. To
do so, the example relies on the DirX.Observables facili-
ties: the function DirX.Observables.Directory_Entries
returns an observable that emits all of a given folder entries,
either recursively or not. A new user type, Hashed_Entry,
stores a file name and its hash. Finally, the Hash function
takes a Directory_Entry, computes its hash and returns a
Hashed_Entry, so its profile is suitable for use with the Map
operator.

In increasing grades of concurrency, the examples are: a
baseline sequential 1-producer/1-consumer implementation;

5The full code can be found at https://github.com/mosteo/rxada/
blob/jsa2019/dirx/src/examples/dirx-hash_recursive.adb

a 1-producer/N-consumer solution where hashes are com-
puted concurrently; and an M-producer/N-consumer where
both directory listing and hash computation are done con-
currently. See the Rx chains in Listings 4.3 to 4.5, in Fig. 5.
With minimal modifications and using standard Rx opera-
tors, these examples could be retailored for other purposes:
timing can be achieved with the Stopwatch operator; de-
terministic cumulative hashing by adding sorting and string
hashing operators; counting with the count operator; and so
on.

For the 1-1 and 1-N cases, the file enumeration is done
internally and recursively in the caller task by the Direc-
tory_Entries source observable. Concurrency for the hash-
ing is achieved with the Flat_Map operator: the secondary
operator chain that it takes as parameter is subscribed to ev-
ery incoming Directory_Entry item, hence using a differ-
ent thread from the computation pool. Flat_Map then fun-
nels all resulting Hashed_Entry items downstream, in mu-
tual exclusion, for final printout.

For the M-N case, the Expand operator must be used ex-
plicitly to enumerate folder contents in the Input_Output
pool. Regular files are pushed down unmodified, and direc-
tories are expanded into their contents. Since Expand is the
recursive specialization of Flat_Map, its chain argument is
also subscribed to every new item, allowing the introduc-
tion of concurrency (in this case, producing entries in an in-
put/output pool for subsequent hashing).

The reader is invited to reflect on a classic Ada solu-
tion, that would involve the definition of worker threads, pro-
tected objects for queuing of jobs, the task pool, management
of two job types (folder enumeration and file hashing), etc.
Looking forward to upcoming Ada 202X parallelism [13],
a reduction in the amount of boilerplate in regular Ada is
to be expected: parallel iteration over the elements of a col-
lection will no longer require protected sources nor explicitly
defining tasks, for example. Comparisons of syntax and per-
formance between RxAda and Ada 202X, once the latter is
finalized, will thus be of interest.

5. Library Organization
The RxAda library has been structured in several pack-

age families to simplify its maintenance and understanding.
For example, the Rx.Impl.* hierarchy contains packages that
would rarely be of interest for final users, and that contain
most of the logic implementing the Rx framework. Other
similar branches are presented next, concludingwith themul-
tithreading implementation support packages.
5.1. User-Facing Packages

An effort has been made to isolate as much as possi-
ble packages that users of the library may want to eventu-
ally know about from other implementation packages. This
separation is visible in two ways: in the on-disk file orga-
nization and in the package names. Source files (available
at [10]) are classified in three folders. A first, root folder
named "src" contains user-facing packages, like the ones
discussed in Section 3.5. Within this folder, another one
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Listing 4.3: 1-1 sequential solution

Subscription :=
Directory_Entries (Target,

Recursive => True)
-- Emits all entries under the given
-- Target folder. Folders are entered
-- recursively as found, until all the
-- subtree is emitted.

& Map (Hash'Access)
-- Hashes a file contents with SHA256.
-- Folders are let through with an
-- empty hash (other options could be
-- considered like hashing its entry
-- names, or hashing its entries
-- hashes. This latter option could be
-- achieved without rehashing by using
-- the Group_By operator, for example.

& Subscribe (Print_Hash'Access);
-- Final printing of name and hash.

Listing 4.4: 1-N concurrent hashing

Subscription :=
Directory_Entries (Target,

Recursive => True)
-- Same as in the 1-1 case.

& Flat_Map (Observe_On (Computation)
& Map (Hash'Access))

-- Flat_Map with an operator chain as
-- argument converts each incoming
-- item to a Just (Item) observable,
-- to which the argument chain is
-- subscribed. Thus, each item is
-- observed by Map in a Round-Robin-
-- picked thread from the Computation
-- pool. Alternatively, Map could be
-- followed by a Subscribe_On
-- operator instead.

