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Abstract

Background: Occipital transcranial direct current stimulation (tDCS) is an effective and safe treatment for migraine
attack prevention. Structural brain alterations have been found in migraineurs in regions related to pain modulation
and perception, including occipital areas. However, whether these structural alterations can be dynamically
modulated through tDCS treatment is understudied.

Objective: To track longitudinally grey matter volume changes in occipital areas in episodic migraineurs during
and up to five months after occipital tDCS treatment in a single-blind, and sham-controlled study.

Methods: 24 episodic migraineurs were randomized to either receive verum or sham occipital tDCS treatment for
28 days. To investigate dynamic grey matter volume changes patients underwent structural MRI at baseline (prior to
treatment), 1.5 months and 5.5 months (after completion of treatment). 31 healthy controls were scanned with the
same MRI protocol. Morphometry measures assessed rate of changes over time and between groups by means of
tensor-based morphometry.

Results: Before treatment, migraineurs reported 5.6 monthly migraine days on average. A cross-sectional analysis
revealed grey matter volume increases in the left lingual gyrus in migraineurs compared to controls. Four weeks of
tDCS application led to a reduction of 1.9 migraine days/month and was paralleled by grey matter volume
decreases in the left lingual gyrus in the treatment group; its extent overlapping with that seen at baseline.

Conclusion: This study shows that migraineurs have increased grey matter volume in the lingual gyrus, which can
be modified by tDCS. Tracking structural plasticity in migraineurs provides a potential neuroimaging biomarker for
treatment monitoring.

Trial registration: ClinicalTrials.gov, NCT03237754. Registered 03 August 2017 – retrospectively registered, https://
clinicaltrials.gov/ct2/show/NCT03237754.
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Background

Migraine is a common relapsing headache disease with a

huge socioeconomic burden. After lower back pain, it is

the second most disabling condition [1]. The 2016 Glo-

bal Burden of Disease Study measured a worldwide

prevalence of 14.4% with 18.8% of women and 9.8% of

men suffering from this disease highlighting its impact

on the society [2]. Migraine attacks affect patients’ daily

life considerably and have a significant negative impact

on health-related quality of life in a frequency-

dependent manner with higher attack frequency being

associated with more severe disability [3–5]. Moreover,

migraine is associated with numerous comorbidities in-

cluding sleep disorders and various psychiatric diseases

such as depression and anxiety disorders [6, 7]. Hence,

migraine poses a substantial socioeconomic burden by

both direct costs through specific migraine treatment

and the associated comorbidities, and indirect costs due

to work-absenteeism and loss in productivity [8].

Current treatment options for acute migraine attacks

comprise mostly medication such as common non-

steroidal anti-inflammatory drugs (NSAIDs) and trip-

tans. Many patients remain unsatisfied with their medi-

cation during acute migraine attacks what highlights the

importance of prevention of migraine attacks [9]. Attack

prevention is multifaceted and includes lifestyle modifi-

cations, behavioral therapy, medication such as beta

blockers, calcium channel blockers, antiepileptic drugs

or antibodies against calcitonin gene-related peptide

(CGRP) or its receptor, and neuromodulation. However,

many patients do not desire prophylactic treatment with

medication which is represented in relatively low adher-

ence rates [10].

Several studies have investigated the efficiency of

transcranial direct current stimulation (tDCS) in mi-

graine prevention [11–16]. Most of them reported sig-

nificant reduction in migraine days when applying tDCS

to the occipital cortex, primary motor cortex, or the

dorsolateral prefrontal cortex [11, 12, 14–16]. The ad-

vantages of tDCS treatment are its relatively low cost

compared to other neurostimulation methods, safety and

generally mild side effects [17]. tDCS acts by modifying

cortical excitability through hyperpolarization or sub-

threshold depolarization of neurons depending on direc-

tion of current flow [18–21]. This effect can be used in

migraine treatment as the brains of migraineurs exhibit

altered cortical excitability and information processing

over the migraine cycle [22–26].

