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Abstract

Purpose Purpose of this study is to evaluate plan quality on the MRIdian (Viewray Inc., Oakwood Village, OH, USA)

system for head and neck cancer (HNC) through comparison of planning approaches of several centers.

Methods A total of 14 planners using the MRIdian planning system participated in this treatment challenge, centrally

organized by ViewRay, for one contoured case of oropharyngeal carcinoma with standard constraints for organs at risk

(OAR). Homogeneity, conformity, sparing of OARs, and other parameters were evaluated according to The International

Commission on Radiation Units and Measurements (ICRU) recommendations anonymously, and then compared between

centers. Differences amongst centers were assessed by means of Wilcoxon test. Each plan had to fulfil hard constraints

based on dose–volume histogram (DVH) parameters and delivery time. A plan quality metric (PQM) was evaluated. The

PQM was defined as the sum of 16 submetrics characterizing different DVH goals.

Results For most dose parameters the median score of all centers was higher than the threshold that results in an ideal score.

Six participants achieved the maximum number of points for the OAR dose parameters, and none had an unacceptable

performance on any of the metrics. Each planner was able to achieve all the requirements except for one which exceeded

delivery time. The number of segments correlated to improved PQM and inversely correlated to brainstem D0.1cc and to

Planning Target Volume1 (PTV) D0.1cc. Total planning experience inversely correlated to spinal canal dose.

Conclusion Magnetic Resonance Image (MRI) linac-based planning for HNC is already feasible with good quality.

Generally, an increased number of segments and increasing planning experience are able to provide better results regarding

planning quality without significantly prolonging overall treatment time.

Keywords MR-adaptive treatment planning · Step-and-shoot IMRT · MR-guided radiation therapy · Treatment plan

comparison · Low field magnetic resonance imaging

Introduction

In recent years various advances in image-guided radiother-

apy (IGRT) have led to improved precision and accuracy

in radiation treatment delivery for head and neck cancer

(HNC) [1–3]. Three-dimensional image guidance for pa-

tient setup allows corrections and could also reduce fail-
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ures caused by anatomical changes of tumor or other or-

gans, e.g., in case of weight changes during the 6–7-week

treatment [4, 5]. Furthermore, the ultimate goal of all novel

radiotherapy application techniques is reduction of toxicity,

which has already been demonstrated for step-and-shoot

intensity-modulated radiotherapy (IMRT) in the past [6].

The vast majority of linear accelerators (linacs) used for

HNC treatment nowadays have integrated cone-beam com-

puted tomography (CBCT) or, in the case of tomotherapy,

megavoltage (MV) computed tomography (CT) for image

guidance [1, 7]. Although these CT scans can detect some

anatomical changes and allow patient positioning based on

radiopaque structures like bone or metal fiducials, image

guidance is generally suboptimal due to low soft tissue

contrast, artefacts (e.g., caused by denture or internal fixa-
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Fig. 1 Planning MRI image and PTV contours of the clinical case used

in the planning challenge. Three dose levels depicted in red (70Gy),

blue (59.4Gy), and green (54Gy). MRI magnetic resonance imaging,

PTV planning target volume

tion plates), and increased noise level. Furthermore, x-ray-

based IGRT leads to additional dose exposure in this sensi-

ble region, leading to enhanced deterministic and stochastic

risks like cataracts and secondary malignancies, especially

if daily imaging is needed [8]. Hybrid platforms consist-

ing of a linac with integrated magnetic resonance imaging

(MRI) have gained approval for clinical use only in the last

few years, allowing superior soft tissue contrast and live

imaging during beam application, without additional expo-

sure to ionizing radiation [9]. These features could lead to

the future establishment of MR linacs as the optimal plat-

forms to treat diseases like HNC. In such cases, a relatively

high radiation dose has to be applied with a steep gradient

to low x-ray contrast organs at risk (OARs) like salivary

glands and pharyngeal constrictor muscles. For these pa-

tients both coverage of the planning target volume (PTV)

and maximal sparing of OARs are crucial, as they are usu-

ally treated with full curative intent and late sequelae with

impairment of life quality are a common problem after head

and neck irradiation.

