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Abstract

In this paper we want to test whether the choice of different types of urban data for the same country exerts an influence or not
on the selection of the best parametric density function (among the Pareto, truncated lognormal, the double Pareto lognormal and
mixtures of lognormals) to describe the city size distribution. We have employed four different definitions of city for Spain. We
have concluded that the outperforming density is different for each type of data.
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1. Introduction

Starting on 2015 in Schmidheiny and Suedekum (2015), there has been an explosion of the study of new methods
of delineating and defining urban areas in the years 2019-2020 using building density, machine learning, personal
judgement and others (Arribas-Bel et al., 2019; de Bellefon et al., 2020; Ch et al., 2020; Moreno-Monroy et al., 2020;
Galdo et al., 2020).

The elucidation of how robust the parametric description of the city size distribution is to different definitions
of cities has its antecedents in papers like Ioannides and Skouras (2013) and Bee et al. (2013), although in these
references the focus was about whether the Pareto specification is appropriate, a debate that it is still not over.

In this context, in this paper we attempt to answer the following question: when studying the city size distribution
of a country (in our case Spain), are the results robust to different definitions of what a city is? To do so, we use four
different definitions of ’city’ (the new proposed in Arribas-Bel et al. (2019) and other three previously introduced).
The answer to the question is straightforward: the best density for each type of data is specific to it; thus city size
distribution is sensitive to the definition of city considered.
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2. Distributions

We let x denote the size (inhabitants) of the urban unit in question.
The first distribution we consider is the power law distribution (or Pareto distribution), with density:

fP(x;α, xmin) =
α

xmin

(
x

xmin

)−α−1

where α is the power law exponent and xmin is the minimum value of the data.
However, one issue that has been highlighted in the literature is that it can be difficult to distinguish between a

power law distribution on the upper tail from other heavy tailed distributions (Clauset et al., 2009). An implication of
this observation is that an empirical analysis should also consider the fits of alternative distributions to the upper tail.
Consequently, we also consider a truncated lognormal (LNt)

fLNt(x; µ, σ, xmin) =
fLN(x; µ, σ)

1 − cdfLN(xmin; µ, σ)

where cdfLN is the cumulative distribution function of the lognormal (LN) function, whose density is given by

fLN(x; µ, σ) =
1

√
2πσx

exp
(
−

(ln(x) − µ)2

2σ2

)
The fourth distribution in our study is the double Pareto lognormal distribution (dPLN), introduced in Reed (2002,

2003) and used for city size distributions in, e.g., Giesen et al. (2010); González-Val et al. (2015).
Finally, following Kwong and Nadarajah (2019), we consider mixtures of two (2LN) and three (3LN) lognormals.
We estimate all these distributions with maximum likelihood (ML) estimation, with a procedure similar to that of

Puente-Ajovı́n et al. (2020) and the detailed results are available from the authors upon request.
We will assess the goodness-of-fit by means of standard statistical tests as the Kolmogorov–Smirnov (KS),

Cramér–von Mises (CM) and Anderson–Darling (AD) tests (see, e.g., Massey (1951); Anderson (1962); Anderson
and Darling (1952) and references therein).

We will use three well-known information criteria (IC). They are the AIC (Akaike), BIC (Bayesian) and HQC
(Hannan-Quinn, see, e.g.,Burnham and Anderson (2002, 2004) and references therein). The smaller value of each of
these criteria, the more preferred the model according to each criterion.

3. Data

There are several ways of defining a city or an urban area. Because of that, the choice of the specific definition
can affect the outcome of the analyzed city size distribution. In our analysis we use four different definitions to do so.

The first is that of Spanish Municipalities: This database is based on the Spain’s Census of 2011. It covers 100%
of the population, distributed along 8,115 municipalities, which is officially the smallest administrative division.

The second is BMLA: By this new acronym we mean “Buildings Machine Learning Algorithm”, and is the
database of city centers of Arribas-Bel et al. (2019), which uses a new methodology that delineates 717 urban areas
using a machine learning algorithm that groups buildings existing in a space of a sufficient high population density,
using the geolocation of all of 12 million buildings in Spain. In this case, the minimum amount of population for an
area to be considered is 1,000 inhabitants, covering 74.8% of all the population of Spain.

The third is AUDES: This specification identifies the Urban Areas of Spain following a particular method based
on Mendelson and Lefebvre (2003)2. The key is to look for urban cores with more than 10,000 residents, formed
by adjacent urban entities. Urban Areas are then defined as one or more municipalities that are situated about that
urban core and have more than 20,000 residents. Because of this cut-off condition, the database covers 77.4% of the
population, being 263 the number of Urban Areas.

The fourth is that of Functional Urban Areas (FUA OECD): Based on the requirements of Dijkstra et al. (2019), a
functional urban area is the combination of the city with its commuting zone. They have a greater cut-off than that of
BMLA, and thus this database covers 69.7% of all of Spain’s population in 80 Functional Urban Areas.

