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Abstract. In molecular biology, RNA structure comparison is of great
interest to help solving problems as different as phylogeny reconstruction,
prediction of molecule folding and identification of a function common
to a set of molecules. Lin et al. [6] proposed to define a similarity cri-
terion between RNA structures using a concept of edit distance ; they
named the corresponding problem Edit. Recently, Blin et al. [3] showed
that another problem, the Longest Arc-Preserving Common Sub-
sequence problem (or Lapcs), is in fact a subproblem of Edit. This
relationship between those two problems induces the hardness of what
was the last open case for the Edit problem, Edit(Nested,Nested),
which corresponds to computing the edit distance between two secondary
structures without pseudoknots. Nevertheless, Lapcs is a very restricted
subproblem of Edit: in particular, it corresponds to a given system of
editing costs, whose biological relevance can be discussed ; hence, giv-
ing a more precise categorization of the computational complexity of the
Edit problem remains of interest. In this paper, we answer this question
by showing that Edit(Nested,Nested) is NP-complete for a large class
of instances, not overlapping with the ones used in the proof for Lapcs,
and which represent more biologically relevant cost systems.

Keywords: computational biology, RNA structures, arc-annotated se-
quences, edit distance, NP-hardness.

1 Introduction

The understanding of biological mechanisms, at a molecular scale, is induced
by the discovery and the study of various RNA functions. It is established that
the conformation of an RNA molecule (a single strand composed of bases A,
U , C and G also called primary structure) partially determines the function
of the molecule. This conformation results from the molecule folding due to
local pairing between complementary bases (A−U and C−G, connected by a
hydrogen bond). Thus, such a molecule has both double-stranded areas (stems)
and various types of loops or areas with unpaired bases. A model underlying a
given RNA conformation is the secondary structure, with its stems, bulges, and
various loops.



RNA secondary structure comparison is essential for (i) identification of
highly conserved structures during evolution (which cannot always be detected
in the primary sequence, since it is often unpreserved) which suggest a signifi-
cant common function for the studied RNA molecules, (ii) RNA classification
of various species (phylogeny), (iii) RNA folding prediction by considering a
set of already known secondary structures and (iv) identification of a consensus
structure and consequently of a common role for molecules.

At a theoretical level, the RNA structure comparison problem can be modeled
by the class of problems Edit(t1,t2) which consist in computing the minimum
number of edit operations needed to transform a structure of type t1 into a
structure of type t2, where t1, t2 take values in {plain, nested, crossing,
unlimited}(cf. Section 2 for more details). Lin et al. [6] proposed to take simul-
taneously into account primary and secondary structures in RNA comparison by
jointly considering a base and its potential hydrogen bond with another base in
the similarity computation. They proposed in [6] exact and approximate polyno-
mial algorithms for some classes of problems Edit(t1,t2). They also gave some
complexity proofs for some other classes. The complexity of the Edit(Nested,
Nested) problem was left as an open problem.

Recently, Blin et al. [3] showed that the complexity of this last problem is
actually closed since it simply follows from the complexity of the Longest Arc-
Preserving Common Subsequence problem [4] (Lapcs for short). However,
a sharp analysis of the equivalence between the Lapcs and the Edit problems
shows in fact that only a very restricted number of instances of Edit(Nested,
Nested) are shown to be NP-complete. Moreover, the cost system should sat-
isfy restrictions which can be biologically discussed. Therefore, as another step
towards establishing the precise complexity landscape of the Edit problem, it
is of interest to consider a more precise class of instances – but not overlapping
with the one used in the proof from Lapcs –, for determining more precisely
what makes the problem hard. For that purpose, we propose after defining some
notations (Section 2) a non-trivial reduction via a 2-page book embedding with
some special requirements on the costs for the edit operations (Section 3).

2 Notations and problem description

An RNA structure can be described by the sequence of its bases together with
the set of hydrogen bonds possibly connecting bases A to bases U or bases C to
bases G. This structure is commonly represented by an arc-annotated sequence.
Given a finite alphabet Σ, an arc-annotated sequence is defined by a pair (S, P ),
where S is a string on Σ∗ and P is a set of arcs connecting pairs of characters
of S. In the following, we will refer to the characters as bases in reference to
RNA structures. Any base with no arc incident to it is called free. As usually
considered in arc-annotated sequences comparison, we distinguish four levels of
arc structure [4]:

– Plain: there is no arc,



– Nested: no base is incident to more than one arc and no arcs are crossing,
– Crossing: no base is incident to more than one arc,
– Unlimited: no restriction at all.