In this study, we evaluated the different planning

approaches used amongst MRIdian (MRIdian System;

ViewRay Inc. Oakwood Village, OH) users. We aimed

to investigate application features and feasibility of this

approach, with the ultimate goal to improve our plan qual-

ity and consequently implement the benefits of MR linac

technology in standard routine for the majority of HNC

cases in the near future.

Methods

Case selection

A pre-contoured real-life case of a patient with cT4b cN1

p16-negative squamous cell carcinoma of the posterior

oropharyngeal wall was distributed to all participating cen-

ters through an online platform. Contouring of high- and

intermediate-risk target volumes and neck lymphatics was

performed according to international recommendations [10,

11]. An approach according to the guidelines published by

Gregoire et al. [11] for clinical target volume (CTV) defini-

tion and Biau et al. [10] for the selection of the lymph node

target volumes to be irradiated was used. Briefly, a Gross

Target Volume (GTV)-to-CTV margin of 10mm cropped

for anatomic boundaries (e.g., air, bone) was adopted for

CTV2 (59.4Gy) and of 5mm for CTV1 (69.96Gy). The

CTV-to-PTV margins amounted to 3mm for all three PTVs

[12]. The consensus guidelines published by Brouwer et al.

[13] were used for definition of OARs. Representative im-

ages can be seen in Fig. 1. The prescription was on three

dose levels with a simultaneous integrated boost (SIB)

technique in 33 factions: 69.96Gy should be applied to

the high-risk volume (PTV1), 59.4Gy to the intermediate-

risk volume (PTV2), and 54Gy to the “elective,” low-risk

volume (PTV3). The patient signed informed consent for

data and image use (including the MRI images presented

here) according to institutional standards.

The planning MRI consisted of an MRI simulation image

in the treatment position performed on the MRIdian system

(0.35T). One imaging sequence is currently available on

the MRIdian system, which is a True FISP, which gives

a mixture of T2-/T1-weighted contrast. The planning MRI

was a high-resolution (1.5mm× 1.5mm× 1.5mm resolu-

tion) MRI image with a field size of 50cm× 45cm× 43cm,

which gives an acquisition time of 172s. A CT simulation

image was also included to use for dose calculation, which

was imaged with 120 kV and 3-mm slices in the treatment

position. The patient was positioned on a head coil which

was placed over a head rest, then a thermoplastic mask was

placed over the patient and these items, and finally, the top

head coil was positioned. An example of the positioning

can be viewed in Supplementary Fig. 1.

Platform and planning specifications

All of the important planning constraints were distributed to

the participating centers before planning and can be found

in Supplementary table 1.

This treatment planning challenge was organized by

ViewRay and held on the ProKnow (ProKnow LLC.,

Sanford, FL, USA; https://proknowsystems.com/) online

platform. Participants had 1 month to download the dataset

from the ProKnow platform and create a treatment plan

for this case. All plans were created using the ViewRay

treatment planning system (TPS) which uses a Monte Carlo

(MC) dose calculation algorithm taking into account the

magnetic field of 0.35 T. Inverse optimization using ob-

jectives and constraints was used to create step-and-shoot

IMRT plans [14]. The CT was registered to the planning

K
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Fig. 2 Scoring criteria as displayed on the ProKnow website created by ViewRay (Oakwood Village, OH, USA). PTV1 high-risk volume, PTV2 in-

termediate-risk volume, PTV3 low-risk volume, PTV planning target volume

MRI in the TPS using deformable image registration with

default settings. The electron density of this deformed CT

image was then used for dose calculation of all submitted

plans. Once a plan had been created, participants were able

to upload this plan onto the ProKnow platform. Afterwards,

the plans were analyzed based on a scoring scheme created

in conjunction with ViewRay. Each plan was then awarded

a score out of 150 points. The delivery time (gantry and

multileaf collimator [MLC] and beam-on time) of the plan

had to be 20min or less according to the treatment planning

system, and the plans were to be calculated with the beam

model of the local department of the planner.

