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Application of graph combinatorics to rational
identities of type A'

Adrien Boussicault and Valentin Eray

! Universig Paris-Est, Institut clectronique et d'informatique Gaspard-Monge, 77454 Marne-laé¢éailedex 2

To a wordw, we associate the rational functidn, = [[(zw, — Zw,,,)”'. The main object, introduced by C.
Greene to generalize identities linked to Murnaghan-Nakayama rule, is @&its images by certain permutations
of the variables. The sets of permutations that we consider are the lixteas®ns of oriented graphs. We explain
how to compute this rational function, using the combinatorics of the géaptWe also establish a link between an
algebraic property of the rational function (the factorization of the naogy and a combinatorial property of the
graph (the existence of a disconnecting chain).

Résurme : A un mot w, nous associons la fonction rationnefle, = [](zw, — Tw,.,) . Lobjet principal,
introduit par C. Greene pourégéraliser des idengs rationnelles &esa la ©gle de Murnaghan-Nakayama, est une
somme de ses images par certaines permutations des variables. eedlessde permutations congiés sont les
extensions liaires des graphes oriést Nous expliguons comment calculer cette fonction rationaghartir de la
combinatoire du graph€’. Nousétablissons ensuite un lien entre une pregralgbrique de la fonction rationnelle
(la factorisation du nurateur) et une progte combinatoire du graphe (I'existence d’uneiciedle ceconnectant).

Keywords: Rational functions, posets, maps

1 Introduction

A partially ordered set (posetp is a finite setV” endowed with a partial order. By definition, a word
w containing exactly once each elementlofis called alinear extensiorif the order of the letters is
compatible withP (if a <p b, thena must be beforé in w). To a linear extensiow = vyvs ... v,, We
associate a rational function:

1

(T, = Tuy)  (Toy — Tug) - (T, — T,) .

ww:

We can now introduce the main object of the paper. If we debpté(P) the set of linear extensions
of P, then we definel by:
\I]'P = Z d)uw

weL(P)

Tthis paper is an extended abstract of the paper on arXiv 0388049, which contains all detailed proofs.

1365-805QC) 2009 Discrete Mathematics and Theoretical Computer ScidbeH CS), Nancy, France
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1.1 Background

The linear extensions of posets contain very interestimgets of the symmetric group: for example, the
linear extensions of the poset considered in the articlar@}he permutations smaller than a permutation
m for the weak Bruhat order. In this case, our constructiondseto that of Demazure characters (4). S.
Butler and M. Bousquet-Klou characterize the permutationsorresponding to acyclic posets, which
are exactly the cases where the function we consider is tinglest.

Moreover, linear extensions are hidden in a recent formaitdrfeducible character values of the sym-
metric group: if we use the notations of (7), the quanfify (G)) can be seen as a sum over the linear
extensions of the bipartite gragh (bipartite graphs are a particular case of oriented graphb)s ex-
plains the similarity of the combinatorics in article (6)daim this one.

The function¥» was considered by C. Greene (8), who wanted to generalizgoaahidentity linked
to Murnaghan-Nakayama rule for character values of the sgimengroup. He has given in his article a
closed formula for planar posetg# is the Mobius function ofP):

[1 (w, —2,)**W2) if Pis connected,

0 if P is not connected,
Up =
y,z€P

However, there is no such formula for general posets, oydgnominator of the reduced form @f> is
known (see article (2)). In this paper, the first author hasstigated the effects of elementary transfor-
mations of the Hasse diagram of a poset on the numerator etaiated rational function. He has also
noticed, that in some case, the numerator is a Schur fun@iqraragraph 4.2) (we can also find Schubert
polynomials or sums of multiSchur functions).

In this paper, we obtain some new results on this numerdtankss to a simple local transformation in
the graph algebra, preserving linear extensions.

1.2 Main results

An inductive algorithm The first main result of this paper is an induction relationliorar extensions
(Theorem 3.1). When one appligson it, it gives an efficient algorithm to compute the numerato
of the reduced fraction of » (the denominator is already known).

A combinatorial formula If we iterate our first main result in a clever way, we can disccombinato-
rially the final result. The consequence is our second maulteif we give to the graph of a poset
‘P arooted map structure, we have a combinatorial non-indeiétirmula for the numerator of »
(Theorem 3.7).

A condition for Wy to factorize Green formula’s for the function associated to a planar piss& quo-
tient of products of polynomials of degrde In the non-planar case, the denominator is still a
product of degree 1 terms, but not the numerator. So we mayleronhen the numerata¥ (P)
can be factorized.

