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Different explanations have been proposed as to why the range of climate7

sensitivity predicted by GCMs have not lessened substantially in the last decades,8

and subsequently if it can be reduced. One such study (Why is climate sen-9

sitivity so unpredictable?, Roe and Baker, 2007 [@]) adressed these questions10

using rather simple theoretical considerations and reached the conclusion that11

reducing uncertainties on climate feedbacks and underlying climate processes12

will not yield a large reduction in the envelope of climate sensitivity. In this13

letter, we revisit the premises of this conclusion. We show that it results from14

a mathematical artefact caused by a peculiar definition of uncertainty used15

by these authors. Applying standard concepts and definitions of descriptive16

statistics to the exact same framework of analysis as Roe and Baker, we show17

that within this simple framework, reducing inter-model spread on feedbacks18

does in fact induce a reduction of uncertainty on climate sensitivity, almost19

proportionally. Therefore, following Roe and Baker assumptions, climate sen-20

sitivity is actually not so unpredictable.21
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1. Introduction

Uncertainties in projections of future climate change described in the last Assessment22

Report of the IPCC (IPCC, 2007 [@]) are high, as illustrated by the broad range of23

climate sensitivity − defined as the global mean temperature increase for a doubling24

of CO2 − simulated by general circulation models (GCMs). Attempts to explain this25

fact have focused mainly on uncertainties in our understanding of the individual physical26

feedback processes (especially associated to clouds), difficulties to represent them faithfully27

in GCMs, nonlinearity of some processes and complex interactions among them giving rise28

to a chaotic behaviour of the climate system (Randall et al. [2007a]). A review of these29

explanations can be found in Bony et al., 2006 [@]. Nevertheless, in this letter, we leave30

aside all these considerations to focus our interest solely on the explanation proposed by31

Roe and Baker, 2007 [@] (RB07) which somewhat differ from the above-mentioned. This32

study uses the framework of feedback analysis, which has often been used to describe the33

relationship between physical processes involved in global warming and climate sensitivity34

(see for instance Lu and Cai, 2008 [@], Dufresne and Bony, 2008 [@], Soden and Held,35

2006 [@]). The feedback analysis framework assumes a linear approximation of radiative36

feedbacks, resulting in a simple relationship between a global feedback gain f and climate37

sensitivity ∆T . In this classic setting, the main originality of RB07 approach consists38

in analyzing explicitly the way uncertainties on f , due to a limited understanding of39

their underlying physical processes, propagates into uncertainties on ∆T : assuming f40

is a random variable with mean f̄ and standard deviation σf , RB07 uses this simple41

probabilistic model to highlight several fundamental properties of uncertainty propagation42
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from feedbacks to climate sensitivity. The most prominent conclusion of this analysis is43

that reducing uncertainties on f does not yield a large reduction in the uncertainty of44

∆T , and thus that improvements in the understanding of physical processes will not yield45

large reductions in the envelope of future climate projections. This conclusion, if true,46

would clearly have crucial implications for climate research and policy.47

In section 2, we revisit the premises of RB07 conclusion. We highlight that it is the48

result of a peculiar way of defining uncertainty. Moreover, we show in section 5 that49

this conclusion is a pure mathematical artefact with no connection whatsoever to climate.50

Since the basic question of uncertainty definition appears to be at stake, section 3 briefly51

recalls widely used definitions and elementary results on uncertainty and its propagation52

as they can be found in Descriptive Statistics textbooks. In section 4, we apply these53

standard concepts and definitions to the exact same framework of analysis as RB07. We54

show that within this simple framework, reducing inter-model spread on feedbacks does55

in fact induce a reduction of uncertainty on climate sensitivity, almost proportionally.56

