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Application of graph combinatorics to rational
identities of type A

†

Adrien Boussicault1 and Valentin F́eray1

1 Universit́e Paris-Est, Institut d’́electronique et d’informatique Gaspard-Monge, 77454 Marne-la-Vallée Cedex 2

To a wordw, we associate the rational functionΨw =
Q

(xwi
− xwi+1)

−1. The main object, introduced by C.
Greene to generalize identities linked to Murnaghan-Nakayama rule, is a sum of its images by certain permutations
of the variables. The sets of permutations that we consider are the linear extensions of oriented graphs. We explain
how to compute this rational function, using the combinatorics of the graphG. We also establish a link between an
algebraic property of the rational function (the factorization of the numerator) and a combinatorial property of the
graph (the existence of a disconnecting chain).

Résuḿe : À un mot w, nous associons la fonction rationnelleΨw =
Q

(xwi
− xwi+1)

−1. L’objet principal,
introduit par C. Greene pour géńeraliser des identités rationnelles líeesà la r̀egle de Murnaghan-Nakayama, est une
somme de ses images par certaines permutations des variables. Les ensembles de permutations considéŕes sont les
extensions lińeaires des graphes orientés. Nous expliquons comment calculer cette fonction rationnelleà partir de la
combinatoire du grapheG. Nousétablissons ensuite un lien entre une propriét́e alǵebrique de la fonction rationnelle
(la factorisation du nuḿerateur) et une propriét́e combinatoire du graphe (l’existence d’une chaı̂ne le d́econnectant).

Keywords: Rational functions, posets, maps

1 Introduction
A partially ordered set (poset)P is a finite setV endowed with a partial order. By definition, a word
w containing exactly once each element ofV is called alinear extensionif the order of the letters is
compatible withP (if a ≤P b, thena must be beforeb in w). To a linear extensionw = v1v2 . . . vn, we
associate a rational function:

ψw =
1

(xv1
− xv2

) · (xv2
− xv3

) . . . (xvn−1
− xvn

)
.

We can now introduce the main object of the paper. If we denoteby L(P) the set of linear extensions
of P, then we defineΨP by:

ΨP =
∑

w∈L(P)

ψw.

†this paper is an extended abstract of the paper on arXiv hal-00339049, which contains all detailed proofs.
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1.1 Background
The linear extensions of posets contain very interesting subsets of the symmetric group: for example, the
linear extensions of the poset considered in the article (3)are the permutations smaller than a permutation
π for the weak Bruhat order. In this case, our construction is close to that of Demazure characters (4). S.
Butler and M. Bousquet-Ḿelou characterize the permutationsπ corresponding to acyclic posets, which
are exactly the cases where the function we consider is the simplest.
Moreover, linear extensions are hidden in a recent formula for irreducible character values of the sym-
metric group: if we use the notations of (7), the quantityNλ(G) can be seen as a sum over the linear
extensions of the bipartite graphG (bipartite graphs are a particular case of oriented graphs). This ex-
plains the similarity of the combinatorics in article (6) and in this one.

The functionΨP was considered by C. Greene (8), who wanted to generalize a rational identity linked
to Murnaghan-Nakayama rule for character values of the symmetric group. He has given in his article a
closed formula for planar posets (µP is the Möbius function ofP):

ΨP =

{

0 if P is not connected,
∏

y,z∈P

(xy − xz)
µP(y,z) if P is connected,

However, there is no such formula for general posets, only the denominator of the reduced form ofΨP is
known (see article (2)). In this paper, the first author has investigated the effects of elementary transfor-
mations of the Hasse diagram of a poset on the numerator of theassociated rational function. He has also
noticed, that in some case, the numerator is a Schur function(2, paragraph 4.2) (we can also find Schubert
polynomials or sums of multiSchur functions).

In this paper, we obtain some new results on this numerator, thanks to a simple local transformation in
the graph algebra, preserving linear extensions.

