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ABSTRACT 

Natural gas is currently envisioned as a potential energy and hydrocarbon feedstock in 

the forthcoming years. To overcome the detrimental flaring of this natural gas and the 

partial release of its major component, methane, novel and more effective strategies 

are required. These include the development of new, efficient and seemingly stable 

catalysts able to rapidly convert methane into valuable feedstocks. We show a novel 

synthesis method of Mo/ZSM-5 based on a solvothermal synthesis under supercritical 
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conditions and reducing atmosphere (SC-STS-E) to improve metal dispersion and 

enhance catalyst stability and durability during the methane dehydroaromatization 

(MDA) reaction. In contrast to the conventional impregnation method, SC-STS-E 

provides a super-high atom-like metal dispersion at the zeolite pores resulting in the 

most stable Mo/ZSM-5 catalyst for MDA with the highest long-term hydrocarbon yield 

(xCH4 = 11.6% and yC2+ = 8.9%, after 15 h on stream) among the catalysts reported in 

literature for this reaction.    

Keywords 

Methane dehydroaromatization, Mo/ZSM-5, metal dispersion, supercritical 

solvothermal synthesis, benzene production 

 

1 INTRODUCTION 

Natural gas and its major component, methane (CH4) have emerged in recent years as 

the most appealing source of energy and hydrocarbons to fulfil worldwide increasing 

energy demands [1-3]. Natural gas abundance, depletion of fossil fuels and the 

absence of mature sustainable and environmentally friendly alternatives appear as key 

factors to explain the recent flourish of shale gas exploitation as transitional 

technology for forthcoming years. The enormous reserves found (proven world natural 

gas reserves were 193.5 trillion cubic meters for the year 2017 [4], plus 1015 to 1018 m3 

of methane stored in hydrates [5]), environmental sustainability and lower overall 

costs point to natural gas as the primary source for energy and chemicals in the near 

future. In addition to the well-planned and growing-in-number off-shore gas terminals, 

several exploration sites can operate economically, but have a severe problem of being 
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dislocated from the main grid veins. For this reason, the great variety of the methane 

sources, including existing gas networks, small natural gas fields, shale, coal beds, 

agricultural biogas and deep-sea methane hydrates creates an urgent need to develop 

catalytic reactor systems able to activate methane and rapidly transform it into longer 

hydrocarbons fractions or liquid fuels that can be more easily driven to the potential 

end-users [1, 3]. A rapid and efficient transformation will be essential to ensure the 

economical viability of the process while minimizing current undesired flaring and 

uncontrolled release of methane, a well-known greenhouse gas, during the extraction 

process [1, 6, 7] 

Likewise, the search for novel and more stable catalysts has been reactivated in the 

past few years. In particular, in the last decades a tremendous effort has been done to 

develop catalysts to carry out the challenging one-step, non-oxidative conversion of 

natural gas into valuable chemicals via methane dehydroaromatization (MDA) [8-11]. 

In contrast to oxidative and other indirect routes, the direct non-oxidative coupling of 

methane is potentially more economical and environmentally friendly despite its 

thermodynamic limitations [2]. It is widely accepted that catalysts based on Mo as 

active metal supported on zeolites (ZSM-5) or zeotypes (MCM-22) are able to perform 

a partial conversion of methane into aromatics (mainly benzene and naphthalene) and 

C2 species [8, 11]. Although the technology is promising, it has not been implemented 

yet at industrial scale due to a number of process limitations. The catalytic conversion 

of methane on Mo/ZSM-5 starts to be noticeable (> 5%) at temperatures around 650ºC 

or above. However, these temperatures strongly promote the chemical 

dehydrogenation of methane into H2 and highly dehydrogenated carbon deposits 

(coke) of limited or no added value. As a result of coking, the catalyst suffers from 
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severe deactivation along the time on stream, thus, leading to unsteady operation with 

low yield to the products of interest (YC6H6 < 6% after some hours on stream) [3, 9, 12]. 

With these limitations, the standard operation conditions to maximize aromatics 

production and prevent catalyst deactivation are: spatial velocities in the range of 

1400 – 1600 mL/gcath, reaction temperature of 700ºC, atmospheric working pressure, 

molybdenum loading between 3 – 6 wt.% and ZSM-5 zeolite acidity, i.e. Si/Al ratio, 

comprised between 15 and 40 [9, 10, 13]. Under these reaction conditions, the 

transient methane conversions and aromatics selectivities are typically in the range 10 

– 12% and 60 – 80%, respectively [12]. Nonetheless, recent reports show that MDA 

would be similarly effective in a broader range of space velocities and that working at 

elevated pressures has apparently a very positive effect on the reaction [14].  

In the recent years, an extensive effort has been devoted to understand both the 

nature of the active species of this catalyst and the reaction mechanism in order to 

enhance the performance and durability of the employed materials [12, 15-20]. It is 

accepted that the formation of large MoOx aggregates or Mo clusters onto the zeolite 

surface is detrimental due to fast coke formation and rapid catalyst deactivation. In 

contrast, a good dispersion of Mo active entities within the zeolite channels may 

retard and somehow inhibit coke deposition on the active sites as well as pore blocking 

[3, 12, 21-23]. Typically, the impregnation of the zeolite with a Mo precursor (MoO3 or 

(NH4)6Mo7O24·4H2O) is followed by drying and calcination at 500 – 550ºC to promote 

the migration of MoOx species inside the zeolite micropores. These experimental 

conditions using controlled temperature ramps are able to provide a reasonably good 

metal dispersion [12]. Nevertheless, the fine control of this dispersion is rather limited.  
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In an attempt to enhance the catalyst activity, reduce coking and extend its stability, in 

the present work we propose a novel synthesis route for the benchmarking Mo/ZSM-5 

catalyst based on the solvothermal incorporation of Mo to the zeolite under 

supercritical conditions [24, 25]. It consists on the intimate mixing of Mo and zeolite 

precursors in the presence of a solvent under supercritical conditions. The mixture 

behaves as a hybrid matter state transitioning between a liquid and a gas, i.e. the 

supercritical fluid can effuse through solids like a gas and dissolve materials like a 

liquid. To the best of our knowledge, this solvothermal synthesis under supercritical 

conditions has not been reported before to prepare MDA catalysts. Taking advantage 

of the supercritical fluid properties, we aimed at enhancing the metal dispersion within 

the zeolite channels in order to increase the number of active sites, improve the 

reaction rates, reduce coke deposition and, thus, delay catalyst deactivation.  