Our third main result is a partial answer (a sufficient but metessary condition) to this question:
the numeratoV (P) factorizes if there is a chain disconnecting the Hasse dragifP (see The-
orem 3.8 for a precise statement). An example is drawn ondidufthe disconnecting chain is
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(2,5)). Note that we use here and in the whole paper a unusual cionemve draw the posets
from left (minimal elements) to right (maximal elements).

Fig. 1: Example of chain factorization

1.3 Open problems

Necessary condition for factorization The conclusion of the factorization Theorem 3.8 is sometime
true, even when the separating path is not a chain: see fonmgaFigure 2 (the pati5, 6, 3)
disconnects the Hasse diagram, but is not a chain).

This equality, and many more, can be easily proved usingdimesnethod as Theorem 3.8. Can we
give a necessary (and sufficient) condition for the numeraft@ poset to factorize into a product
of numerators of subposets? Are all factorizations of timslR

Characterization of the numerator Let us consider a pos&, which has only minimal and maximal
elements (respectively;,...,a; andby,...,b.). The numeratotNV(P) of ¥p is a polynomial
in by,...,b. which degree in each variable can be easily bounded (2, Bitopo 3.1). Thanks
to Proposition 3.4, we see immediately thé{?) = 0 on some affine subspaces of the space of
variables. Unfortunately, these vanishing relations asdégree do not characteri2gP) up to a
multiplicative factor. Is there a bigger family of vanishinrelations, linked to the combinatorics of
the Hasse diagram of the poset, which charactedz€B)?
This question comes from the following observation: for goparticular posets, the numerator
is a Schubert polynomial and Schubert polynomials are kntmnpe easily defined by vanishing
conditions (9).

2 Graphs, posets and rational functions

Oriented graphs are a natural way to encode information eéfs0 To avoid confusions, we recall all
necessary definitions in paragraph 2.1. The definition addinextensions and hence of our rational

Zj
7

Fig. 2: An example of factorization, not contained in Theorem 3.8.
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function can be easily formulated directly in terms of grajgparagraphs 2.2 and 2.3).

We will also define some elementary removal operations oplgr§paragraph 2.4), which will be used in
the next section. Due to transitivity relations, it is notieglent to perform these operation on the Hasse
diagram or on the complete graph of a poset, that's why weeptef formulate everything in terms of
graphs.

2.1 Definitions and notations on graphs

In this paper, we deal with finitdirected graphsSo we will use the following definition of a grah:
o A finite set of verticed/.
o A setof edged defined byEs C Vg x V.

If e € E¢, we will note bya(e) € Vi the first component of (calledorigin of e) andw(e) € Vi its
second component (calleshdof ¢). This means that each edge has an orientation.
Lete = (vy,v2) be an element of; x V. Then we denote by the pair(vs, v1).

With this definition of graphs, we have four definitions ofdofive walks on the graph.

can not go backwards| can go backwards
closed circuit cycle
non-closed chain path

More precisely,
Definition 2.1 LetG be a graph and¥ its set of edges.

chain A chain is a sequence of edges= (ey,...,e;) of G such thatv(e;) = a(ez), w(ez) = ales),
...andw(ex—1) = aley).

circuit A circuitis a chain(ey, .. ., ex) of G such thatv(ey,) = a(ey).

path A path is a sequence, ..., e;) of elements off U E such thatv(e;) = a(ez), w(es) = ales),

...andw(ex—1) = aler).

cycle A cycleC is a path with the additional property that(e;,) = a(e;). If C'is a cycle, then we denote
by E(C) the setC' N E.

In all these definitions, we add the condition that all edged @ertices are different (except of course, the
equalities in the definition).

Remark 1 The difference between a cycle and a circuit (respectivghath and a chain) is that, in a
cycle (respectively in a path), an edge can appear in botkations (not only in the direction given by the
graph structure). The edges, which appear in a cy¢leith the same orientation than their orientation
in the graph, are exactly the elementsffC').

To make the figures easier to readg) is always the left-most extremity efandw(e) its right-most
one. Such drawing construction is not possible if the grapitains a circuit. But its case will not be very
interesting for our purpose.
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Fig. 3: Example of a chain and a cyadfé (we recall that orientations are from left to right).

Example 1 An example of graph is drawn on figure 3. In the left-hand dilde,non-dotted edges form
a chain c, whereas, in the right-hand side, they form a cyclesuch thatE(C) contains 3 edges:
(1,6), (6,8) and(5, 7).

