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Abstract. This paper describes a method to automaticallyl Introduction

generate a large ensemble of air quality simulations. Such

an ensemble may be useful for quantifying uncertainty, im-Due to the great uncertainties that arise in air quality model-
proving forecasts, evaluating risks, identifying process weak4ng, ensembles of simulations are now considered in a wide
nesses, etc. The objective is to take into account all sourcetinge of applications. They are primarily built for uncer-
of uncertainty: input data, physical formulation and nu- tainty estimation. They can therefore evaluate the reliabil-
merical formulation. The leading idea is to build different ity of exposure studies based on model simulations. In the
chemistry-transport models in the same framework, so thagontext of short-term forecasts, they can be used to eval-
the ensemble generation can be fully controlled. Large enuate risks, with probabilistic forecasts (e.g., threshold ex-
sembles can be generated with a Monte Carlo simulation§eedence). Uncertainty estimation may also be useful for
that address at the same time the uncertainties in the inpucreening studies in which the impact of emission abatement,
data and in the model formulation. This is achieved usingas predicted by numerical simulations, should be compared
the Polyphemus system, which is flexible enough to buildwith the uncertainties. Data assimilation is another appli-
various different models. The system offers a wide rangecation where ensembles are often used: e.g., in the popu-
of options in the construction of a model: many physica| lar ensemble Kalman filter, the background-error covariance
parameterizations, several numerical schemes and differeripatrix is derived from them. For operational forecasts, an
input data can be combined. In addition, input data can beénsemble simulation may be sequentially aggregated so as to
perturbed. In this paper, some 30 alternatives are availablform forecasts better than the individual models.

for the generation of a model. For each alternative, the op- A key step is the generation of the ensembles. They may
tions are given a probability, based on how reliable they arebe built (1) with perturbations in the input data to a single
supposed to be. Each model of the ensemble is defined bjpodel or with an ensemble of input data (Straume, 2001),
randomly selecting one option per alternative. In order to(2) with models that share little or no computer code (Gal-
decrease the computational load, as many computations dgarini et al., 2004; McKeen et al., 2005), or with models
possible are shared by the models of the ensemble. As afuilt on the same modeling platform. Uncertainty estima-
example, an ensemble of 101 photochemical models is gertion, for instance, has been conducted with Monte Carlo sim-
erated and run for the year 2001 over Europe. The modelstlations, thus with perturbations in the input data to a given
performance is quickly reviewed, and the ensemble structurénodel (Hanna et al., 1998; Beekmann and Derognat, 2003),
is analyzed. We found a strong diversity in the results of theand with different models built on the same platform (Mal-
models and a wide spread of the ensemble. It is noteworlet and Sportisse, 2006b). In data assimilation, the ensem-
thy that many models turn out to be the best model in somedle Kalman filter (Evensen, 1994) approximates background-
regions and some dates. error covariance matrices using an ensemble of simulations
generated with perturbations in the input data (in air quality,
e.g., Segers, 2002). A few studies make use of ensembles

Correspondence to: D. Garaud composed of models developed in different teams (for long-
BY (damien.garaud@cerea.enpc.fr) term simulations, see van Loon et al., 2007). For operational
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70 D. Garaud and V. Mallet: Ensemble generation

forecasting, a weighted linear combination of models canequation of the system is an advection—diffusion—reaction
form an improved forecast, as has been shown with an enequation of the form:
semble of models from different teams (Pagowski et al.,
2006) and with an ensemble built on the same modeling platZ — —div(V¢;)+div (pKvﬁ> +xi(e,)+Ei — Aci , (1)
form (Mallet and Sportisse, 2006a; Mallet et al., 2009). ot P

Whatever the application may be, a key step is the generayhere ¢; is the concentration of theéth species,c¢ =
tion of the ensemble. In an ideal setting, one should take intqc, ... c¢) is the vector of all concentrationd/ the wind
account all uncertainty sources based on the best descriptiofector,K is the turbulent diffusion matrixp the air density,
available. Essentially, this would mean relying on Monte ,. the production term due to chemical reactions involving
Carlo perturbations for uncertain input data like emissions,species, E; represents the emissions and; accounts for
on the alternative descriptions available for data like |and|osses dueto Scavenging_ The boundary conditions atground

use cover, on calibrated ensemble weather forecasts, on difevel involve the surface emissiossand the deposition ve-
ferent formulations for the subgrid parameterizations in thejgcity v;:
chemistry-transport models, on different numerical schemes
in the chemistry-transport models. In this paper, we tendKVc¢i-n=S; —vic;, (2)
to this ideal settlr_lg with a simplified approach:_ we do not if n is the upward-oriented normal to the ground.
use a meteorological ensemble (the meteorological inputs are . .
: ) . All models solve a system of reactive transport equations
treated like other input data), and we rely on an alternative, . e :
. : . like Eqg. (1), but they rely on different coefficients in the
sampling approach to full Monte Carlo simulations. Never- : . : :
: ; equations (e.g., in the chemistgy) and on different numer-
theless all uncertainty sources can be considered, and the - . . .
. . g : ical schemes. The coefficients in the equations are estimated
are all taken into account at the numerical-simulation stage: . L
. T S : according to data from many sources (emission inventory,
no statistical correction is applied in a postprocessing. The . ; .
approach described in this paper may be seen as a three_fometeorologmal model, etc.) and many physical parameteri-
Zations (vertical diffusion, photolysis attenuation, etc.). We

extension that of Mallet and Sportisse (2006b): new UNCe herefore uniquely define a model with (1) the input data and

tainty sources are included, the uncertainty in input data Sthe physical parameterizations it uses and (2) its numerical

specifically taken into account, and the ensemble generation . N
. : . schemes. Many alternative parameterizations, data sources
is entirely automatic.

: . . -~ and numerical schemes are available in Polyphemus — this
From a technical point of view, building an ensem-

ble of simulations is rather straightforward in the case ofﬂexIbIIIty 'S parfc of P_olyphemus d_eS|_gn pr_|r_1C|pIes. Most op-
) L . . tions are described in Sect. 2 which identifies the models that
Monte Carlo simulations: one simply applies random per-

turbations to the input data of a single model. The per-Can be built on the platform.