Furthermore, the presence of an additional alcohol (i.e. ethanol) as reducing agent has 

been successfully tested as a positive factor to promote the stability of the Mo/ZSM-5 

catalyst during the MDA reaction.  

 

2 EXPERIMENTAL   

2.1 Catalyst preparation 

For the sake of comparison, the developed Mo/ZSM-5 based catalysts were 

synthesized using either a conventional incipient wetness impregnation method (IMP) 

or under supercritical solvothermal conditions (hereafter referred as SC-STS). The 

latter method implied the use of a self-built reactor setup described elsewhere [24, 25] 

and depicted in Figure 1. Briefly, a continuous flow of cold Mo precursor solution and 

https://en.wikipedia.org/wiki/Solvation
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the zeolitic support (H-ZSM-5) is mixed with a hot solvent (water-ethanol mixture) 

inside the reactor. Upon mixing under supercritical conditions for the solvent phase, a 

super-fast precipitation of highly dispersed metal precursor nanoparticles occurs onto 

the support material.  

The precursor and solvent are pumped into the reactor with the aid of membrane 

pumps, while the flow is monitored by rotameters. A pressure relief valve is used to 

control the pressure inside the reactor. The solvent is heated to a specified 

temperature before it is mixed with the precursor in a simple T-piece mixing joint from 

where the sample is led into the temperature controlled vertical section of the reactor. 

After the heated section of the reactor, the product solution is cooled to room 

temperature by water and finally collected. The temperature is monitored in the 

mixing points and after the cooler.  

The supercritical solvothermal synthesis was carried out either in the presence (SC-

STS-E) or absence (SC-STS) of ethanol in the solvent phase. In the case of the SC-STS 

samples, pure water was used as supercritical solvent. For SC-STS-E samples, 

supercritical 10% v/v ethanol solution in water was employed. The catalyst precursor 

solution containing the Mo precursor and dispersing agents was prepared by dissolving 

the soluble species in a 60%/40% v/v ethanol/water mixture followed by the addition 

of the solid support material. Specifically, the employed materials were: molybdenum 

acetylacetonate (Mo(acac), 99.9 %, Sigma Aldrich), PVP40K (99.99 %, Sigma Aldrich), 

BYK7410ET (BYK) or Dolapix CE64 (Zschimmer & Schwarz) as dispersing agents and 

zeolite support, NH4-ZSM-5 Zeolyst CBV2314, being the silica-to-alumina (SAR) ratio of 

23. The zeolite supports were ball-milled prior to the supercritical STS step. The 
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presence of ethanol in the catalytic precursor solution was required to dissolve the 

Mo(acac) precursor. Furthermore, the addition of ethanol within the supercritical 

solvent phase was aimed to create a reducing atmosphere in order to change the 

oxidation state of Mo precursor. Under supercritical conditions, ethanol decomposes 

into H2/CO/CO2 [26], which are able to reduce Mo (VI) species to Mo (IV). The 

theoretical target loading of Mo on ZSM-5 was 5 wt.% in all cases. The precursor 

solution was kept under constant stirring at all times.  

In every preparation, the solvent was pre-heated up to 450 °C. The temperature of the 

vertical section in the reactor was set to 400 °C and the pressure was adjusted to 220 

bar to ensure supercritical conditions for the solvent phase (see Figure 1b). The initial 

and latest fractions of collected product were systematically discarded. The product 

suspension was centrifuged at 10,000 rpm for 5 min in 200 mL canisters. The product 

was rinsed with absolute ethanol and dried at room temperature for 24 h. As stated 

above, the sample prepared using pure water as supercritical solvent was denoted as 

‘SC-STS’ whereas the sample prepared with a mixture of water and ethanol as reducing 

agent in the supercritical solvent phase was labelled as ‘SC-STS-E’. As a final step, the 

samples were calcined in air for 6 h at 550°C leading to the re-oxidation of the 

previously reduced Mo species in case of the SC-STS-E sample.   

For the preparation of the catalyst by the standard impregnation method (IMP), the 

same theoretical metal loading (5%wt. Mo) and zeolite support (CBV2314, SiO2/Al2O3 = 

23, from Zeolyst) were employed. An aqueous solution of ammonium heptamolybdate 

tetrahydrate, (NH4)6Mo7O24·4H2O (Merck), was poured dropwise on a zeolite powder 

sample until incipient wetness condition under manual stirring. The impregnated 
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sample was dried at 120ºC and calcined at 550ºC (heating ramp: 1ºC/min) for 6 hours. 

The resulting Mo/ZSM-5 catalyst was denoted as ‘IMP’. 

Figure 1c and 1d show a schematic representation of both synthesis procedures. In the 

SC-STS and SC-STS-E methods, the metal precursor dissolved in the supercritical fluid 

mixing was intimately mixed with the loosely suspended zeolite particles along the 

reactor tube. On the other hand, in case of IMP, an aqueous solution of metal 

precursor was poured dropwise on bulk zeolite aggregates under stirring, aiming at its 

diffusion through the pores of the support by capillarity [27].  

The syntheses of the nanomaterials have been performed by the Platform of 

Production of Biomaterials and Nanoparticles of the NANOBIOSIS ICTS, more 

specifically by the Nanoparticle Synthesis Unit of the CIBER in BioEngineering, 

Biomaterials & Nanomedicine (CIBER-BBN).  
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Figure 1. Schematic overview of the synthesis approaches described in this work: a) Digital photograph 

of the supercritical setup; b) Simplified scheme of the reaction conditions to carry out the supercritical 

synthesis; c) Sketch of the supercritical conditions and the obtained catalyst, including a representative 

HAADF-STEM image accounting for the excellent Mo dispersion; d) Schematic overview of the 

impregnation method including a STEM image to illustrate the formation of some non-internalized 

aggregates. 