The results from several studies indicate that addition-

ally to having altered functionality in terms of cortical

excitability, migraineurs undergo structural changes in

several cortical and subcortical areas related to percep-

tion and pain processing, including the occipital cortex,

when comparing them to a healthy population [27].

Moreover, longitudinal observations suggest that these

alterations are dynamic over time and respond to benefi-

cial migraine treatment [28–30].

A clinical trial, investigating the efficiency of a 28-day

occipital anodal tDCS stimulation found a reduction of

monthly migraine days of 2.6 days during the third

month after tDCS treatment, while at earlier and later

time points the tDCS and sham cohort did not differ sig-

nificantly. Based on this clinical report the present study

aims to investigate structural differences between epi-

sodic migraineurs and healthy controls by means of

voxel-based morphometry (VBM) and at tracking these

morphological alterations up to 5 months after a 28-day

treatment period with occipital tDCS using tensor-based

morphometry (TBM) for assessing the temporal dynam-

ics of structural plasticity. Given the location of tDCS

treatment and results from literature, we focused on

structural changes in occipital cortical areas. Based on

literature we hypothesized that (i) episodic migraine pa-

tients show structural alterations in occipital areas com-

pared to a healthy control population; (ii) these

alterations are dynamic over time and can be reversed

by successful occipital tDCS treatment.

Materials and methods

Participants and exclusion/inclusion criteria

In this study, we enrolled patients between the age of 18

and 80 that had a preexisting diagnosis of “episodic mi-

graine (EM) without aura” or “EM with and without

aura” according to the International Classification of

Headache Disorders, 3rd edition (ICHD-3) criteria. All

headaches were diagnosed by an experienced neurologist

[31]. Exclusion criteria included pregnancy, presence of

a neurodegenerative disease, and contraindications

against magnetic resonance imaging (MRI).

We also recruited healthy individuals as a control

group who underwent the same imaging protocol as the

patients.

All participants gave their informed consent and the

study was approved by the local ethics committee.

Study design

This longitudinal, single-blind, randomized and sham-

controlled trial was conducted at the University Hospital

Zurich [32]. The migraine patients were randomized to

either receive verum or sham tDCS treatment by using a

block randomization technique with block sizes of ten

(five verum and five sham per block).

During the whole study period, patients kept a head-

ache diary and recorded the following parameters: oc-

currence, duration, quality, and intensity of headache

attacks, as well as medication intake and accompanying

features. The study period was divided into six subse-

quent blocks of 28 days, which will be referred to in the
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following as baseline period, T1, T2, T3, T4, and T5 (see

Fig. 1). The baseline period served to assess patient’s mi-

graine characteristics using the same headache diary and

to validate the diagnosis of EM. During T1, directly fol-

lowing the baseline visit, the 28-day lasting tDCS treat-

ment was performed. At three time points, migraine

patients underwent clinical examination as well as struc-

tural MR imaging. These time points (baseline visit,

FUP1, FUP2) are indicated in Fig. 1. The clinical out-

come of this study is reported separately [32].

Transcranial direct current stimulation

In this study, patients themselves applied anodal stimu-

lation over the visual cortex by using a one-channel

stimulator and standard rubber tDCS electrodes (DC-

STIMULATOR PLUS, NeuroConn, Ilmenau, Germany).

The active electrode (electrode size 5 × 7 cm2, current

density 0.029 mA/cm2) was placed at Oz, located at the

inion. A reference electrode (electrode size 10 × 10 cm2,

current density 0.01 mA/cm2) was placed at Cz at the

intersection between a sagittal line connecting the

nasion and the inion and a coronal line between the tra-

gus of both ears. Whereas the active electrode consisted

of a more focal electrode resulting in a higher current

density, a larger electrode was chosen as reference. This

allowed maximizing the current density over the visual

cortex while rendering the reference electrode function-

ally ineffective.

Patients were instructed on placing of the electrodes

and handling of the device at the baseline visit.

The tDCS treatment was performed daily for 20 min

during the 28-day T1 period (compare Fig. 1). The

verum tDCS consisted of applying 1 mA over the 20-

min session, while during sham stimulation 1 mA inten-

sity was maintained only for 30 s with intermittent im-

pedance check in the remaining 1170 s.