The cyclomatic numbenf a graphG is |E¢| — |Va| + co, wherecg is the number of connected
components of7. A graph contains a cycle if and only if its cyclomatic numiznot0 (see (5)). If it
is not the case, the graph is calliedest A connected forest is, by definition, a tree. Beware thathis
context, there are no rules for the orientation of the edgedm@e (often, in the literature, an oriented tree
is a tree which edges are oriented from tbet to theleaves but we do not consider such objects here).

2.2 Posets, graphs, Hasse diagrams and linear extensions
In this paragraph, we recall the link between graphs andtpose

Given a graphG, we can consider the binary relation on the ggtof vertices ofG:

<y (p=yordecE suchthat{ a(e)_x>
Y ( e w(e) =y

This binary relation can be completed by transitivity. I&thraph has no circuit, the resulting relation
<is antisymmetric and, hence, endows thélgetvith a poset structure, which will be denotesset (G).

The applicatiorposet is not injective. Among the pre-images of a given pd8ethere is a minimum
one (for the inclusion of edge set), which is called Hassgrdia of P.

The definition of linear extensions given in the introduct@an be formulated in terms of graphs:

Definition 2.2 A linear extension of a grapty is a total order<,, on the set of verticeg such that, for
each edge of G, one hasy(e) <, w(e).

The set of linear extensions@fis denoted’(G). Let us also define the formal syniG) = > w.
weL(G)

We will often see a total ordex.,,, defined byv;, <., vi, <y ... <, vi, 8S@WOrdw = v;, vy, ... v;, .
Remark 2 If G' contains a circuit, then it has no linear extensions. El$&)inear extensions are the

linear extensions oposet(G). Thus considering graphs instead of posets does not give general
results.
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2.3 Rational functions on graphs

Given a graplG with n verticesvy, . . . , v, we are interested in the following rational functigr; in the
. 1

variables(z,, )i—1..n: g = Z (

weZl&) Ty — Ty ) v+ (Taw, | — Tp,,)
We also consider the renormalizatioNy(G) := ¥ - H (Ta(e) = Tu(e))-
ecEqg
The following properties ofV (G) have been proved in (2): the value fon forests is essential in the
next section because we will computeby induction on the cyclomatic number.

Lemma 2.1 (Pruning-invariance) Let G be a graph with a vertex of valencel and e the edge of
extremity (origin or end). Then one hasV(G) = N (G\{v}).

Proposition 2.2 If T'is a tree,N(T') = 1. If F'is a disconnected fores\ (F') = 0.

2.4 Removing edges and vertices in graphs
The main tool of this paper consists in removing some edgeyodphG.

Definition 2.3 Let G be a graph andE’ a subset of its set of edgé%;. We will denote by=\ E’ the
graph G’ with

e the same set of vertices é5;
e the setFs := E¢\E' as set of edges.

Definition 2.4 If G is a graph and/’’ a subset of its set of vertic®5 V'’ has an induced graph structure:
its edges are exactly the edge<fwhich have both their extremities IrY.

If VAV' = {vy,..., v}, this graph will be denoted b§\{v1,...,v;}. The symbol is the same than in
definition 2.3, but it should not be confusing.

3 Computation and properties of the numerator

In the previous section, we have defined a simple operatiographs consisting in removing edges.
Thanks to this operation, we will be able to construct an aferwhich lets invariant the formal sum
of linear extensions (paragraph 3.1). Due to the definitib@ pthis implies immediately an inductive
relation on the rational function& (paragraph 3.2).

In paragraph 3.3, we solve the induction and obtain an agditirmula for N (G). But this formula has
never a factorized form (even in the planar case), so we gitled last paragraph (3.4) a simple graphical
condition which implies the partial factorization 8f(G).

3.1 Equality on linear extensions

In this paragraph, we prove an induction relation on the fdrsums of linear extensions of graphs. More
exactly, we write, for any grapfi’ with at least one cycley(G) as a linear combination @f(G’), where

G’ runs over graphs with a strictly lower cyclomatic numbertie next paragraphs, we will iterate this
relation and apply’ to both sides of the equality to study.



Application of graph combinatorics to rational identitieftype A 31

Fig. 4: Example of application of theorem 3.1

If G is a finite graph and’ a cycle ofG, let us denote b{'-(G) the following formal alternate sum of
subgraphs of:

To(@)= > (“DFITIG\E.
E'CE(C)
E'#0

The functionp(G) = > w can be extended by linearity to the free abelian group sphibye
weL(G)
graphs. One has the following theorem:
Theorem 3.1 Let G be a graph and” a cycle ofG then,o(G) = o(Tc(G)).