 

2.2 Catalyst characterization 

The synthesized catalysts were thoroughly characterized by a number of techniques: 

Raman spectroscopy, Argon adsorption, Thermogravimetric analysis (TGA), Scanning 

and Scanning-Transmission Electron Microscopy (SEM, STEM) with Energy-Dispersive 

X-ray spectroscopy (EDX), X-ray photoelectron spectroscopy (XPS), X-ray diffraction 

(XRD), Temperature-programmed desorption of ammonia (NH3-TPD), 27Al magic angle 

spinning nuclear magnetic resonance (27Al MAS NMR) as well as Fourier-Transform 

Infrared spectroscopy of CO adsorption (CO-FTIR). Raman spectroscopy measurements 

were performed with an Alpha 300 Raman spectrometer (WITec) using a 532 nm laser 

source and CCD camera as detector to identify the presence and coordination of Mo 

species in the catalytic samples. The selected laser power and integration time were 8 

mW and 2 s, respectively. Argon adsorption was employed to study the textural 

properties of the catalysts, evaluating the adsorption isotherm. The specific surface 

area was calculated by BET equation, considering consistency criteria proposed by 

Rouquerol for microporous materials [28] and the micropore volume was evaluated at 

P/P0 = 0.01. The measurements were carried out using a Micromeritics ASAP 2020 

analyzer. Samples were degassed at 350ºC prior to the analysis. TGA and DTG 
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(differential TGA) were used to determine changes in the mass that coked catalysts 

undergo when heated at a programmed temperature under oxidizing atmosphere. A 

Q5000SA thermal analyser (TA Instruments) was employed. The measurements were 

carried out in air at a heating rate of 10ºC/min from room temperature to 900ºC. TEM 

(Tecnai F30, FEI) and HAADF Scanning-TEM (Titan Low Base 60-300, FEI) were 

employed to evaluate the dispersion of Mo species and the eventual formation of 

aggregates on the zeolite external surface. SEM-EDX was used to evaluate the 

morphology of the catalysts and Mo distribution on the surface of the zeolite support. 

The analyses were carried out in a scanning electron microscope INSPECT-F50 from FEI 

Company. XPS measurements were performed with an Axis Ultra DLD (Kratos Tech.) 

equipment. The spectra were excited by a monochromatized AlKα source (1486.6 eV) 

run at 15 kV and 10 mA to analyse the oxidation state of the Mo species in calcined, 

coked and regenerated catalytic samples. The binding energies were referenced to the 

internal C1s (284.6 eV) standard of adventitious carbon. XRD was employed to identify 

the structural changes of the raw zeolite ZSM-5 by the addition of molybdenum and by 

MDA-regeneration cycles. Diffraction data were measured on an Empyrean 

diffractometer from PANanalytical operating at 45 kV and 40 mA, using CuKα radiation. 

XRD patterns were collected from 2Ɵ = 10° to 50°. NH3-TPD measurements were 

performed to investigate the acidic properties of the catalysts in an AutoChem II 2920 

from Micromeritics using the following procedure: first, 100 mg of the catalytic 

samples were pretreated in He (30 mLSTP/min) at 500ºC for 1 hour to remove the 

adsorbed water and organic species. After saturating with a 5% vol. NH3/He mixture 

gas (60 mLSTP/min) at 120ºC for 60 min, the samples were degassed with He for 1 hour. 

NH3 was then desorbed in the temperature range 120 – 600ºC at a heating ramp of 
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10ºC/min under 60 mLSTP/min He. The desorbed NH3 was monitored by thermal 

conductivity detector (TCD).  27Al MAS NMR was conducted to evaluate the effect of 

Mo addition on the change of the zeolite structures. The 27Al MAS NMR spectra were 

recorded at 104.3 MHz using a 2.5 µs pulse with a 3 s recycle delay (2048 scans) on a 

400 MHz solid-state Bruker Avance AV-400-WB NMR spectrometer using a 4 mm 

probe. Samples were spun at 8 kHz. FTIR of adsorbed CO was performed to analyse the 

Brønsted acidity of the catalytic samples prior and after Mo incorporation. The 

measurements were conducted in a Nexus 8700 FTIR spectrometer with DTGS 

detector and 4 cm-1 resolution. Self-supported wafers containing the different 

Mo/ZSM-5 samples (10 mg/cm2) were first pre-treated in oxygen at 400ºC (2 hours) 

followed by degassing under dynamic vacuum at 300ºC. After cooling the system down 

to -120ºC, CO was dosed and adsorbed at increasing pressures (0.1 to 1 mbar), thus, 

collecting the resulting IR spectra after each dose.  

 

2.3 Catalytic testing 

The obtained catalytic powders from both supercritical - solvothermal synthesis (SC-

STS) and impregnation (IMP) were tested for methane dehydroaromatization. The 

experimental set-up and standard operational conditions are shown up next. A fixed 

bed containing 0.5 g of 5%wt. Mo/ZSM-5 catalyst was placed in a vertical quartz tube 

located inside an electrical oven. A temperature ramp of 20ºC/min was employed to 

heat the sample up to 700ºC using a methane-rich gas flow (80%CH4 – 20%N2) in order 

to keep a reducing atmosphere to carburize Mo species into MoCxOy and Mo2C. 

Experimental reaction tests were conducted in fixed beds of Mo/ZSM-5 powders 

(aggregates size: 100 – 250 µm; external diameter of the quartz tube: 12 mm) at 700ºC 
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using a diluted methane flow (CH4: N2 = 80:20) and a spatial velocity of the inlet gas 

mixture of 1500 mLSTP/gcat·h. Three mass flow controllers (Bronkhorst 0-20 mLSTP/min) 

were employed to feed either the reactive mixture or the catalyst regeneration flow 

(N2:O2 = 19:1, 2400 mLSTP/gcat·h). Nitrogen (99.999% Praxair) was here employed as 

internal standard for the quantification of the product gas flow, pure methane (99.5% 

Praxair) was the gas reactant and oxygen (99.999% Praxair) was the oxidizing agent.  

The composition of the outlet gas was analysed with a GC (Thermo Fisher Scientific 

TRACE1310) equipped with one thermal conductivity detector (TCD) and two flame 

ionization detectors (FID) for the analysis of permanent gases, light hydrocarbons and 

aromatics, respectively. The columns employed for the separation of the three groups 

of outlet gas components were Shincarbon, Plot Alumina and TR–1, respectively.  

Methane conversion (xCH4) and hydrocarbon selectivity (SCxHy) were calculated using 

Equations 1 and 2, being   i,    , Ai and RFi the molar flow, volumetric flow, peak area 

and response factor of the species i, respectively. The response factor represents the 

ratio between the response of a detector to a compound (peak area) and the 

concentration of that compound in a mixture of gases. The hydrocarbon yield (YCxHy) is 

defined as the product of conversion by selectivity [29, 30]. 
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3 RESULTS AND DISCUSSION 

3.1 Physical-chemical properties of the Mo/ZSM-5 catalysts 

The main features of the catalysts prepared by solvothermal synthesis under 

supercritical conditions (SC-STS) and impregnation (IMP) are discussed below. The 

presence of crystalline MoO2 phase after SC-STS-E and prior to calcination was 

confirmed by XRD (Figure S1). Comparing SEM-EDX results on the effective metal 

loading among the samples (Table 1), it seems that the addition of diluted ethanol in 

the solvent phase helped to incorporate Mo species to the zeolite support in SC-STS-E. 

