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Abstract

Beta-lactam- and in particular carbapenem-resistant Enterobacteriaceae represent a major

public health threat. Despite strong variation of resistance across geographical settings,

there is limited understanding of the underlying drivers. To assess these drivers, we devel-

oped a transmission model of cephalosporin- and carbapenem-resistant Klebsiella pneumo-

niae. The model is parameterized using antibiotic consumption and demographic data from

eleven European countries and fitted to the resistance rates for Klebsiella pneumoniae for

these settings. The impact of potential drivers of resistance is then assessed in counterfac-

tual analyses. Based on reported consumption data, the model could simultaneously fit the

prevalence of extended-spectrum beta-lactamase-producing and carbapenem-resistant

Klebsiella pneumoniae (ESBL and CRK) across eleven European countries over eleven

years. The fit could explain the large between-country variability of resistance in terms of

consumption patterns and fitted differences in hospital transmission rates. Based on this fit,

a counterfactual analysis found that reducing nosocomial transmission and antibiotic con-

sumption in the hospital had the strongest impact on ESBL and CRK prevalence. Antibiotic

consumption in the community also affected ESBL prevalence but its relative impact was

weaker than inpatient consumption. Finally, we used the model to estimate a moderate fit-

ness cost of CRK and ESBL at the population level. This work highlights the disproportion-

ate role of antibiotic consumption in the hospital and of nosocomial transmission for

resistance in gram-negative bacteria at a European level. This indicates that infection con-

trol and antibiotic stewardship measures should play a major role in limiting resistance even

at the national or regional level.
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Author summary

As beta-lactam resistant gram-negative bacteria represent one of the most critical threats

in the ongoing antibiotic resistance crisis, it is crucial to identify the underlying drivers

and develop appropriate measures to curb their spread. By combining a transmission

model with epidemiological data at a European level, we can explain the strong differences

of extended-spectrum beta-lactamase-producing and carbapenem-resistant Klebsiella

pneumonia across European countries and their often-rapid temporal increase. We find

that among potentially modifiable drivers, inpatient antibiotic consumption and nosoco-

mial transmission rates have the strongest impact on resistance. This implies that mea-

sures aimed to improve the infection control and the antibiotic stewardship in hospitals

are crucial for preventing antibiotic resistance in gram-negatives even beyond individual

hospitals as they may affect resistance prevalence at the level of entire countries.

Introduction

Carbapenem-resistant and extended-spectrum beta-lactamase (ESBL) producing Enterobacter-

iaceae represent serious threat in the current antimicrobial resistance crisis and are highlighted

by the World Health Organization (WHO) in the most recent “Prioritization of Pathogens to

Guide Discovery” [1]. Beta-lactams are widely used antibiotics due to their broad spectrum of

activity against Gram-negative bacteria. Enterobacteriaceae are common commensal flora, par-

ticularly in the gastrointestinal tract, and are typically exposed to any antibiotic treatment

administered to an individual. Hence, they have developed resistance to most of the commonly

used antibiotics. For example, carbapenem-resistant organisms (CRO) are resistant to all

known beta-lactams [2]. Last-resort drugs such as colistin generally remain effective, though

there have already been reported cases of Enterobacteriaceae resistant to both carbapenems

and colistin [3]. While newer drugs, such as ceftazidime-avibactam, have been introduced,

widespread dissemination of carbapenem-resistant genes may herald the beginning of a post-

antibiotic era [4], at least for the Enterobacteriaceae species in question.

There are several studies that have found a significant correlation between antibiotic con-

sumption in humans, which is considered as one of the most notable drivers of resistance, and

the prevalence of antibiotic resistance in a variety of pathogens [5–9]. However, these correla-

tions are usually far from perfect, e.g. higher consumption does not always indicate more resis-

tance when comparing countries, indicating that other drivers may be at least as important as

antibiotic consumption in determining levels of antibiotic resistance [10].