An example is drawn on figure 4 (to make it easier to read, wendtdwrite the operatop in front of
each graph).

Remark 3 In the case wherd?(C') = (), this theorem says that a graph with a circuit has no linear
extensions (see remark 2).

If it is a singleton, it says that we do not change the set @fdirextensions by erasing an edge if there
is a chain going from its origin to its end (thanks to trangity).

To prove Theorem 3.1, we will need the two following lemmas:

Lemma 3.2 Letw € L(G\E(C)). There exist&’ (w) C E(C) such that

VE" Cc E(C), we€LG\E") <= E'(w)C E" C E(C).
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Proof: Left to the conscientious reader. O
Lemma 3.3 Letw € L(G\E(C)), there exist®&” C E(C) such thatw € L(G\E").

Proof: Suppose that we can find a wordfor which the lemma is false. Sinee € L(G\E(C)), the
word w fulfills the relations given by the edges Gf which are not inE(C').

But, if e € E(C), one hasv ¢ L(G\(E(C)\{e})). That means thab does not fulfill the relation corre-
sponding to the edge Asw is a total order, it fulfills the opposite relation: € £ [(G\E(C)) U {e}] .

With the same argument applied for eacte E(C), one hasw € L {(G\E(O)) U (C’)} . But this
graph contains a circuit, so its set of linear extension iptgm O

Let us come back to the proof of Theorem 3.1. kebe a word containing exactly once each element
of V. We will compute its coefficient ip(G) — o(To(G)) = ZE,CE(C)(—l)‘E/‘ga(G\E’):
o If w¢ L(G\E(C)), its coefficient is zero in each summand.
o If we L(G\E(C)), thanks Lemma 3.2, we know that there exist$w) C E(C') such that
VE" Cc E(C),w € L(G\E") < E'(w) C E" C E(C).

So the coefficient ofv in p(G) — (T (G)) is > (=1)/F"l = 0 becauseF’ (w) #
E'(w)CE"CE(C)
E(C) (Lemma 3.3).
3.2 Consequences on rational functions

In the previous paragraph, we have established an indufdromula for the formal sum of linear exten-
sions (Theorem 3.1). One can apgiyto both sides of this equality to computé(G):

Proposition 3.4 Let G be a graph containing a cycl€'. Then,

NG = > [EDFINGE) [] @age) — 2we) | -
E'CE(C) ecE’
E'#0

By Proposition 2.2, one ha§(7T') = 1 if T'is a tree andV(F) = 0 if F'is a disconnected forest. So
this Proposition gives us an algorithm to compDié): we just have to iterate it with any cycles until
all the graphs in the right hand side are forests. More pedgi§ after iterating transformations of type
Tc on G, we obtain the formal linear combination ¢ F' of subforests ofz, then:

N(G) = Z cr H (Ta(e) = Tw(e))-

T subtree of¢ e€EG\Er

In this formula, N (G) appears as a sum of polynomials. So the computatidvi(6f), using this formula,
is easier than a direct application of the definition

weL(G) ecEg
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where the summands may have poles.

Corollary 3.5 For any graphG, the rational functionV (G) is a polynomial. Moreover, iff is discon-
nected N(G) = 0.

N(G)

H (xa(e)fxw(e))
c€Eg

In fact, if a connected grapfi is the Hasse diagram of poset, the fractibg =

irreducible (see (2) for a proof of this fact).

Example 2 (explicit computation) Let G 4 be the graph with a set of verticds partitioned in two
subsetsly, = {aj,as} and Vo = {by,be,b3,b04} and E = V; x V, as set of edges. After iterating
Theorem 3.1, we obtain the equality of Figure 5 (the operatbias been once again omitted).

by by by by by by by

ay ay ay ay ay ay ay

2 bo bo bo ‘/.bz ‘<b:2 by

= s by T by T bz b3 b3 3
a a as az a az a2

by by by h by -<b:4 b

Fig. 5: Decomposition ofp(Ga2,4).

Thus,N(Ga,4) = Z?:l (Hj<i(bj —a1) - [ (b — a2)) :

3.3 A combinatorial formula for N

To compute the polynomialN of a graphG, we only have to find the coefficient of trees in a formal
linear combination of forests obtained by iterating transfationsT- on G. But there are many possible
choices of cycle at each step and these coefficients depethesa choices.