The metal loss by SC-STS in the absence of reducing agent is, however, comparable to 

that obtained by impregnation. As a result of the different effective Mo loading, SC-

STS-E has the lowest specific surface in comparison to SC-STS, IMP and the pristine 

ZSM-5. The low pore volume of IMP, however, suggests that the distribution of Mo is 

somehow producing a more relevant pore blockage that for SC-STS and SC-STS-E 

catalysts (Figure 1d and Table 1).     

The evaluation of the total acidity of the Mo/ZSM-5 samples by NH3-TPD revealed that 

the initial bimodal (weak and strong) acidity distribution of the fresh zeolite was tuned 

by the effect of Mo incorporation (see Table 1 and Supporting Information, Figure S2). 

In the IMP synthesis the strong acid sites were reduced, whereas in the case of the 

supercritical conditions the strongest acid sites disappeared completely. Taking into 

account the similar metal loading employed in both SC-STS and IMP cases, the absence 

of strong acidity in the SC-STS samples suggests a better dispersion of Mo at the zeolite 

pores. This was confirmed by both CO-FTIR (Figure S3) [31] and XPS analyses. Table 1 

shows the atomic distribution at the catalyst surface, i.e. Mo/(Si+Al) ratio, quantified 

from XPS measurements. It is observed that the Mo content at the surface decreases 
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in the order IMP > SC-STS > SC-STS-E. Consequently, it can be assumed that Mo bulk 

dispersion qualitatively increases the other way around, i.e. SC-STS-E > SC-STS > IMP. 

As a result of the different metal-support interaction provided by the  different 

synthesis methods, the surface Si/Al ratio differs among the fresh catalytic samples. 

The lower Si/Al value calculated for the IMP sample may indicate higher dealumination 

and/or greater presence of aluminium molybdate species at the external catalyst 

surface, as it will be discussed later.  

 

Table 1. Summary of physical-chemical properties of the different Mo-ZSM5 catalysts 

Sample 
%wt. Mo a  

(%) 

Sg 
b  

(m
2

/g) 

Vp 
b 

(cm3/g) 
Total 

acidityc 
Weak 

acidityc 
Medium 
acidityc 

Strong 
acidityc 

Mo/(Al+Si)d 

(-) 
Si/Ald 

(-) 

H-ZSM-5 - 284 ± 4 0.125 1.22 31% 26% 43% - - 

SC-STS 4.2 ± 0.2 271 ± 6 0.128 0.65 38% 62% 0% 0.11 8.7 

SC-STS-E 4.7 ± 0.1 253 ± 5 0.120 0.59 39% 61% 0% 0.10 9.6 

IMP 4.3 ± 0.5 271 ± 6 0.117 0.99 21% 45% 34% 0.15 7.0 
 

a Weight percentage obtained by EDX analysis 

b Textural properties determined by N2-adsorption: specific surface area (Sg) and total pore volume (Vp) 

c Acidity retrieved from NH3-TPD 

d Atomic Mo/(Si+Al) ratio at the catalyst surface determined by XPS 

 

Figure 2 shows the XPS spectra concerning the surface oxidation state of Mo in the 

fresh (Figure 2a and 2b) and spent (Figure 2c and 2d) samples, as well as the 

distribution of the carbon binding nature in the coked samples after reaction (Figure 

2e and 2f). For the sake of comparison, the two samples with the most similar final Mo 

content, i.e. SC-STS and IMP, were selected. Mo 3d5/2 photoemission spectra of fresh 

calcined samples (Figures 2a and 2b) revealed that Mo was fully oxidized and (94%) of 

Mo (VI) for SC-STS and IMP, respectively. The predominant Mo (VI) state in the fresh 

samples was also confirmed by Raman measurements (Figure S4). The oxidation state 
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Mo (VI) is normally related to MoO3 dispersed on the zeolite surface whereas Mo (V) 

has been associated with Mo5+ species present in bulk MoO3 [32]. This would confirm 

the presence of comparatively bigger Mo aggregates at the outer surface of the IMP 

sample.  

During MDA in the presence of methane as reducing agent, a number of Mo species 

coexist in the SC-STS sample, presenting different oxidation states: IV, V, VI and δ. This 

latter oxidation state is attributed to the molybdenum carbide species, Mo2C, which is 

often claimed to be the active species for this reaction, [9, 22, 33]. The signal of the Mo 

3d5/2 photoemission spectra, of the coked IMP sample (Figure 4c), could not be 

detected. The absence of Mo signal can be attributed to the thickness of the outer 

coke deposits after 15 hours on stream. It is probably exceeding the penetration depth 

threshold of the technique (<10 nm). The different C1s photoemission spectra (Figure 

2e and 2f) after 15 h MDA also corroborated that the catalyst coking is more 

representative in the case of the samples prepared by impregnation.  

The C-C bond represents hard coke from polyaromatic or pre-graphitic species formed 

at strong acid sites whereas the C-O-C and O-C=O bonds are more related to the 

graphitic coke formed at the oxycarbide active sites (MoOxCy) [33, 34]. These results 

suggest that the higher Mo dispersion in the case of the SC-STS sample seems to lead 

to a partial inhibition of the hard coke formation, maybe contributing to a different 

catalyst deactivation mechanism. 

TEM analysis supported the previous findings on the effect of the different synthesis 

methods on the initial Mo dispersion and catalyst coking of the evaluated samples. 

TEM analysis also revealed that the dispersion of Mo species was somehow better for 

the samples synthesized by the SC-STS-E method. Figure 3a shows a TEM image of the 
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IMP sample. The presence of nanoclusters (darker contrast) with a fairly homogeneous 

distribution located at the outer zeolite surface is clearly observed. Similar bright-field 

TEM images were acquired for SC-STS and SC-STS-E, although the micrographs did not 

provide clear evidence of any Mo species. This motivated the use of HAADF-STEM. The 

dark-field analysis revealed the presence of very well dispersed dots with brighter 

contrast corresponding to Mo species within the zeolite channels. Taking into account 

the diameter of zeolite micropores (0.53 nm), the bright inner dots observed in Figure 

3b (SC-STS-E sample) could consist of clusters of very few atoms of Mo species or even 

single Mo atoms exchanged at the zeolite framework. Figures 3c and 3d provide a 

qualitative description of Mo distribution in the fresh IMP and SC-STS-E samples as 

well as its probable effect on the coking mechanism during the MDA process. 