: e : In Sect. 3, the actual generation of the ensemble is ad-
turbation scheme may be complex if it takes into account : .
i . : : . ..dressed. This means selecting the models, also called en-
spatial and temporal correlations in the input fields and if

. . semble members, which in turn means selecting the compo-
advanced Monte Carlo variants are implemented. However

this involves little complexity compared to building an en- hents (input data, physical parameterization, numerical op-

semble composed of different models, e.g. of models baseHonS) for every model. One model is actually a set of pro-

) . . . rams that are launched in a given order. The simulation
on various chemical mechanisms. There are essentially twg, . ; .
: .~ .. chain should be properly established to take into account the
ways (that may be combined) to form an ensemble with dif-

ferent models. One is to use existing models, usually de_dependenues (e.g., the deposition velocities depend on the

veloped in research groups. The resulting ensemble theIand use cover). It should also share the common computa-

includes a small number of models, say about ten. An- lons among groups of models and distribute the computa-

. . I tions over several computer processors in order to minimize
other way is to generate different models within the same : ; . )
-the overall computational time. In addition to the changes in

modeling platform: the models are assembled using bas"(fhe physical and numerical formulations, several input fields

components such as the chemical mechanism or the dep?ﬁat appear in the reactive transport equation are perturbed.

sition module. Building such a platform is a tedious task, . - .
. : It is assumed that the fields have a normal or a log-normal
but it makes the generation of ensembles, even very large. ~ .. :
distribution, and they are perturbed accordingly.

ones, practicable. In _addltlon, the structure O.f the ense_mble In Sect. 4, the method is illustrated with a 101-member
is fully controlled, which eases the scientific interpretation. ensemble with gas-phase chemistry only
This approach has been implemented in the modeling sys- '
tem Polyphemus (Mallet et al., 2007b), and it is described in
this paper. 2 Building one model

All the models considered in the platform assume that the
concentrations of pollutants satisfy a system of partial dif-In this section, many options available in Polyphemus 1.5
ferential equations and they approximate their solutions by(released 20 May 2009) for photochemical simulations are
discretizing the equations in an Eulerian framework. Eachintroduced. A summary of these options is given in Table 1.

Geosci. Model Dev., 3, 69-85, 2010 www.geosci-model-dev.net/3/69/2010/
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Table 1. Alternatives for the physical parameterizations and numerical options. The numbers enclosed in brackets correspond to the

occurrence probability of an option.

71

# Parameterization First option Other option(s) Comment
Physical parameterizations
1. Land use cover USGS (0.5) GLCF (0.5)
2. Chemistry RACM (0.6) RADM 2 (0.4)
3. Cloud attenuation RADM method (0.6) ESQUIF (0.4)
4 Critical relative humidity Depends an(0.7) Twolayers (0.3) Used in the RADM method to
compute cloud attenuation
5. Vertical diffusion () Troen & Mahrt (0.35)  Louis (0.3)
Louis stable (0.35) Troen & Mahrt kept
in unstable conditions
6. Deposition velocity Zhang (0.5) Wesely (0.5)
7. CoefficientRa Heat flux (0.7) Moment flux (0.3)  For aerodynamic resistance
(in deposition velocities)
8. Emissions vertical distribution Low (0.5) Medium (0.5)
9. Photolysis rates JPROC (0.7) Zenith angle (0.3)
Numerical issues
10. Time step 600s (0.9) 1200s (0.1)
11. Vertical resolution 5layers (0.5) 9layers (0.5) The first layer height can be 50 m or 40 m
12.  First layer height 50m (0.5) 40m (0.5) The top of every other layer
does not change
13. \Vertical-wind diagnosis diypV) =0(0.5) div(V)=0(0.5)
14. Minimal K, 0.2ns1(0.7) 0.5nfs71(0.3)
15.  Minimal K, in urban area 0.2fs51(0.3) 0.5nfs71(0.3)
1.0n?s1(0.4)
16. \Vertical application of minimak,  Yes (0.8) No (0.2) Iho, the lowest threshold is applied only
to the top of the first layer, otherwise
it is applied to all levels
17. Exponenp 2(0.7) 3(0.3) The value of the exponent to compute

the vertical diffusion coefficient (T&M only)

18. Boundary layer height raw value (0.6) +10% (0.2) Used to comgut@ &M only)

~10% (0.1)
+20% (0.1)

2.1 Physical formulation (parameterizations and
input data)

ical reactions between these species. Here, we consider two
chemical mechanisms: RADM 2 (Stockwell et al., 1990)
with 61 species and 157 reactions, and RACM (Stockwell

2.1.1 Land use cover etal., 1997) with 72 species and 237 reactions.

The land use cover (LUC) describes the material covering2
the ground with a few categories. Polyphemus supports the”
USGS (U.S. Geological Survey) LUC with its 24 categories N . o
and the GLCF (Global Land Cover Facility) LUC that in- The .cr|t|cal relat|v§ humidity is used to f:ompute the_ clo_ud
cludes 14 categories. Both LUC have allkn? resolution, fraction, the cqudlness a}nd the gtt.enuatlon. Ong option is to
with categories such as grassland, cropland, deciduous fo0Mpute the critical relative humidity as a function of:

est, urban areas, etc.

1.3 Critical relative humidity

1
2.1.2 Chemistry ge=1—ac’(1—0)" <1+/3<0—§>>, 3)
The chemical mechanism is a simplified representation of at- » ) )
mospheric chemistry, here related to photochemical activityWhereo = &, P is the pressurefs is the surface pressure,
The mechanism includes species that may or may not exist = 1.1, 8 =+/1.3,a =0 andb = 1.1. In another optiont{o
as such, since many (real) chemical species are lumped intlayers), the critical relative humidity is simply constant in
a few (model) species (e.g., the terminal alkenes are lumpetivo distinct layers:gc. = 0.75 below 700 hPa ang. = 0.95
into “OLT” in RACM). The mechanism describes the chem- above.

www.geosci-model-dev.net/3/69/2010/ Geosci. Model Dev., 3, 69-85, 2010



72 D. Garaud and V. Mallet: Ensemble generation

2.1.4 Photolysis In the Troen&Mahrt parameterization (7), the expongnt
may be 2 or 3. In the ensemble generation, the boundary

Two options are considered. Clear sky photolysis rd¢gsr  layer height PBLH may be perturbed at that stage.

can be those computed by the JPROC software which is part |n addition to the selected parameterization, a few options

of the Community Multiscale Air Quality (CMAQ) Model-  remain with the minimum value fak,, the minimum value

ing System (Byun and Ching, 1999), or they can be computey x_ over urban areas, and whether the minimum values for

based on the zenith angle alone. The photolysis rates are qf_ are applied only in the first layer or in all layers.

the formJ = AJgearwhereA is the attenuation.