It is therefore critical to identify these drivers of resistance and to understand how interven-

tions targeting those drivers would translate into changes in antibiotic resistance, in order to

optimize prevention measures. Antimicrobial resistance is affected by a number of potential

drivers such as the consumption of antibiotics in the human population, consumption in live-

stock, health care-related transmission, travel, and environmental contamination [10]. More-

over, antibiotic consumption in humans, which is traditionally considered as a main driver, is

not uniformly distributed, but rather exhibits strong heterogeneities across demographic

groups and institutional settings [10], for instance the differences between the hospital and

community settings, as per-capita consumption and transmission rates tend to be higher in

the hospital setting [11]. The effects of population structure are in principle detectable by geno-

mic and molecular epidemiology approaches [12–14]. However, while such approaches can

help to characterize individual outbreaks, the high frequency of asymptomatically colonized

individuals and the fact that these individuals are typically not sampled, implies that it is
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difficult to quantify the overall importance of different settings with these methods. In this

context, computational models offer a unique opportunity to understand how antibiotic con-

sumption, its distribution by setting, and the transmission of pathogens in hospitals contribute

to antibiotic resistance at the population level.

Here, we aim to combine epidemiological models with surveillance data on antibiotic

consumption and resistance, in order to determine the key driving factors of the spread of

carbapenem-resistant K. pneumoniae (CRK) and ESBL. We focused on rates of resistance for

K. pneumoniae, as it is one of the most common causes of bloodstream infections and hospital-

acquired pneumonia [15], mortality rates related to infection are high (up to 50%), and 5–30%

of the general population is colonized with this pathogen (non-symptomatic carriers) [11,16].

In addition, the epidemiology of this pathogen is well monitored by the European Center

for Disease Prevention and Control (ECDC) for several countries [17], and resistance rates are

highly variable across countries.

Methods

Model

We used a deterministic compartmental model to simulate the spread of ESBL and CRK in the

hospital and the community. Our model has three principal dimensions: setting, colonization,

and treatment (see Fig 1B): we stratified the population into hospital and community settings

to represent the difference in antibiotic consumption and transmission between the two set-

tings. All individuals were classified by colonization status into susceptible, colonized (i.e.

asymptomatic carriers of K. pneumoniae), or infected (i.e. with symptoms caused by K. pneu-

moniae). Colonized and infected individuals were also stratified by strain as non-resistant,

ESBL (3rd generation cephalosporin resistance), and CRK (carbapenem-resistant). The suscep-

tible and colonized compartments could either be treated with 3rd/4th generation cephalospo-

rins (drug A) or carbapenems (drug B) or not treated at all. As most K. pneumoniae-colonized

individuals who are exposed to antibiotics are treated for unrelated illnesses, we assumed that

this treatment is not affected by colonization status and strain.

We have considered only bloodstream and spinal fluid infections in the infected compart-

ment, which are reported in the ECDC data. Thus, all infected individuals were assumed to be

in the hospital setting. If an infection occurs in the community, the individual was assumed to

be hospitalized immediately upon the development of symptoms. We further assumed that

symptomatically infected individuals are properly diagnosed and appropriately treated. This

may be too optimistic, but it should be noted that the number of symptomatically infected

individuals is small (compared to the colonized individuals) and hence their contribution to

both consumption and transmission of resistance is negligible. We introduced the symptomat-

ically infected compartments to model the sampling process, not for measuring their influence

on consumption and transmission (which is negligible). This was done, because all reported

samples in ECDC data were collected for bloodstream infections and spinal fluid infections.