Challenge criteria and parameters

The scoring criteria for this challenge were based on

conformity of the prescription doses, sparing of OARs,

and coverage of PTVs. One of the evaluated param-

eters was the conformation number (CN), defined as

TVRI* (TVRI) / (TV* VRI), with TVRI being the target

volume (in this study PTV3) covered by the reference dose

(cc), TV the total target volume (cc), and VRI the volume

of the reference dose (cc). In total, 16 dose metrics were

evaluated and are displayed in Fig. 2. For some metrics

a range of points were available, depending on whether

the dose achieved was deemed unacceptable, marginal,

acceptable, good, or ideal in relation to what would be

clinically acceptable. Other objectives for critical OARs

were binary with pass or fail, scoring 0 points for any

criteria not achieved (see Fig. 2 for scoring criteria). The

sum of scores on all dose parameters results in a final score

called the plan quality metric (PQM). Plans were defined

as unacceptable if the total treatment time was longer than

20min or if the PTV or OAR dose did not meet the con-

straints. 14 submissions were received and uploaded to this

platform for analysis. Planners were also asked a few short

questions about the amount of planning experience they

had in general, and with the MRIdian system.

Statistical analysis

All dose metrics have a threshold value that results in max-

imum points. For all dose parameters, the relative deviation

from the maximum points threshold values were calculated.
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Table 1 Contains the descriptive statistics of all the metrics evaluated in this study