MRI measurements

We scanned patients with a 3 Tesla Philips Ingenia scan-

ner (Philips Healthcare, Best, The Netherlands) with a

32-channel receive-only head coil at the Neuroimaging

Center of the University Hospital Zurich. Apart from

other sequences, a 3D T1-weighted magnetization pre-

pared rapid gradient echo (MPRAGE) sequence was

acquired for each subject. Scanning parameters were as

follows: 160 slices, repetition time: 8.1 ms, echo time:

3.7 ms, flip angle: 8°, voxel dimensions: 1 × 1 × 1mm,

field of view: 240 × 240 mm2, scan time: 4:32 min. An ex-

perienced neuroradiologist examined all structural im-

ages for the presence of any brain abnormalities.

This imaging protocol was conducted for each patient

at three time points, baseline and two follow-up sessions.

The first follow-up measurement was scheduled at 1.5

months following the baseline scan and the second

measurement approximately 7 months after baseline

(compare Fig. 1).

Controls were scanned with the same imaging proto-

col at baseline and one follow-up session at 1.5 months

post-baseline.

MRI processing

A total of 3 structural T1w images were acquired for

each patient and 2 images for healthy controls on which

voxel based morphometry methods were applied for esti-

mation of grey matter (GM) and white matter (WM)

changes in the brain [33].

The volumetric analysis was subdivided into two sep-

arate analyses, one cross-sectional comparison at base-

line between healthy subjects and migraine patients and

one longitudinal analysis of migraine patients for the

time points baseline, FUP1 and FUP2, for which slightly

different imaging processing pipelines were employed.

For the assessment of volumetric differences between

EM patients and healthy controls, we used voxel-based

morphometry within SPM12 (University College

London, London, UK). First, the baseline T1w-MPRAGE

images of each subject were segmented into GM, WM

and cerebrospinal fluid (CSF) by using unified segmenta-

tion [34] which produced three probabilistic maps of

these respective tissue types. This step was followed by

spatial normalization of these probabilistic maps into

standard Montreal Neurological Institute (MNI) space

with a diffeomorphic Anatomical Registration using

Exponentiated Lie algebra (DARTEL) algorithm [35] and

application of smoothing with an isotropic Gaussian

kernel of 3 mm full width at half maximum (FWHM).

For assessing regional longitudinal volumetric changes

in migraine patients, we used TBM inside the SPM12

Fig. 1 Overview of the study design. The observation period was subdivided into six 28-day periods (Baseline, T1–5). The tDCS treatment was
performed during T1 and was initiated immediately after the baseline visit. FUP1 was scheduled shortly after the end of the stimulation period
and FUP2 after T5. Modified from Pohl et al. [32]
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framework. First, the T1w MR images of the three time

points were longitudinally co-registered, based on a reg-

istering of each imaging volume to a subject-specific

average map. This step includes non-linear and rigid-

body registration with corrections for intensity bias arti-

facts. The results of this step were subject-specific aver-

age maps representing a midpoint image, corresponding

deformation fields and Jacobian Determinant Maps from

each time point to this average map. This average map

was segmented into the different tissue components

using the same unified segmentation as described above.

By applying the Jacobian Determinant Maps on the mid-

point image, the respective tissue probability maps of

each separate time point were obtained. For improved

normalization into standard MNI space, the DARTEL al-

gorithm was applied to the midpoint images and the

produced deformation fields were used to register each

individual time point to MNI space. Finally, an isotropic

smoothing kernel of 3 mm FWHM was applied.

The total intracranial volume (TIV), used as covariate

in the statistical models, was calculated as the sum of

brain GM, WM and CSF volumes defined by a cut-off at

the lowest slice including the cerebellum.

Statistical analysis

Descriptive analysis of demographic data was performed

by using parametric and non-parametric statistics in

STATA 17.0 (StataCorp LLC, College Station, TX, USA)

and included two-sided t-tests, Wilcoxon rank-sum test,

Kruskal-Wallis test and Fisher’s exact test.