Colonization can occur due to contact with colonized individuals and due to import from

external sources (which may reflect any process not explicitly captured in the model, for exam-

ple travel, agriculture etc.). In addition, we assumed resistance can spread due to super-coloni-

zation followed by horizontal gene transfer. By this process individuals colonized with a

sensitive strain can acquire resistance (this rate is however lower than primary colonization,

see Table 1 and S1 and S2 Tables and the term HGT in the S1 Appendix equations). To include

import of colonized strains from the sources out of compartments, we added a constant extrin-

sic force of colonization as a free parameter to our model. This small flow (compared with

individual-individual transmission) is a simplification to model the acquisition of the resistant
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Fig 1. The workflow of the modeling approach. Consumption and resistance data were acquired from ECDC, and other parameters were found in the literature or used
as free parameters. The model was fit to the data reported by ECDC to optimize the free parameters. Sensitivity analyses were performed to test the robustness of the
model. Counterfactual scenarios were applied to understand the functional dependencies of the prevalence of resistance from possible drivers.

https://doi.org/10.1371/journal.pcbi.1008446.g001
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strain from any other outer sources (for example other countries or agriculture). Decoloniza-

tion can happen due to the treatment by antibiotics or due to natural clearance rates. The com-

plete description of the processes in the model and the model equations are available in the S1

Appendix.

Fitting process and counterfactual scenarios application

To calibrate the model and determine the free parameters such as fitness costs of resistance, we

fit the model using maximization of likelihood to the resistance data reported by the ECDC.

The likelihood was calculated assuming that resistance in reported samples is binomially dis-

tributed (see S1 Appendix section 2.1).

We compared two main scenarios: in the first case, we assumed that each country had a

unique nosocomial transmission rate, while in the second case all countries were assumed to

have the same transmission rate.

To evaluate the impact of each considered factor on the spread of resistance, we have varied

the parameters from the original ones to obtain the functional dependencies of resistance prev-

alence. We have chosen consumption of 3rd an 4th generation cephalosporins in community

and hospital settings, consumption of carbapenems in the hospital setting, hospital

Table 1. Free model parameters of the fit.

Parameter Variable hospital transmission rates across
countries

Same hospital transmission rate for all
countries

Fitness cost ESBL 1.92% 1.20%

Fitness cost CRK 2.25% 1.21%

Import of ESBL (reservoir size�) 326.1 per 100000 persons 1.01 per 100000 persons

Import of CRK (reservoir size�) 5.6 per 100000 persons 0.34 per 100000 persons

Colonization rate 9.8�10−3 day-1 1.0�10−2 day-1

Super-colonization coefficient 0.177 1.53�10−6

Increased susceptibility by treatment 0.10 0.92

Displacement/loss of plasmid rate (relation to natural
decolonization rate)

0.044 2.7�10−4

Hospital transmission rate (relative to the community level)

Greece 33.1 25.8

Italy 21.9

Portugal 18.7

Croatia 14.4

France 12.1

Hungary 12.4

Denmark 14.0

Finland 0.4

Netherlands 7.8

Norway 9.1

Sweden 10.8

Log-likelihood -989 -1199

BIC 2195 2560

p-LRT <0.001

� Import of resistance strains is included as a constant term added to the force of infection. For interpretability and given the form of the force of infection (see S1

Appendix section 1.4), this term is expressed here as the equivalent of the force of infection that would have been caused by a given number of individuals colonized by

the resistant strain.

https://doi.org/10.1371/journal.pcbi.1008446.t001
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transmission rates, and import rates as parameters to be varied. These counterfactual scenarios

allow us to evaluate the effect of possible public health interventions, and to compare the effect

of the main drivers of the spread.

Specifically, we considered four potential drivers: nosocomial transmission rate, inpatient

and outpatient consumption of 3rd and 4th generations cephalosporins, and inpatient con-

sumption of carbapenems. Finally, to evaluate the robustness of our results, we performed two

types of sensitivity analyses: firstly, a leave-one-out analysis where we excluded each country

and fitted the model to the remaining ten countries; and secondly, variation of 5 fixed parame-

ters with high uncertainty (colonization prevalence, time of treatment, mean time of clearance

on treatment, mean length of colonization, time of disease development in hospital) in a multi-

variate sensitivity analysis (see S1 Appendix section 2.4 and S2 Table).