17 
 

 

Figure 2. X-ray Mo3d5/2 photoemission spectra of fresh Mo/ZSM-5 catalysts prepared by (a) IMP and (b) 

SC-STS. Mo3d5/2 photoemission spectra of spent (c) IMP and (d) SC-STS samples after 15 h on stream. 

C1s photoemission spectra of spent (e) IMP and (f) SC-STS samples after 15 h on stream  

 

The comparison between both coked samples after 15 hours on stream under MDA 

conditions clearly revealed the different nature of their most representative carbon 

deposits differs between them. The catalyst prepared by SC-STS-E shows the presence 
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of Mo-associated carbon in the form of well dispersed carbide clusters (MoCx) at the 

zeolite surface (Figure 3f).  These clusters appear to be surrounded by a very thin layer 

of soft coke as it is revealed by the STEM-EDX spectra (Figure 3f, spectrum 5).   
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Figure 3. (a) TEM-EDX micrographs of fresh 5%Mo/ZSM-5 prepared by incipient wetness impregnation 

(IMP), showing Mo clusters at the external surface. (b) HAADF-STEM of fresh 5%Mo/ZSM-5 prepared by 

supercritical solvothermal synthesis with ethanol (SC-STS-E) showing fine Mo dispersion. (c) – (d) 

Conceptual drawing of Mo distribution along the zeolite support for fresh and spent 5%Mo/ZSM-5 by 

IMP and SC-STS-E, respectively. The poorer Mo dispersion of IMP results in Mo clustering at the fresh 

zeolite surface and more intense coking during MDA. (e) – (f) HAADF-STEM images of spent IMP and SC-

STS-E catalysts, respectively, after 15 hours MDA and EDX spectra of selected areas, illustrating the 

different coking behaviour of the samples as a result of the initial Mo dispersion 

 

In contrast, the predominant carbon species in the coked IMP sample are carbon 

nanotubes and nanofibers, CNT/CNF, located out of the zeolite surface (Figure 3e).  

The different nature of coke deposits was corroborated by Raman spectroscopy. Figure 

4a shows the Raman spectra and a 5-peak-based deconvolution of the intense signals 

associated with deposited carbon species for the spent IMP and SC-STS-E samples. 

Typically, the Raman shift around 1200 cm-1 is assigned to aliphatic C-H bounds, the D 

band around 1350 cm-1 relates to the aromatic structures poorly structured or 

disordered, the so-called D3 band (1430 cm-1) is assigned to structural defects of 

aromatic domains with poor organization, the G band (around 1590 cm-1) relates to 

more structured graphitized structures whereas D2 represents the D echo band [35]. 

On this regard, it is observed that the ratio between G and D band intensities is greater 

in the case of the spent IMP after a similar time on stream, specifically: (ID/IG)IMP = 0.82 

and (ID/IG)SC-STS-E = 1.11.  

Probably, the growth of structured CNT is caused by the presence of large Mo 

nanoparticles (as a result of a poorer metal dispersion) acting as nucleation points. 

These large Mo nanoparticles detach from the zeolite surface as the CNT grow and 
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become isolated and flushed away during an eventual regeneration step in the 

presence of an oxidizing agent. The reported irreversibility of the reaction-

regeneration cycles for highly-loaded Mo/ZSM-5 catalysts (≥ 5% wt. Mo) [2, 36], i.e. 

activity loss between consecutive MDA cycles, could be thus partially explained by the 

metal loss during the combustion of the CNT/CNF. Other reported factors are the 

formation of aluminium molybdate phase, framework dealumination and degradation 

of the zeolite crystallinity [2, 36].  

These three later factors were further evaluated by 27Al MAS NMR characterization. 

Figure 4b shows the 27Al MAS NMR spectra of the fresh IMP, SC-STS and SC-STS-E 

catalysts. The chemical shifts at 50 and 55 ppm belong to framework tetrahedral 

aluminium whereas the band at 0 ppm indicates the presence of extra-framework 

octahedral aluminium. The shifts at +14 and -14 are attributed to the hydrated and 

(resonant) non-hydrated forms of the aluminium molybdate phase, i.e. [Al(OH)n(H2O)6-

n]n(MoO4) (n = 1 or 2) and Al2(MoO4)3, respectively [37]. The last species appear as a 

result of a strong interaction between the molybdenum and the zeolite aluminium 

species. The coexistence of hydrated and non-hydrated Al2(MoO4)3 crystallites would 

suggest that this species is present both well dispersed in the catalyst bulk and at the 

surface, whereas a single band at +14 would indicate the presence of external 

Al2(MoO4)3 only [37].  

Figure 4b reveals that Mo interaction with framework Al is significantly more intense 

for the samples prepared by solvothermal synthesis. In particular, the smooth 

dealumination in IMP leads to the formation of external Al2(MoO4)3 crystalline species 
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(band at +14 ppm) whereas the dealumination of SC-STS-E support leads to the 

formation of internal aluminium molybdate structures.  

On the one hand, the low interaction of Mo with the aluminium of the zeolite in IMP 

may indicate that most Mo species would remain as external MoO3 aggregates at the 

catalyst surface. NH3-TPD (Figure S2), FTIR spectroscopy with CO adsorption (Figure S3) 

and TEM-STEM (Figure 3) results point to the same conclusion. 

On the other hand, it has been reported that the external aluminium molybdate may 

be detrimental for the catalytic performance. However, its presence within the bulk 

structure apparently does not affect the performance negatively [37]. 

Comparing the NMR spectra of fresh and regenerated samples (Figure S5), it is clear 

that the oxidative regeneration of coked samples promotes both dealumination and 

formation of external Al2(MoO4)3. Although this effect is very noticeable even for the 

SC-STS-E sample, XRD results indicate that the crystalline structure of the bulk catalyst 

remains unaltered after one reaction-regeneration cycle (Figure 4c).  
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Figure 4. a) Deconvoluted Raman spectra of spent samples prepared by impregnation (IMP) and 

supercritical solvothermal synthesis with ethanol addition (SC-STS-E) after 15 h MDA; b) 
27

Al MAS NMR 

spectra of fresh IMP, SC-STS and SC-STS-E samples; c) XRD diffractogram of fresh and regenerated SC-

STS-E sample after 15 h MDA 

 

 

 

 



23 
 

3.2 Catalyst performance evaluation  

The catalytic performance of the synthesized samples for methane 

dehydroaromatization was evaluated under the experimental conditions described in 

subsection 2.3. Figure 5a shows the transient methane conversion and overall 

hydrocarbon yield of the 5 wt.% Mo/ZSM-5 catalysts prepared by SC-STS, SC-STS-E and 

