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émanant des établissements d’enseignement et de
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A note on strong convergence to common fixed points

of nonexpansive mappings in Hilbert spaces

Jean-Philippe Chancelier∗

18 septembre 2009

Résumé

The aim of this paper is to investigate the links between TC -class algo-
rithms [1], CQ Algorithm [6, 8] and shrinking projection methods [9]. We
show that strong convergence of these algorithms are related to coherent
TC -class sequences of mapping. Some examples dealing with nonexpan-
sive finite set of mappings and nonexpansive semigroups are given. They
extend some existing theorems in [1, 6, 9, 7].

1 Introduction

Let C be a closed convex subset of a Hilbert space H. A mapping T of C
into itself is called nonexpansive if

‖Tx − Ty‖ ≤ ‖x − y‖ for allx, y ∈ C .

We denote by Fix(T ) the set of fixed points of T . That is

Fix(T )
def
= {x ∈ C : Tx = x} . (1)

There are many iterative methods for approximation of common fixed points
of a family of nonexpansive mapping in a Hilbert space. In Section 2 we recall
the CQ Algorithm [6, 8] (Algorithm 2) associated to a sequence of mappings
(Tn)n≥0 of C into itself. The CQ Algorithm when applied to a sequence of
mappings of H into itself is the same as a Haugazeau method [4] studied in [1,
Algorithm 3.1] and applied to T -class mappings.

We straighforwardly generalize, in Section 2, the T -class to take into account
mappings of C into itself. We denote this new class by the TC-class. Using
this extension, the CQ Algorithm (Algorithm 2) coincides with the Haugazeau
method (Algorithm 1) and a strong convergence theorem can be obtained by
following results from [1]. Note that the convergence theorem is obtained for
TC-class sequences which are coherent (Definition 3).

In [9] another algorithm called the shrinking projection method is also stu-
died. One of our aims in this article is to prove that, rephrased in the context

∗Université Paris-Est, CERMICS, École des Ponts, 6 & 8 av. B. Pascal, 77455 Marne-la-
Vallée, France.
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of TC-class algorithm, the convergence results of this new algorithm (Algo-
rithm 3) is also related to coherent sequences of TC-class mappings. We give
in Theorem 6 a strong convergence result of Algorithm 3 for TC-class coherent
sequence of mappings. Section 4 is devoted to the proof. The strong convergence
of Algorithm 3 is also proved in [9, Theorem 3.3] for sequence of nonexpansive
mappings satisfying the NST-condition(I) (Definition 9). It is easy to prove that
if R is a nonexpansive mapping of C into itself then T = (R + Id)/2 belongs
to the TC-class and that a sequence of nonexpansive mappings satisfying the
NST-condition(I) is coherent. Thus Theorem 6 extends [9, Theorem 3.3 and
Theorem 3.4].

In Section 3 we show that specific sequences of mappings are coherent.
Combined with Theorem 6 it can be considered as an extension to some existing
theorems in [6, 9, 7].

2 The TC-class iterative algorithms, CQ algorithm

and the shrinking projection method

We first recall here the T -class iterative algorithms as defined by H. Bau-
schke and P. L. Combettes [1].

For (x, y) ∈ H2 and S a subset of H, we define the mapping HS as follows :

HS(x, y)
def
= {z ∈ S | 〈z − y, x − y〉 ≤ 0} . (2)

We also define the mapping H by H
def
= HH. Note that HS(x, x) = S and for

x 6= y, H(x, y) is a closed affine half space. For a nonempty closed convex C,
we denote by QC(x, y, z) the projection, when it exists, of x onto HC(x, y) ∩

HC(y, z) and Q the projection when C = H, that is Q
def
= QH. As an intersection

of two closed affine half spaces and a closed convex, HC(x, y) ∩ HC(y, z) is a
possibly empty closed convex.

It is easy to check, from the definition of H, that y is the projection of x
onto H(x, y) and we therefore have Q(x, x, y) = PH(x,y)x = y. Where PC is the
metric projection from H onto C. Moreover, if y ∈ C then we also have that y
is the projection of x onto HC(x, y) which gives QC(x, x, y) = y.