1.2 Main results
An inductive algorithm The first main result of this paper is an induction relation onlinear extensions

(Theorem 3.1). When one appliesΨ on it, it gives an efficient algorithm to compute the numerator
of the reduced fraction ofΨP (the denominator is already known).

A combinatorial formula If we iterate our first main result in a clever way, we can describe combinato-
rially the final result. The consequence is our second main result: if we give to the graph of a poset
P a rooted map structure, we have a combinatorial non-inductive formula for the numerator ofΨP

(Theorem 3.7).

A condition for ΨP to factorize Green formula’s for the function associated to a planar poset is a quo-
tient of products of polynomials of degree1. In the non-planar case, the denominator is still a
product of degree 1 terms, but not the numerator. So we may wonder when the numeratorN(P)
can be factorized.
Our third main result is a partial answer (a sufficient but notnecessary condition) to this question:
the numeratorN(P) factorizes if there is a chain disconnecting the Hasse diagram ofP (see The-
orem 3.8 for a precise statement). An example is drawn on figure 1 (the disconnecting chain is
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(2, 5)). Note that we use here and in the whole paper a unusual convention: we draw the posets
from left (minimal elements) to right (maximal elements).
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Fig. 1: Example of chain factorization

1.3 Open problems

Necessary condition for factorization The conclusion of the factorization Theorem 3.8 is sometimes
true, even when the separating path is not a chain: see for example Figure 2 (the path(5, 6, 3)
disconnects the Hasse diagram, but is not a chain).
This equality, and many more, can be easily proved using the same method as Theorem 3.8. Can we
give a necessary (and sufficient) condition for the numerator of a poset to factorize into a product
of numerators of subposets? Are all factorizations of this kind?

Characterization of the numerator Let us consider a posetP, which has only minimal and maximal
elements (respectivelya1, . . . , al and b1, . . . , br). The numeratorN(P) of ΨP is a polynomial
in b1, . . . , br which degree in each variable can be easily bounded (2, Proposition 3.1). Thanks
to Proposition 3.4, we see immediately thatN(P) = 0 on some affine subspaces of the space of
variables. Unfortunately, these vanishing relations and its degree do not characterizeN(P) up to a
multiplicative factor. Is there a bigger family of vanishing relations, linked to the combinatorics of
the Hasse diagram of the poset, which characterizesN(P)?
This question comes from the following observation: for some particular posets, the numerator
is a Schubert polynomial and Schubert polynomials are knownto be easily defined by vanishing
conditions (9).

2 Graphs, posets and rational functions
Oriented graphs are a natural way to encode information of posets. To avoid confusions, we recall all
necessary definitions in paragraph 2.1. The definition of linear extensions and hence of our rational

N













1

2

3

4

5
6

7

8

9













= N





 1

2

3

5
6






.N















3

4

5
6

7

8

9















Fig. 2: An example of factorization, not contained in Theorem 3.8.
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function can be easily formulated directly in terms of graphs (paragraphs 2.2 and 2.3).
We will also define some elementary removal operations on graphs (paragraph 2.4), which will be used in
the next section. Due to transitivity relations, it is not equivalent to perform these operation on the Hasse
diagram or on the complete graph of a poset, that’s why we prefer to formulate everything in terms of
graphs.

2.1 Definitions and notations on graphs

In this paper, we deal with finitedirected graphs. So we will use the following definition of a graphG:

• A finite set of verticesVG.

• A set of edgesEG defined byEG ⊂ VG × VG.

If e ∈ EG, we will note byα(e) ∈ VG the first component ofe (calledorigin of e) andω(e) ∈ VG its
second component (calledendof e). This means that each edge has an orientation.
Let e = (v1, v2) be an element ofVG × VG. Then we denote bye the pair(v2, v1).