IMP whereas Figure 5b represents the yield to the major product of interest, i.e. 

benzene, for the above mentioned catalysts. Figure 5a reveals that the SC-STS sample 

outperforms the IMP by almost 20% higher conversion and 17% hydrocarbon 

productivity after 15 hours on stream. Moreover, the supercritical solvothermal 

synthesis promoted by the use of ethanol as reducing agent in the solvent phase (SC-

STS-E) led to an unprecedented catalytic performance ascribed to an enhanced 

atomically dispersed Mo distribution along the zeolite channels. For instance, the 

sample SC-STS-E outperforms the conventional IMP catalyst by 45% and 36% in terms 

of methane conversion and products yield after 15 hours on stream. The different 

performance of SC-STS and SC-STS-E in terms of methane conversion can be ascribed 

to the different Mo content and distribution along the samples (Table 1). The 

outstanding hydrocarbon yield stability of SC-STS-E suggests that the intrinsic catalyst 

deactivation, i.e. methane conversion decay, only seems to impact the production rate 

of coke and C10+ species for this sample. The reaction progress appears to enhance the 

process selectivity towards C2-C10 species. This finding can be tentatively attributed to 

more effective Mo-Al interactions as a result of: (i) a comparatively finer metal 

dispersion; (ii) lower catalyst acidity and (iii) minimized accumulation of Mo as 

aggregated surface deposits. The catalyst deactivation rate of each sample was 

quantified in the period 5 – 10 h on stream (Figure S6), being the conversion decay 
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(dXCH4/dt): -0.35, -0.31 and -0.24 (%/h) for IMP, SC-STS and SC-STS-E, respectively. This 

result is in agreement with the above-discussed characterization results, illustrating 

that the synthesis method and Mo dispersion play a key role in the MDA performance 

of these Mo/ZSM-5 based catalysts. The smooth decay of benzene yield against time 

for every sample shown in Figure 5b is normally attributed to the loss of shape-

selectivity within the zeolite pores during the progressive blocking caused by coke. 

Consequently, the reaction progress leads to a reduction of the contact time and, thus, 

to an increase of the production of C2 species.  

 

Figure 5. Experimental methane conversion, overall hydrocarbon yield (a) and benzene yield (b) for 

different ‘SC-STS’ and ‘IMP’ 5%Mo/ZSM-5 samples. Operational conditions: 700ºC, 1500 mL/gcath, 0.5 gcat 

 

The transient products distribution of SC-STS-E is depicted in Figure 6a. Apart from 

unreacted methane, ethylene, benzene, naphthalene and hydrogen, small amounts of 

ethane and toluene as well as traces of propylene, xylene and C10+ polyaromatics were 

detected at the outlet gas of the MDA process.  Additionally, CO was detected during 
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the induction period as a result of the reduction of molybdenum oxide species into 

oxycarbides and Mo2C in the presence of methane.  

The total amount of coke deposits accumulated on IMP and SC-STS-E samples after 15 

hours on stream was 51.2 mg/gcat and 46.0 mg/gcat, respectively. This illustrates that 

the proposed supercritical synthesis method can reduce coke production by 10% even 

obtaining higher methane conversion. Normalizing coke production with respect to the 

total converted methane at the selected sampling time, IMP and SC-STS-E samples 

produced 1.22 and 0.99 g/(gcat·molCH4_conv), respectively. These numbers indicate a 

noticeable 18% reduction of MDA selectivity towards coke species in the case of the 

sample synthesized by SC-STS-E. In both cases, the total coke accumulation was 

quantified monitoring the COx signal during coke combustion in the presence of diluted 

oxygen (N2:O2 = 19:1, 2400 mL/gcath) at 580ºC. The thermogravimetic analysis of the 

SC-STS-E sample suggests that the vast majority of the coke species are burned out at 

this temperature (Figure S7). 

According to recent reviews in literature [7-11, 20, 38], it has been well established 

that the optimum Mo loading of MDA catalysts is in the range 3 – 6 wt.% Mo. In this 

regard,  Han et al. [2] investigated the effect of metal loading on the different coke 

type distribution after 10 h MDA on Mo/ZSM-5 prepared by impregnation and found 

that the ratio between low-temperature (soft, CS) and high-temperature (hard, CH) 

coke (i.e. Mo-associated and polyaromatics coke, respectively) remained nearly 

constant at wt. Mo loadings in the range 3% – 5% (CS / CH = 0.75) whereas it increased 

up to 1.22 for a sample containing 7% Mo. It confirmed that the presence of Mo 
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aggregates at the surface promotes the selective generation of hard coke, thus, 

leading to a lower active sites accessibility and faster deactivation.  

 

Figure 6. a) Experimental methane conversion and hydrocarbon selectivities for the catalytic sample SC-

STS-E; b) effect of reaction-regeneration cycle on the catalytic performance of SC-STS-E. Reaction 

conditions: 700ºC, 1500 mL/gcath, 0.5 gcat  
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In a recent fundamental study, Kosinov et al. [39] suggest that the Mo centres confined 

inside the pores seem to be the catalytic active site initiators. In contrast, larger 

species at the external surface, that often dominate spectroscopy characterization, are 

found to be catalytically irrelevant. In addition, these somehow undesired external Mo 

clusters can potentially undergo sintering during regeneration steps, thus, leading to 

activity and selectivity decay along consecutive reaction-regeneration cycles [36]. In 

order to check the regeneration capacity of the highly-dispersed 5%Mo/ZSM-5 

samples prepared by SC-STS-E, we performed two consecutive 18h MDA reaction 

cycles including an intermediate regeneration step with diluted oxygen at the following 

operational conditions: 5% O2/N2, 580ºC and 2400 mL/gcath. Additionally, in order to 

evaluate potential structural changes, the X-ray diffraction patterns of both fresh and 

regenerated SC-STS-E samples (after two MDA reaction cycles) were measured and 

compared.  

Figure 6b illustrates that there is not any evidence of crystallinity loss and/or formation 

of defects or new crystalline phases as a result of catalyst coking and regeneration. 