The algorithm studied in [1] is the following

Algorithm 1 Given x0 ∈ C and a sequence (Tn)n≥0 of mappings Tn : C → H,
we consider the sequence (xn)n≥0 generated by the following algorithm :

xn+1 = QC(x0, xn, Tnxn)

A very similar algorithm exists under the name of CQ algorithm [6, 8] :

Algorithm 2 Given x0 ∈ C, we consider the sequence (xn)n≥0 generated by
the following algorithm :























yn = Rnxn,

Cn
def
= {z ∈ C | ‖yn − z‖ ≤ ‖xn − z‖} ,

Dn
def
= {z ∈ C | 〈xn − z, x0 − xn〉 ≥ 0} ,

xn+1 = P(Cn∩Dn)x0.
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The link between the two algorithms is described by the following lemma.

Lemma 1 The sequence generated by Algorithm 2 coincides with the sequence

given by xn+1 = QC(x0, xn, Tnxn) with Tn
def
= (Rn + Id)/2.

Proof : Following [1], the proof easily follows from the equality

4 〈z − Tx, x − Tx〉 = ‖Rx − z‖2 − ‖x − z‖2 .

�

The convergence of Algorithm 1 and therefore of Algorithm 2 when C = H
is studied in [1]. It relies on two requested properties of the sequence (Tn)n≥0.
First, the sequence (Tn)n≥0 must belong the T -class which means that for all
n ∈ N we must have Tn ∈ T where T is defined as follows :

Definition 2 A mapping T : C 7→ H belongs to the TC-class if it is an element
of the set TC :

TC
def
= {T : C 7→ C | dom(T ) = C and (∀x ∈ C)Fix(T ) ⊂ H(x, Tx)} .

When C = H, we use the notation T = TH. Second, the sequence (Tn)n≥0 must
be coherent as defined below.

Definition 3 [1] A sequence (Tn)n≥0 such that Tn ∈ TC is coherent if for every
bounded sequence {zn}n≥0 ∈ C the following holds :

{

∑

n≥0 ‖zn+1 − zn‖
2 < ∞

∑

n≥0 ‖zn − Tnzn‖
2 < ∞

⇒ M(zn)n≥0 ⊂
⋂

n≥0

Fix(Tn) (3)

where M(zn)n≥0 is the set of weak cluster points of the sequence (zn)n≥0.

Theorem 4 [1, Theorem 4.2] Suppose that C = H and the TC-class sequence
(Tn)n≥0 is coherent. Then, for an arbitrary orbit of Algorithm 1, exactly one of
the following alternatives holds :

(a) F 6= ∅ and xn →n PF x0 ;

(b) F = ∅ and xn →n +∞ ;

(c) F = ∅ and the algorithm terminates,

where the set F is defined by F
def
=

⋂

n≥0 Fix(Tn).

Remark 5 In the previous proof, it is supposed that C = H. If C is a nonempty
closed convex subset of H, Theorem 4 (a) remains valid.

In [9] another iterative algorithm called the shrinking projection method is
studied. Using our notation it can be rephrased as follows :
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Algorithm 3 Given x0 ∈ C and C0
def
= C, we consider the sequence (xn)n≥0

(when it exists) generated by the following algorithm :

{

Cn+1
def
= Cn ∩ H(xn, Tnxn) with Tn

def
= (Rn + Id)/2 ,

xn+1 = PCn+1
x0.

The previous algorithm is stopped once Cn = ∅. One of the results of this
paper is the proof that the convergence of Algorithm 3 is governed by the same
rules as for the convergence of Algorithm 1.

Theorem 6 Suppose that the TC-class sequence (Tn)n∈N is coherent and let

F
def
=

⋂

n∈N

Fix(Tn) .

Then, if F 6= ∅ the sequence (xn)n≥0 produced by Algorithm 3 and Algorithm 1
converges to PF x0.