Finally, section 6 concludes.57

2. Overview of RB07 approach

RB07 uses the feedback analysis framework. Denoting ∆T0 the Planck temperature58

response to the radiative perturbation and f the feedback gain (referred to as feedback59

factor in RB07), they obtain:60

∆T =
∆T0

1 − f
(1)61

RB07 then assumes uncertainty on Planck response to be neglictible so that the entire62

spread on ∆T results from the uncertainty on the global feedback gain f . To model63
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this uncertainty, RB07 assumes that f follows a gaussian distribution with mean f̄ , stan-64

dard deviation σf and implicit truncation for f > 1 (implications of this truncation are65

discussed in appendix 1). Then, they derive an exact mathematical expression of the66

distribution of ∆T through equation (1). This simple probabilistic climatic model is then67

used by RB07 to analyze the way uncertainties on f , due to a limited understanding of68

their underlying physical processes, propagates into uncertainties on ∆T . Their analysis69

highlights two fundamental properties of uncertainty propagation:70

• Amplification: The term in 1
1−f

in equation (1) amplifies uncertainty on feedbacks, all71

the more intensely as f̄ is close to (though lower than) one. Small uncertainties on feed-72

backs are thus converted in large uncertainties on the rise of temperature.73

• Insensitivity: Quoting RB07, “reducing uncertainty on f has little effect in reducing74

uncertainty on ∆T”, also stated as “the breadth of the distribution of ∆T is relatively75

insensitive to decreases in σf .”76

We fully subscribe to the first property and elaborate further on it in section 4. However,77

we are puzzled by the second property, that is, the claimed insensitivity of uncertainty78

on ∆T to uncertainty on feedbacks. The reason why one may find this second assertion a79

priori puzzling, is that it intuitively seems to be at a contradiction with the first property80

highlighted. Indeed, if small uncertainties on f are amplified into large uncertainties81

on ∆T , it suggests that a strong dependency exists between both uncertainties, rather82

than no or little dependency. We therefore dig into the details of RB07 argumentation83

regarding this assertion. To get to that conclusion, it appears that RB07 actually focus84

on the probability P(∆T ∈ [4.5◦C, 8◦C]) that ∆T lies in the interval [4.5◦C, 8◦C] in85
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response to a sustained doubling of the CO2 concentration. This interval is defined as86

immediately above the range obtained with the CMIP3/AR4 GCMs (IPCC, 2007 [@]).87

They study graphically how this probability fluctuates with the level of uncertainty on88

feedbacks, by plotting for several values of σf the obtained cumulative distribution of89

∆T . Doing this graphical analysis, they observe that the probability of large temperature90

increase P(∆T ∈ [4.5◦C, 8◦C]) is insensitive to σf . This observation is easily verifiable:91

we replicated RB07 cumulative distribution chart in figure 1c, and we computed several92

values of P(∆T ∈ [4.5◦C, 8◦C]) for f̄ = 0.65 and σf ranging from 0.10 to 0.20, finding93

it to fluctuate between 0.18 and 0.20. Therefore, in agreement with RB07, it is fair to94

say that the probability of large temperature increase (i.e. P(∆T ∈ [4.5◦C, 8◦C])) is quite95

insensitive to σf in this domain. However, concluding from this observation that “the96

breadth of the distribution of ∆T is relatively insensitive to decreases in σf” and that97

“reducing uncertainty on f has little effect in reducing uncertainty on ∆T” implicitly98

assumes two very different definitions of uncertainty: while on the side of feedback the99

uncertainty is measured by standard deviation σf , on the side of sensitivity the probability100

P(∆T ∈ [4.5◦C, 8◦C]) is used as a metric of uncertainty. As will be developed in section 3,101

standard deviation is a standard, consensual uncertainty metric but the probability to lie102

in a fixed interval is not. While under this peculiar double definition of uncertainty RB07103

conclusion holds, it is fair to ask whether it would still hold with a different uncertainty104

metric for ∆T ; second, whether the probability to lie in a fixed interval can be considered105

an acceptable measure of distribution breadth; and third, what are the implications of106
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using such an asymetric definition of uncertainty. The following sections attempt to107

answer these questions.108

3. Standard measurement and propagation of distribution spread

To investigate the first question, which relates to the basic issue of uncertainty definition,109

we briefly recall a few standard definitions and concepts, as they can be found almost110

identically in most Descriptive Statistics textbooks. For details, the reader can refer for111

instance to Barlow, 1989 [@], Van der Vaart, 2000 [@], Reinard, 2006 [@], James and112