Figure 6b suggests that the catalytic performance of the SC-STS-E sample remained 

unaltered after one reaction-regeneration cycle, as Kosinov et al. [36] previously found 

working at similar regeneration conditions for atomically-dispersed low-loaded 

1%Mo/ZSM-5 samples. In this case, XRD results shown in Figure 4c already confirmed 

the stability and crystallinity of the bulk catalyst during the coking and regeneration 

processes. Still, some Al coordination changes were detected by 27Al MAS NMR 

between the fresh and regenerated SC-STS-E sample.  
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The results presented in this paper confirm that the SC-STS-E method represents a 

highly efficient and scalable (continuous) process to synthesize highly dispersed 

Mo/ZSM-5 with up to 5 wt. % metal loading. The negligible presence of superficial Mo 

clusters confers the sample with the highest long term stability for MDA in terms of 

methane conversion and C2+ yield among the experimental results reported in 

literature using similar parent zeolites, metal loadings and spatial velocities as the ones 

described in the present work [2, 32, 40-46]. The experimental results reported in this 

work were compared with existing MDA literature data related to transient methane 

conversion and aromatics yield on fixed beds of 5-6 wt.% Mo/ZSM-5 (or MCM-22) 

working at 700ºC, atmospheric pressure and 1500 mL/gcath for, at least, 8 hours on 

stream. Cyclic reaction-regeneration operation results were also discarded from this 

comparison. The publications subjected to the MDA performance comparison have 

been summarized in Table 2 and plotted in Figure 7. We can conclude that the 

experimental conditions addressed by Liu et al. [41] led to the best long term methane 

conversion amongst all results reported in literature. As the authors claim, they were 

able to promote the catalytic activity and lifetime by preparing hierarchical ZSM-5 by 

hydrothermal synthesis. The hierarchical porosity and suitable acidity were pointed as 

the most influencing factors contributing to their excellent catalytic performance. The 

long-term conversion presented by these authors is, in fact, the only one that 

outperforms the results disseminated in the present work, based on the supercritical 

solvothermal synthesis of 5% Mo/ZSM-5 (SiO2/Al2O3 = 23).  

Our methane conversion results resemble the values reported by Yin et al. (2014) [39], 

who employed 6% Mo/MCM-22 using an in-house synthesized nano-sized MCM-22 (40 

nm crystal size) followed by impregnation of Mo (see also Table 2). In terms of C2+ 
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yield, none of the previous literature results can reach the excellent and nearly 

constant aromatics yield along 15 hours on stream reported in this work. Again, the 

catalysts and experimental conditions of Liu et al. (2018) [41], Yin et al. (2014) [46] and 

Song et al. (2007) [32] modified the ZSM-5 support by hydrothermal post-synthesis in 

Al(NO3)3 aqueous solution to create a uniform micropore network with suitable acidic 

strength. These modifications yielded the highest aromatics productivity reported up 

to date. Considering that the values reported in the literature correspond to different 

operational conditions (i.e. methane dilution, partial pressure, space velocity, …) we 

compared also the best reported results in terms of productivity, last column of Table 

2. Our reported values are in the same order of aromatics productivity with lower 

catalyst deactivation rate. 

In addition to the MDA results collected in Table 2 for comparison of analogous 

reaction systems to ours, a series of recent MDA research works have dealt with the 

use of additional co-catalyst features and/or strategies to extend the catalyst lifetime 

and enhance its stability and coke resistance. Table 3 summarizes the catalytic 

performance (i.e. methane conversion and aromatics yield, if available) of these 

reaction systems after 5 hours on stream. This TOS was selected for the sake of 

comparison with the results presented in Table 2. 
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Figure 7. Comparison among the best long-term MDA results (>8 h) on Mo/ZSM-5 catalysts at 700ºC and 

1500 mL/gcath. The listed authors correspond to references: [2, 32, 40-46] 
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Table 2. Literature review of long-term MDA performance (> 8h) on fixed beds of 6 wt.% Mo/ZSM-5 

based powder catalysts (dp = 250 – 425 µm) working at 700ºC, 1500 mL/gcath and atmospheric pressure 

Reference Si/Al CH4:N2 xCH4 (5h) xCH4 (15h) YC6+ (5h) YC6+ (15h) C6+ (15h) (µmol C6+/gcath) 

Liu-2018 [41] 30 90:10 13.3% 12.4% 9.4% 8.3% 834 

Tan-2018 [42] 25 90:10 10.5% - 8.4% - - 

Xu-2011 [43] 20 92.5:7.5 5.5% - 5.0% - - 

Song-2007 [32] 25 89.5:10.5 11.7% 10.5% 8.7% 8.2% 819 

Liu-2006 [44] 50 90:10 11.2% 10.3% 6.9% 6.0% 603 

Liu-2017 [40] 50 92.5:7.5 10.6% - 6.4% - - 

Martinez-2016 [45] 16.5 90:10 8.2% - 6.0% - - 

Han-2019 [2] (*) 30 90:10 8.1% - 7.5% - - 

Yin-2014 [46] (**) 25 90.5:9.5 12.8% 11.3% 9.3% 7.8% 788 

This work [IMP] (*) 23 80:20 11.3% 8.0% 6.1% 5.9% 527 

This work [SC-STS] (*) 23 80:20 11.7% 9.8% 8.5% 8.1% 723 

This work [SC-STS-E] (*) 23 80:20 12.7% 11.5% 9.0% 8.8% 786 

           
 

                                
(*) 5 wt. % Mo       

                          (**) MCM-22 as support 

Kosinov et al. [36] presented a strategy for the cyclic regeneration of Mo/ZSM-5 

catalysts at MDA temperatures (700ºC). These authors were able to recover the initial 

activity of catalytic samples with low metal loading (< 3 wt. % Mo) for, at least, 7 

consecutive regeneration cycles. Kosinov et al. [47] used periodic oxygen pulses in the 

methane feed in order to extend the aromatics production stability without 

regeneration. Rahman et al. [18] found that the presence of molybdenum carbide 

species prepared ex-situ enhances both methane conversion and benzene selectivity. 

Its effect on the aromatics yield became more noticeable in the samples containing 10 
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– 12% Mo loading. Xu et al. [48] implemented a periodic CH4-H2 switching mode to 

extend the catalyst lifetime working at high temperatures and spatial velocities with 

Fe-promoted Mo/ZSM-5 samples.  

Table 3. Literature review of long-term MDA performance (> 5h) using Mo/zeolite-based catalysts 

promoted by additional features (doping metals, secondary gas co-feeding, support modifications, etc.) 