Data

We parametrized and calibrated the model using different types of data (see S1 Appendix and

S1 and S2 Tables): consumption, hospitalization rate, and length of hospitalization, which

were obtained from surveillance data from the ECDC andWHO or were extracted from the

literature (S1 and S2 Table and S1 Appendix).

Data on resistance was collected through the European Surveillance System (TESSy) by the

ECDC, which includes data going back to 2005 for 30 countries [17]. Consumption data covers

the same time range and includes both hospital and community consumption rates [18].

Countries were included if they had both sufficiently complete data for resistance to 3rd gener-

ation cephalosporins and carbapenems and for the use of 3rd and 4th generations cephalospo-

rins and carbapenems from 2005 to 2015 (see flowchart in S4 Fig).

In line with ECDC reports, considering the fact that between 65.2% and 100% of 3rd genera-

tion cephalosporin isolates are ESBL-positive, we assumed resistance to 3rd generation cepha-

losporins to be a proxy for ESBL strains [19]. We also consider all CRK as ESBL positive. Thus,

CRK colonized individuals are the subset of people colonized with ESBL strain. We excluded

countries that had less than six out of ten annual records for antibiotic consumption in the

hospital setting. Furthermore, we excluded countries that had less than 18 resistance entries

out of the 22 possible. Also, for 4 of them there are less than 18 resistance entries with the num-

ber of reported samples being more than 200. As a result, we restricted our analysis to 11 coun-

tries (Croatia, Denmark, Finland, France, Greece, Hungary, Italy, Netherlands, Norway,

Portugal, Sweden) with sufficient data on both consumption and resistance (S4 Fig).

Results

Qualitatively, the European countries considered here can be divided into three main groups

(Fig 2). The first group consists of countries with high prevalence of resistance to both 3rd gen-

eration cephalosporins and carbapenems (Greece and Italy) (prevalence of carbapenem resis-

tance higher than 30% and prevalence of resistance to 3rd generation cephalosporins higher

than 50%). The second group consists of countries with high prevalence of resistance to 3rd

generation cephalosporins but low prevalence of resistance to carbapenems (Croatia, France,

Hungary, Portugal) (prevalence of carbapenem resistance less than 10% and prevalence of

resistance to 3rd generation cephalosporins higher than 30%). Finally, the third group consists

of countries with low prevalence of resistance to both (Denmark, Finland, Netherlands, Nor-

way, Sweden) (prevalence of carbapenem resistance less than 3% and prevalence of resistance

to 3rd generation cephalosporins less than 15%).

The correlation between the total (combined inpatient and outpatient) consumption of 3rd

and 4th generation cephalosporins and the prevalence of resistance is weak (adjusted R2 =

PLOS COMPUTATIONAL BIOLOGY The drivers of multidrug-resistant K. pneumoniae in Europe
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0.27). However, the corresponding correlation with inpatient consumption is stronger (R2 =

0.51) (see Fig 3A). As the consumption of carbapenems selects for the resistance to both carba-

penems and cephalosporins (because CRK are also resistant to cephalosporins), it is reasonable

to consider both 3rd and 4th generation cephalosporins and carbapenems as drivers for the

spread of resistance to 3rd generation cephalosporins. Indeed, in this case the correlation is

even higher (R2 = 0.64). Finally, the strength of the correlation with consumption rates can

change considerably if the average yearly change of resistance is considered instead of the prev-

alence of resistance (S5 Fig). These different correlations provide a first indication that the

structure of antibiotic use (inpatient vs. outpatient), the consumption of other antibiotics in

the same class, and the dynamics of resistance should be taken into account for understanding

the association between antibiotic use and resistance. For carbapenem resistance, the associa-

tion between consumption and resistance prevalence is even weaker (Fig 3B). For example,

