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Abstract

By modeling a colloidal suspension at rest as a solid, a new expression for the linear elastic modulus is obtained.

This estimate is valid for a yield stress colloidal suspension submitted to a small strain. Interestingly, it is also

possible to perform hypothesis allowing to recover the high-frequency modulus classically found by means of a

classical ’fluid approach’. However, in most of the situations, the moduli obtained by the two approaches are

different. To cite this article: L. Pasol, X. Chateau, C. R. Mecanique 336 (2008) 512-517.

Résumé

Module d’élasticité d’une suspension collöıdale de sphères dures au repos. En modélisant une suspension

collöıdale au repos comme un solide, on obtient une nouvelle expression pour le module d’élasticité linéaire. Cette

expression permet d’estimer le module d’une suspension collöıdale possédant un seuil d’écoulement soumise à

une déformation infinitésimale. On montre également que sous certaines hypothèses, cette approche permet de

retrouver l’expression du module élastique à grande fréquence obtenu par une approche classique de type fluide.

Pour citer cet article : L. Pasol, X. Chateau, C. R. Mecanique 336 (2008) 512-517.
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1. Introduction

The macroscopic rheological properties of a colloidal suspension are the counterpart at the macroscopic
scale of phenomena occurring at the length scale of the particles. The forces applied to the particles
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originate from different phenomena: colloidal forces, hydrodynamic interactions, Brownian motions, etc.
The intensity of these forces depends upon several parameters as the temperature, the size of the particles,
the separation gap between particles, or the pH of the suspending fluid.

At the macroscopic scale, the elastic modulus is one of the parameters which characterize the suspension
behavior. It has been recognized from a long time that its value depends in particular upon the interactions
between particles. The problem of the transition from the microscale to the macroscale in view of the
prediction of the macroscopic properties of the suspension has been the matter of intensive research for
decades. The main underlying motivation for this work is to predict the overall behavior of the suspension
from the description of the particles properties. Most of the results have been obtained in the framework
of statistical physics. For example Zwanzig and Mountain computed the high frequency shear modulus of
a simple monoatomic fluid where only binary interactions are likely to occur in the absence of Brownian
motion and hydrodynamic forces [1]. Wagner generalized this results in order to account for Brownian
motion and hydrodynamic interaction by means of a linear theory [2]. He showed that Zwanzig and
Mountain results are still valid when hydrodynamic interactions between particles are negligible. For
concentrated suspensions Lionberger and Russel showed that long-range hydrodynamic interactions can
be neglected, the main contribution coming from the lubrification forces [3]. Brady developed in [4] a
theory accounting for specific interparticle force laws and their influence on the suspension rheology in
the linear regime in the framework of a mechanical approach. Divergence of the viscosity at random close
packing density was recovered and the value of the exponent is predicted as a function of the interparticles
forces (Brownian hard spheres or particle interacting through strongly repulsive colloidal forces).

The difficulty encounted to experimentally measure colloidal forces also motivated interest in this
field, mainly for elasticity. The idea is to use theoretical results obtained in the framework of change of
scale methods in order to determine microscopic properties of the suspension from the measurement of
macroscopic elastic modulus. Such a method was proposed in [5] to estimate the effective surface charge
of particles of a concentrated suspension from the measurement of the high-frequency elastic modulus.

In most of these works, the suspension is modeled as a fluid. From a practical point a view, it is well
known that concentrated colloidal suspensions often exhibit a yield stress: they flow and behave like
a fluid only when submitted to a stress above the yield stress. Otherwise, the behave like a solid. In
the solid state, a colloidal suspension can be seen as a disordered solid in which the particles form a
connected network. As long as the applied forces are not big enough to trigger off finite displacement of
the particles from their rest position, the overall mechanical properties of the suspension can be predicted
in the framework of change of scale methods pertaining to heterogeneous solid materials.

In this paper, we show that it is possible to perform such approach in order to estimate elastic modulus
for a colloidal suspension. For simplicity, we restrict ourselves to the situations where hydrodynamic
interactions and Brownian motions are neglected. As a consequence, our results are valid only for naught-
velocity loading in the solid regime (quasistatic elastic behavior) or hight-frequency loading in the fluid
regime.