Those four levels respect an obvious inclusion relation denoted by the ⊂ operator:
Plain ⊂ Nested ⊂ Crossing ⊂ Unlimited. In order to compare two arc-
annotated sequences, we consider the set of edit operations (and their associated
costs) introduced in [6]. There are four substitution operations which induce
renaming of bases in the arc-annotated sequence. They are listed together with
their associated cost: base-match (wm : Σ2 → IR), base-mismatch (wm : Σ2 →
IR), arc-match (wam : Σ4 → IR), arc-mismatch (wam : Σ4 → IR). Moreover,
there are four deletion operations which induce deletion of bases and/or of arcs,
which we list together with their associated cost:

base-deletion (wd : Σ → IR) →

arc-breaking (wb : Σ4 → IR) →

arc-removing (wr : Σ2 → IR) →

arc-altering (wa : Σ3 → IR) → or

In the following, given two arc-annotated sequences (S, P ) and (T, Q), an edit
script from (S, P ) to (T, Q) will refer to a series of non-oriented edit operations
transforming (S, P ) into (T, Q). The cost of an edit script from (S, P ) to (T, Q)
is the sum of the costs of each operation involved in the edit script. We define the
edit distance between (S, P ) and (T, Q) as the minimum cost of an edit script
from (S, P ) to (T, Q). Finding this edit distance is called the Edit problem. To
any edit script from (S, P ) to (T, Q) corresponds an alignment of the characters
of S and T such that (i) if a base is inserted or deleted in a sequence, it is aligned
with a gap (indicated by −) and (ii) if a base of one sequence is (mis)matched
with a base of the other sequence, there are aligned together. In the following,
we will call cost of an alignment A, denoted by cost(A), the cost of the edit
script from which the alignment A is obtained. An optimal alignment A is an
alignment of minimum cost, that is an alignment whose cost is equal to the edit
distance.

Lin et al. proved in [6] that the problem Edit(Crossing, Plain) is MAX-
SNP hard. Thus, any harder problem (in terms of restriction levels) is also
MAX-SNP hard. Moreover, they gave a polynomial dynamic programming algo-
rithm for the problem Edit(Nested, Plain), while Sankoff [7] had previously
solved the problem Edit(Plain, Plain). The complexity of the Edit(Nested,
Nested) problem was left as an open problem (see Table 1).

Recently, Blin et al. [3] showed that the complexity of this last problem was
in fact closed, since it directly follows from the complexity of a different problem,
called Longest Arc-Preserving Common Subsequence. As introduced by
Evans in [4], the Lapcs problem is defined as follows: given two arc-annotated
sequences (S, P ) and (T, Q), find the longest – in terms of sequence length –
common arc-annotated subsequence (R, U) of (S, P ) and (T, Q) such that any
arc in U corresponds to an existing arc both in P and in Q. In [3], Blin et al.



unlimited crossing nested plain

unlimited Max-SNP hard

crossing Max-SNP hard

nested NP-Complete ⋆ O(nm3) •

plain O(nm)

Table 1. edit problem complexity (n and m are the number of bases of each sequence).
• m is the size of the plain sequence. ⋆ when wd = wa = 2wr, the hardness follows
from [5]; when wa > wd (with some additional restrictions), our contribution.

proved that the Lapcs problem is a specific case of the Edit problem provided
that the cost system for edit operations is correctly chosen. The cost system
is the following: wr = 2wd = 2wa, and all substitutions operations as well as
arc-breakings are prohibited (that is, they have arbitrary high costs). The main
idea is to penalize the deletion operations proportionally to the number of bases
that are deleted.

Since the Lapcs problem is NP-complete for arc-annotated sequences of
Nested types, so does the last open case for the Edit problem, Edit(Nested,
Nested). Nevertheless, Lapcs is a very specific subproblem of Edit: it corre-
sponds to instances of Edit for which wr = 2wd = 2wa. In particular, this
means that the cost for deleting an unpaired base or a base linked to
an hydrogen bound is similar. This is not realistic. Indeed, this model
would be more realistic if we had wa > wd, as breaking an hydrogen bond
requires energy. More generally, considering a larger class of instances (not over-
lapping with the one used in the proof from Lapcs), would help us determine
more precisely what makes the problem hard. Hence, we suggest a more general
categorization of Edit problem complexity by defining a non-trivial reduction
which provides a larger and non-overlapping class of instances leading to the
hardness.