Mean± SD Median [range] Q0.25 Q0.75

PTV1 D95% [Gy] 67.5± 1.2 67.0 [66.2–69.7] 66.7 68.5

PTV1 D0.1cc [Gy] 74.1± 1.3 73.9 [72.0–76.6] 73.5 74.3

PTV2 D95% [Gy] 59.0± 1.0 58.9 [57.5–60.8] 58.3 59.9

PTV3 D95% [Gy] 52.4± 0.8 52.6 [50.7–53.5] 52.3 52.9

PTV3–PTV2 V56.7 Gy [%] 22.3± 7.8 21.6 [8.3–35.8] 20.1 24.9

PTV3 conformation 0.7± 0.0 0.7 [0.7–0.8] 0.7 0.7

Spinal canal D0.1cc [Gy] 44.0± 2.4 43.4 [39.0–48.8] 42.7 45.6

Parotid gland left Dmean [Gy] 22.0± 1.5 22.3 [17.8–23.8] 21.6 22.8

Parotid gland right Dmean [Gy] 26.4± 1.4 26.0 [24.4–29.1] 25.6 27.0

Brainstem D0.1cc [Gy] 42.1± 4.0 42.1 [35.7–48.9] 39.2 43.8

Brachial Plexus D0.5cc [Gy] 51.2± 1.6 51.6 [48.5–53.6] 49.9 52.2

Brain D0.1cc [Gy] 48.5± 2.9 49.7 [43.2–52.4] 46.5 50.6

Esophagus D0.1cc [Gy] 44.5± 2.7 44.4 [39.7–49.1] 42.8 46.4

Glottis Dmean [Gy] 42.3± 1.9 42.9 [39.1–44.9] 41.2 43.4

Mandible D0.1cc [Gy] 59.7± 2.4 59.5 [56.9–64.8] 57.6 61.1

Oral cavity Dmean [Gy] 36.6± 3.5 36.0 [32.6–44.9] 34.1 39.2

Plan quality metric (max 150) 140.1± 6.5 141.5 [127.0–148.0] 138.5 143.8

OAR points (max 72) 70.3± 1.8 70.4 [67.5–72.0] 69.4 72.0

PTV points (max 78) 69.7± 5.5 71.4 [57.3–76.0] 66.7 73.4

Number of beams 21.1± 13.5 17.5 [11.0–60.0] 13.3 22.5

Number of MU 918.9± 232.7 909.5 [539.0–1474.0] 782.3 990.0

Number of segments 147.6± 24.2 139.0 [114.0–208.0] 131.8 163.0

Beam-on time [min] 1.5± 0.4 1.5 [0.8–2.5] 1.3 1.6

Total delivery time [min] 18.7± 1.7 18.8 [14.9–22.4] 17.8 19.6

Planning experience [years] 9.2± 6.9 7.0 [2.0–20.0] 3.1 14.3

ViewRay planning experience [years] 1.1± 0.6 1.0 [0.0–2.0] 0.6 1.4

Q0.25 first quartile, Q0.75 third quartile, OAR organ at risk, PTV planning target volume, PTV1 high risk volume, PTV2 intermediate risk volume,

PTV3 low risk volume, MU monitor units, Dmean mean dose, min time in minutes, Dx dose recieved by respective volume, Vx percentage volume

receiving xGy

Differences with respect to the threshold were assessed with

Wilcoxon signed-rank test. Besides dose metrics, beam-on

time, treatment delivery time, number of beams, number of

segments, number of monitor units (MU), and (ViewRay)

planning experience were reported. Spearman’s ρ correla-

tion coefficient was calculated to evaluate the correlation

between each of the metrics. The total points for only PTV

metrics and only OAR metrics were also included, to assess

whether overall performance on PTV criteria corresponded

to performance on OAR sparing. All statistics were per-

formed in R (version 3.6.2, R Core Team 2020, Vienna,

Austria), using the functions wilcox.test of the stats package

and rcorr of the Hmisc package. A correlation coefficient

above 0.7 was considered a strong correlation, above 0.5

was considered a moderate correlation, and below 0.5 was

considered a weak correlation. P-values below 0.05 were

considered significant.

Results

The detailed results for the 14 planners are included in

Table 1 and Fig. 3. Each planner was able to achieve all

the required constraints except for one planner for whom

the total treatment delivery time exceeded the allowed time

by 2.4min (see Fig. 3). The median (range) number of

beams used was 17.5 (11–60) and the median number of

segments 139 (114–208), resulting in a total number of

909.5MUs (539–1474), beam-on time of 1.5min (0.8–2.5),

and median total delivery time of 18.8min (14.9–22.4). The

median (range) IMRT planning experience for HNC of all

users amounted to 7 years (2–20) and the ViewRay planning

experience 1 year (0–2).

The boxplot in Fig. 4 represents the relative deviation of

the dose parameters with respect to the thresholds that result

in maximum points for that metric. Note that the boxplot

represents only ‘higher’ or ‘lower,’ which, depending on the

metric, corresponds to either ‘better’ or ‘worse.’ The param-

eters for which the median performance of all centers was

better than the threshold for maximum score are indicated
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Fig. 3 Descriptive statistics of all metrics evaluated in this study. PTV1 high-risk volume, PTV2 intermediate-risk volume, PTV3 low-risk volume,

PTV planning target volume

with a plus sign in the boxplot, whereas a minus sign was

used to indicate the opposite. The PTV1-D95%, PTV1-D0.1cc,

PTV2-D95%, and PTV3-D95% all deviate less than 7% from

the optimal. For all OAR dose parameters, except the Dmean

of the right parotid gland and the Dmean of the oral cavity,

the median score of all centers was better than the thresh-

old that results in maximum score. Six centers achieved the

maximum number of points for the OAR dose parameters.

None of the centers had an unacceptable performance on

any of the metrics.