The paper is organized as follows. We begin by recalling the relation linking the Cauchy stress tensor to
the interaction force. Then, we compute the macroscopic strain-stress behavior law in the linear regime.
Finally, a new estimate for the elastic shear modulus of the suspension is obtained before we conclude.

2. Cauchy tensor for a colloidal suspension at rest

We consider a monodiperse suspension of spherical particles with radius a distributed in an incompress-
ible Newtonian fluid. Particles interact through colloidal interaction forces. The suspension is at rest both
at the microscopic and the macroscopic scales, so that hydrodynamic interaction forces are negligible. It
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is assumed that no forces from outside are applied on the particles or on the fluid.
Consider a representative elementary volume (r.e.v.) of the suspension occupying the geometrical do-

main V and containing N particles (N ≫ 1). The macroscopic Cauchy stress tensor σ can be computed
from the knowledge of the microscopic quantities using the classical Batchelor equation [6,7]:

σ =
1

V

∫

V

σ̃dV = −
1

V

∫

Vf

pδdV +
1

V

N
∑

i=1

si (1)

where p denotes the fluid pressure, δ the second order unit tensor, Vf the geometrical domain filled by
the fluid and si the stresslet of the particle i, equal to

si =
1

2

∫

Ai

(σ̃ · n⊗ (x− xi) + (x− xi) ⊗ σ̃ · n) dS =

∫

Ai

(x− xi) ⊗ σ̃ · ndS (2)

with σ̃, the cauchy stress tensor field in the particles, xi the center of particle i and Ai the boundary of
the domain occupied by the particle i. In equation 2, n denotes the outer unit normal to the domain Ai
and x the position vector in the studied configuration.

We consider only stable colloidal dispersions where interaction forces dominate Brownian effects. Then
the particles form a disordered network. The only contribution of particle i to the stress tensor is the
stresslet si. Thanks to the assumption that no external forces apply on the particles, the strain tensor σ̃

is symmetric and so is the macroscopic Cauchy stress tensor. Furthermore, the fluid pressure is uniform
over the domain occupied by the fluid in the representative elementary volume. As it is classical, it is
assumed that interparticle forces derive from a potential [8]. Then, F j→i, the force applied by particle j

to particle i reads F j→i = − ∂ψ
∂xi

(xij) where xij = xj − xi denotes the vector connecting the center of

particle i to the center of particle j. It is advisable to note here that when the interparticle forces are
described by force vectors, the Batchelor’s equation 1 is no more valid. Putting the equilibrium equation
for both the whole r.e.v. and each particle in equation 1 allows to compute the macroscopic Cauchy stress
tensor as a function of the interparticle forces and the fluid pressure [7,8,9]

σ = −pδ −
1

V

N
∑

i<j

F i→j ⊗ xij (3)

This relation can also be obtained in the framework of a micromechanical approach to the behavior of a
heterogeneous material [10]. It is recalled that mechanical homogenization techniques aim at finding the
overall behavior of a system in a form of relationship between macroscopic stress and strain tensors from
the response of the r.e.v. to a mechanical loading in which one of the two macroscopic tensors acts like
a loading parameter. As the mechanical behavior of the suspension does not depend on the value of the
fluid pressure, it is assumed that p is naught in the sequel.

Of course, one has to consider an arbitrary realization of the material system to compute the equation 3.
In order to obtain results which do not depend on the particular selected realization, it is necessary to
average the equation 3 over all the possible realizations of the system. Let CN = {x1, x2, ..., xN} denotes
a particular realization for the centers of the N particles embedded in the r.e.v. and let PN (x1, x2, ..., xN )
denotes the probability of finding simultaneously the particle centers in x1, x2, ..., xN . As the particles are
indistinguishable the probability to find simultaneously the center of one particle in x1 and the center of
another particle in x2 reads

p2(x1, x2) =
1

(N − 2)!