. 2.1.7 Deposition velocities
2.1.5 Attenuation
The deposition velocities (nT$) are assumed to be in the

The cloud attenuatioml measures the decrease in the ratesform

of photolysis reactions when solar radiation is partially ab-
sorbed or reflected by clouds. It can be computed using thev B 1 8
RADM method (Madronich, 1987; Chang et al., 1987): 4= R fReT R’ (®)

Ap=1—min(1, N+ M) (1-1.6TrcosZ) where R, is the aerodynamic resistanc®y, is the quasi-
Aa=1+min(L Nin+ M) (1+ (1 “) : - - :
a=1+min(LNm+Np) 1+ (1-Tr)cosz) laminar sublayer resistance aRg is the canopy resistance.

where A, and A, are the attenuations below and above the Racan be computed with the heat flux or the momentum flux.
clouds, N and AV are the medium cloudiness and the high Rc can be computed by the Zhang parameterization (Zhang
cloudiness]r is the cloud transmissivity and is the zenith et al., 2003) or the Wesely parameterization (Wesely, 1989).
angle. The photolysis rates below and above the clouds arf depends on the LUC.
respectively/p = Ap Jelearand Ja = Aa Jelear o

A second parameterization was developed after the ES¢-1.8 Emissions
QUIF campaign (ESQUIF, 2001), using measurements of the

photolysis rates for N@ The attenuation is approximated by Pollptant fam'issions are usually dividgd into two parts: bio—.
genic emissions emitted by vegetation and anthropogenic

A=(1—aNp)(L—bNm)e P, (5)  emissions originating from human activities (transport, in-
dustries, etc.). The biogenic emissions are surface emissions

wherea, b, ¢ and B are constants. i ;
computed following Simpson et al. (1999). They depend

2.1.6 Vertical diffusion on LUC. At the European scale, anthropogenic emissions
are estimated by EMEP (European Monitoring and Evalu-
The vertical diffusion coefficienk . (m?s™1) is the third di-  ation Programme). EMEP provides annual quantities for

agonal term of the turbulent diffusion mat# (Eq. 1). This  a few pollutants (N@, VOC, SGQ, CO and aerosols) and

coefficient is computed at the interfaces of the model layerdor 10 different sectors called SNAP (Selected Nomencla-
and can be estimated with two parameterizatidghsmay be  ture for Air Pollution). These annual emissions are multi-
computed with the Louis parameterization (Louis, 1979) atplied by monthly, daily (Saturday, Sunday, week days) and

interfacek: hourly factors which depend on the country and SNAP. Fi-
, AU AV\2 n_ally the emis_sions are split into surface a_lnd_ vol_ume emis-

K. =LiF(Riy) <_) +<_> , (6) sions, according to SNAP. The vertical distribution of the
Azk Az volume emissions is subject to a choice; here, we consider

whereL, is the mixing length at level, Ri is the Richardson two options: alow distribution and amedium distribution

number andF is the stability function. Alternativelyk, can ~ — the former distribution assumes that the pollutants are re-

be computed with the Troen&Mahrt parameterization (Troenleased closer to the ground than with the latter distribution.
and Mahrt, 1986): Table ?? describes the 10 different SNAP and the emission

vertical distribution for the optionkow andmedium.

_ Zk p
Kea =t (1= 522)" (7)

whereu, is the friction velocity,x is the von Karman con-

stant, ®m x is the non-dimensional shear and PBLH is the In Polyphemus, three numerical schemes (for advection, dif-
planetary boundary layer height. This parameterization isfusion and chemistry) are assembled to form a numerical in-
more parametric and more robust than the Louis parametegrator, called Polair3DBputahar et al., 2004), whatever
terization. A third option is a combination of both param- schemes are used. The numerical integrators share the coor-
eterizations: the Louis parameterization used in stable condinate system: regular horizontal grid in latitude/longitude,
ditions and the Troen&Mahrt parameterization in unstablevertical levels with fixed altitudes (in meters from the
conditions. ground). The integration makes use of operator splitting: in

2.2 Numerical issues

Geosci. Model Dev., 3, 69-85, 2010 www.geosci-model-dev.net/3/69/2010/



D. Garaud and V. Mallet: Ensemble generation 73

one time step, the advection is integrated first, then the diffu{2008), and it should be used in the generation of an ensem-

sion and finally the chemistry. ble. In the preprocessing steps, several options also relate to
Very few numerical options are considered here, becaus@erosols, e.g., the parameterization for estimating the emis-

the uncertainty sources were mainly found in the physi-sions of sea salt could that of Smith and Harrison (1998) or

cal formulation and in the input data (Mallet and Sportisse,that of Monahan et al. (1986).

2006b). In Mallet et al. (2007a), a detailed study of many nu-

merical options shows that the splitting time step and the ad- ]

vection scheme may have a significant impact. In the presend Ensemble generation

study, the advection scheme is not an option: a third-order q build a.l bl q el I
direct-space-time scheme with flux limiting (Verwer et al., ' Order to build a large ensemble and to take into account a

2002) is used in all the models. On the other hand, the splitpf)_SSibIe options, an gutomatic procedure i_s necessary. In ad-
ting time step is an option (see below). Both diffusion and fjltlon to the changes in the model formulation, the procedure

chemistry are integrated using a second-order Rosenbrocl¢ludes a perturbation step (Sect. 3.1): the input data of the
scheme (Verwer et al., 2002). numerical model are perturbed so as to take into account ad-

ditional uncertainty sources. After that step, all simulations

2.2.1 Time step are completely defined and launched (Sect. 3.1.1 and 3.2).

The (splitting) time step is set to 600 s (the usual time step)3'1 Input data perturbation

or1200s. In the final stage of a simulation, the numerical integration

of Eq. (1) is carried out with the selected numerical scheme.
At this stage, the fields that appear in the equation are also
The horizontal resolution is set toF in all simulations. pertur.bed.- _ .