Fig 2. Model fit of ESBL and CRK. The model was fitted to the data of the annual prevalence of resistance in Klebsiella pneumoniae reported by ECDC from 2005 to 2015.
Circles represent the reported data, and solid and dotted lines represent the fit with variable between-country and uniform for all hospital transmission rates, respectively.

https://doi.org/10.1371/journal.pcbi.1008446.g002
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Fig 3. Correlation between antibiotic consumption and prevalence of resistance. Correlation between the consumption of
different classes of antibiotics in different settings (x-axes), and the prevalence of resistance to 3rd generation cephalosporins (A),
prevalence of resistance to carbapenems (B). Consumption rates are given as mean yearly consumption in the years 2006-2015 in
DDD per day per 1000 inhabitants.

https://doi.org/10.1371/journal.pcbi.1008446.g003
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both the Italian and Greek levels of carbapenem consumption are comparable with other

countries (Portugal, Hungary, Finland) which do not exhibit a strong increase in CRK.

The eleven included countries exhibited qualitatively different time courses of resistance

and consumption (S1, S2 and S3 Figs). We fit our model by varying among the free parameters

only hospital transmission rate across countries and keeping the other free parameters con-

stant across countries (see Table 1). This corresponds to the assumption that biological param-

eters are comparable across countries, while transmission in the hospital, which depends on

nosocomial infection prevention, is setting specific. The model fit shows a considerable varia-

tion in hospital transmission rates, which range from one to thirty times the corresponding

rate in the community (Table 1). Overall, we find that this model can capture both the dynam-

ics within and the variability across the eleven European countries considered (Fig 2). For

example, our model gives better prediction than simple correlation approach (Figs 2–3).

We find that assuming one universal hospital transmission for all countries provides a sig-

nificantly worse fit of antibiotic resistance levels than the model allowing this rate to vary

across countries (Fig 2 and Table 1). Even though the model with a universal transmission rate

provides overall a qualitatively acceptable fit for most countries, it misses several important

features of the dynamics of resistance in the individual countries. Firstly, the model fails to

reproduce some of the extreme cases among very high and low prevalence countries. For

example, it could not capture the emergence of carbapenem resistance in Italy in 2010–2011

from near zero levels to over 30%, or the slight decrease of carbapenem resistance in Norway

(see Fig 2). Secondly, the fitted initial levels of resistance strongly differ in this model for many

countries (Greece, Italy Portugal) from the ECDC data, which again reflects the model’s inabil-

ity to capture extreme changes in antibiotic resistance.

By applying counterfactual scenarios, we found that nosocomial transmission and the struc-

ture of antibiotic consumption played a key role as drivers of both carbapenem-resistant but

also ESBL strains. To determine the role of nosocomial transmission for the spread of ESBL

and CRK, we varied the corresponding inpatient transmission rate over a broad range (Fig 4).

We found that hospital transmission affected the level of resistance to carbapenems and also

the prevalence of ESBL strains (Fig 4). Despite this, in some countries such as Finland and

Norway, hospital transmission plays a minor role because it is low overall (see Fig 4 and

Table 1). Nevertheless, the results indicate that hospital transmission is a major driver of the

spread of both ESBL and carbapenem-resistant K. pneumoniae strains. Concerning the effect

of the structure of antibiotic consumption, we found that antibiotic use in both the hospital

and community setting affects resistance, but that consumption in the hospital has a stronger

effect: even for ESBL, relative changes of the consumption of cephalosporins in hospitals has

overall a slightly stronger impact than of the outpatient consumption (Fig 5), despite the fact

that the absolute amount of 3rd and 4th generation cephalosporins consumed in the commu-

nity is considerably higher than that in the hospital (S1 and S2 Figs). This implies that the effect

of a given absolute amount of antibiotics (e.g. a given number of Defined Daily Doses, DDDs)

is larger if it is consumed in the hospital than if is consumed in the community. Our results

also show that carbapenem consumption could be a selective factor for the resistance to 3rd