∫

V N−2

PN (CN )dx3 . . . dxN = n2g(r) (4)

where r = x1−x2 and n = N/V denotes the number density of particles in the representative elementary
volume. The second equality of equation 4 is only valid for statistically homogeneous suspensions. It
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is assumed that this condition is fulfilled in the sequel. g is the the radial distribution function [11].
Averaging the stress tensor equation 3 with the probability p2(x1, x2) defined by 4 yields

< σ >= −
n2

2

∫

V

r ⊗ F (r) g(r) dV (r) (5)

where the convention F (r) = F 2→1(r) has be used to simplify the notations.

3. Elastic modulus

In order to identify the tangent moduli of the suspension, a macroscopic linearized strain ε is applied
to the representative elementary volume occupying the geometrical domain V0 in the undeformed config-
uration. A particle located at Xi in the reference configuration moves to the position xi in the deformed
configuration. Such a macroscopic loading can be defined by the so-called Hashin boundary condition
according to which the displacement of particles located on the boundary of the r.e.v. is prescribed, equal
to ε ·Xi. As the particles are rigid, the macroscopic loading must comply with the incompressibility condi-
tion δ : ε = 0. It is worth noting that for each realization of the suspension, local material heterogeneities
are responsible for microscopic fluctuations of the displacement around the linear field ε ·X.

Up to the first order in ε, the Cauchy stress tensor on the deformed configuration reads

< σ >=< π
0 > −

n2

2

∫

V0

(

R ⊗ F

(

dg0
dR

· A : ε

)

+

(

A : ε ⊗ F +R⊗
dF

dR
· A : ε

)

g0

)

dV (6)

with

< π
0 >= −

n2

2

∫

V0

R⊗ F (R) g0(R) dV (7)

π0 denotes the Piola-Kirchhoff stress tensor on the underformed configuration [12,13]. < π0 > is equal
to the Cauchy stress tensor in the undeformed configuration. It is worth noting that quantities F , g0 and
A are function of the position vector R (the dependence have been omitted for simplicity). The relative
displacement concentration tensor defined by A(R) = dR/dε allows to compute the relative displacement
r −R = x2 − x1 − (X2 −X1) of two particles induced by the loading ε.

Explicitly knowing the third order tensor A(R) would allow to compute the behavior law linking the
Cauchy stress tensor to the linearized strain tensor ε. It is assumed in the sequel that the behavior of the
suspension is linear elastic at the macroscopic scale. Then, the macroscopic state law reads [13]

σ = π
0 + ε · π0 + π

0 · ε + C : ε = π
0 + L(π0) : ε (8)

where L(π0) denotes the tangent tensor and C the elastic tensor. It is recalled that the tensor L(π0)
is generally not equal to the elastic tensor C and does not satisfy the classical property of definite
positivity [13]. Comparing equation 6 with the second egality 8 allows to compute L.

L = −
n2

2

∫

V0

(

R⊗ F ⊗
dg0
dR

· A + g0

(

R⊗
dF

dR
· A + F ⊗

1↔2

A

))

dV (9)

with F ⊗
1↔2

A = FjAikℓei⊗ej⊗ek⊗eℓ. The elastic tensor C can be easily computed by combinig equations 8

and 9.
In the sequel, it is assumed that the suspension is isotropic in the undeformed configuration. Then

the radial distribution function reads g0(R) = g0(|R|) = g0(R). Moreover, it is also assumed that the
interparticle forces are central, which writes ψ(R) = ψ(R). The interparticle forces read

F = −
1

R

dψ

dR
R (10)
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Putting equation 10 into expression 5 yields the value of the stress tensor in the undeformed configuration

< π
0 >=

2π

3
n2

∫

∞

R=2a

R3
dψ(R)

dR
g0(R)dR δ (11)