Estimations of the uncertainties were established by ex-

Along the vertical, the grid is made up of 5 layers or 9 lay- )
: : perts and reported in Hanna et al. (1998, 2001), for 18 km
ers, up to 3000m. The height of the first layer may be 40 mand 12 km resolutions, in regions of eastern USA, and for

or 50m. Consequently, there are 4 possible vertical gndsa few days. These estimations should be seen as guidelines

Note that a changel In the vertical grid has consequences |[10 be adapted to the simulation region, to the resolution of
almost all computations. . . : ) :
the simulation, to the time span, and to other considerations
on the quality of the fields. For instance, the uncertainty in
the values of a field should decrease when the resolution gets
The vertical wind may be reconstructed from the horizontal-Nigher. In addition, a few ensembles were generated in or-
wind components by solving the equation @V) = 0 derto rqughly cgllbrate the _uncertamty parameters, based on
wherep is the air density and the wind vector. comparisons with o_bsgrva}tlons (not reported here). Several
It may also be estimated with the simplified equation fields are given a distribution, normal or log-normal, and an

div(V) = 0. In this case, the diffusion term in Eq. 1is ooy rangfetgetf.erlrg'.”etﬂ by a garametf‘tllsﬁfstsur?ed
Changed,forconsistency,toﬂK/VC). at any value o e Teld IS the ran OmVarlab at satis-

This diagnosis is carried out after the horizontal winds fies
have been perturbed. — p=p+ %o for anormal distribution,

2.2.2 Simulation grid

2.2.3 \Vertical-wind diagnosis

2.3 Other options — p=p/a’ for alog-normal distribution,

The options previously mentioned are summarized in Ta-wherey is distributed according t&/(0, 1), andp is a (deter-
ble 1. Other options are available in Polyphemus. They areministic and known) value which is assumed to be the median
not reported in this paper because they are not used in thef p.
illustrative example (Sect. 4). For a normal distributionp € [p — «, p +«] has a proba-
Many of the other options are related to aerosols. Polyphebility of 95%. Thus+« is an uncertainty range, around the
mus includes a size-resolved aerosol module called SIREAMMean (or medianp, associated with a probability of 0.95.
(Debry et al., 2007) and related preprocessing (anthro« is twice the standard deviation ¢t For a log-normal dis-
pogenic emissions, sea salt emissions, deposition, boundribution, the same applies to fn with an uncertainty range
ary conditions). The aerosol module offers numerous op-of width +3Ina. The probability thap € [p/a. ap] is 0.95.
tions: choice of the aqueous module, nucleation model (bi- Note that the perturbation will not depend on the date or on
nary, ternary), heterogeneous reactions, calculation of théhe position. We simply assume thatr, x) = p(r,x) 5 (or
wet diameter, aerosol density, thermodynamics module, etcp(z,x) = p(t,x)/a’) for any dater and position. Sincey
This ability was used in the sensitivity study by Sartelet et al.does not depend anandx, two valuesp(z,x) and p(t’, x")

www.geosci-model-dev.net/3/69/2010/ Geosci. Model Dev., 3, 69-85, 2010



74 D. Garaud and V. Mallet: Ensemble generation

Table 2. Perturbation of input data. The last column is the parametkat defines the uncertainty range. If the median value of a normally-
distributed random variablg is p, the probability thatp € [p —2a, p+ 2] is 0.95. If p is log-normally distributed, the probability that
peElp/a,ap]is 0.95.

# Field Source Distribution ~ Uncertainty
range

1. Horizontal-wind module ECMWF Log-normal 15

2. Horizontal-wind angle ECMWF Normal +40°

3. Temperature ECMWF Normal +3K

4, O3 boundary conditions Mozart 2 Log-normal 2.0

5. NOx boundary conditions Mozart 2 Log-normal 3.0

6. VOCs (Volatile Organic Compounds) boundary conditions  Mozart 2 Log-normal 2.0

7. NOy anthropogenic emissions EMEP Log-normal 15

8. VOCs anthropogenic emissions EMEP Log-normal 15

9. Biogenic emissions Computed Log-normal 2.0

10. \Vertical diffusion Computed Log-normal 1.7

11. Deposition velocities Computed Log-normal 15

12. Photolysis rates Computed Log-normal 14

are fully correlated (correlation equals 1) for a normal distri- with
bution. In the log-normal case, iz, x) and Inp(¢/,x") are 31 VA
fully correlated. 1 = 2log(=——5—=)/loga;

The list of the perturbed fields and the corresponding val-y, = 2Iog(M)/loga ,
ues ofe are shown in Table 2. These values were used in
the example (Sect. 4). The list of input fields includes me-and
teorological variables, the boundary conditions, the emis—ﬂ — exp(tlog?a) ;
sions for different species and variables related to chemi—A _ 45437,324_(’5/3_3
cal species such as the deposition velocities or the photol-
ysis rates. These input data come from different models
(ECMWEF, Mozart 2, EMEP) or are processed during the pre-3.1.1  Models automatic selection
processing.

Once the distribution and the parametesire determined, The selection of the models to be included in the ensemble is
the actual perturbation is not given by a random samplingcarried out randomly. A probability is given to each option.
of y. The actual perturbed value is randomly and uniformly The numbers between brackets in Table 1 are these probabil-
selected in a set of three values: the unperturbed value (i.eities. In any alternative, the sum of the probabilities equals
the median)pg = p, and two other pointg; and p»> defined 1. Each perturbation in the input data (Table 2) is uniformly
below. The points are chosen so that the empirical mean angelected from three possible values (S&8ct). A model is
the empirical standard deviation are the same as the meagefined once an option has been selected for any alternative

and the standard deviation §f thus (18 alternatives are shown in Table 1, 12 perturbations are
SN S listed in Table 2).
- E(p)= W; Except for the perturbations in the input data, the proba-
bilities are chosen according to the confidence put in each
_ Var(p) = (Po—P)*+ (p1—P)*+ (2 — 13)2_ option. There is no direct indicator to determine these prob-
2 abilities. If two parameterizations are available for a given
In the case wherg ~ A(p, %az): option, the ghoipe lies betweeq giving a pr.o.bability one to
a parameterization (no uncertainty), and giving 0.5 to both
po=7p; parameterizations (which leads to the largest uncertainty). If
pL=p— lo; one option is supposed to be more accurate (a priori qual-
p1=p+s3a. ity of a parameterization, finer grid resolution, etc.) or if it

is usually associated with better model results (comparison

Whenjp is log-normally distributed: with observations), its weight should be higher than that of

Po=p; alternative choices. For example, a time step equal to 600 s is
p1= pJa’t; supposed to give more accurate results than 1200 s — the nu-
P2 = pJa’?, merical solution converges to the exact solution as the time

Geosci. Model Dev., 3, 69-85, 2010 www.geosci-model-dev.net/3/69/2010/
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Fig. 1. A view on Polyphemus design: database storing all raw data, preprocessing stages for most physical computations, drivers in which
the numerical solver is embedded, postprocessing and libraries that may be called at any time.

step tends to 0. Therefore, a higher probability is associ- In the second stage, the numerical solver carries out the
ated with the time step fixed to 600s. Another example istime integration of the reactive transport equation. The nu-
the chemical mechanism RACM which is more detailed thanmerical solver is actually embedded in a structure called the
RADM 2, and which has shown slightly better results in sev- “driver”. The driver is primarily in charge of perturbing the
eral studies (Gross and Stockwell, 2003). input data as detailed in Sect. 3.1.