& Subscribe (Print_Hash'Access);
-- Same as in the 1-1 case.

Listing 4.5: M-N enumeration & hashing

Subscription :=
Directory_Entries (Target,

Recursive => False)
-- Recursivity is disabled to take
-- advantage of Expand, below.

& Expand (Observe_On (Input_Output)
& DirX.Observe'Access)

-- DirX.Observe takes a Dir_Entry and
-- returns an Observable that emits
-- all folder contents as Dir_Entry.
-- By preceding it with Observe_On,
-- the enumeration takes place in an
-- Input_Output pool thread.

& Flat_Map (Observe_On (Computation)
& Map (Hash'Access))

-- Same as in the 1-N case.

& Subscribe (Print_Hash'Access);

Figure 5: Three RxAda implementations of a directory tree contents hashing. Some package prefixes are omitted for conciseness.

named "priv" contains the specifications of implementation
packages. Finally, a sibling folder "body" contains all bodies
of the library, which should not be needed by users, but that
are this way easier to find for maintainers and contributors.
In summary, basic users should concern themselves with the
"src" folder whereas advanced users might have interest at
some point in the "priv" folder too. Packages in the "src"
folder are named as Rx.<Name>, while implementation pack-
ages follow a Rx.<Specialization>.<Name> convention, as
detailed next.
5.2. General Implementation Packages

As seen, implementation packages without a more spe-
cific classification belong in the Rx.Impl.* hierarchy. These
packages deal with Rx concepts, contrarily to other non-Rx-
specific supporting packages (that might as well be provided
by third-party libraries, although there are no external de-
pendencies at present) that are found in Rx.Tools.*. The
supporting packages include, for example, semaphores and
thread-safe reference-counting pointers used for example in
the implementation of the Funnel and Serialize operators
seen in Section 4.3. The rest of operators rely on regular by-
value copy semantics during chain concatenation, and refer-
ence types during data flow, simplifying the library memory
management.
5.3. Operator Implementations

In order to distinguish between observables that create
items (sources) and operators that transform data, these pack-
ages are classified respectively under the Rx.Src.* and the
Rx.Op.* hierarchies, although (non-Ada) Rx documentation
usually refers to them indistinctly as operators.
5.4. Scheduling Packages

As seen in the examples presented through this work,
and particularly in Section 4.4, Rx allows simple yet pow-

erful task management. As in other Rx implementations,
users need typically to use the Rx.Schedulers package fa-
cilities for task control, unless custom pools are wanted. The
actual implementation of tasking events and pools that are
used in Rx.Schedulers and the Subscribe_On, Observe_On
operators is filed under the Rx.Dispatchers.* branch. An
abstract Dispatcher interface is defined that allows schedul-
ing events in a particular scheduler at a particular time; this
is used to implement the different specialized task pools rec-
ommended in the Rx documentation (e.g., I/O and back-
ground computation), and would be the starting point for the
creation of custom user pools. These packages contain, for
example, the implementation detail corresponding to Fig. 3.

6. Conclusion
This work presented an Ada 2012 implementation of the

ReactiveX approach to reactive programming. The focus
was placed on design and implementation decisions adopted
to address the challenges arising from the imperative na-
ture of Ada, tagged types syntax, lack of implicit instanti-
ations of generics and lambda functions, and explicit mem-
ory management. Concurrency design and implementation
details were explored, since multithreading management is
one of the strong values of adopting Rx. Examples of var-
ious producer-consumer configurations were provided to il-
lustrate the tasking flexibility of Rx, and its RxAda imple-
mentation, through a file-hashing application.

The implementation of the library aims at balancing user
comfort, maintenance simplicity, and correctness and per-
formance issues such as compile-time type checking. To that
end, the library is structured in two main layers: the upper
layer exposes the operators to users with purely client needs
in a type-centric manner, with a single generic instantiation
required per type and per transformation between types. The
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lower layer contains features needed for library expansion
and advanced client use like the definition of new operators
or selective instantiation of partial subsets of the library.

RxAda is available under an Open Source license to in-
terested parties.
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