To assess volumetric differences in GM and WM of

the brain and between patients and controls at baseline

general linear models were fitted with the covariates

TIV, sex and age inside the SPM12 framework. Then,

voxel-wise two-sample T-tests were conducted for com-

parison of volumetric increases or decreases between pa-

tients and controls. In order to assess the effect of the

presence of aura on these observed volumetric changes

we performed one-way ANOVA at baseline in the iden-

tified regions including the groups “Controls”, “EM with

aura”, “EM without aura”. Furthermore, we assessed

whether the observed structural alterations correlated

with clinical factors representing disease severity such as

monthly migraine days and migraine intensity, and the

total number of years that patients are suffering from

migraine. This correlation analysis was implemented

with a similar model in SPM12 by adding the respective

clinical factor as an additional covariate. Significance

threshold was set at p < 0.001 uncorrected for multiple

comparison at voxel-level with a cluster extent (CE)

threshold of 20 contiguous voxels for all analyses. Only

significant results with p < 0.05, corrected for family-

wise error (FWE) at the cluster level using Random Field

Theory are considered.

For the assessment of longitudinal volumetric changes,

we used the SPM Sandwich Estimator Toolbox (SwE)

for Longitudinal & Repeated Measures Data, which is

based on a marginal model where the expected variabil-

ity is described as a function of predictors (defined in

the design matrix) and additionally accounts for correla-

tions due to repeated measurements and unexplained

variations across individuals. It has the following form

for subject i:

yi ¼ X iβþ ϵi
�

where yi represents the tissue volumes at multiple time-

points, Xi denotes the design matrix and ϵi
∗ the random

effects modelled by individual marginal error terms with

between-subject variance components with mean 0 [36].

The design matrix Xi consisted of the predictors inter-

cept, time and time2 as well as the covariates age, sex,

TIV, number of migraine days during baseline period,

number of stimulation days, the Depression subscale of

the Hospital Anxiety and Depression Scale (HADS-D),

and the presence of aura. We chose to introduce a quad-

ratic term due to the observed quadratic behavior of the

clinical effect reported by Pohl et al. [32] and the as-

sumption that potential volumetric changes would be-

have likewise. The HADS-D score was included because

there is evidence that depression alters cortical excitabil-

ity and hence might influence the efficiency of tDCS

treatment [37–40]. We tested for significant differences

in the quadratic component between tDCS and sham

patients with a cluster inference threshold of p < 0.001

and a CE threshold of 20 contiguous voxels. Results with

q < 0.05 (FDR-corrected) were considered as significant.

A correlation analysis was additionally performed to

assess whether the GM changes are associated with the

clinical effect of tDCS therapy represented by changes in

the number of monthly migraine days. This correlation

analysis was conducted by using a similar model within

the SwE framework and adding the number of migraine

days at baseline, T2 and T5 as an additional covariate.

Results

Demographics, baseline characteristics, and clinical

outcome

We enrolled 31 healthy controls and 24 episodic migrai-

neurs in this study. One control was excluded from fur-

ther analysis due to severe artifacts on MRI. The

baseline characteristics of the control and patient co-

horts including subdivision of patients into migraineurs

with (MwA) and without aura (MwoA) were not differ-

ent in age, sex, number of migraine days, migraine inten-

sity and duration of migraine disease (Table 1).

Likewise, in both randomized groups (tDCS and

sham), migraine patients did not differ with respect to
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age, sex, average number of migraine days, average mi-

graine intensity, disease duration, patients with aura,

number of stimulation days, HADS-D score and timing

of the follow-up measurements (Table 2). However, the

timing of the second follow-up measurement displayed a

relatively high variation ranging from 98 days to 373 days

post-baseline.

The clinical outcome of this study is reported separ-

ately [32]. A 28-day treatment with occipital tDCS led to

a mean reduction of 1.9 migraine days/month compared

to the control group. At the beginning and the end of

the observation period no antimigraine effect of tDCS

treatment was detected, but the effect gradually devel-

oped over time and reached its maximum at four

months after the initiation of the treatment.