Proof : As pointed out in the introduction the case of Algorithm 1 when
C = H is proved in Theorem 4. The extension to the case of a closed nonempty
subset C of H is straightforward and we will not give an explicit proof. The
proof of the case of Algorithm 3 is postponed to Section 4. �

Remark 7 The first condition for the convergence is the fact that the sequence
(Tn)n≥0 must belong to the TC-class. Note that by [1, Proposition 2.3] T ∈ T iff
the mapping 2T − Id is quasi nonexpansive and dom(T ) = H. The equivalence
remains true for TC-class if dom(T ) = H is replaced by dom(T ) = C.

Thus, if Tn
def
= (Rn + Id)/2, a necessary and sufficient condition for the

sequence (Tn)n≥0 to belong to the TC-class is that the sequence (Rn)n≥0 is a
sequence of quasi nonexpansive mappings.

Remark 8 Moreover, it is a well known fact [3, Theorem 12.1] that 2T − Id is
nonexpansive iff T is firmly nonexpansive. Thus, a sufficient condition for the
mapping T to belong to the TC-class is that T is a firmly nonexpansive mapping,
i.e :

‖Tx − Ty‖2 ≤ 〈x − y, Tx − Ty〉 ∀(x, y) ∈ C2 (4)

or equivalently

‖Tx − Ty‖2 ≤ ‖x − y‖2 − ‖(T − Id)x − (T − Id)y‖2 ∀(x, y) ∈ C2 . (5)

We recall here the definition of the NST-condition (I) [5]. Let (Tn)n≥0 and
F be two families of nonexpansive mappings of C into itself such that

∅ 6= Fix(F)
def
=

⋂

n∈N

Fix(Tn) ,

where Fix(F) is the set of all common fixed points of mappings from the family
F .
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Definition 9 The sequence (Tn)n≥0 of mappings is said to satisfy the NST-
condition (I) with F if, for each bounded sequence (zn)n≥0 ⊂ C, we have that
limn 7→∞ ‖zn − Tnzn‖ = 0 implies that limn 7→∞ ‖zn − Tzn‖ = 0 for all T ∈ F .

Remark 10 Suppose that F is a family of nonexpansive mappings. It is easy
to see that a sequence (Tn)n≥0 of mappings satisfying a NST-condition (I) with
F is coherent. Indeed, from a demi-closed principle or using [9, Lemma 3.1] if
‖xn − Txn‖ 7→ 0 for all T ∈ T then M(xn)n≥0 ⊂ Fix ({T}T∈T ).

3 Coherent sequences of mappings

We consider here Algorithms 1 and 3 for a sequence of mappings (Rn)n≥0

built by N level iterations. Our aim is to give conditions under which the
sequence (Rn)n≥0 or equivalently (Tn)n≥0

def
= (Rn +Id)/2 is coherent1 and apply

Theorem 6 to get convergence results.

Let N ≥ 1 and (T
(j)
n )n≥0 : C → H for 1 ≤ j ≤ N be a finite set of sequences

of nonexpansive mappings. Given also a family of sequences of real parameters

(α
(j)
n )n≥0 for 1 ≤ j ≤ N , we define new sequences (Γ

(j)
n )n≥0 : C → H by the

recursive equations :

Γ(j)
n x

def
= α(j)

n x + (1 − α(j)
n )T (j)

n Γ(j+1)
n x and Γ(N+1)

n x
def
= x (6)

Hα : We will assume that the sequences of real parameters (α
(j)
n )n≥0 satisfy

the following condition : for 2 ≤ j ≤ N and for all n ∈ N we have α
(j)
n ∈ (a, b)

with 0 < a < b < 1 and α
(1)
n ∈ [0, b).

Using the sequence of mappings Rn
def
= Γ

(1)
n in Algorithms 1 and 3 gives N

level algorithms. We will consider the following specific examples :

H1 Each sequence (T
(j)
n )n≥0 is constant, i.e T

(j)
n = T (j) for 1 ≤ j ≤ N and

F
def
= Fix

({

T (j), 1 ≤ j ≤ N
})

is nonempty.

H2 The (T
(j)
n )n≥0 sequences for 1 ≤ j ≤ N are given by T

(j)
n = T (j)(tn),

where
{

T (j)(t) : t ≥ 0
}

is a finite set of given semigrougs and (tn)n≥0 is
a sequence of real numbers such that lim infn tn = 0, lim supn tn > 0 and

limn(tn+1−tn) = 0. We assume that F
def
= Fix

({

T (j)(t), 1 ≤ j ≤ N, t ≥ 0
})

is nonempty.