3 Hardness of RNA secondary structure comparison

As mentioned before, the main contribution of this paper is the proof of the
hardness of the RNA secondary structure comparison for a large class of instances
not considered previously. The proof relying on the NP-completeness of Lapcs
requires that wr = 2wa = 2wd. In this article, we investigate a more precise and
non-intersecting class of instances. More precisely, we will prove that the problem
is also NP-complete when the cost system respects the following requirements:

wa > wb > wd > 0 (1)

wr > wa + wd (2)

wb +
wd

3
> wa (3)

wm > 2wr (4)



The hardness result thus holds no matter how the costs are chosen
so as to satisfy the constraints given above. The decision problem is defined
formally as follows.

Input: Two arc-annotated sequences (S, P ) and (T, Q) of Nested type, a set of
costs for the edit operations and an integer ℓ.
Question: Is there an alignment of the two sequences (S, P ) and (T, Q) whose
cost is less than or equal to ℓ?

We initially notice that this problem is in NP since given an alignment we can
check polynomially if its cost is less than or equal to ℓ. In order to prove that
it is NP-complete, we propose a polynomial reduction from the NP-complete
problem mis-3p [2].

mis-3p
Input: A cubic planar bridgeless connected graph G = (V, E) and an integer k.
Question: Is there an independent set of cardinality greater than or equal to k

in G ?

A graph G = (V, E) is said to be a cubic planar bridgeless connected graph if
any vertex of V is of degree three (cubic), G can be drawn in the plane in such
a way that no two edges of E cross (planar), and there are at least two edge-
disjoint paths connecting any pair of vertices of V (bridgeless connected). The
idea of the proof is to encode any cubic planar bridgeless connected graph by
two arc-annotated sequences. The construction first uses the notion of 2-page
book embedding: a 2-page book embedding of a graph G is a linear ordering of
the vertices of G along a line and an assignment of the edges of G to the two
half-planes delimited by the line – called the pages – such that no two edges
assigned to the same page cross. For convenience, we will refer to the page above
(resp. below) the line as the top-page (resp. bottom-page). In the following, a
2-page s-embedding will denote a 2-page book embedding with the additional
property that in each page, every vertex has degree at least one.

Theorem 1 (Bernhart et al. [1]). Given any cubic planar bridgeless con-
nected graph G, it is possible to find, in polynomial time, a 2-page s-embedding
of G.

Given a 2-page s-embedding of a cubic planar bridgeless connected graph G =
(V, E), we construct two arc-annotated sequences of Nested type (S, P ) and
(T, Q). The underlying raw sequences S and T are defined as follows:

S = Sc S1 Sc S2 . . . Sc Sn Sc

T = Tc T1 Tc T2 . . . Tc Tn Tc

where (i) n = |V |, (ii) for each 1 ≤ i ≤ n, Si (resp. Ti) is a segment UAUAGG
if the degree of the vertex vi ∈ V in the top-page (resp. bottom-page) is equal
to two, a segment GGUAUA otherwise, and (iii) Sc and Tc are segments made
of a given number q of bases C, where q > 3nwr

wd

(the value of q will be justified

in the proof of Lemma 2).



Now that the sequences S and T are defined, we have to copy the arc config-
uration of the top-page (resp. bottom-page) on S (resp. T ). Each edge (vi, vj),
i < j, of the top-page is represented by two arcs in P . More precisely, one arc
a1 links a base U of Si and a base A of Sj . The second arc a2 is nested in the
first one : it links the base A directly to the right of the base U of a1 to the base
U directly to the left of the base A of a1. We proceed in a similar way for the
bottom-page by adding, for each edge in that page, two arcs in Q. Moreover, we
impose that when a vertex vi is of degree one on the top-page (resp. bottom-
page), the two corresponding arcs in P (resp. Q) are incident to the rightmost
bases A and U of the segment Si (resp. Ti). It is easy to check that it is always
possible to reproduce on (S, P ) and (T, Q) the non-crossing edge configuration
of each page. An example of such a construction is given in Figure 1. The size of
the sequences is clearly polynomial in n: the length of S and T is 6n + (n + 1)q
and the total number of arcs is 3n. In the following, we will refer to any such
construction as an UA-construction.