generation cephalosporins (Fig 5) and that high consumption levels of 3rd generation cephalo-

sporins can affect the level of carbapenem resistance (Fig 5, for Italy). In addition, import of

resistance from other countries and agriculture could play a key role in the spread of ESBL-

strains in low-prevalent countries (Fig 6), despite the fact that the import rate is low. Finally,

we find also in the model assuming a uniform nosocomial transmission rate across countries

that transmission and consumption in hospitals are key drivers of resistance and that import is

mainly of importance for low-prevalence countries (S6, S7 and S8 Figs).
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Performed sensitivity analyses showed that the above results and parameter estimates were

robust to both variation of fixed parameters (S12 Fig) and removal of individual countries

from the analyzed data set (S9, S10 and S11 Figs). The main exceptions to this overall robust-

ness are the estimated hospital transmission rates, which varied for some countries consider-

ably in the sensitivity analyses (see S11 Fig). However, even if the estimated hospital

transmission rates of individual countries have to be considered therefore as uncertain, this

analysis also showed that the broader pattern between groups of countries remained robust

(see S11 Fig), i.e. the high prevalence countries robustly exhibited high estimated hospital

transmission rates, and the low-prevalence countries tended to exhibit substantially lower

rates.

To provide an additional validation of our results, we analyzed the correlation between the

fitted hospital transmission rates and three health-system characteristics: the number of

Fig 4. Counterfactual scenarios corresponding to variation of hospital transmission rate. Plots represent the dependence of change in prevalence of resistant strains
between 2005 and 2015 on the level of the hospital transmission rate. Green and purple areas represent the decrease and increase in hospital transmission rate, respectively.

https://doi.org/10.1371/journal.pcbi.1008446.g004
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healthcare workers employed in hospitals, the number of nurses in the country per 100000,

and the yearly spending on healthcare per capita in $PPP (S13 Fig).

Discussion

The epidemic model presented here may explain the spread of carbapenem resistance and

ESBL strains over eleven years for eleven European countries with diverse resistance rates and

trajectories. In particular, we found that a good fit of the observed resistance data was possible

when only varying the hospital transmission rate while keeping the rest of the parameters con-

stant across countries. The model fit provided estimates of key unknown parameters, in partic-

ular the fitness cost associated with antimicrobial resistance. Using counterfactual scenarios,

our results suggest that the hospital environment, both in terms of transmission and antibiotic

Fig 5. Counterfactual scenarios corresponding to variation of antibiotic consumption. Plots represent the dependence of change in prevalence of resistant strains
between 2005 and 2015 on the level of antibiotic consumption. Green and purple areas represent the decrease and increase in antibiotic consumption, respectively. (A)
Outpatient consumption of 3rd and 4th generation cephalosporins (B) Inpatient consumption of 3rd and 4th generation cephalosporins (C) Inpatient consumption of
carbapenems.

https://doi.org/10.1371/journal.pcbi.1008446.g005
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consumption, plays a key role for the spread of antimicrobial resistance even at the level of

entire countries.

Previous studies have shown for several pathogen-drug combinations significant correla-

tions between antibiotic consumption and the prevalence of resistance [5,8,20–22]. However,

European data for K. pneumoniae exhibit no simple relationship between levels of consump-

tion and resistance. Using a dynamic modelling approach to link the history of consumption

and resistance allowed us to explain these apparent discrepancies, and to provide a mechanistic

explanation for the difference across countries and for the rapid dynamics of resistance. In par-

ticular, we found two factors to be central: the structure of antibiotic consumption (hospital vs.

community) and nosocomial transmission of K. pneumoniae, which agrees with prior litera-

ture [23].

Fig 6. Counterfactual scenarios corresponding to variation of import of ESBL strain. Plots represent the dependence of change in prevalence of resistant strains
between 2005 and 2015 from the level of the import of ESBL strain. Green and purple areas represent the decrease and increase in import of ESBL strain, respectively.

https://doi.org/10.1371/journal.pcbi.1008446.g006
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Even though overall the majority of beta-lactams are consumed in the community, we

found that inpatient consumption may be a critical factor for the spread of resistance.