Cross-sectional VBM analysis

When comparing healthy controls with migraineurs at

baseline, migraineurs showed significantly increased GM

volume in the left lingual gyrus (z-score = 4.53, x = − 6,

y = − 92, z = − 17, p = 0.003, CE = 228) (see Fig. 2). There

were no significant differences in WM volume. The sub-

group analysis did not show any significant volumetric

differences between migraineurs with aura and migrai-

neurs without aura in this identified region.

Correlation of structural alterations with clinical

parameters

The correlations of structural brain changes with the fol-

lowing clinical parameters were assessed: monthly mi-

graine days, migraine severity and disease duration. We

did not detect any significant associations between struc-

tural alterations and the clinical factors in this patient

cohort.

Longitudinal TBM analysis

Investigating dynamic volumetric changes over the ob-

servation period of approximately 170 days after the

baseline visit we found a significant difference in the rate

of quadratic GM change in the left lingual gyrus be-

tween the sham and verum tDCS group (z-score = 3.62,

x = − 2, y = − 90, z = − 12, q = 0.039, CE = 23) (see

Fig. 3A). Note, this cluster of dynamic GM volume

change overlaps with the identified cluster in the cross-

sectional analysis at baseline where migraineurs pos-

sessed increased cortical volume when compared to

healthy controls as indicated in Fig. 3B.

Extracting the individual values of each subject at

every time point in this cluster and plotting the differ-

ence in volumetric GM changes between tDCS and

sham patients reveals that these dynamic longitudinal

GM changes in the lingual gyrus effectively parallel the

Table 1 Baseline characteristics of controls, episodic migraineurs with aura and episodic migraineurs without aura

Controls (N = 30) MwA (N = 15) MwoA (N = 9) p value

Age, years 32.2 ± 10.3 37.0 ± 12.9 39.1 ± 12.0 0.212

Female Sex, no. (%) 25 (83.3) 15 (100) 8 (88.9) 0.225

Average number of migraine days during baseline period 5.6 ± 2.9 5.7 ± 2.2 0.933

Average migraine intensity during baseline period 6.0 ± 1.6 5.6 ± 1.6 0.514

Disease duration, years 18.5 ± 10.9 21.5 ± 13.1 0.603

MwA Migraineurs with aura; MwoA Migraineurs without aura; two-sided t-tests were applied for comparison of number of migraine days, migraine intensity and

duration of migraine disease between MwA and MwoA; Kruskall-Wallis test was used for comparison of age and Fisher’s exact test for sex between Controls, MwA,

and MwoA.

Table 2 Baseline characteristics of episodic migraineurs randomized into tDCS and sham subgroups

tDCS (N = 11) Sham (N = 13) p value

Age, years 41.0 ± 14.8 35.1 ± 9.7 0.251

Female Sex, no. (%) 10 (90.9) 13 (100) 0.458

Average number of migraine days during baseline period 4.7 ± 2.2 6.4 ± 2.7 0.118

Average migraine intensity during baseline period 6.3 ± 1.2 5.4 ± 1.8 0.199

Disease duration, years 22.0 ± 12.4 18.5 ± 11.6 0.546

Aura, no. (%) 7 (63.6) 8 (61.5) 1.000

Number of stimulation days 30.1 ± 2.9 28.8 ± 1.9 0.147

HADS-D score during baseline period 3.8 ± 2.2 4.1 ± 3.4 0.829

FUP1, days 48.7 ± 6.9 50.2 ± 8.5 0.644

FUP2, days 161.5 ± 52.5 174.2 ± 69.5 0.352

FUP1 first follow-up; FUP2 second follow-up; HADS-D depression subscale of the Hospital Anxiety and Depression Scale; two-sided t-tests were applied for

comparison of continuous variables; where the criterion of normal distribution was not met (FUP2, number of stimulation days), Wilcoxon rank-sum test was used;

Fisher’s exact test was performed for comparison of sex and aura between tDCS and sham. Modified from Pohl et al. [32].
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development of the clinical effect after tDCS treatment

(see Fig. 4).