Fig. 1. Example of an UA-construction. Graph (a) is a cubic planar bridgeless con-
nected graph having 6 vertices. Graph (b) is a 2-page s-embedding of graph (a). (c)
The two arc-annotated sequences of Nested type obtained from graph (a) by an UA-
construction.

In order to complete the instance of the Edit(Nested,Nested) problem,
we define formally the parameter ℓ = 3n(wb + 4wd

3
) − p(6wb + 2wd − 6wa) (p

will be formally defined later on). We consider, further, that every instance of
the Edit(Nested,Nested) problem that we construct respects the cost system
defined by equations (1) to (4).

We start the proof that the reduction from mis-3p to Edit(Nested, Nested)
is correct by giving some properties (Lemmas 1 to 5) about optimal alignments
of the sequences (S, P ) and (T, Q). Then, these results will be used in Lemma
6 to conclude. We consider in all these lemmas that the conditions imposed by
the equations (1) to (4) are verified.



Lemma 1. In any optimal alignment of (S, P ) and (T, Q), there is no base
substitution.

Proof. Note that base substitution is an operation on bases which occurs either
independently (no arc operation is involved) or following an arc-breaking/arc-
altering. As the cost of non-pairing base alignment is included in the cost of an
arc-mismatch, a base involved in a base substitution cannot be incident to an
arc inducing an arc-mismatch. The principle of this proof is to show that, under
the conditions imposed by equations (1) to (4), starting from an alignment A

containing a base substitution, we can build an alignment A′ which does not
contain this substitution satisfying cost(A′) < cost(A). Base substitution can
occur in three different configurations :

– substitution between two bases non incident to an arc : then A′ is obtained
from A by changing the base substitution into a base insertion and a base
deletion. Thus, we have cost(A′) − cost(A) = 2wd − wm.

– substitution between a base non incident to an arc and a base incident to
an arc a. There are two subcases : a induces an (i) arc-breaking or (ii)
an arc-altering in A. Let A′ be an alignment obtained from A by aligning
each base concerned by the substitution with a gap. Then any arc-breaking
(resp. arc-altering) is transformed into an arc-altering (resp. arc-removing).
Therefore, in case (i) we have cost(A′) − cost(A) = wa + wd − (wb + wm),
while in case (ii) we have cost(A′) − cost(A) = wr + wd − (wa + wm).

– substitution between a base incident to an arc a1 and a base incident to an
arc a2. There are three subcases : a1 and a2 induce (i) two arc-breaking,
(ii) two arc-altering, (iii) an arc-altering and an arc-breaking in A. Let A′

be an alignment obtained from A by aligning each base concerned by the
substitution with a gap. In case (i), we have cost(A′) − cost(A) = 2wa −
(2wb + wm). In case (ii) we have cost(A′) − cost(A) = 2wr − (2wa + wm).
Finally, in case (iii) we have cost(A′)−cost(A) = wr+wa−(wb+wm+wa) =
wr − (wb + wm).

Since wm > 2wr and wr > wa > wb > wd (see equations (1), (2) and (4)), we
deduce that cost(A′)− cost(A) < 0 in every case. Thus, for any given alignment
A with at least one substitution, it is possible to find an alignment A′ without
this substitution such that cost(A′) < cost(A). This proves the lemma. ⊓⊔

Definition 1. A canonical alignment of two sequences (S, P ) and (T, Q) ob-
tained from an UA-construction is an alignment where, for each 1 ≤ i ≤ n + 1,
the ith segment Sc in (S, P ) is aligned base to base to the ith segment Tc in
(T, Q).

Note that by construction no arc-match or arc-mismatch can be present in a
canonical alignment of (S, P ) and (T, Q).

Lemma 2. Any optimal alignment of (S, P ) and (T, Q) is canonical.



Proof. Let A be a non canonical alignment. We will show that this is not an
optimal alignment. By Lemma 1, we assume that A does not contain any sub-
stitution. In that case, non canonicity can arise for two reasons:

Case 1. There exists a crossing alignment Up-Down or Down-Up in the
alignment A. We denote by crossing alignment Up-Down (resp. Down-Up), an
alignment where at least one base of Sk (resp. Tk) is aligned with a base of Tm

(resp. Sm) or with a gap situated between two bases of Tm (resp. Sm) and such
that k < m.