In equation 11, it was assumed that R is unbounded whereas one would expect that the r.e.v. is of
finite extent. Insofar as the r.e.v. must be large enough to be of typical composition and that its overall
properties do not depend ont its size, the macroscopic behavior of the suspension can be defined only if
the decay of the interparticle forces for large R is strong enough that the contribution of long range forces
is negligible. When these conditions are fulfilled, it is possible to simplify the computation of quantities
defined as an average over the r.e.v. by assuming that the r.e.v. is unbounded. The same truncature
process is used in the sequel of the paper. As the stress tensor in the reference configuration is isotropic,
the internal force is characterized by a pressure, equal (up to the fluctuation term nkBT ) to the osmotic
pressure of a colloidal system classically defined in the framework of statistical mechanics [8]. Thanks to
the fact that the initial configuration is isotropic and the interparticle forces are central, we obtain

dg0
dR

=
1

R

dg0
dR

R (12)

The tensor field A depends upon the morphological properties of the suspension in the undeformed
configuration. As it is not possible to compute A from a practical point of view, we purpose to compute
the overall properties of the suspension using the classical choice ∀R, A(R) : ε = ε · R leading to the
popular “mean field theory”. Using this particular localization field allows to obtain only estimates of
the overall properties of the suspension because this choice defines the solution of the problem under
consideration only in particular situation (uniform radial distribution function, periodic lattice, . . . )

Combining this estimate with the relations 6, 12 and the incompressibility condition ε : δ = 0 yields
the following behavior law of the suspension

< τ >= 2Gsε, with Gs =
3φ2

40πa6

∫

∞

R=2a

d

dR

(

R4
dψ

dR
(X)g0(R)

)

dR (13)

where φ = n4πa3/3 denotes the volumic fraction and τ = σ − (δ : σ)/3δ the deviatoric part of the
Cauchy stress tensor. It can be shown that the ”solid modulus” 13 is no more than the classical Voigt
estimate one can obtain using the uniform strain field as a trial field in a variational approch to the
problem under consideration. Then, equation 13 defines an upper bound of the real solid shear modulus
of the suspension.

It is reminded that classically, the actual configuration is taken as the reference configuration to compute
the elastic moduli tensor [2]. This result can be recovered by performing exactly the same computations
than above on the undeformed configuration. This approach yields the “liquid” elastic shear estimate

< τ >= 2Gℓε, with Gℓ =
3φ2

40πa6

∫

∞

R=2a

d

dR

(

R4 dψ

dR
(R)

)

g0(R)dR (14)

The difference between the two estimates comes from the fact that the radial distribution function is
derived with respect to R in equation 13 and not in equation 14. It is possible to obtain the “liquid”
estimate from the “solid” one by assuming the radial distribution function conservation in the course of
deformation. Then, it is shown from equation 6 that, up to the first order of ε, the Cauchy stress tensor
reads

< σ >=< π
0 > −

n2

2

∫

V0

d [R⊗ F ]

dε
: ε g0(R)dV (R) (15)

(it is always assumed that the material is incompressible). Considering one more time that the suspension
is isotropic in the reference configuration, one readily obtains from equation 15 the estimate 14 for the
elastic shear modulus of the suspension in the framework of a mean field theory.
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4. Conclusions

We have obtained a new expression for the elastic shear modulus of a colloidal suspension modeled
as a solid. This expression allows to estimate the elastic modulus of a yield stress suspension submitted
to a load smaller than the yield stress. This result was obtained in the framework of an homogenization
approach to the behavior of a colloidal suspension considered as a discrete solid medium. Even if this
approach relies on assumptions rather different from those classically performed to obtain estimates for
the overall properties of suspensions in the framework of statistical mechanics, it is worth noting that
classical results can also be recovered. Thus, we have shown that our estimate coincides with the classical
high-frequency modulus estimate when the actual configuration is taken as the reference. From our point
of view, this result was recovered by modeling the suspension as a “liquid”, ie a suspension without a
yield stress. In this situation, it is not possible to define an “undeformed” configuration and the actual
configuration is taken as the reference. To our opinion, this similarity is a strong indication that both
approaches are consistent one to the other.

Furthermore, it has been recalled that the tangent modulus is not equal to the elastic modulus when
the stress applied to the material in the reference configuration and the elastic modulus are of the same
order of magnitude.

LMSGC de l’Institut Navier (Université Paris Est) is UMR 113 of the CNRS associated with the ENPC
and the LCPC.
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