At a postprocessing stage, the ensemble is completely gen-
erated and the results are analyzed. At all stages, a few li-

The structure of the Polyphemus system contains fowbraries, mainly in C++ and Python, offer support, especially
for data manipulation.

(mostly) independent levels: data management, physical pa-
rameterizations, numerical solvers and high-level methods Disk space usage is optimized since the models can share
such as data assimilation. Figure 1 illustrates the structur@art of their preprocessing. Moreover, the perturbed input
of the modeling platform. fields (Table 2) are not stored; only the unperturbed fields
During the first stage, several C++ programs carry out thelmedians) are stored, and the driver applies the perturbations
preprocessing. This is the most important part of the sim-during the simulation.
ulation process, both in terms of simulation definition (the Python scripts generate the identities (i.e., the set of op-
physics is set there) and computer code. Almost all termdions and perturbations) of all models to be launched. The
of the reactive transport Eqg. (1) are computed at this stagecorresponding configuration files are created. The scripts
The computations are split into several programs to ensur¢hen launch the preprocessing programs and the simulations.
flexibility. For instance, there is one program to process landThe simulations can obviously be run in parallel, so the
use cover (actually two programs: one for USGS data andscripts can launch the programs over SSH on different ma-
another for GLCF data), one program for the main meteoro-chines and processors. The only constraint lies in the de-
logical fields, one program to compute biogenic emissionspendencies between the programs: e.g., the deposition ve-
another program for anthropogenic emissions, etc. Anothefocities must be computed after the meteorological fields be-
example is the vertical diffusion coefficient: one program cause they depend on winds (among other fields). Groups of
computes it with Louis parameterization and another withprograms are defined with different priorities, and the scripts
the Troen&Mahrt parameterization. In addition, these pro-launch one group after the other. It is possible to relaunch
grams have several options (e.g., the paramgtén the parts of the ensemble computations. It is also possible to add
Troen&Mabhrt parameterization, see Eq. 7). The use of multi-new models (new simulations) after an initial ensemble has
ple programs makes it an efficient system to build an ensembeen generated. The Python code is available in the module
ble. Adding new options is easy since one may simply addEnsembleGeneration, from Polyphemus 1.5.

a new program (or add the option into an existing program). The same approach may be applied to another modeling
Moreover the computations are well managed. For examplegystem providing enough options (in the model formulation)
if two models have the same options except the depositioryre available. This requires that significant diversity is main-
velocity, all computations except those depending on depotained in the system. In particular, when a new formulation
sition (i.e., the computation of the deposition velocities, and(e_g_, a more accurate chemistry) is developed, the previous
the numerical integration of the reactive transport equation)formulation should remain available to the user. The ratio-
will be shared. nale is that, while a formulation may seem better from a

3.2 Technical aspects
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95 . . . . 4.1 Experiment setup

In Table 1, a probability is associated with every option. The
models are built according to these probabilities, but the ac-
tual frequency of an option in the 101-member ensemble may
differ slightly because of the random sampling. The occur-
rence frequency (in percentages) of each parameterization,
numerical option and field perturbation in the 101-member
ensemble are shown in Table 3. For the field perturbations,
there are three options: no perturbation (raw data), increased
0 20 40 60 80 100 values in the field g« if p >0, or p+a) and decreased val-
Number of simulations ues (Sect. 3.1).

The six additional models can be seen as reference models.
Fig. 2. The empirical mean of the ozone peaks averaged over allThey are built with the parameterizations that we trust the
stations of network 1 gnd during 2001. It seems to have convergegnost, and without any perturbation in the input field. If we
after about 70 simulations. had to build a model for forecast, we would a priori choose
one of them. They are formed with the parameterizations
and numerical options from the first column of Table 1 but

deterministic point of view (based on a priori considerations for the vertical diffusion parameterization and the mass con-

or on performance analysis), the previous formulation still S€rvation. Considering the three options for vertical diffu-
has a significant probability (though lower than that of the Sion (line 5) and the two options for vertical-wind diagnosis

Concentration

70

new formulation) from a stochastic point of view. (line 13), six models may be constructed. These are listed in
Table 4.
4 An example of 101-member ensemble 4.2 Evaluation of the ensemble members

With the previous method, about 620 billion models can4.2.1 Performance measures
be generated. An ensemble of 101 models is built and )
run throughout the year 2001 over Europe ([16X6 In (_)rderto evalu_ateamodel performanneavallable obser-_
22.7% E]x[34.75° N, 57.75 NJ). The models are not sim- vationso; from (_jlffer_ent ground stations are cqmpared with
plified to reduce the computational costs. All models have ath€ corresponding simulated concentratipnaising
0.5 horizontal resolution, which is a usual resolution. Be-
cause the total computational cost is high, the ensemble size
is limited to 101 simulations. This size is enough at least
for the spatio-temporal empirical mean (of ozone peaks) to RMSE=
converge, as shown in Fig. 2.

Six reference models are included in the ensemble. These
models are not generated automatically, but each of them cor-
responds to a possible combination of options in that they

1. the root mean square error:

could have been selected by the automatic procedure. 2. the correlation:

Aerosols are not taken into account in these simulations. Y (yi— ) (0i — &)
The output stored on disk are the hourly concentrations in corr= =17 d ,
the first layer for @, NO, NO, and SQ — which already \/Z:'l:l(yi —5)2\/2?:1(@ —5)2
amounts to 45 Gb of data.