A way to avoid this problem is to give t&' a rooted map structur@/ and to look at the particular
decompositionD (M) introduced in the paper (6, section 3). We will not descrileeehthis particular
choice of cycles (see the complete version), but we have dicatorial description of the trees with
coefficient+1 in D(M), all other trees having as coefficient.

Definition 3.1 A (combinatorial oriented) map is a connected graph with, dach vertexv, a cyclic
order on the edges whose origin or endisThis definition is natural when the graph is drawn on a two
dimensional surface (see for example (10)).

Itis more convenient when we deal with maps, to considersdgeouples of two darté, h»), the first
one of extremityy(e) and the second one of extremitye). A rooted map is a map with an external dart
ho, that is to say a dart which do not belong to any edge, but hasxamremity and a place in the cyclic
order given by this extremity.

We will need the following definition:

Definition 3.2 If T is a spanning subtree of a rooted map, the tour of the tre€l” beginning athg
defines an order on the darts which do not belong'torhe definition is easy to understand on a figure:
for example, on Figure 6, the tourig , ki, h?, h3, h3, hi, h3, b3 (see (1) for a precise definition).
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Fig. 6: Tour of a spanning tree of a rooted map.

We are now able to describe the coefficients of tree® (] ):
Proposition 3.6 Let M be a rooted map an@’ a spanning tree oii/.

e If there is an edge = (h1, hs) € M\T such thath, appears beforé, in the tour ofT’, then the
coefficient ofl” in D(M) is 0.

e Else, the coefficient & in D(M) is +1 (in this case]" is said to begood.

For example, the spanning tree of Figure 6 is good. Note teaptoperty of being a good spanning tree
does not depend on the orientations of the edges of the meenlty on the orientations of those which
do not belong to it.

This Proposition is not very hard to prove, once we have thegtefinition of D(M), but the latter
is quite technical and requires a non-easy proof of confleenss an immediate consequence of the
proposition, we have the following formula fo¥ (G):

Theorem 3.7 The polynomialV associated to the underlying grajghof a rooted map\/ is given by the
following combinatorial formula:

NG = )] [H (%(e>—%<e>)]~ @

T good spanning| ec Eg\ Er
tree of M

3.4 Chain factorization

In the previous paragraph, we have given an additive forrfaridhe numerator of the reduced fraction
of Up. Green formula for planar posets (see subsection 1.1) andxhmple of Figure 1 show that, in
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some cases, it can also be written as a product. In this @ghgre give a simple graphical condition on
a graphG, which implies the factorization oV (G).

Remark 4 In this section, we assume th@thas no circuit and no transitivity relation (an edge going
from the beginning to the end of a chain). This is always truéhe case of Hasse diagrams of posets
so we do not lose in generality. With this assumption, if wesitier a chaine, there is no extra edges
between the vertices of the chain.

Let G be a connected graph,a chain ofGG, V. the set of vertices of (including the origin and the
end of the chain) and'y, ..., G\ be all the connected components@f\ V.. The complete subgraphs
G; = G; UV, (for 1 < i < k) will be called regions ofy. An example (withk = 4) is drawn on Figure
7 (we consider the chain with. = {1,2,13,3,4,5,6, 14}).

9 10 11 12 15

Q
-
I
—
no
i
ot
D
—
'S
Q
w
|
—
no
—
w
w
=
ot
(=]
—
e~

1 2 13 14 15

o 3 4 5 6
Go 119

Fig. 7: A graphG with a chaine, the connected componertis of G\ V. and the corresponding regio6s.

We can now state our third main result:

Theorem 3.8 Let G be a connected grapl, a chain of G and G, G, . .., G}, be the corresponding

regions ofG. Then one has:
k

N(@) = [T N@)).
j=1
In the example 7, the numeratdf(G) can be factorized into four non-trivial factors. This theworis

proved in the complete version of the paper. It relies on aetlapplication of Proposition 3.4 and is a
little technical.

In the case of planar posets considered by Greene (8), #osem explains the fact that the numerator
of the associated rational function is a product of polyredmof degred. We can even give a new proof
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= (xl — .134).(332 — 1‘5).(])3 — 376)
Fig. 8: A non-planar (with Greene’s definition) poset for which Greene’siiaa is true.

of Greene’s formula (stated in subsection 1.1), which wamks context a little more general than planar
posets (see Figure 8).
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