Fig. 5 shows the correlation matrix for all metrics evalu-

ated in this study. Only correlation coefficients considered

as moderate (i.e., lower than –0.5 or higher than 0.5) are

displayed in the matrix. Significance levels are indicated as

estimated by the rcorr function in R. The number of beams

is moderately correlated to the number of MUs (p= 0.015),

the number of segments (p= 0.0081), and the beam-on time

(p= 0.0087). The number of MUs is also strongly corre-

lated to the beam-on time (p< 0.0001). No correlation was

observed between the number of beams and any of the

dose metrics. The number of segments is strongly correlated

to the brainstem-D0.1cc (p= 0.0022), and moderately corre-

lated to the PTV1-D0.1cc (p= 0.025). The total delivery time

is moderately correlated to two dose metrics: PTV3-D95%

(p= 0.0095) and Dmean of the oral cavity (p= 0.011). The

points total on the PTV metrics is only moderately corre-

lated to one OAR metric: brainstem-D0.1cc (p= 0.049). The

points total on OAR metrics is only moderately correlated to

one PTV metric: PTV3-D95% (p= 0.047). The correlations

between total OAR points and PTV metrics are shown in

Fig. 6.

Discussion

In recent years there have been a few comparative multicen-

ter planning studies, both for stereotactic body radiotherapy

(SBRT) [15–18] and for IMRT, even for HNC [19]. These

studies helped to share experiences for specific treatment

indications, and in some cases even led to long-term plan

improvement through targeted intervention, i.e., sharing the

best plans regarding sparing OARs with the other centers

[19]. However, to the best of our knowledge, this is the first

study comprising ViewRay TPS for HNC. Planning HNC

treatment on such platforms as the MRIdian system presents

some technical difficulties compared to the current standard.

In most high-volume centers, HNC treatments are planned

with volumetric modulated arc therapy (VMAT), which al-

lows the delivery of a highly conformal dose distribution in

a very short timeframe [20, 21]. The sole technique avail-

able with the MRIdian system is step-and-shoot IMRT. The

delivery time is therefore much longer than on a standard

linac (15–20min), mainly due to the slow MLC motion

and the gantry rotation speed. Additional limitations orig-

inate from limited beam angles (dead zone 30–33 degrees

and recommended avoidance of couch edges), the lack of

a collimator preventing the use of the MLC in different di-

rections, and no option to use more efficient delivery tech-

niques such as sliding window.

In the present planning study, we have demonstrated that

treatment plans of high quality and complexity for treating

HNC on the MRIdian platform resulting in reasonable treat-

ment delivery time can be achieved with sufficient IMRT

planning experience and through increasing the number of

segments used for a particular plan.
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Fig. 4 Relative difference of

all evaluated metrics with re-

spect to the value that results in

maximum score. The +’and –

signs on the right side indicate

whether the median performance

of all centers was better or worse

than the ideal, respectively.

Asterisks on the left indicate

whether the scores were signif-

icantly different from the ideal

score (*p< 0.05, **p< 0.01,

***p< 0.001). PTV1 high-risk

volume, PTV2 intermediate-risk

volume, PTV3 low-risk volume,

PTV planning target volume
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Recently developed hybrid machines consisting of a lin-

ear accelerator and integrated MRI (MR linacs) could allow

a) better visualization of tumor and organs at risk, such as

parotid glands during patient positioning and daily treat-

ment; b) daily imaging without additional radiation expo-

sure; c) reduction of established safety margins for the treat-

ment volumes; and, finally, d) frequent adaptation of target

volumes according to changes in patient weight and tumor

anatomy during the radiotherapy course. These procedures

would facilitate a high-precision treatment and help reduce

dose exposure of critical structures. MR linacs are already

in use in several centers worldwide and published studies

have shown that the quality of MR linac plans achieved

was sufficient and not inferior to other linacs for various

anatomical sites and diseases [21–23]. Authors from dif-

ferent institutions showed that MR-guided radiotherapy is

tolerated by the patients [24], compared MR-based plan-

ning with conventional linac-based stereotactic radiother-

apy [25], and discussed potential advantages [26]. These

studies mainly reported the clinical feasibility of stereotac-

tic body radiation therapy MR-guided radiotherapy, but data

for complex and large target volumes such as used for cu-

rative, conventional fractionated therapy like head and neck

treatments are still very rare, and all of the published studies

for HNC have been conducted either in non-linac (cobalt)