Let A′ be a canonical alignment without substitution. According to the con-
ditions imposed by equations (1) to (4), the cost associated with any oper-
ation on a base not incident to an arc can be upper bounded by wr

2
(since

wr > wa + wd > 2wd) and the cost associated with an operation on any base
incident to an arc can be upper bounded by wr

2
as well (by equitably distributing

the cost of the arc on its two incident bases : the cost wb of an arc can be seen
as composed of the cost wb

2
on each of its incident bases ; since wb < wr, then

wb

2
< wr

2
). Since any vertex of G is represented by two segments (one in (S, P )

and one in (T, Q)) containing six bases each, the cost of the alignment of Si and
Ti for any vertex vi is strictly less than 6wr, thus cost(A′) < 6nwr.

Let A be a crossing non canonical alignment, and let us suppose first that
this crossing is Up-Down. In such an alignment the crossing imposes that at
least q (q = |Sc|) bases C of (T, Q) on the left of Tm must be inserted and that
at least as many bases C of (S, P ) on the right of Sk must be deleted. Thus
we have cost(A) ≥ 2qwd. Therefore cost(A′) < 6nwr < 2qwd ≤ cost(A) since
q > 3nwr

wd

. The alignment A is thus non optimal in case 1. In the case where the
crossing is Down-Up, the proof is similar and the same result follows.

Case 2. There is no crossing alignment in A. In this case, for any k, any
base of Sk is aligned either with a base of Tk or with a gap situated between two
bases of Tk. Let us denote by ξ the sum of the alignment costs of the segments
Sk and Tk for k = 1, . . . , n representing the n vertices of G. Thus, we have
cost(A) = ξ +R where R is the total cost of base to base alignments of segments
Sc. The initial assumption (i.e. A is a non canonical alignment) imposes that
at least one base C is deleted and one base C is inserted in A. Thus, we have
R ≥ 2wd. Consequently, cost(A) ≥ ξ+2wd. Now, let A′ be a canonical alignment
in which, for any k, any base of Sk is aligned exactly as in A, i.e. with the same
base of Tk or with a gap. We have cost(A′) = ξ < cost(A), therefore A is not
optimal. ⊓⊔

By Lemma 2, the cost of an optimal alignment depends on the local align-
ments of the segments Sk and Tk representing the vertices of G. By Lemma 1,
a case analysis leads to a set of exactly eighteen types of local alignments, as
illustrated in Figure 2. It is easy to see that any other alignment of the seg-
ments representing a vertex is equivalent, in terms of cost, to one of the above
mentioned eighteen types.

Definition 2. We call symmetric of a type of alignment ti, denoted by tiSym,
the type of alignment obtained from ti by inverting the two segments (i.e. such
that the segment on (S, P ) is now on (T, Q) and vice versa).
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Fig. 2. The eighteen types of local alignments for the segments Sk and Tk.

Lemma 3. An optimal alignment A′ of (S, P ) and (T, Q) contains only local
alignments of types tg, tua, tgSym and tuaSym.

Proof. First, we notice that by definition of the operations on bases and arcs,
two symmetric local alignments have the same cost. Thus, to prove Lemma 3,
we will only show that any canonical alignment containing a local alignment of
Si, Ti of type t1 or t2 (resp. t3, t4, . . . or t16) has a cost higher than the cost
of the same alignment where this local alignment is of type tg (resp. tua). The
similar conclusion for symmetric local alignments will then follow.

Let A and A′ be two canonical alignments that differ only on the local align-
ment of Si and Ti for a given 1 ≤ i ≤ n. More precisely, let this local alignment
be of type tua or tg in A′ and of any different type in A. The cost difference
between A and A′ can only be due to the local alignment of Si and Ti. Let us
notice that this difference is due locally to the alignment of a subset of bases
of Si and Ti. The alignments of bases of Si and Ti common to A and A′ will
thus not be taken into account in the computation of the cost difference between
A and A′. Moreover, if a change affects a base incident to an arc (say an arc
between a base of Si and a base of Sj), it is necessary to consider not only the
base affected (say the base of Si), but both bases incident to this arc.

The principle of the following proof is to show that from the conditions
imposed by equations (1) to (4) and for the alignments A, A′ defined below,
we always have cost(A′) − cost(A) < 0, meaning that the alignment A is not
optimal.