H3 The (T
(j)
n )n≥0 sequences for 1 ≤ j ≤ N are given by

T (j)
n x =

1

tn

∫ tn

0
T (j)(s)xds , (7)

where
{

T (j)(t) : t ≥ 0
}

is a finite set of given semigrougs and (tn)n≥0

is a positive divergent sequence of real numbers. We assume that F
def
=

Fix
({

T (j)(t), 1 ≤ j ≤ N, t ≥ 0
})

is nonempty.

1By [1, Proposition 4.5] if (Tn)n≥0 ∈ T and T ′
n

def
= Id + λn(Tn − Id) with λn ∈ [δ, 1] and

δ ∈]0, 1]. Then (Tn)n≥0 is coherent iff (T ′
n)n≥0 is coherent.
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Theorem 11 Given a finite set of N nonexpansive sequences (T
(j)
n )n≥0 sa-

tisfying H1, H2, or H3. The sequence (xn)n≥0 produced by Algorithm 1 and

Algorithm 3 with Rn
def
= Γ

(1)
n and (Tn)n≥0

def
= (Rn + Id)/2 converges to PF x0.

The mappings Γ
(j)
n being defined by equation (6) with parameters α

(j)
n satisfying

Hα.

Proof : The proof is obtained by showing that the sequence of mappings
(Tn)n≥0 is coherent in each given case and by applying Theorem 6 to conclude.
The coherence is proved in the sequel in Proposition 15 for the case H1, in
Proposition 17 for the case H2 and in Proposition 19 for the case H3. �

We start here by a set of lemmata which are common to all cases.

Lemma 12 Let T be a F -quasi nonexpansive mapping and for β ∈ (0, 1) the

mapping Tβ
def
= βId + (1 − β)T . For p ∈ F and all x ∈ H we have :

β(1 − β)‖x − Tx‖2 ≤ 2(‖x − p‖ − ‖Tβx − p‖)‖x − p‖ (8)

Proof : For p ∈ F and all x ∈ H we have :

‖Tβx − p‖2 = ‖β(x − p) + (1 − β)(Tx − p)‖2

= β‖x − p‖2 + (1 − β)‖Tx − p‖2 − β(1 − β)‖Tx − x‖2

≤ ‖x − p‖2 − β(1 − β)‖Tx − x‖2 .

We thus obtain

β(1 − β)‖Tx − x‖2 ≤ (‖x − p‖ − ‖Tβx − p‖)(‖x − p‖ + ‖Tβx − p‖)

≤ 2(‖x − p‖ − ‖Tβx − p‖)‖x − p‖ .

�

Lemma 13 Let T a F -quasi nonexpansive mapping. For β ∈ (0, 1) we define

the mapping Tβ
def
= βId + (1 − β)T . For p ∈ F , all x ∈ H and S a F -quasi

nonexpansive mapping, we have :

β(1 − β)‖x − Tx‖2 ≤ 2‖x − STβx‖‖x − p‖. (9)

If moreover S is nonexpansive we also have :

‖x − Sx‖ ≤ ‖x − STβx‖ + ‖Tx − x‖. (10)
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Proof : For p ∈ F and all x ∈ H we have :

‖x − p‖ ≤ ‖x − STβx‖ + ‖STβx − p‖

≤ ‖x − STβx‖ + ‖Tβx − p‖ .

We thus have ‖x − p‖−‖Tβx − p‖ ≤ ‖x − STβx‖ which combined with Lemma
12 gives equation (9).

Now if S is nonexpansive,

‖x − Sx‖ ≤ ‖x − STβx‖ + ‖STβx − Sx‖ ≤ ‖x − STβx‖ + ‖Tβx − x‖

≤ ‖x − STβx‖ + (1 − β)‖Tx − x‖ ≤ ‖x − STβx‖ + ‖Tx − x‖ .