Eadie, 2006 [@] to mention but a few such textbooks.113

Descriptive Statistics primary purpose is to provide metrics summarizing a sample of114

observations and similarly, in probabilistic terms, metrics summarizing the probability115

density function (pdf) underlying them. Technically, the correspondance between both116

is simply that a sample summary is an estimator (a function of the data) which esti-117

mates a distribution summary estimand (a parameter). In the present case, we study118

continuous random variables thus we are rather concerned about pdf metrics than sam-119

ple metrics, even though these pdfs actually aim at fitting a sample of observations, in120

that case CMIP3/AR4 GCMs simulations (Meehl et al. [2007]). Descriptive Statistics121

usually group metrics under three categories: location, scale and shape parameters. The122

so-called location parameters are meant to identify the center of a distribution. Most123

common location measures are mean, mode and median. The so-called scale parameters,124

also referred to as dispersion, variability, variation, scatter or spread measures, describe125

how far from the above-defined center possible values covered by the distribution tend126

to be. This second group of metrics is the one we are interested in for our discussion,127
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as it is concerned with the measurement of distribution spread. Most common measures128

are standard deviation, interquartile range (IQR), range or median absolute deviation129

(MAD), more rarely full width at half maximum (FWHM). Variance and coefficient of130

dispersion should also be mentioned though they are not expressed in the same unit as the131

variable. Above mentioned references give complete mathematical expressions, properties,132

strengths and limitations of these. We underline a property of particular interest to our133

discussion: above mentionned measures of spread are invariant in location and linear in134

scale. In other words, denoting S any particular measure of spread amongst those listed135

above, X a random variable and Y = aX + b then:136

SY =| a | . SX (2)137

Further, in the general case of a dependency of the type Y = φ(X):138

SY ≃| φ′(MX) | . SX (3)139

where φ′ represents the first derivative of φ and M is a location parameter. This linear140

approximation is commonly used to combine errors on measurements, though generally141

in its multivariate formulation, and is thus sometimes referred to as the error propagation142

framework. It may also be used to study the way uncertainty on some input variable(s)143

propagates into uncertainty on an output obtained from a determinist function, as in144

section 4.145

4. Standard uncertainty propagation in RB07 feedback model

We now analyse the dependency between uncertainty on feedbacks and uncertainty on146

climate sensitivity in RB07 model. Denoting S∆T a measure of climate sensitivity spread,147
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Sf a measure of feedback spread and Mf a measure of feedback location, the uncertainty148

propagation recalled in equation (3) can be applied straightforward to equation (1), lead-149

ing to:150

S∆T ≃ ∆T0

(1−Mf)
2 . Sf (4)151

Note that Equation (4) holds for any choice of pdf for feedback factor f and thus applies152

more generally than in the particular case of a truncated gaussian pdf chosen by RB07.153

Equation (4) also provides a simple relationship between S∆T , Sf and Mf which translates154

into the following two properties:155

• Amplification: In agreement with RB07 first above recalled result, for a fixed level156

of feedback uncertainty Sf , the level of sensitivity uncertainty S∆T is amplified when157

feedback Mf approaches one. Since estimates of feedback parameters in CMIP3/AR4158

models ( Soden and Held, 2006 [@], Randall et al. [2007a]) suggest Mf is close enough159

to one (Mf ≃ 0.65) and hence yields subtantial amplification, it seems that “the climate160

system is operating in a regime in which small uncertainties in feedbacks are amplified in161

the resulting climate sensitivity uncertainty”, to quote RB07.162

• Proportionality: In disagreement with RB07 second above recalled result, for a fixed level163

of average feedback Mf , the level of climate sensitivity uncertainty S∆T is proportional164

to the level of feedback uncertainty Sf (S∆T ≃ 9.8 Sf for Mf ≃ 0.65). This simple165

relationship between both uncertainties is intuitive. Indeed, when Sf = 0, feedbacks are166