platforms, or had no specific focus on plan optimization

[27, 28]. These first applications appear encouraging: Chen

et al. have shown feasibility of MR-guided radiotherapy for

both primary cases and in the challenging situation of re-ir-

radiation of recurrent HNC [27, 29]. MR-adapted planning
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Fig. 5 Correlation matrix representing Spearman’s ρ correlation coefficients for all evaluated metrics in this study. Only correlations that are
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could allow for repetitive and more precise plan adaptations,

taking into account such challenges as weight loss, inter-

fractional differences, and organ and tumor motion [30–32],

which are all important problems of head and neck radio-

therapy. Advantages in this regard might allow for safer

and personalized radiotherapy in the future. The MRIdian®

technology, which was used in this study, combines 0.35T

MRI with a multileaf-collimator linac and has already been

described in detail before [9, 33–35]. Furthermore, various

methods and procedures for quality assurance of the system

are meanwhile also well established [31, 36–38].

The results of this study could demonstrate that IMRT

plans of relatively high quality can already be developed

after a median ViewRay user experience of about 1 year if
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Fig. 6 Plots indicating the relationship between different PTV dose parameters (y-axis) versus the total number of points achieved for OAR dose

parameters (x-axis). The dotted line represents the linear fit and the gray shaded areas represent 95% confidence intervals. OAR organ at risk,

PTV planning target volume, PTV1 high-risk volume, PTV2 intermediate-risk volume, PTV3 low-risk volume

the planner has gained sufficient experience with IMRT for

HNC in the past (in the present study a median of 7 years).

All of the plans developed would have been applicable and

acceptable in clinical routine without any compromises

in PTV or OARs constraints. Interestingly, 6/14 centers

could even achieve the maximal quality score possible for

OAR sparing. None of the centers were able to achieve

an ideal conformation number of 0.8, but 10/14 centers

achieved good performance within the range (0.7–0.8),

whereas 4/14 centers achieved acceptable performance

within range (0.6–0.7). Although none of the plans had

a marginal or unacceptable conformation number, the mod-

erate, negative correlation between conformation number

and several OARs shows the challenge of target coverage

and simultaneous OAR sparing. Other interesting corre-

lations between dose parameters and plan characteristics

were observed in this study (Fig. 5). Planning experience

was moderately correlated with improved planning results

for some specific OARs like spinal cord D0.1cc (ρ= –0.55) or

glottis Dmean (ρ= –0.55). In line with this observation, pre-

vious studies have demonstrated improved outcomes with

increasing planning experience for patients treated with
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IMRT for HNCs [39, 40], and other malignancies [41].

Intriguingly, the planning experience did not correlate with

the overall points scored in the present challenge. A pos-

sible explanation for this phenomenon could be that all of

the participants of this study originated from high-volume

centers, where the number of patients treated per time unit

and the resulting experience are already high [40]. Another

interesting observation of the present study was the signif-

icant correlation of the number of segments used and both

the “PTV points” (ρ= 0.76) and the PQM (ρ= 0.75), making

this the most important factor for plan quality. Although

a higher number of segments could generally correlate with

longer delivery times as has been shown before [42], this

was not the case with the present example. The relatively

high number of beams used by all of the participants (me-

dian 17.5) resulting in long delivery times could explain

the lack of significant association of segments and delivery

duration. However, a slight reduction of the segments and

increase of beam angles might allow for faster treatment

in future planning [42]. Interestingly, increasing the num-

ber of beams was associated with an increased segment

number (ρ= 0.67), even though the number of total seg-

ments can be limited in the planning system. Sutton et al.

recommends not more than 3–6 segments per beam for

good plan quality of IMRT plans [43], which is clearly

less than the numbers used here (median 139 segments for

17.5 beams). The treatment delivery time remains an issue

of step-and-shoot IMRT and of the present platform: with

a median of 18.8min, it is longer compared to other mod-

ern IMRT and especially VMAT platforms [20]. This was

the only parameter not met by 100% of the participants.