2The full description of the method can be found in: https://alarcos.esi.uclm.es/per/fruiz/audes/modelo.htm
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4. Results

For each type of data six densities are estimated: Pareto, LNt, LN, dPLN, 2LN and 3LN. The Pareto and LNt are
not estimated for Municipalities and BMLA because they are clearly non-truncated data sets. The dPLN cannot be
estimated for the AUDES and FUA OECD datasets because the ML estimators there seem not to exist in those cases.

Pareto LNt
KS CM AD KS CM AD

Municipalities – – – – – –
BMLA – – – – – –
AUDES 0.771 (0.041) 0.671 (0.084) 0.670 (0.576) 0.615 (0.047) 0.569 (0.103) 0.571 (0.686)
FUA OECD 0.197 (0.120) 0.123 (0.315) 0.132 (1.717) 0.992 (0.049) 0.975 (0.030) 0.938 (0.300)

LN dPLN
KS CM AD KS CM AD

Municipalities 0 (0.050) 0 (5.767) 0 (35.403) 0 (0.032) 0 (2.531) 0 (16.161)
BMLA 0 (0.097) 0 (2.561) 0 (14.564) 0.810 (0.024) 0.846 (0.055) 0.892 (0.355)
AUDES 0 (0.166) 0 (1.896) 0 (5.535) – – –
FUA OECD 0.326 (0.106) 0.192 (0.248) 0.135 (1.703) – – –

2LN 3LN
KS CM AD KS CM AD

Municipalities 0.495 (0.010) 0.587 (0.099) 0.450 (0.844) 0.618 (0.009) 0.941 (0.038) 0.847 (0.402)
BMLA 0.589 (0.029) 0.584 (0.100) 0.667 (0.580) 0.999 (0.014) 0.999 (0.011) 0.999 (0.099)
AUDES 0.282 (0.061) 0.301 (0.184) 0.156 (1.592) 0.319 (0.059) 0.567 (0.104) 0.371 (0.974)
FUA OECD 0.991 (0.049) 0.919 (0.043) 0.878 (0.370) 0.988 (0.050) 0.997 (0.020) 0.999 (0.150)

Table 1: Outcomes of the statistical tests. The format is p-value (statistic). Non-rejections at the 5% level are marked in bold

Table 1 shows the results of the KS, CM and AD tests for the six density functions and four definitions of city. As
can be seen, the AUDES and FUA OECD datasets are fitted well by either Pareto or LNt, the LN is almost always
rejected (except for the FUA OECD specification) and the 2LN and 3LN are never rejected for all kinds of considered
data.

Table 2 shows, for each type of data, the selected density according to the standard information criteria AIC, BIC
and HQC. The three criteria are coincidental for each type of data, except BIC for municipalities, but according to the
other two the 3LN is the best function and so, this is our choice for this type of data.

Pareto LNt
log-likelihood AIC BIC HQC log-likelihood AIC BIC HQC

Municipalities – – – – – – – –
BMLA – – – – – – – –
AUDES -3146 6295 6298 6296 -3147 6298 6305 6301
FUA OECD -1074 2151 2153 2152 -1072 2148 2152 2150

LN dPLN
log-likelihood AIC BIC HQC log-likelihood AIC BIC HQC

Municipalities -69851 139705 139719 139710 -69737 139481 139509 139509
BMLA -7986 15976 15985 15979 -7905 15819 15837 15826
AUDES -3250 6505 6512 6508 – – – –
FUA OECD -1087 2179 2184 2181 – – – –

2LN 3LN
log-likelihood AIC BIC HQC log-likelihood AIC BIC HQC

Municipalities -69598 139207 139242 139219 -69587 139191 139247 139210
BMLA -7908 15827 15849 15835 -7902 15821 15857 15835
AUDES -3181 6372 6390 6379 -3169 6354 6383 6366
FUA OECD -1078 2166 2178 2171 -1074 2165 2184 2172

Table 2: Outcomes of the maximum log-likelihoods and information criteria. Of these last ones, the lowest value in each case is marked in bold

5. Conclusions

We have analyzed which is the best density to describe four different types of Spanish urban nuclei data. And this
density is different for each type. For municipalities the chosen function is the three-lognormal (3LN), for the cities
defined in Arribas-Bel et al. (2019) the chosen function is the double Pareto-lognormal (dPLN), for AUDES (Áreas
Urbanas de España) data the best density is the Pareto one and for FUA OECD (Functional Urban Areas) data the
outperforming function is the truncated lognormal; in each case, the selected distributions are never rejected according
to the information in Table 1. This result is related to the main conclusion derived from Puente-Ajovı́n et al. (2020),
that is to say, different countries are best described (in terms of information criteria) by different densities and not by
a single dominating one, although there maybe densities that are not rejected (almost) always by standard statistical
tests.
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