determinists and ∆T also is, considering no other source of uncertainty in the climate167

system, hence S∆T = 0. As values of f get increasingly scattered, resulting values of168

climate sensitivity also get more scattered proportionally (figure 1a and 1b).169
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This proportionality has general validity in the sense that it holds for any above-recalled170

standard spread measure and for any distribution of f . However, it is an approximation for171

small values of Sf . We therefore find it relevant to investigate how this linear dependency172

is affected when Sf increases. To perform this analysis, we exhibit more precise results173

on uncertainty propagation in RB07 model. First, when spread is measured by IQR, an174

exact relationship holds for any value of Sf and any distribution of f (appendix 2):175

S∆T = ∆T0

(1−Mf)
2 Sf .

{

1 −
wf

1−Mf
Sf −

1−w2

f

4(1−Mf )2
S2

f

}−1

(5)176

where wf measures the asymetry of f distribution. Hence, when S ≡ IQR, the dependency177

between S∆T and Sf is always overlinear when wf ≥ 0, eg when f has a symetric or right178

skewed distribution. When it is left skewed, the dependency is sublinear for small values179

of Sf but eventually becomes overlinear when Sf is large enough. Second, when spread180

is measured by standard deviation, a second order Taylor expansion of equation (1) leads181

to a more accurate approximation (appendix 3):182

S∆T ≃ ∆T0

(1−Mf)
2 Sf .

{

1 +
2wf

1−Mf
Sf +

kf−1

(1−Mf )2
S2

f

}
1

2

(6)183

Again, overlinearity prevails when wf ≥ 0 or Sf large enough, which is connected to the184

convexity of the dependency between ∆T and f . Third, when S is standard deviation185

and f distribution is log-normal, an exact formula holds for any Sf :186

S∆T = ∆T0

(1−Mf)
2 . Sf .

{

1 +
[

Sf

1−Mf

]2
}

(7)187

and is again overlinear. Finally, overlinear relationships can also be derived when the188

distribution of f is assumed to be gamma or beta (equations (12) and (14) in appendix189

4).190
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To summarize the above discussion, its main outcome is rather intuitive and has actually191

few to do with climate: if the spread of feedback factor values decreases, the resulting192

spread of climate sensitivity values also decreases. Secondly, the dependency is as follows:193

it is linear for small feedback spreads and tends to get overlinear for larger values. Last,194

the proportionality coefficient in the dependency sharply increases as feedback intensifies.195

5. Properties of the probability to lie in a fixed interval

We now focus on whether the probability to lie in a fixed interval can be considered196

an acceptable measure of distribution breadth, as implicitly done by RB07 to reach their197

main conclusion. We approach this question very generally: let X be a continuous random198

variable with location MX , spread SX and pdf pX . Let [a, b] be a fixed interval near but199

above the center (MX < a < b). Then, when SX → 0 the variable becomes determinist200

(X = MX) and it results that P(X ∈ [a, b]) equals to zero since MX /∈ [a, b]. When201

SX → +∞ the distribution covers such a wide range of values that the probability to202

exceed any given threshold slowly increases towards 0.5 (figure 2b). In particular P(X >203

a) → 0.5 and P(X > b) → 0.5, hence P(X ∈ [a, b]) = P(X > a) − P(X > b) → 0204

(appendix 5). Hence the dependency between P(X ∈ [a, b]) and SX is characterized by205

a non monotonous function that increases, flattens and then decreases to zero (figure206

2a). In light of this non monotonous dependency, it is difficult to hold P(X ∈ [a, b])207

as a valid measure for the width of X distribution. Further, the observed insensitivity208

of P(∆T ∈ [4.5◦C, 8◦C]) to feedback spread Sf , which lead authors to their conclusion,209

happens to proceed directly from the above described dependency: this flattening of the210
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dependency is a pure mathematical artefact which systematically manifests under these211

definitions, and has nothing to do with climate.212

Finally, if one still wants to stick to this peculiar, asymetric definition of uncertainty, it213

has to be noted that in RB07 model, even though the dependency is flat in the domain214