As the median beam-on time of 1.5min for a median of

909 MUs was comparable or even better than Halcyon and

True-Beam plans [44], the slower application is mainly

attributed to the MLC parameters such as leaf speed. An

increase in the number of beams was actually associated

with a reduction in the total monitor units (ρ= –0.63), and

thus with a reduced total delivery time. An upgrade with

faster MLC movement would surely facilitate wider imple-

mentation of the platform in clinical routine. Patients with

HNC in advanced stages, with rapidly reacting tumors like

human papilloma virus-positive oropharyngeal or Epstein-

Barr Virus-positive nasopharyngeal carcinoma, with irradi-

ation of both neck sides, with the PTV in close proximity

to various OARs, and with moving targets such as small

laryngeal carcinomas could possibly benefit the most from

treatment on MR linac platforms due to the possibility of

online imaging during treatment and repeated adaptations.

However, intrafractional and interfractional variations for

this cancer type do not occur as frequently and unexpect-

edly as in moving abdominal organs or the pelvic region.

Furthermore, only conventional fractionation or generally

low-dose-per-fraction regimens are mostly used for this

indication. The potential added value of online adaptation

should be considered and carefully weighed against a pro-

longed treatment time. An offline and less frequent than

daily adaptation could be sufficient for most HNC cases.

Taken together, the planning time is not as crucial for this

indication as, in contrast to SBRT applications, planning

will be mostly done offline. Much more important for ap-

plying a standard regimen of radiotherapy for HNC over

7 weeks and over 30 fractions will be the treatment and

beam delivery time. Future improvements in this direction,

like integrating sliding window and VMAT techniques in

the MR linac, will surely improve patient comfort and

compliance. Due to this reason, we decided to assess these

last parameters in this study.

There are a few limitations of this study. First or all, the

present analysis does not focus on a clinically challenging

situation, e.g., SBRT for spinal metastases [15], nor on im-

plementation of society guidelines [16], nor on optimizing

OAR sparing [19]. The focus of the present work was to

investigate the application and the features of the modern

technology of MR linac and a relatively novel planning sys-

tem for the new indication of head and neck cancer and to

generate hypotheses for future plan optimization. The num-

ber of centers that participated is probably enough for such

purposes, as in the Dutch planning study for HNC a simi-

lar number of centers (15) was enough to be even practice

changing [19].

Another possible shortcoming of this multicenter study

could be the omission of calculating a complexity index

(CI) for all plans as described by several authors before for

planning studies of IMRT or SBRT [45]. However, Her-

nandez et al. stressed the importance of CI implementation,

especially for comparison of multicenter results when using

different planning systems, as the differences when compar-

ing other quality metrics for plans developed in the same

planning system were not so pronounced [46]. Since all the

participants in this study used the same planning system,

the complexity index was not evaluated. Also, as only one

case was included, the results might not be applicable to all

HNC plans.

Furthermore, prior to actual treatment delivery, quality

assurance (QA) is required in order to avoid dose delivery

errors [47]. Nevertheless, the evaluation of in vivo dosime-

try was not within the scope of this study, so no measure-

ments of the actual plans were performed.

Despite these limitations, this is the first study providing

treatment planning recommendations for treating HNC on

the MRIdian platform as a result of a multicentric effort of

experienced users. In addition, this is one of the first studies

demonstrating feasibility and quality of planning for HNC

on the MRidian platform and providing recommendations

for the numbers of beams and segments to start with.
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Conclusion

Clinically acceptable and excellent treatment plans for HNC

were achieved by most users on the MRIdian platform. The

quality of these plans can be optimized through implemen-

tation of a higher number of segments and increasing ex-

perience of the planner and can thereby achieve clinically

acceptable results. Inauguration of MR linacs for routine

clinical treatment of HNC patients appears already feasi-

ble.
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