Section 4.1 briefly summarizes which members are in-  whereo=)"7 ;0; andy=3"7_;yi;

cluded in the ensemble. Although this paper is a technical

description of the ensemble generation procedure, we aim 3. the bias factor:

to provide insight into the ensemble structure. We review 1Ny
the performance of the models, compared to ground obser- BF= ;Z;-
vations, in Sect. 4.2. We analyze the spread of the ensemble i=1"

in Sect. 4.3. We do not address more complex issues like |, oo tice. not all observations are retained. Stations that
probabilistic forecasts, uncertainty estimation or sequentlalra” to provide observations at over 10% of all considered

aggregation. dates are discarded as these stations may not be reliable.
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Table 3. Occurrence frequency of each parameterization, numerical option and field perturbation for the 101-member ensemble. As for the
perturbations, “raw” means no perturbation, “raivmeans lower value after perturbatiop /o or p —«) and “raw™” means higher value

after perturbationgo or p +«).

# Option

Physical parameterizations

1. Land use cover USGS (50) GLCF (50)

2. Chemistry RACM (61) RADM 2 (39)

3. Attenuation RADM method (50) ESQUIF (50)

4. CRH Depends oa (75) Two layers (25)

5. K, T&M (44) Louis (30) Louis stable (26)
6. Deposition velocity Zhang (55) Wesely (45)

7. CoefficientRa Heat flux (74) Moment flux (36)

8. Emissions vertical distribution Low (54) Medium (46)

9. Photolysis rates JPROC (88) Zenith angle (12)

Numerical issues

10. Time step 600s (91) 1200s (9)

11. Vertical resolution 5 layers (48) 9 layers (52)

12. First layer height 50 m (40) 40m (60)

13. Vertical-wind diagnosis dipyV) =0 (52) diMV) =0 (48)

14.  Minimal K, (m?s1) 0.2 (66) 0.5 (34)

15. Minimal K, in urban area (fs™1) 0.2 (30) 0.5 (35) 1.0 (35)
16. Vertical application of minimak, Yes (84) No (16)

17. Exponenp 2 (75) 3(25)

18. Boundary layer height raw value (61) +10% (18) -10% (7) +20% (14)
Input data

19. Temperature (K) raw (39) raw(34) rawt (27)
20. Horizontal-wind angle (degrees) raw (35) ra@B1) rawt (34)
21.  Horizontal-wind velocity (msl) raw (36) raw (40) rawt (24)
22. K, (m?s1) raw (33) raw (32) rawt (35)
23. O3 boundary conditions (ug ﬁ?’) raw (33) raw (36) raw™ (31)
24. NOy boundary conditions (pg 1) raw (29) raw” (35) raw™ (36)
25. VOCs boundary conditions (ugT) raw (35) raw” (37) rawt (28)
26. Biogenic emissions raw (34) raw(28) raw’ (38)
27. NGO emissions raw (34) raw (35) raw" (31)
28. VOCs emissions raw (27) raw(25) rawt (48)
29. Deposition velocities (cnTs) raw (35) raw (32) rawt (33)
30. Photolysis rates raw (34) raw(37) rawt (29)

For ozone, the observations from three networks are con- — Network 3 includes 371 urban and regional stations in
sidered: France. It provides 2 800 000 hourly measurements and
122 000 peaks. Note that it includes most of the French

— Network 1 is composed of 243 urban and regional sta- stations of network 1.

tions, primarily in France and Germany (116 and 81 sta-
tions respectively). It provides about 1 365000 hourly

concentrations and 61 000 peaks. 4.2.2 The models’ performance on ozone

— Network 2 includes 96 EMEP stations (regional stationsTaple 5 shows the performance of the six reference mod-
distributed over Europe), with about 776 700 hourly ob- e|s for 0zone and of the best model in the ensemble. The
servations and 33 300 peaks. best model is selected with respect to the RMSE for the
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Table 4. Description of the 6 reference models.

# Vertical diffusion Vertical-wind
diagnosis
RO. T&M div(pV)=0
R1. T&M div(V)=0
R2. Louis stable — T&M unstable dipV)=0
R3. Louis stable — T&M unstable diV)=0
R4. Louis dipV)=0
R5. Louis diV)=0

considered network and target (ozone peaks or ozone hourly
concentrations). It is noteworthy that, except for network 2
and for hourly concentrations, there is always at least one
model in the 101-member ensemble which is better than the
six reference models (according to the RMSE and the cor-
relation). The automatic generation of 101 models therefore
created models that are as good as or better than the models
derived from experience.

It also generated models with poor performance. Figure 3
shows the performance of the 101 models sorted according
to the mean, biais factor, correlation and RMSE. The perfor-
mance can obviously vary greatly.

4.2.3 The best model

In this section, we define the “best model” as the model
with the lowest RMSE. Of course, it depends on the target
(the network, the pollutant, the time period), and consider-
ing the RMSE only is not enough to identify the best model,
if any can be identified, as a modeler would do. Still this
gives insights on the performance of models automatically
generated.

Model 98 in the 101-member ensemble is the best model
for ozone peaks on network 1, for ozone hourly concentra-
tions and ozone peaks on network 2 (Table 5). For these tar-
gets, it beats the reference models. Several parameterizations
and numerical options of model 98 are the same as those of
the reference models (photolysis rates, deposition velocities,
time step, etc.), but several selected options are unexpected.
For instance, its chemical mechanism is RADM 2, and four
fields are perturbed. See Table 6 for the complete description
of model 98. It is interesting to note that (1) the random sam-
pling generates several models with good performance (com-
pared to the observations, with the RMSE), (2) the random
sampling generates a model with lower square errors (over a
long time period) than the models tuned by the modelers.

27 ug m 3 and the median correlation is close to 0.73.
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Table 5. Statistical measures for the 6 reference models and the best model from the 101-member ensemble, for hourly ozone concentrations
and hourly ozone peaks. R0-5 refer to the 6 reference models.