�

Lemma 14 Suppose that F
def
=

⋂

{n∈N;1≤j≤N} Fix(T
(j)
n ) is not empty suppose

that for a bounded sequence (xn)n≥0 and a fixed value of j we have

‖xn − T
(j)
n Γ

(j+1)
n xn‖ → 0. Moreover, suppose that for 2 ≤ j ≤ N and all n ∈

N we have α
(j)
n ∈ (a, b) with 0 < a < b < 1. Then for all k ≥ j we have

‖xn − T
(k)
n xn‖ → 0.

Proof : Note first that the sequences (T (j))1≤j≤N and (Γ(j))1≤j≤N+1 are
composed of nonexpansive mappings. Indeed the composition of nonexpansive
mappings is nonexpansive and for β ∈ (0, 1) βId + (1 − β)S is nonexpansive
when S is nonexpansive. The sequences are also F -quasi nonexpansive since it

is straightforward that F ⊂ Fix(Γ
(j)
n ) for all j ∈ [1, N ] and n ∈ N and if S is

nonexpansive it is also Fix(S)-quasi nonexpansive.
The proof then follows by backward induction on j. Assume that the result

is true for j + 1 then we will prove that it is true for j. Using the definition

of Γ
(j+1)
n and using equation (9) for p ∈ F , S = T

(j)
n , T = T

(j+1)
n Γ

(j+2)
n and

β = α
(j+1)
n (we thus have Tβ = Γ

(j+1)
n ) we obtain :

α(j+1)
n (1 − α(j+1)

n )‖xn − T (j+1)
n Γ(j+2)

n xn‖
2
≤ 2‖xn − T (j)

n Γ(j+1)
n xn‖‖xn − p‖

(11)

We thus obtain that ‖xn − T
(j+1)
n Γ

(j+2)
n xn‖ → 0 and by induction hypothesis

we obtain ‖xn − T
(k)
n xn‖ → 0 for k ≥ j + 1. Now using equation (10) with

S
def
= T

(j)
n , T

def
= T

(j+1)
n Γ

(j+2)
n and β = α

(j+1)
n we get :

‖xn − T (j)
n xn‖ ≤ ‖xn − T (j)

n Γ(j+1)
n xn‖ + ‖T (j+1)

n Γ(j+2)
n xn − xn‖ (12)

and the result follows for j. �

3.1 The case H1

Proposition 15 In the case H1, the sequence (Rn)n≥0, defined by Rn
def
= Γ

(1)
n

with parameters satisfying Hα, satisfy the NST-condition(I) with

F
def
= Fix {T (j)

1≤j≤N} and the sequence Tn = (Rn + Id)/2 is a TC-class and
coherent sequence.

7



Proof : We have ‖xn − Rnxn‖ = ‖xn − T
(1)
n Γ

(2)
n xn‖(1−α

(1)
n ). Thus, if for each

bounded sequence (xn)n≥0 ‖xn − Rnxn‖ 7→ 0 we also have ‖xn − T
(1)
n Γ

(2)
n xn‖ 7→

0 since (1−α
(1)
n ) is bounded from zero. Using Lemma 14 we have ‖xn − T (j)xn‖ 7→

0 for 1 ≤ j ≤ N which gives use the NST-condition(I) with F . Now we consider
the sequence (Tn)n≥0. The sequence belongs to the TC-class since 2Tn−Id = Rn

is nonexpansive and thus quasi nonexpansive. Now if ‖xn − Tnxn‖ 7→ 0 we
also have ‖xn − Rnxn‖ 7→ 0 and thus using the NST-condition(I) we have
‖xn − T (j)xn‖ 7→ 0 for 1 ≤ j ≤ N . Since the T (j) are nonexpansive they are also
demi-closed [2, Lemma 4] and thus we must have M(xn)n≥0 ⊂ Fix({T (j), 1 ≤
j ≤ N}) = Fix({Tn}n∈N). The sequence (Tn)n≥0 is thus in the TC-class and
coherent. �

Remark 16 For N = 1 we recover [9, Theorem 1.1] and [9, Theorem 4.1].