 
T 

(ºC) 

GHSV 

(mL/gcath) 
CH4:N2 % Mo 

% 

(Metal) 
Zeolite (Si/Al) 

xCH4 

(5h) 
YC6+ (5h) 

Kosinov-2017 [36] 700 6000 95/5 5.5 - ZSM-5 (30) - 9.1% 

Kosinov-2016 [47] 700 1680 100/0 5 - ZSM-5 (13) - 8.8% 

Rahman-2018 [18] 700 1550 100/0 6 - ZSM-5 (30) 8.6% 6.4% b 

Xu-2014 [48] 800 10000 100/0 5 0.5 (Fe) TNU-9 (20) 15.9 11.1% 

Hu-2015 [49] 700 1500 92.5/7.5 6 - ZSM-5 (25) 13.2% 8.9% 

Sridhar-2018 [50]  700 1500 91/9 6 0.2% (Fe) ZSM-5 (15) - 6.9% b 

Liu-2011 [51] 700 1500 92.5/7.5 6 - TNU-9 (50) 9.3% 5.4% 

Martinez-2011 [52]  700 1500 90/10 3 - ZSM-5 (26) 3.5% 2.9% 

Abdelsayed-2015 [53]  700 3000 90/10 4 0.3 (Fe) ZSM-5 (55) 5.0% 4.3% 

Liu-2012 [54] 700 1500 92.5/7.5 5 - ZSM-5 (33) 9.2% 5.4% 

Tempelman-2016 [55] 700 1800 95/5 6 - MCM-22 (16) 8.2% 4.6% 

Sun-2015 [56] 760 1500 90/10 5.5 - ZSM-5 (20) 12.6% 8.4% b 

Wang-2018 [57] 700 1500 90/10 6 - ZSM-5 (31) 17.1% 13.2% c 

Zhang-2016 [58] 700 1440 98/2 2 3 (In) ZSM-5 (23) 5.6% 4.7% 

Ma-2005 [59]a  750 3000 100/0 6 - ZSM-5 (-) - 4.4% b 

Lim-2018 [60] 680 3000 90/10 5 - MCM-22 (21) 4.3% 3.2% 

Kosinov-2019 [14]d 700 3000 100/0 2 - ZSM-5 (13) 6.6% 4.0% 

Sun-2017 [61] 700 1650 100/10 5 1 (Fe) ZSM-5 (30) 13.8% 6.1% 

a Honeycomb catalyst, pressurized reaction line (3 bar)  

b Benzene yield     

c Based on coke-free aromatics selectivity results 

d Pressurized reaction line (10 bar) 

 

Hu et al. [62] used in-house synthesized MoO3 particles as metal precursor to promote 

aromatics selectivity. Sridhar et al. [50] enhanced benzene yield and catalytic stability 
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using both precarburization strategies (i.e. feeding CH4/H2 while heating the sample) 

and promoting the catalyst adding small amounts of Fe. Liu et al. [51] found that the 

use of TNU-9 as catalyst support instead of ZSM-5 promoted both methane conversion 

and the benzene-to-naphthalene production rate. Martinez et al. [52] modified the 

ZSM-5 support including intracrystalline mesopores. These variations led to a slight 

promotion of methane conversion and limitation of coke production after 8 hours on 

stream. Abdelsayed et al. [53] also found that the addition of small amounts of Fe on 

the Mo-based catalyst promotes MDA reaction. In contrast, the addition of Zn did not 

show any positive effect on the process. In agreement with Martinez et al. [52], Liu et 

al. [54] found a slight increase in the aromatics production using in-house synthesized 

mesoporous ZSM-5. Tempelman et al. [55] described the one-pot synthesis of nano-

crystalline MCM-22 and its use as catalyst support for MDA. The increased accessibility 

of the internal acid sites in the Mo-loaded hierarchical MCM-22 improved benzene 

selectivity during MDA. Sun et al. [56] used a periodic CH4-H2 switch strategy similar to 

that reported by Xu et al. [48] keeping a nearly constant methane conversion (13 – 

16%) and outstanding aromatics yield (>10%) for 1000 hours on stream, which 

represents the longest reported TOS in literature for the MDA process. Wang et al. [57] 

synthesized an unconventional hollow ZSM-5 zeolite capsules with large cavity in core 

and aggregated mesopores in shell that significantly outperformed the conventional 

ZSM-5 microporous support in terms of methane conversion and aromatics selectivity. 

Zhang et al. [58] found that the addition of a significant amount of indium (3 wt. %) to 

a 2%Mo/ZSM-5 catalyst decreased coke formation during MDA. Ma et al. [59] 

enhanced aromatics production stability by co-feeding small amounts of water or 

H2/water mixtures with methane. Lim et al. [60] employed MCM-22 as support and 
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studied the effect of the acidity (Si/Al ratio) on the catalyst performance. Finally, Sun 

et al. [61] reveals that both methane conversion and overall stability was substantially 

promoted by adding 1 wt. % Fe nanoparticles to the standard 5%Mo/ZSM-5. 

Summarizing the previous literature results, only the catalytic performance reported 

by Sun et al. [56] and Xu et al. [48] (based on the periodic CH4-H2 switching) and that 

reported by Wang et al. [57] (based on the use of hollow ZSM-5 capsules) match the 

results obtained with the SC-STS-E sample in terms of catalytic stability and aromatics 

yield. On this regard, the potential advantages of the suggested SC-STS-E method with 

respect to the synthesis procedures described above are two-fold: i) SC-STS is a 

continuous synthesis procedure and commercially available ZSM-5 zeolites can be used 

as catalyst support, i.e. hierarchical zeolites do not need to be fabricated on purpose; 

this would facilitate the potential catalyst synthesis scaling; ii) The outstanding stability 

of the SC-STS-E hydrocarbon productivity was obtained without co-feeding any 

stabilizing gas (e.g. H2 as reducing agent).  

 

4 CONCLUSIONS 

A continuous solvothermal synthesis method under supercritical conditions and 

reducing atmosphere (SC-STS-E) has been developed to synthesize Mo/ZSM-5 based 

catalysts consisting of well dispersed MoOx species within the zeolite pores for their 

use in methane dehydroaromatization. Characterization results confirm that this 

technique allows the loading of up to 4.7 wt. % Mo content at the ZSM-5 pores 

without apparent aggregation of Mo entities at the external surface of the zeolite. The 

resulting metal dispersion and catalytic stability outperformed that provided by the 

traditional Mo/ZSM-5 catalyst prepared by impregnation. Methane conversion and 
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hydrocarbon productivity after 15 hours on stream increased by 45% and 36%, 

respectively, compared to the impregnated catalyst. The sample SC-STS-E provided 

long-term reactivity and stability due to the delayed formation of hard coke species 

with detrimental effect on the activity of the Mo active sites. Based on the very 

promising results and excellent Mo dispersion, this work opens a possibility to extend 

the proposed synthesis method to other heterogeneous catalytic systems that require 

high metal dispersion. 
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