Sf ∈ [0.1, 0.2], the dependency is strong for Sf < 0.1 when Mf ≈ 0.65 and subsequently215

leads to a steep decrease of P(∆T ∈ [4.5◦C, 8◦C]) to zero (figure 1d). In fact, since216

feedback current estimates suggest Sf ≃ 0.09 and Mf ≈ 0.65 (Soden and Held, 2006 [@],217

Randall et al. [2007a]), the domain of strong dependency may actually already be reached218

to date.219

6. Conclusion

Developments in section 5 suggest that, while the probability P(∆T ∈ [4.5◦C, 8◦C])220

may be of interest practically, this metric is irrelevant to describe “the breadth of the dis-221

tribution of climate sensitivity” which was RB07 explicit intent. To adress this question,222

any measure of distribution spread chosen amongst those clasically used in Descriptive223

Statistics and recalled in section 3, appear to us more appropriate. With such measures of224

spread, we showed in section 4 that in RB07 framework, when the spread of feedback pa-225

rameter Sf decreases, the resulting spread of climate sensitivity S∆T values also decreases.226

Further, we also highlighted that in this framework, the decrease is approximately linear227

for Sf small and tends to be overlinear (i.e. to be steeper) for larger values of Sf owing228

to the convexity of the dependency between ∆T and f .229

Other than the definition issue discussed here, the relevance of RB07 simplified model to230

describe the dependency between climate sensitivity and feedbacks may also be discussed231
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but this was beyond the scope of this article. In any case, if one holds this model to be232

accurate, a decrease of the spread on feedback will lead to a decrease of the uncertainty233

on climate sensitivity and a narrowing of the enveloppe of future climate projections. If234

enough studies are undertaken to better understand and assess the physical processes235

involved in the different feedbacks, neither are doomed to remain at their current level.236

Appendix

1 − Implications of the truncation237

Since the linear feedback model of RB07 implicitly assumes f ≤ 1, the gaussian distribu-238

tion N (f̄ , σf ) proposed by RB07 is implicitly truncated for f > 1 − otherwise equation239

(1) would produce negative values of ∆T . This truncation has several implications. First,240

σf (resp. f̄) does not exactly match standard deviation (resp. mean) of the truncated241

distribution. For instance, when (f̄ , σf ) = (0.75, 0.25) the standard deviation of f equals242

0.18 and its mean equals 0.67. Second, it introduces some negative skewness in the dis-243

tribution of f (−0.39 in the same example) which becomes more and more asymetric as244

σf and f̄ increases. Finally, since the truncated gaussian pdf is finite and non zero in the245

vicinity of f = 1, the obtained pdf of climate sensitivity behave as a Pareto distribution246

in O(∆T−2) for high values, and hence does not have a finite mean, nor a finite variance.247

Hence, the truncated gaussian model of RB07 forbids the use of standard deviation as248

a measure of climate sensitivity spread, which explains the use of IQR in figure 1. For249

the purpose of RB07 which is to study climate sensitivity spread, assuming a parametric250

distribution of f − such as log-normal, gamma or beta − which leads to finite mean and251

deviation for sensitivity and exact mathematical expressions of the dependency between252
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the deviation of ∆T and the deviation of f (appendix 3), would be in our view more con-253

venient. However, the results on the dependency between S∆T and Sf presented in section254

4 are general and also hold under RB07 gaussian assumption. Therefore, RB07 truncated255

gaussian is in our view mathematically unconvenient, but it does not affect uncertainty256

propagation: for a gaussian distribution just as for any other, the spread dependency is257

approximately linear for small spreads and overlinear otherwise, as equation (4) and (5)258

demonstrate and as figure 1b illustrates.259

2 − Exact uncertainty propagation equation for IQR260

If X is a continuous random variable X, we denote Xα its α−quantile, SX = X0.75−X0.25261

its interquantile range, MX = X0.50 its median and wX = X0.75+X0.25−2 X0.50

X0.75−X0.25
a dimen-262

sionless, quantile-based metric of asymetry. We thus have X0.75 = MX + 1
2
SX(1 + wX)263

and X0.25 = MX − 1
2
SX(1 − wX). Since when Φ is a diffeomorphism, we also have264

[Φ(X)]α = Φ(Xα), hence from (1):265

S∆T = ∆T0.75 − ∆T0.25 = ∆T0

(1−f0.75)
− ∆T0

(1−f0.25)
= ∆T0

(1−f0.75)(1−f0.25)
Sf

= ∆T0

(1−Mf)
2 Sf .