With this definition of graphs, we have four definitions of injective walks on the graph.

can not go backwards can go backwards
closed circuit cycle

non-closed chain path

More precisely,

Definition 2.1 LetG be a graph andE its set of edges.

chain A chain is a sequence of edgesc = (e1, . . . , ek) of G such thatω(e1) = α(e2), ω(e2) = α(e3),
. . . andω(ek−1) = α(ek).

circuit A circuit is a chain(e1, . . . , ek) ofG such thatω(ek) = α(e1).

path A path is a sequence(e1, . . . , eh) of elements ofE ∪ E such thatω(e1) = α(e2), ω(e2) = α(e3),
. . . andω(ek−1) = α(ek).

cycle A cycleC is a path with the additional property thatω(ek) = α(e1). If C is a cycle, then we denote
byE(C) the setC ∩ E.

In all these definitions, we add the condition that all edges and vertices are different (except of course, the
equalities in the definition).

Remark 1 The difference between a cycle and a circuit (respectively apath and a chain) is that, in a
cycle (respectively in a path), an edge can appear in both directions (not only in the direction given by the
graph structure). The edges, which appear in a cycleC with the same orientation than their orientation
in the graph, are exactly the elements ofE(C).

To make the figures easier to read,α(e) is always the left-most extremity ofe andω(e) its right-most
one. Such drawing construction is not possible if the graph contains a circuit. But its case will not be very
interesting for our purpose.
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Fig. 3: Example of a chain and a cycleC (we recall that orientations are from left to right).

Example 1 An example of graph is drawn on figure 3. In the left-hand side,the non-dotted edges form
a chain c, whereas, in the right-hand side, they form a cycleC, such thatE(C) contains 3 edges:
(1, 6), (6, 8) and(5, 7).

The cyclomatic numberof a graphG is |EG| − |VG| + cG, wherecG is the number of connected
components ofG. A graph contains a cycle if and only if its cyclomatic numberis not0 (see (5)). If it
is not the case, the graph is calledforest. A connected forest is, by definition, a tree. Beware that, inthis
context, there are no rules for the orientation of the edges of a tree (often, in the literature, an oriented tree
is a tree which edges are oriented from theroot to theleaves, but we do not consider such objects here).

2.2 Posets, graphs, Hasse diagrams and linear extensions
In this paragraph, we recall the link between graphs and posets.

Given a graphG, we can consider the binary relation on the setVG of vertices ofG:

x ≤ y
def

⇐⇒

(

x = y or ∃ e ∈ EG such that

{

α(e) = x
ω(e) = y

)

This binary relation can be completed by transitivity. If the graph has no circuit, the resulting relation
≤ is antisymmetric and, hence, endows the setVG with a poset structure, which will be denotedposet(G).

The applicationposet is not injective. Among the pre-images of a given posetP, there is a minimum
one (for the inclusion of edge set), which is called Hasse diagram ofP.

The definition of linear extensions given in the introduction can be formulated in terms of graphs:

Definition 2.2 A linear extension of a graphG is a total order≤w on the set of verticesV such that, for
each edgee ofG, one hasα(e) ≤w ω(e).

The set of linear extensions ofG is denotedL(G). Let us also define the formal sumϕ(G) =
∑

w∈L(G)

w.

We will often see a total order≤w defined byvi1 ≤w vi2 ≤w . . . ≤w vin
as a wordw = vi1vi2 . . . vin

.

Remark 2 If G contains a circuit, then it has no linear extensions. Else, its linear extensions are the
linear extensions ofposet(G). Thus considering graphs instead of posets does not give more general
results.



30 A. Boussicault and V. F́eray

2.3 Rational functions on graphs
Given a graphG with n verticesv1, . . . , vn, we are interested in the following rational functionΨG in the

variables(xvi
)i=1...n: ΨG =

∑

w∈L(G)

1

(xw1
− xw2

) . . . (xwn−1
− xwn

)
.

We also consider the renormalization:N(G) := ΨG ·
∏

e∈EG

(xα(e) − xω(e)).

The following properties ofN(G) have been proved in (2): the value ofN on forests is essential in the
next section because we will computeN by induction on the cyclomatic number.

Lemma 2.1 (Pruning-invariance) Let G be a graph with a vertexv of valence1 and e the edge of
extremity (origin or end)v. Then one hasN(G) = N

(

G\{v}
)

.