# BF mean corr RMSE # BF mean corr RMSE
Network 1 — Hourly Network 1 — Peak

RO. 106 620 0.67 28.09 RO. 1.10 85.1 0.76 24.54

R1. 096 555 0.68 2555 R1. 100 769 0.77 23.19

R2. 121 723 0.68 31.19 R2. 1.13 87.1 0.78 24.49

R3. 110 651 0.68 26.85 R3. 1.03 788 0.78 22.82

R4. 0.89 511 069 2587 R4. 098 756 0.79 23.30

R5. 0.82 46.9 0.70 25.74 R5. 091 70.1 0.78 23.95

48. 09 51.81 0.73 22.42 98. 1.08 836 0.80 2254

RO. 099 652 064 2528 RO. 1.06 84.2 0.73 21.66

R1. 090 59.0 064 24.90 R1. 097 76.7 073 2151

R2. 112 741 065 2574 R2. 1.09 860 0.74 21.22

R3. 1.02 673 0.65 23.52 R3. 099 784 0.74 20.74

R4. 0.83 542 066 26.47 R4. 093 744 074 23.36

R5. 0.77 501 0.66 27.75 R5. 0.87 695 0.73 24.80

98. 105 69.1 0.67 24.02 98. 1.04 826 0.7620.24

RO. 1.12 651 0.64 31.18 RO. 1.15 86.0 0.76 26.59

R1. 101 580 066 27.21 R1. 104 773 0.76 23.98

R2. 127 752 0.66 35.98 R2. 118 88.0 0.77 27.09

R3. 115 674 0.67 3044 R3. 1.06 792 077 24.15

R4. 096 543 0.68 26.34 R4. 102 769 079 23.09

R5. 0.89 49.7 0.69 25.13 R5. 095 711 0.79 2279

48. 093 528 0.72 23.29 99. 091 685 0.81 2241
4.3 Ensemble variability 0 20 40 60 80 100

Op—— ORI L e

Every model in the ensemble is unique, but one may ask e L R R T e e 24
whether the ensemble contains enough information and has 20} | =™ o 21
a rich structure. For example, the ensemble should not be & e e i 18
clustered into distinct groups of similar models. One mea- 40k Feginy i 15
sure of the difference between two models is the number of A R e N e R
options that differ between them. Interestingly enough, two 60 B e ity e 12
models with a similar RMSE can be made with many dif- I'—.-:'— _-.'_-*-w._ o L 9
ferent options: for example models 98 and 58, which have .| e S M L g 6
close RMSEs (254 and 2365 respectively, ozone peak, net- :. Pl A O 3
work 1), are generated with 17 different options (out of 30) | %, 2 0

shown in Table 7. This fact can be observed with the whole

ensemble. In Fig. 4, the models are sorted according to the'{:ig. 4. Matrix of the number of different options between two mod-

RMSE for ozone peaks on network 1 (model 0 has the 10w-g|g The models are sorted according to the RMSE (from the best to
est RMSE, and model 100 has the highest RMSE), and thehe worst value).
matrix of the differences between the models (measured with
the number of differing options) is shown. No overall struc-
ture can be identified. This tends to show that quite different On the other hand. the output of the best models are corre-
models can achieve similar performance. The RMSE, seen o » the oulput .

. szxted. This is shown in Fig. 5 with the correlation computed
as a function of the parameters, seems to have many local. . .
minima with all ozone peaks observed in network 1. Two skillful

models therefore have a similar spatio-temporal variability.
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Table 7. A comparison between the model 98 and 58.

0
0.96
20 0.90 Name Model 98 Model 58
0.84 Chemical Mechanism RADM 2 RACM
40 0.78 Cloud attenuation ESQUIF RADM
. Critical relative humidity on 2 layers with
= 0.72 Vertical diffusion Troen & Mahrt  Louis
60 0.66 unstable —
32 Louis stable
80 e 0.60 CoefficientRa Heat flux Moment flux
3 0.54 Vertical resolution 5 levels 9 levels
100 0.48 Time step 600s 1200s
Exponentp for K 3 2
Fig. 5. Matrix of correlation between all observed ozone peaks (on  Firstlayer height 40m 50m
network 1) and the corresponding model-concentrations. The mod- ~ Minimal K inurbanarea 1.0 0.5
els are sorted according to the RMSE (from the best to the worst ~ €mperature N raw raw
value). NOx boundary condm_o_ns raw ratv
VOCs boundary conditions  raw raw
Biogenic emissions raw raw
Table 6. Description of the best model. NOy emissions raw raw
VOCs emissions raw raw
# Name Deposition velocities raw raw

Physical parameterizations

Land use cover
Chemistry
Attenuation
CRH

K

agrwNPE

Deposition velocity
CoefficientRa

Emissions vertical distribution
Photolysis rates

©® N

Numerical issues

10. Time step

11. \Vertical resolution

12.  First layer height

13. Mass conservation

14. Minimal K, (m?s™1)

15.  Minimal K, in urban area (fs 1)
16. \Vertical application for minimak ;
17. Exponenp

18. Boundary layer height

Input data
19. Temperature (K)
20. Horizontal-wind angle (degrees)
21. Horizontal-wind velocity (ms?)
22. K, (m?s™}
23. O3 boundary conditions (g nv)
24. NO boundary conditions (ug m)
25. VOCs boundary conditions (ugT)
26. Biogenic emissions
27. NGO emissions
28. VOCs emissions
29. Deposition velocities (nTg')
30. Photolysis rates

GLCF
RADM 2
ESQUIF
Two layers
T&M unstable —
Louis stable
Zhang
Heat flux
Low
JPROC

600s
5layers
40m
diwV)=0
0.2
1.0
Yes
3
raw value

rawv
raw
raw
raw~
raw
raw
raw
rav
raw
raw
raw
raw
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These high correlations are partly due to the structure of
ozone fields. Because of the physical constraints, two reason-
able ozone fields necessarily share a set of common features,
such as higher concentrations in the south compared to the
north, or low concentrations at high NO emission sources.
However, two skillful models can show significant differ-
ences in their spatial patterns, as Fig. 6 demonstrates.

Figures 7, 8, 9, and 10 show the temporal mean of the con-
centration map of the fifth reference model and of a model
from the 101-member ensemble, fog, NO, NGO, and SG
respectively. Again, the physical constraints make the mod-
els reproduce specific features, like high NO concentrations
only at emission locations, but significant differences are
found.

Figures 11 shows the mean daily profiles of all models
from the 101-member ensemble, fog,NO, NGO, and SG
respectively. For the specieg@nd NQ, the daily profiles
are computed on network 3 whereas the daily profiles for
the species NO and SCare computed with all cells. All
models produce a similar profile shape, which is due to the
physical phenomena accounted for in every model and the
fact that these profiles are highly averaged (whole year, and
full domain or all stations). The means can differ a lot, and,
obviously, not all models are equally likely.