{

1 −
wf

1−Mf
Sf −

1−w2

f

4(1−Mf )2
S2

f

}−1
266

3 − Second order term in uncertainty propagation equation267

Assuming Y = φ(X), we analyse the way the approximation of the relationship between268

both spread measures SY and SX is modified when a second order term is introduced in269

the Taylor development of φ about MX :270

Y ≃ φ(MX) + φ′(MX)(X − MX) + 1
2
φ′′(MX)(X − MX)2 (8)271
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When the chosen spread measure S is standard deviation, calculations can be performed272

explicitly:273

SY ≃| φ′(MX) | . SX .
{

1 +
[

φ′′(MX)
φ′(MX)

wX

]

SX +
[

φ′′(MX)2

4φ′(MX)2
(kX − 1)

]

S2
X

}
1

2 (9)274

Equation (9) shows that non linear terms in the resulting relationship between SY and SX275

depends on the shape of the distribution p(x) through its skewness wX (a dimensionless276

measure of assymetry) and kurtosis kX (a dimensionless measure of peakedness), and on277

the shape of function φ through the curvature factor φ′′(MX)
φ′(MX)

(the rate of increase of the278

slope in MX). A remarkable consequence of equation (9) is that when X distribution is279

symetric (wX = 0) and since kurtosis always exceeds one (Jensen inequality) hence the280

dependency of SY to SX is always over linear. Actually, sublinearity would require quite281

special conditions: a distribution p(x) with low kurtosis and high skewness, simultaneously282

with a function φ characterized by strong curvature with sign opposite to skewness.283

Applying equation (9) to model (1), it follows:284

S∆T ≃ ∆T0

(1−Mf)
2 Sf .

{

1 +
2wf

1−Mf
Sf +

kf−1

(1−Mf )2
S2

f

}
1

2

(10)285

4 − Exact uncertainty propagation equations for standard deviation286

Since the domain of value of f in RB07 model is ] − ∞, 1], we assume single tailed287

distributions defined on this support to avoid a truncation and make mathematical288

developments more convenients. For several usual distributions, the relationship be-289

tween S∆T and Sf can thus be explicited. Assuming a log-normal distribution with pdf290

1
(1−f)σ

√
2π

exp
[

− (ln(1−f)−µ)2

2σ2

]

, mean Mf = 1− eµ+σ2

2 and variance S2
f = e2µ+σ2

(eσ2

− 1) we291
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obtain S2
∆T = ∆T 2

0 . e−2µ+σ2

(eσ2

− 1). Recombining :292

S∆T = ∆T0

(1−Mf)
2 . Sf .

{

1 +
[

Sf

1−Mf

]2
}

(11)293

Assuming a gamma distribution with pdf (1 − f)k−1 exp (−(1−f)/θ)
Γ(k) θk , mean Mf = 1 − θk and294

variance S2
f = θ2k, we obtain S2

∆T = ∆T 2
0 . [θ2(k − 1)(k − 2)]−1. Recombining :295

S∆T = ∆T0

(1−Mf)
2 . Sf .

{

1 −
[

Sf

1−Mf

]2
}−1

.

{

1 +
[

Sf

1−Mf

]2
}− 1

2

(12)296

Assuming a beta distribution with pdf Γ(2k)
θΓ(k)2

(

1 − 1−f
θ

)k−1 (

1−f
θ

)k−1
on [1 − θ, 1], mean297

Mf = 1 − θ
2

and variance S2
f = θ2[8k + 4]−1, we obtain S2

∆T = ∆T 2
0 . [k(2k − 1)] . [θ2(k −298

1)2(k − 2)]−1. Recombining :299

S∆T = ∆T0

(1−Mf)
2 . Sf .