Proposition 2.2 If T is a tree,N(T ) = 1. If F is a disconnected forest,N(F ) = 0.

2.4 Removing edges and vertices in graphs
The main tool of this paper consists in removing some edges ofa graphG.

Definition 2.3 LetG be a graph andE′ a subset of its set of edgesEG. We will denote byG\E′ the
graphG′ with

• the same set of vertices asG ;

• the setEG′ := EG\E
′ as set of edges.

Definition 2.4 If G is a graph andV ′ a subset of its set of verticesV , V ′ has an induced graph structure:
its edges are exactly the edges ofG, which have both their extremities inV ′.

If V \V ′ = {v1, . . . , vl}, this graph will be denoted byG\{v1, . . . , vl}. The symbol is the same than in
definition 2.3, but it should not be confusing.

3 Computation and properties of the numerator
In the previous section, we have defined a simple operation ongraphs consisting in removing edges.
Thanks to this operation, we will be able to construct an operator which lets invariant the formal sum
of linear extensions (paragraph 3.1). Due to the definition of Ψ, this implies immediately an inductive
relation on the rational functionsΨG (paragraph 3.2).
In paragraph 3.3, we solve the induction and obtain an additive formula forN(G). But this formula has
never a factorized form (even in the planar case), so we give in the last paragraph (3.4) a simple graphical
condition which implies the partial factorization ofN(G).

3.1 Equality on linear extensions
In this paragraph, we prove an induction relation on the formal sums of linear extensions of graphs. More
exactly, we write, for any graphG with at least one cycle,ϕ(G) as a linear combination ofϕ(G′), where
G′ runs over graphs with a strictly lower cyclomatic number. Inthe next paragraphs, we will iterate this
relation and applyΨ to both sides of the equality to studyΨG.
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Fig. 4: Example of application of theorem 3.1

If G is a finite graph andC a cycle ofG, let us denote byTC(G) the following formal alternate sum of
subgraphs ofG:

TC(G) =
∑

E′⊂E(C)
E′ 6=∅

(−1)|E
′|−1G\E′.

The functionϕ(G) =
∑

w∈L(G)

w can be extended by linearity to the free abelian group spanned by

graphs. One has the following theorem:

Theorem 3.1 LetG be a graph andC a cycle ofG then,ϕ(G) = ϕ(TC(G)).

An example is drawn on figure 4 (to make it easier to read, we didnot write the operatorϕ in front of
each graph).

Remark 3 In the case whereE(C) = ∅, this theorem says that a graph with a circuit has no linear
extensions (see remark 2).

If it is a singleton, it says that we do not change the set of linear extensions by erasing an edge if there
is a chain going from its origin to its end (thanks to transitivity).

To prove Theorem 3.1, we will need the two following lemmas:

Lemma 3.2 Letw ∈ L(G\E(C)). There existsE′(w) ⊂ E(C) such that

∀E′′ ⊂ E(C), w ∈ L(G\E′′) ⇐⇒ E′(w) ⊂ E′′ ⊂ E(C).
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Proof: Left to the conscientious reader. 2

Lemma 3.3 Letw ∈ L(G\E(C)), there existsE′′ ( E(C) such thatw ∈ L(G\E′′).

Proof: Suppose that we can find a wordw for which the lemma is false. Sincew ∈ L(G\E(C)), the
wordw fulfills the relations given by the edges ofG, which are not inE(C).
But, if e ∈ E(C), one hasw /∈ L(G\(E(C)\{e})). That means thatw does not fulfill the relation corre-
sponding to the edgee. Asw is a total order, it fulfills the opposite relation:w ∈ L

[(

G\E(C)
)

∪ {e}
]

.

With the same argument applied for eache ∈ E(C), one hasw ∈ L
[

(

G\E(C)
)

∪ E(C)
]

. But this

graph contains a circuit, so its set of linear extension is empty. 2

Let us come back to the proof of Theorem 3.1. Letw be a word containing exactly once each element
of VG. We will compute its coefficient inϕ(G) − ϕ(TC(G)) =

∑

E′⊂E(C)(−1)|E
′|ϕ(G\E′):

• If w /∈ L(G\E(C)), its coefficient is zero in each summand.