Correlation of migraine days and GM changes

The associations between longitudinal GM changes in

the lingual gyrus and the development of the number of

migraine days after tDCS treatment did not show any

significant correlation between these two parameters in

this patient cohort.

Discussion

This study investigated structural differences between

EM and healthy controls and the impact of a 28-day

treatment period with occipital tDCS on brain structure,

evaluated approximately at 50 and 170 days after initi-

ation of the treatment. The cross-sectional analysis of

this study reveals two major findings. First, episodic mi-

graine patients show distinct volumetric alterations in

occipital cortical areas, located in the left lingual gyrus,

when comparing them with a healthy control popula-

tion. Second, these volumetric alterations are not related

Fig. 2 Significant volumetric differences between migraine patients and healthy controls at baseline. Overlay of statistical parametric maps
(uncorrected p < 0.001) shows increased cortical volume in patients versus controls in the left lingual gyrus. The color bar indicates the t-score

Fig. 3 Significant quadratic differences between verum and sham tDCS group revealed by TBM. Overlay of statistical parametric maps
(uncorrected p < 0.001) shows a significant quadratic difference in the left lingual gyrus (A). The color bar indicates the t-score. Comparison of the
statistical parametric maps (uncorrected p < 0.005, for illustrative purposes) of the cross-sectional cluster (in yellow) and the longitudinal cluster (in
red) reveals that the regions of both clusters in the left lingual gyrus overlap (B)
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to the severity of migraine at baseline and the duration

of the disease in this study cohort. Investigating these

volumetric changes in episodic migraineurs longitudin-

ally after a 28-day period of daily occipital tDCS treat-

ment, we can draw two important conclusions. First, the

observed cortical alterations between episodic migrai-

neurs and healthy controls located in the left lingual

gyrus are dynamic and show volumetric decreases over

time in tDCS treated patients compared to sham treated

patients. Second, these dynamic changes in the lingual

gyrus are not correlated with the change in monthly mi-

graine days in this study cohort.

Our observation of altered cortical structure in occipi-

tal areas is in line with the findings of a large study that

compared migraineurs with aura (n = 333) and healthy

controls and found increased cortical thickness in the

left lingual gyrus [41]. Similarities between the study

populations comprise the high percentage of migraineurs

with aura in our study. Likewise, several previous studies

could demonstrate altered cortical thickness and cortical

volume in visual areas [42–47]. Some of these studies

found decreases in cortical thickness respectively cortical

volume of migraineurs, while in other studies migrai-

neurs possessed increased cortical thickness respectively

cortical volume compared to healthy controls. It should

also be mentioned that some studies could not replicate

these findings [48–52]. However, there are certain as-

pects to consider when comparing the results of these

different studies. First, the cortical volume in VBM as-

sessments is a mixed measure of cortical surface area,

Fig. 4 Clinical and structural changes following tDCS treatment. Change in monthly migraine days depicted as difference in days between verum
and sham tDCS group (A). Change in GM volume depicted as difference in percent between verum and sham tDCS group (B). Negative values
represent less migraine days, respectively lower GM volume in the verum tDCS group compared to the sham tDCS group. All values are
normalized to the baseline measurement
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cortical folding as well as cortical thickness [53]. Second,

migraine is a disorder with a great variance of clinical

phenotypes and its structural alterations with respect to

several parameters such as presence of aura, attack fre-

quency, age, phase of the migraine cycle, the

lateralization of migraine attacks and the presence of

interictal photosensitivity [45, 46, 54–60]. These factors

introduce further variability and thus limit the compar-

ability among many studies. Nevertheless, the consistent

observation of alterations in occipital areas suggests that

this region might indeed be affected by structural

changes in migraine.