3.2 The case H2

Let {T (t) : t ≥ 0} be a family of mappings from a subset C of H into it-
self. We call it a nonexpansive semigroup on C if the following conditions are
satisfied :

(i) T (0)x = x for all x ∈ C ;
(ii) T (s + t) = T (s)T (t) for all s, t ≥ 0 ;
(iii) for each x ∈ C the mapping t 7→ T (t)x is continuous ;
(iv) ‖T (t)x − T (t)y‖ ≤ ‖x − y‖ for all x, y ∈ C and t ≥ 0.

Proposition 17 In the case H2, the sequence (Rn)n≥0, defined by Rn
def
= Γ

(1)
n

with parameters satisfying Hα, satisfy the NST-condition(I) with

F
def
= Fix {T (j)(t)1≤j≤N,t≥0} and the sequence Tn = (Rn + Id)/2 is a TC-class

and coherent sequence.

Proof : As in the proof of Proposition 15 we obtain that for each bounded
sequence (xn)n≥0 such that ‖xn − Rnxn‖ 7→ 0 we also have ‖xn − T (j)(tn)xn‖ 7→
0 for 1 ≤ j ≤ N . Now it is easy to prove that the weak cluster points of the
sequence (xn)n≥0 are in F . The proof for each fixed j is the same as in [7,
Theorem 2.2, page 6]. We thus obtain the coherence of the sequence (Tn)n≥0.
�

Remark 18 For N = 1 we recover [7, Theorem 2.1] for Algorithm 3 and [7,
Theorem 2.2] for Algorithm 1.

3.3 The case H3

Proposition 19 In the case H3, the sequence (Rn)n≥0, defined by Rn
def
= Γ

(1)
n

with parameters satisfying Hα, satisfy the NST-condition(I) with

F
def
= Fix {T (j)(t)1≤j≤N,t≥0} and the sequence Tn = (Rn + Id)/2 is a TC-class

and coherent sequence.
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Proof : As in the proof of Proposition 15 we obtain that for each bounded
sequence (xn)n≥0 such that ‖xn − Rnxn‖ 7→ 0 we also have ‖xn − T (j)(tn)xn‖ 7→
0 for 1 ≤ j ≤ N . Now it is easy to prove that the weak cluster points of the
sequence (xn)n≥0 are in F . The proof for each fixed j is the same as in [6,
Theorem 4.1]. For each fixed j, it is a consequence of the inequality [6, Equation
(8)] :

‖T (j)(s)xn − xn‖ ≤ 2‖T (j)
n xn − xn‖ + ‖T (s)(T (j)

n xn) − T (j)
n xn‖ (13)

for every 0 ≤ s < +∞ and n ∈ N with T
(j)
n and the fact that the right hand

side of the above inequality goes to zero as n goes to infinity for a bounded
sequence (xn)n≥0 using [6, Lemma 2.1]. We thus obtain the coherence of the
sequence (Tn)n≥0. �

Remark 20 For N = 1 we recover [6, Theorem 4.1] for Algorithm 1 and [9,
Theorem 4.4] for Algorithm 3.

4 Proof of Theorem 6

We prove here the strong convergence of Algorithm 3 for a TC-class sequence
of coherent mappings. The proof follows the same steps as the proof of the
convergence of Algorithm 1 in [1], we therefore give references to the original
propositions.

The proof results from the next proposition and theorem in the following
way. Let (xn)n≥0 be an arbitrary orbit of Algorithm 3 and let F

def
= Fix({Tn}n∈N).

If F 6= ∅, then by Proposition 21 (iv) the sequence is defined. By Theorem 22 (ii)
the sequence is bounded. Thus (v) is fulfilled and by the coherence property
we have M(xn)n≥0 ⊂ F . Then, by Theorem 22 (iv), the sequence strongly
converges to PF (x0).

Proposition 21 [1, Proposition 3.4] Let (xn)n≥0 be an arbitrary orbit of Al-
gorithm 3. Then :

(i) If xn+1 is defined then ‖x0 − xn‖ ≤ ‖x0 − xn+1‖.
(ii) If xn is defined then x0 = xn ⇐⇒ xn = xn−1 = · · · = x0 ⇐⇒ x0 ∈

⋃n−1
k=0 Fix(Tk).

(iii) If (xn)n≥0 is defined then (‖x0 − xn‖)n∈N is increasing.