Nevertheless, even if the average performance of a model
is very low, it may produce the best forecast at some loca-
tion or some date. In other words, from a stochastic view-
point, the model may have a very low probability, but it is
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Fig. 6. Ozone map of model 98 (left) and model 58 (right), on 5 May 2001 at 17:00 UT. Both models show good performance, but they can

produce ozone fields that differ significantly.
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Fig. 7. Temporal average of ozone map for reference model 5 (left) and for model 76 of the 101-member ensemble (right).
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Fig. 8. Temporal average of NO map for reference model 5 (left) and for model 52 of the 101-member ensemble (right).
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Fig. 9. Temporal average of Nmap for reference model 5 (left) and for model 90 of the 101-member ensemble (right).
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Fig. 10. Temporal average of SOmap for reference model 5 (left) and for model 88 of the 101-member ensemble (right).
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Fig. 11. Daily profile for ozone fetwork 3), NO, NO, (network 3) and SQ. The profile is computed at observation stations farad
NO>. Itis computed with all computed values (that is, from all grid cells) for NO and.SO

still likely to produce the best forecast. This can be verified5 Conclusions
with a “map of the best-model index”. At a given date, the
best model in each grid cell is determined as follows. TheThis paper describes how a large ensemble may be automat-
concentrations of the models and the observed concentratioigally generated using the Polyphemus system. Contrary to
at the closest station (to the grid cell) are compared. Themost traditional approaches, which are based on perturba-
model that produces the closest concentration to the observetbns of input data only, or on small ensembles of models
concentration is considered as the best model in the grid celrom different teams, our approach takes into account all
Hence, in every grid cell, one “best model” is determined. A sources of uncertainties at once: input data, physical formu-
color is associated to each model (actually each model indexjation and numerical formulation. Each member of the en-
to generate the maps in Fig. 12. These maps show the bestmble is a complete chemistry-transport model whose con-
model for three different dates in June 2001. The best modelents are clearly defined within the modeling platform. In
varies frequently from one grid cell to another, and from onethis context, the ensemble and the differences between its
date to another. This shows that many models bring usefumembers can be rigorously analyzed, and also controlled
information, at least in some regions or on given dates. through the probabilities associated with every option. Our
approach tries to combine the flexibility of Monte Carlo sim-
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Fig. 12. Maps of best-model indexes. In each grid cell of the domain, the color shows which model (marked with its ifidlebQGH) gives
the best ozone peak forecast on 1, 11 and 13 June 2001 at the closest station to the cell center. It shows that many models can deliver the be
forecast at some point. Stations of network 1 are used. Of course, the colors are only reliable in regions that contain stations.

ulations (large ensembles of simulations with perturbed in- The ensemble given as example includes 101 photochemi-
put data) and the completeness of a multimodel ensembleal models generated and run for the year 2001, over Europe.
(models with alternative physical parameterizations, like in The ensemble has a wide spread for all chemical species. The
ensembles made of a few models from different teams). models show a strong diversity both in their formulation and
In the ensemble, each model is defined by a unique setheir performance. Many of them appear to be the best in
of physical parameterizations, numerical schemes and inputnany different regions and periods.
data. Hence building a model means picking an option for Many research issues are related to this procedure. One re-
every alternative that the system provides. The options aréates to the choice of the models to be included in the ensem-
associated with probabilities — depending on how reliable theble. How many models should be included for the ensem-
option is supposed to be — and they are randomly selected. lhle to properly represent the uncertainties? Which models
addition, input data is sampled from normal or log-normal should be included? What probabilities should be associated
distributions. with the options, and what distributions should be given to
The computations are carried out, from the preprocessinghe input data? How should meteorological ensembles be
to the actual simulation, using small programs whose outpuintegrated? Other research issues may deal with the best
results may be shared by different models. This minimizesstructure for an ensemble. How does our procedure com-
computational costs and increases flexibility. Thanks to thepare with other approaches, such as Monte Carlo simulations
automatic procedure, the configuration and the generation obr small ensembles based on models from different teams?
an arbitrarily-large ensembile is straightforward. The methodHow much information on the uncertainties is provided by
can be applied to any simulation with Eulerian models in the different approaches?
Polyphemus, such as simulations over a smaller region, or
simulations with aerosols.
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Table Al. Emission distribution in percentages for each level and for each SNAP category. Combustion in energy and transformation

industries (S1); non-industrial combustion plants (S2); combustion in manufacturing industry (S3); production processes (S4); extraction
and distribution of fossil fuels and geothermal (S5); solvent use and other product use (S6); road transport (S7); other mobile sources
machinery (S8); waste treatment and disposal (S9), and agriculture (S10).

SNAP Low Medium

ground 0-50m 50-150m 150-300m>300m ground 0-50m 50-150m 150-300 m>300m
S1 0 28.6 71.4 0 0 0 13.8 34.5 51.7 0
S2 125 50 375 0 0 6.6 26.7 66.7 0 0
S3 0 28.6 71.4 0 0 0 13.8 34.5 51.7 0
S4 25 75 0 0 0 22.2 77.8 0 0 0
S5 25 75 0 0 0 22.2 77.8 0 0 0
S6 100 0 0 0 0 100 0 0 0 0
S7 100 0 0 0 0 100 0 0 0 0
S8 100 0 0 0 0 100 0 0 0 0
S9 0 28.6 71.4 0 0 0 13.8 34.5 51.7 0
S10 100 0 0 0 0 100 0 0 0 0

Appendix A Debry, E., Fahey, K., Sartelet, K., Sportisse, B., and Tombette,

M.: Technical Note: A new Slze REsolved Aerosol Model
(SIREAM), Atmos. Chem. Phys., 7, 1537-1547, 2007,
http://www.atmos-chem-phys.net/7/1537/2007/.

As described in Sect. 2, anthropogenic emissions are proESQUlFZE'[Ude et simulation de la quaide I'air enile de France

vided by EMEP. The vertical distribution of the pollutants _ —rapport final, 2001.

depends on SNAP category. Two vertical distributions areEvensen, G.: Sequential data assimilation with a nonlinear quasi-
geostrophic model using Monte Carlo methods to forecast error

Ejﬁgé?ih;ep?rgirl'eaizvdlsmbuuon and a medium distri- statistics, J. Geophys. Res., 99, 10143-10162, 1994.
’ Galmarini, S., Bianconi, R., Klug, W., Mikkelsen, T., Addis, R., An-
dronopoulos, S., Astrup, P., Baklanov, A., Bartniki, J., Bartzis,
J. C., et al.: Ensemble dispersion forecasting — Part |: concept,

Emissions from EMEP
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