There is strong evidence of the involvement of visual

areas in the pathophysiology of migraine in ways of al-

tered visual processing, which might explain the fre-

quent presence of visual symptoms such as photophobia

and visual aura [61]. Previous studies demonstrated al-

tered cortical excitability [22, 23, 26] as well as func-

tional changes including altered functional activity upon

visual stimuli and functional connectivity in visual areas

[62–66]. Furthermore, many studies found a strong link

between cortical spreading depression, a wave of

depolarization starting in the occipital lobe, and visual

aura, as well as the involvement of cortical spreading de-

pression in migraine attacks without aura [67–69]. The

observed structural differences in visual areas might rep-

resent structural correlates of these functional changes

that have been reported in migraineurs. However, the

direction of the association between the functional and

structural findings has yet to be elucidated. It is still un-

clear, whether these structural alterations represent a

predisposition or abnormalities that lead to the develop-

ment of migraine disease or if they occur because of re-

curring migraine attacks.

We did not detect any significant correlations of the

observed structural cortical alterations with clinical base-

line parameters representing disease severity such as the

number of monthly migraine days and migraine inten-

sity, and the number of years that the patients have suf-

fered from this disease. One possible explanation is that

the structural alterations do not depend on disease se-

verity but instead represent an intrinsic trait that is not

modified by the severity or duration of migraine. How-

ever, these findings should be interpreted with caution

due to the relatively small size of the study population.

Tracking the observed structural differences over

time after a 28-day treatment period with occipital

tDCS, we observed a dynamic in the cortical volume

that seems to parallel the change in disease severity

represented by a reduction in monthly migraine days.

Notably, these longitudinal changes were located in

the same area as the observed structural differences

between migraineurs and healthy controls, suggesting

that these alterations are plastic and seem to respond

to tDCS treatment. Whether these changes are mainly

induced by the tDCS treatment or reflect the im-

provement of migraine symptoms still needs to be

elucidated. Until today, only very few studies have

assessed longitudinal structural changes in migraine

populations [70]. These studies, however, could show

longitudinal dynamic cortical volumetric changes over

one respectively four years as well as changes during

the migraine cycle, speaking to the potential for plas-

ticity of these structural alterations in migraineurs

[28, 29, 57]. Another study tracked the morphometric

changes in chronic migraineurs following sphenopala-

tine ganglion block over six weeks and similarly to

our results found a change in cortical and subcortical

morphology with improving migraine symptoms [30].

This finding might have implications for migraine

treatment and future interventional trials, as we could

demonstrate that the cortical alterations are not perman-

ent and fixed but rather plastic and can be modified by

successful migraine treatment. Tracking the morpho-

logical cortical changes post-treatment might lead to the

discovery of new biomarkers for the assessment of treat-

ment response.

Although both, local cortical volume and monthly

migraine days decreased after tDCS treatment com-

pared to sham treated patients, we did not detect sig-

nificant longitudinal correlations between these two

measures. However, two important factors limit the

interpretability of this assessment. First, the study

population was relatively small as already mentioned

above. Second, due to the exploratory nature of this

study the structural MRI examinations were scheduled

and performed at time points that missed the period

of maximal clinical effect size. The first follow-up was

performed just before the clinical effect had com-

pletely evolved (in T3 and T4) and the second follow-

up after the effect had already vanished. These two

factors might explain the lack of significant associ-

ation between the structural and clinical changes and

they should be considered in future studies.

Further limitations of this study are the remaining het-

erogeneity of the study population by including both pa-

tients with and without aura (i.e. no subgroup analysis

for the effect tDCS on aura presence was possible, as the

number of patients with and without aura was too low.

Further, the aura type in patients with aura was not ex-

amined), a rather large spectrum of disease duration,

and the lack of information about the timing of the MRI

examinations during the patients’ migraine cycle, hence

no correction for ictal/interictal variability was possible.

Finally, we did not collect data on the usual headache

lateralization and side. Thus, we do not know if any po-

tential lateralization could be related to the observed

dominant findings in the left hemisphere.
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Conclusions

Our results support the presence of structural changes

in visual areas in episodic migraineurs. Whether these

structural changes represent the substrate for migraine

development or result due to recurring migraine attacks

still needs to be elucidated. Furthermore, while the num-

ber of monthly migraine days decreased after tDCS

treatment compared to sham treated patients, the cor-

tical volume decreased as well. This paves the way for

the development of new imaging biomarkers based on

measuring structural volumetric changes for tracking the

treatment effect of specific migraine therapies.
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