• If w ∈ L(G\E(C)), thanks Lemma 3.2, we know that there existsE′(w) ⊂ E(C) such that

∀E′′ ⊂ E(C), w ∈ L(G\E′′) ⇐⇒ E′(w) ⊂ E′′ ⊂ E(C).

So the coefficient ofw in ϕ(G) − ϕ(TC(G)) is
∑

E′(w)⊂E′′⊂E(C)

(−1)|E
′′| = 0 becauseE′(w) 6=

E(C) (Lemma 3.3).

3.2 Consequences on rational functions
In the previous paragraph, we have established an inductionformula for the formal sum of linear exten-
sions (Theorem 3.1). One can applyΨ to both sides of this equality to computeN(G):

Proposition 3.4 LetG be a graph containing a cycleC. Then,

N(G) =
∑

E′⊂E(C)
E′ 6=∅

[

(−1)|E
′|−1N(G\E′)

∏

e∈E′

(xα(e) − xω(e))

]

.

By Proposition 2.2, one hasN(T ) = 1 if T is a tree andN(F ) = 0 if F is a disconnected forest. So
this Proposition gives us an algorithm to computeN(G): we just have to iterate it with any cycles until
all the graphs in the right hand side are forests. More precisely, if after iterating transformations of type
TC onG, we obtain the formal linear combination

∑

cFF of subforests ofG, then:

N(G) =
∑

T subtree ofG

cT
∏

e∈EG\ET

(xα(e) − xω(e)).

In this formula,N(G) appears as a sum of polynomials. So the computation ofN(G), using this formula,
is easier than a direct application of the definition

N(G) =
∑

w∈L(G)

(

Ψw ·
∏

e∈EG

(xα(e) − xω(e))

)

,
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where the summands may have poles.

Corollary 3.5 For any graphG, the rational functionN(G) is a polynomial. Moreover, ifG is discon-
nected,N(G) = 0.

In fact, if a connected graphG is the Hasse diagram of poset, the fractionΨG = N(G)
Q

e∈EG

(xα(e)−xω(e))
is

irreducible (see (2) for a proof of this fact).

Example 2 (explicit computation) Let G2,4 be the graph with a set of verticesV partitioned in two
subsetsV1 = {a1, a2} and V2 = {b1, b2, b3, b4} andE = V1 × V2 as set of edges. After iterating
Theorem 3.1, we obtain the equality of Figure 5 (the operatorϕ has been once again omitted).
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=
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+
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+
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+
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−
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Fig. 5: Decomposition ofϕ(G2,4).

Thus,N(G2,4) =
∑4

i=1

(

∏

j<i(bj − a1) ·
∏

k>i(bk − a2)
)

.

3.3 A combinatorial formula for N
To compute the polynomialN of a graphG, we only have to find the coefficient of trees in a formal
linear combination of forests obtained by iterating transformationsTC onG. But there are many possible
choices of cycle at each step and these coefficients depend onthese choices.

A way to avoid this problem is to give toG a rooted map structureM and to look at the particular
decompositionD(M) introduced in the paper (6, section 3). We will not describe here this particular
choice of cycles (see the complete version), but we have a combinatorial description of the trees with
coefficient+1 in D(M), all other trees having0 as coefficient.

Definition 3.1 A (combinatorial oriented) map is a connected graph with, for each vertexv, a cyclic
order on the edges whose origin or end isv. This definition is natural when the graph is drawn on a two
dimensional surface (see for example (10)).
It is more convenient when we deal with maps, to consider edges as couples of two darts(h1, h2), the first
one of extremityα(e) and the second one of extremityω(e). A rooted map is a map with an external dart
h0, that is to say a dart which do not belong to any edge, but has anextremity and a place in the cyclic
order given by this extremity.