Case 1. Let A be a canonical alignment containing a local alignment of Si

and Ti of type tj for some 3 ≤ j ≤ 16. Let A′ be the alignment obtained from A

by replacing the local alignment of Si and Ti by a local alignment of type tua. Let



us denote by k1 (resp. k2) the number of bases in Si and Ti in A which induce
an arc-removing (resp. arc-altering) and which do not induce this arc-removing
(resp. arc-altering) but an arc-altering (resp. arc-breaking) in A′.
Let us denote by k0 the number of bases deleted or inserted in Si and Ti in A

and which are not deleted or inserted anymore in A′.

Fig. 3. Example of a canonical alignment A containing a local alignment of type t3
and its corresponding alignment A′ where a local alignment of type tua substitutes for
the former local alignment. Here, k0 = 1, k1 = 3, k2 = 2.

We obtain k0 + k1 + k2 > 0, k0, k1, k2 ≥ 0 and cost(A′)− cost(A) = k1(wa −
wr)+k2(wb −wa)+k0(−wd). According to the conditions imposed by equations
(1) and (2), 0 < wd and wb < wa < wr, we deduce that cost(A′) − cost(A) < 0.

Case 2. Let A be an alignment containing a local alignment of Si and Ti

of type tj for j ∈ {1, 2}. Let A′ be the alignment obtained from A by replacing
the local alignment of Si and Ti by a local alignment of type tg. Let us denote
by k3 the number of bases deleted or inserted in Si and Ti in A and which
are not deleted or inserted any more in A′. We obtain k3 > 0 and cost(A′) −
cost(A) = k3(−wd). According to the conditions imposed by equation (1), 0 < wd

therefore we deduce that cost(A′)−cost(A) < 0. Hence, any canonical alignment
containing a local alignment of Si and Ti of type t1 or t2 (resp. t3, t4, . . . or t16)
has a cost strictly greater than the cost of the same alignment where this local
alignment is of type tg (resp. tua). More generally, since symmetric types have
the same cost, we conclude that an optimal alignment of (S, P ) and (T, Q) is
canonical (from Lemma 2) and contains only local alignments of types tg, tua,
tgSym and tuaSym. ⊓⊔

Lemma 4. In any optimal alignment, no two segments Si and Sj (resp. Ti and
Tj) having local alignments of type tg or tgSym can be connected by an arc.

Proof. Let A be an alignment containing an arc connecting a base of Si to a
base of Sj , and whose local alignments are both of type tg or tgSym. Let A′

be an alignment obtained from A where one of these segments, say Si, has a
local alignment of type tua or respectively tuaSym. We will show that cost(A′)−
cost(A) < 0. Let k1 (resp. k2) denote the number of bases of Si in A which
induce an arc-removing (resp. arc-altering) and which in A′ do not induce this
arc-removing (resp. arc-altering) but an arc-altering (resp. arc-breaking). Thus,
we have cost(A′) − cost(A) = 4wd − 2wd + k1(wb − wa) + k2(wa − wr) = 2wd +



2wa − 2wr + k1(wb − wa) + (k2 − 2)(wa − wr) where k1 + k2 = 6, k1 ≥ 0 and
k2 ≥ 2. According to the conditions imposed by equations (1) and (2), 0 < wd

and wb < wa < wr, therefore we have cost(A′) − cost(A) < 0. The proof is
similar considering Ti and Tj . The lemma is thus proved. ⊓⊔

Definition 3. A canonical alignment A′ of (S, P ) and (T, Q) containing only
local alignments of types tg, tua, tgSym and tuaSym and in which no arc connects
two segments whose local alignments are of type tg or tgSym (i.e. respecting the
conditions of Lemmas 3 and 4), is called tg-stable.

Lemma 5. The cost of a tg-stable canonical alignment A′ is cost(A′) = 3n(wb +
4wd

3
)− p(6wb + 2wd − 6wa) where p is the number of segments whose alignment

is of type tg or tgSym.