Specifically, our results indicate that a relative change of 3rd generation cephalosporins con-

sumption in the hospital has a similar or even higher impact than the same relative change in

the community (Fig 4). The absolute amount (in DDDs) of 3rd generation cephalosporins con-

sumed in the hospital is however considerably lower than in the community (S1 and S2 Figs).

This implies that an absolute change in antibiotic consumption (e.g. by a given number of

DDDs) has a much higher impact if it occurs in the hospital than if it occurs in the community.

Intuitively, this can be explained by the fact that despite absolute levels of antibiotic consump-

tion being lower in the hospital, the relative consumption per patient-time is higher than in

the community (in terms of DDD per person-time). Thus, the hospital setting can act as an

environment where resistant strains have a selective benefit, leading to a source-sink constella-

tion [24] with the hospital representing the source and the community as the sink for resis-

tance. Moreover, due to its higher transmission rate, the hospital can turn into a hotspot of

colonization with the resistant strain (especially in the high-prevalence countries), explaining

the disproportionate impact of antibiotic consumption we observed in the counterfactual sce-

narios, where even for 3rd and 4th generation cephalosporins, consumption in the hospital had

a much stronger impact on the corresponding resistance evolution than consumption in the

community. As a consequence, our findings also imply that overall levels of antibiotic con-

sumption may not be the optimal way to summarize the impact of consumption on resistance.

Instead, a DDD consumed in a high-transmission setting may have a much stronger impact

than a DDD consumed in a low-transmission setting, implying that consumption rates should

ideally be weighted or stratified by the environment they are consumed in.

Similar to antibiotic consumption in the hospital, we found that nosocomial colonization

rates play an important role both in explaining the differences resistance across countries and

for the counterfactual scenarios. Again, this is consistent with the notion of the hospital envi-

ronment representing a hotspot for the transmission of antimicrobial resistance even against

drugs that are primarily consumed in the community. The high variability of hospital trans-

mission/colonization rates observed between countries can thus explain why countries with

similar levels of consumption exhibit different levels of resistance. In turn, this variability of

estimated transmission rates is expected to be affected by a range of factors such as investment

in hospital hygiene and infection control or hospital occupancy and population structure

within hospitals (see also S13 Fig).

Our results suggest thus that both consumption and transmission rates in the hospital are

critical drivers for the spread of resistance [25]. This indicates that investments in infection

control may not only benefit the individual hospital making those investments but can also

have an impact on the level of resistance at the country level. In line with [26], we found that

such collateral benefits are strongly dependent on the epidemiological setting. Hence, the pos-

sibility of such collateral benefits are consistent with the success of several public health inter-

ventions to reduce transmission in hospitals [27].The impact of the structure of the

consumption suggests that measures which would shift hospital consumption of antibiotics to

the community would give a benefit in terms of slowing down the spread of resistance, for

example by introducing outpatient intravenous antibiotic treatment. Moreover, our results

suggest that resistance to a particular antibiotic could depend on the consumption of other

antibiotics of the same class.

Considering the qualitative behavior of our model across countries, we found three main

types of possible settings: first, countries with a high prevalence of resistance and high hospital

transmission rates, which plays a dominant role in the spread of resistance. It is notable that in

some of these countries (in particular in Greece) hospital transmission rates were estimated to

PLOS COMPUTATIONAL BIOLOGY The drivers of multidrug-resistant K. pneumoniae in Europe

PLOSComputational Biology | https://doi.org/10.1371/journal.pcbi.1008446 January 29, 2021 13 / 19

https://doi.org/10.1371/journal.pcbi.1008446


be so high that the model predicts the spread of resistance to be almost independent from anti-

biotic consumption rates. Second, we examined countries with medium prevalence, where the

spread is mostly driven by the antibiotic consumption and especially the antibiotic consump-

tion in hospitals. The third setting is countries with low prevalence characterized by low hospi-

tal transmission rates, where import of resistance is a key factor.