We will need the following definition:

Definition 3.2 If T is a spanning subtree of a rooted mapM , the tour of the treeT beginning ath0

defines an order on the darts which do not belong toT . The definition is easy to understand on a figure:
for example, on Figure 6, the tour ish1

1, h
1
2, h

2
1, h

2
2, h

3
1, h

4
1, h

3
2, h

4
2 (see (1) for a precise definition).
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Fig. 6: Tour of a spanning tree of a rooted map.

We are now able to describe the coefficients of trees inD(M):

Proposition 3.6 LetM be a rooted map andT a spanning tree ofM .

• If there is an edgee = (h1, h2) ∈ M\T such thath2 appears beforeh1 in the tour ofT , then the
coefficient ofT in D(M) is 0.

• Else, the coefficient ofT in D(M) is +1 (in this case,T is said to begood).

For example, the spanning tree of Figure 6 is good. Note that the property of being a good spanning tree
does not depend on the orientations of the edges of the tree, but only on the orientations of those which
do not belong to it.

This Proposition is not very hard to prove, once we have the good definition ofD(M), but the latter
is quite technical and requires a non-easy proof of confluence. As an immediate consequence of the
proposition, we have the following formula forN(G):

Theorem 3.7 The polynomialN associated to the underlying graphG of a rooted mapM is given by the
following combinatorial formula:

N(G) =
∑

T good spanning
tree ofM





∏

e∈EG\ET

(

xα(e) − xω(e)

)



 . (1)

3.4 Chain factorization
In the previous paragraph, we have given an additive formulafor the numerator of the reduced fraction
of ΨP . Green formula for planar posets (see subsection 1.1) and the example of Figure 1 show that, in
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some cases, it can also be written as a product. In this paragraph we give a simple graphical condition on
a graphG, which implies the factorization ofN(G).

Remark 4 In this section, we assume thatG has no circuit and no transitivity relation (an edge going
from the beginning to the end of a chain). This is always true in the case of Hasse diagrams of posets
so we do not lose in generality. With this assumption, if we consider a chainc, there is no extra edges
between the vertices of the chain.

Let G be a connected graph,c a chain ofG, Vc the set of vertices ofc (including the origin and the
end of the chain) andG1, . . . ,Gk be all the connected components ofG \ Vc. The complete subgraphs
Gi = Gi ∪ Vc (for 1 ≤ i ≤ k) will be called regions ofG. An example (withk = 4) is drawn on Figure
7 (we consider the chain withVc = {1, 2, 13, 3, 4, 5, 6, 14}).

G = 1 2 3 4 5 613 14

7 8

9 10 11 12 15

16

17

18 19

G1 = 9 10 G2 = 7 818 19 G3 = 11 12 G4 =

15

16

17

G1 = 1 5 6 142 3 4

9 10

13

G2 =

1 2 3 4 5 613 14

7 818 19

G3 = 1 2 3 413 145 6

11 12

G4 = 1 2 3 4 5 613 14

15

16

17

Fig. 7: A graphG with a chainc, the connected componentsGi of G \ Vc and the corresponding regionsGi.

We can now state our third main result:

Theorem 3.8 Let G be a connected graph,c a chain ofG andG1, G2, . . . , Gk be the corresponding
regions ofG. Then one has:

N(G) =

k
∏

j=1

N(Gj).

In the example 7, the numeratorN(G) can be factorized into four non-trivial factors. This theorem is
proved in the complete version of the paper. It relies on a clever application of Proposition 3.4 and is a
little technical.

In the case of planar posets considered by Greene (8), this theorem explains the fact that the numerator
of the associated rational function is a product of polynomials of degree1. We can even give a new proof
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N









1 2 3 4 5 6

7 8

9









= N

(

1 2 3 4

7
)

·N

(

2 3 4 5

8
)

· N

(

3 4 5 6

9

)

= (x1 − x4).(x2 − x5).(x3 − x6)

Fig. 8: A non-planar (with Greene’s definition) poset for which Greene’s formula is true.

of Greene’s formula (stated in subsection 1.1), which worksin a context a little more general than planar
posets (see Figure 8).
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