Proof. As mentioned previously, on the whole (S, P ) and (T, Q) contains 3n arcs.
If p is the number of local alignments of type tg or tgSym in A′, then there exists
6p arcs connecting a base belonging to a local alignment of type tg or tgSym to a
base belonging to a local alignment of type tua or tuaSym, and thus 3n− 6p arcs
between pairs of bases belonging to local alignments of type tua or tuaSym. We
compute the cost of any arc joining two local alignments of types tua and tua

(resp. tua and tg) or symmetric by adding to wb (resp. wa) a supplementary cost
computed for each incident base and resulting from the equitable distribution of
costs wd between the six arcs involved in each concerned local alignment. These
costs wd deal with the free bases, inside each local alignment.

The cost of an arc between two local alignments of type tua or tuaSym is
computed as follows : 4wd must be distributed on the six arcs involved. Thus
for each base incident to such an arc, a supplementary cost of 4wd

6
= 2wd

3
must

be taken into account. The cost of any arc involved in a tua-tua junction (or
symmetric) is then wb + 2wd

3
+ 2wd

3
= wb + 4wd

3
. For a local alignment of type tg

(or symmetric), we must distribute 2wd on the six arcs involved, which leads to
a supplementary cost of 2wd

6
= wd

3
for any base incident to such an arc. Thus the

cost of any arc involved in a tua-tg junction (or symmetric) is wa + wd

3
+ 2wd

3
=

wa + wd. We obtain cost(A′) = (3n − 6p)(wb + 4wd

3
) + 6p(wd + wa) = 3n(wb +

4wd

3
) − p(6wb + 24wd

3
− 6wd − 6wa) = 3n(wb + 4wd

3
) − p(6wb + 2wd − 6wa). �

Lemmas 1 to 5 provide us with all the necessary intermediate results to show
that the reduction from mis-3p to Edit(Nested, Nested) is valid.

Lemma 6. A cubic planar bridgeless connected graph G has an independent set
V ′ such that |V ′| ≥ k if and only if the edit distance between the sequences (S, P ),
(T, Q) obtained from G by an UA-construction is at most ℓ = 3n(wb + 4wd

3
) −

k(6wb + 2wd − 6wa).

Proof. (⇒) Let V ′ ⊆ V be an independent set of G such that |V ′| ≥ k. Let A

be the canonical alignment of (S, P ) and (T, Q) such that (i) ∀vi ∈ V ′, the local
alignment of Si and Ti is of type tg or tgSym and (ii) ∀vj ∈ V − V ′, the local
alignment of Sj and Tj is of type tua or tuaSym. Thus, by definition, the alignment



is tg-stable. By Lemma 5, cost(A) = 3n(wb + 4wd

3
)−|V ′|(6wb +2wd−6wa). Since

|V ′| ≥ k by hypothesis, we have cost(A) ≤ 3n(wb+
4wd

3
)−k(6wb+2wd−6wa) = ℓ.

(⇐) Suppose there exists an edit script between the sequences (S, P ), (T, Q),
for which the corresponding alignment A′ satisfies cost(A′) ≤ ℓ. Now let AOPT

be an optimal alignment of (S, P ) and (T, Q). Let V ′ be the set of vertices v of G

for which, in AOPT , local alignments of the corresponding segments are of type
tg or tgSym. Since we know by Lemma 4 that no arc connects segments of type
tg or tgSym in AOPT , we conclude that V ′ is an independent set of G. Moreover,
by Lemma 5, we have cost(AOPT ) = 3n(wb + 4wd

3
)− |V ′|(6wb + 2wd − 6wa) and

since cost(AOPT ) ≤ cost(A′) ≤ ℓ with ℓ = 3n(wb + 4wd

3
) − k(6wb + 2wd − 6wa),

we conclude that k ≤ |V ′|. Lemma 6 is proved. ⊓⊔

4 Conclusion

In this paper, we have proved that the problem edit(nested,nested) defined
in [6] is NP-complete. This is done using a non trivial reduction from mis-3p,
via a 2-page s-embedding. Though the NP-completeness of the problem was
already known due to the fact that the Lapcs problem for nested structures
was proved to be NP-complete [5, 3], we have extended this result to a larger
and non-intersecting class of instances, for which the set of cost is biologically
more relevant. Though the result we give in this paper is in some sense negative,
we point out that edit(nested,nested) has a polynomial approximation algo-
rithm of ratio β = max{ 2wa

wb+wr

, wb+wr

2wa

} [6]. However, this approximation ratio
depends on the respective values of the parameters wa, wb and wr . An interest-
ing question would be to know whether there exists a polynomial algorithm for
edit(nested,nested) with constant approximation ratio.
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