(iv) (xn)n≥0 is defined if F
def
= Fix({Tn}n∈N) 6= ∅.

Proof : (i) : If xn+1 is defined we have xn+1 = PCn+1
x0 and thus xn+1 ∈

Cn+1 ⊂ Cn and since xn = PCn
x0 we have ‖x0 − xn‖ ≤ ‖x0 − xn+1‖. (ii) :

The fist equivalence follows from (i). The second one is proved by induction.
Note first that H is such that y = PH(x,y)x. Now for y ∈ C, we obtain also
that y = PC∩H(x,y)x. for n = 1, we have x1 = PC∩H(x0,T0x0)x0 = T0x0 and thus
x1 = x0 ⇐⇒ x0 ∈ Fix(T0). Now assume that the equivalence if fulfilled for n.
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We have

xn+1 = xn = · · · = x0 ⇐⇒











x0 ∈ ∪n−1
k=0 Fix(Tk)

x0 = xn+1 = PC∩
T

n

k=0
H(xk,Tkxk)

= PC∩H(x0,Tnx0) = Tnx0 .

(iii) follows from (i). (iv) : The algorithm is defined if Cn 6= ∅ for all n ∈ N.
Thus it is enough to prove that C ∩

(
⋂

n∈N
H(xn, Tnxn)

)

6= ∅. By definition of
the TC class we have Fix(Tn) ⊂ C ∩ H(xn, Tnxn) and the result follows. �

Theorem 22 ([1, Theorem 3.5]) Let (xn)n≥0 be an arbitrary orbit of Algorithm

3 and let F
def
=

⋂

n∈N
Fix(Tn). Then

(i) If (xn)n≥0 is defined then : (xn)n≥0 is bounded ⇐⇒ (‖x0 − xn‖)n∈N

converges.
(ii) If F 6= ∅, then (xn)n≥0 is bounded and (∀n ∈ N)xn ∈ F ⇐⇒ xn =

PF (x0).
(iii) If F 6= ∅, then (‖x0 − xn‖)n∈N converges and

limn ‖x0 − xn‖ ≤ ‖x0 − PF x0‖.
(iv) If F 6= ∅, then : limn xn = PF (x0) ⇐⇒ M(xn)n∈N ⊂ F .
(v) If (xn)n≥0 is defined and bounded then

∑

n≥0 ‖xn+1 − xn‖
2 < +∞ and

∑

n≥0 ‖xn − Tnxn‖
2 < +∞.

Proof : (i) follows from Proposition 21 (i). (ii) : If F 6= ∅ then by Proposition
21 (iv) the sequence is defined. We have F ⊂ C∩

(
⋂

n∈N
H(xn, Tnxn)

)

and thus
F ⊂ Cn. Now, from PF (x0) ∈ Cn and xn = PCn

x0 we obtain ‖xn − x0‖ ≤
‖x0 − PF (x0)‖ and (ii) follows. (iii) follows from (i), (ii) and the previous
inequality. (iv) : The forward implication is trivial. For the reverse implication,
the proof exactly follows (iv) of [1, Theorem 3.5] since it does not involve C.
(v) : From xn = PCn

x0 and xn+1 ∈ Cn we obtain :

〈x0 − xn, xn − xn+1〉 ≥ 0 .

We thus have :

‖xn+1 − xn‖
2 ≤ ‖xn+1 − xn‖

2 + 2 〈xn+1 − xn, xn − x0〉

≤ ‖x0 − xn+1‖
2 − ‖x0 − xn‖

2 . (14)

Hence
∑

n≥0 ‖xn+1 − xn‖
2 ≤ supn∈N ‖x0 − xn‖

2 < +∞ since (xn)n≥0 is boun-
ded. For all n ∈ N we have xn+1 ∈ H(xn, Tnxn), which implies,

‖xn+1 − xn‖
2 = ‖xn+1 − Tnxn‖

2 − 2 〈xn+1 − Tnxn, xn − Tnxn〉

+ ‖xn − Tnxn‖
2

≥ ‖xn − Tnxn‖
2, (15)

and we therefore obtain
∑

n≥0 ‖xn − Tnxn‖
2 < +∞. �
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