{

1 −
[

Sf

1−Mf

]2
}

1

2

{

1 − 2
[

Sf

1−Mf

]2
}

1

2

{

1 − 3
[

Sf

1−Mf

]2
}−1 {

1 − 5
[

Sf

1−Mf

]2
}− 1

2

(13)300

5 − Dependency between spread and probability weight of an interval301

Assume X1 is a random real variable with pdf p1(x), cdf P1(x), center M1 and spread302

S1 > 0. Let [a, b] be a fixed interval near but above the center (eg M1 < a). For λ > 0,303

we introduce Xλ = λ(X1 −M1) + M1, which has pdf 1
λ

p(x−M1

λ
+ M1), cdf P (x−M1

λ
+ M1),304

center M1 and spread λS1. To analyse the dependency between the probability of a real305

variable to fall in [a, b] and the spread of its underlying distribution, we study F (λ; a, b) =306

P(Xλ ∈ [a, b]). F can be expressed using the cdf of Xλ:307

F (λ; a, b) = P ( b−M1

λ
+ M1) − P (a−M1

λ
+ M1)

F (0; a, b) = P (−∞) − P (−∞) = 0 since M1 < a < b
F (+∞; a, b) = P (M1) − P (M1) = 0

(14)308

Since F (0; a, b) = F (+∞; a, b) = 0, and F ≥ 0, then F reaches a maximum, and it309

has the general pattern mentioned in the text. It is also straightforward to obtain that310

F (λ; a, b) ∼ (b−a)p1(M1)
λ2 for large λ.311
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Figure 1 − In all charts, f is truncated gaussian N (Mf , σf ) as in RB07. Upper left panel (a):350

pdf of ∆T with Mf = 0.65 and σf = 0.20, 0.15, 0.10. Arrows represent the decreasing sensitivity351

spread S∆T obtained for decreasing values of σf . Upper right panel (b): climate sensitivity352

spread S∆T as a function of feedback spread Sf , for Mf = 0.60, 0.65, 0.70. Feedback spread Sf is353

measured by standard deviation (≃ σf ) but climate sensitivity spread S∆T is measured by IQR354

(see appendix 1 for explanation). Lower left panel (c): cdf of ∆T . Arrows represent the stable355

probability P(∆T ∈ [4.5◦C, 8◦C]) obtained for decreasing values of σf = 0.20, 0.15, 0.10. Lower356

right panel (d): probability P(∆T ∈ [4.5◦C, 8◦C]) as a function of feedback spread Sf , spread357

measured with IQR.358

Figure 2 − X is centered gaussian with standard deviation SX . Right panel: probability for359

X to exceed respectively 1 and 3, as functions of SX . Left panel: probability for X to fall within360

interval [1, 3] as a function of SX .361
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Figure 1. In all charts, f is truncated gaussian N (Mf , σf ) as in RB07. Upper left panel (a): pdf of ∆T with Mf = 0.65
and σf = 0.20, 0.15, 0.10. Arrows represent the decreasing sensitivity spread S∆T obtained for decreasing values of σf .
Upper right panel (b): climate sensitivity spread S∆T as a function of feedback spread Sf , for Mf = 0.60, 0.65, 0.70.
Feedback spread Sf is measured by standard deviation (≃ σf ) but climate sensitivity spread S∆T is measured by IQR (see
appendix 1 for explanation). Lower left panel (c): cdf of ∆T . Arrows represent the stable probability P(∆T ∈ [4.5◦C, 8◦C])
obtained for decreasing values of σf = 0.20, 0.15, 0.10. Lower right panel (d): probability P(∆T ∈ [4.5◦C, 8◦C]) as a
function of feedback spread Sf , spread measured with IQR.
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Figure 2. X is centered gaussian with standard deviation SX . Right panel: probability for X to exceed respectively
1 and 3, as functions of SX . Left panel: probability for X to fall within interval [1, 3] as a function of SX .
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