Our model goes beyond previous work as it provides a quantitative assessment of the rela-

tive importance of the different drivers and of potential interventions. Moreover, according to

the principle of triangulation [28], our work provides an additional independent line of rea-

soning supporting these factors’ relevance. Finally, the model fit could also estimate several

unknown parameters governing the spread of resistance, in particular the relative transmission

rate in the hospital environment and the fitness cost of resistance. Given the underlying

assumptions and simplifications of our model, the inferences derived from it should be taken

with caution and need external validation. Such validation can be provided to a limited degree

for several results of our model. Firstly, we find that the hospital transmission rates inferred by

our model fitting are negatively correlated with health-systems markers expected to promote

infection control (S13 Fig). Another key parameter determining the spread of resistance is the

fitness cost that resistant strains pay in the absence of antibiotic treatment. Such fitness costs

are notoriously difficult to estimate. While it is possible to measure competitive differences in

vitro, the relevance of such measures for strain competition at the epidemiological level is

uncertain, and the results could be translated to the populational level only qualitatively. The

modelling approach presented here offers a possibility to obtain such fitness cost estimates

from the model fit to epidemiological data. Intuitively, these estimates are the parameter values

of the fitness cost for which the observed levels of consumption would lead to the observed lev-

els of resistance. The estimated values (Table 1) indicated weak but non-negligible fitness

costs, which is consistent with in vitro estimates [29,30]. Thirdly, our results of a dispropor-

tionate impact of the hospital environment for the selection of ESBL is qualitatively in line

with molecular epidemiology studies [23]. Thus, the estimates derived from our model are

overall consistent with evidence from microbiology, health-systems characteristics, and molec-

ular epidemiology.

Our model has several limitations and strengths. Like any model, it is based on simplifying

assumptions which are mainly dictated by the (granular) availability of data and the difficulties

of parametrizing a more detailed model. For instance, we have not taken into account any dif-

ference in colonization prevalence caused by climate or demographic structure. Moreover, we

were unable to control for differences in population structure, such as age, gender, and other

institutions such as long-term care facilities as data on consumption and resistance at this level

of detail was not available. Additionally, we used resistance to 3rd generation cephalosporins as

a proxy for ESBL strains and assumed that these strains are the same across countries. A fur-

ther key limitation is the representativeness of the resistance and consumption data used for

this analysis: resistance data were available only for bloodstream and spinal fluid infections.

Moreover, consumption data were not complete for all years, and the collection process differs

from country to country and is based on two different sources (reimbursement vs. sales data)

[31]. In addition, we have not considered detailed plasmid dynamics and consumption of

other antibiotics such as quinolones, or penicillins, which may influence the spread of resis-

tance and show more complex dynamics of different strains. The inclusion of these details is

not possible due to a lack of detailed biological data about attack rates, and the fitness costs of

different K. pneumoniae strains. However, we minimized the limitations associated with the

consumption and resistance data by carefully restricting our analysis to countries with large

numbers of isolates and consistent reporting over time. This ensures that even consumption

patterns which may seem counterintuitive (such as a high consumption rates of third
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generation cephalosporins in the community) are well established [32]. Moreover, the limita-

tions of our approach are counterbalanced by the strengths of data-based modeling approach,

which allows to provide a European perspective on the resistance problem in gram negative

bacteria: using an epidemiological model, we could explain the variation and dynamics of anti-

biotic resistance in a key gram-negative pathogen at a European level and identify the drivers

of its transmission. In particular, our work highlights the disproportionate role of antibiotic

consumption in the hospital and of nosocomial transmission for resistance in gram negative

bacteria. This indicates that infection control and antibiotic stewardship measures should play

a major role in limiting resistance even at the national or regional level.
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