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Abstract. Grain size analysis is the key to understand the
sediment dynamics of river systems. We propose GRAINet,
a data-driven approach to analyze grain size distributions of
entire gravel bars based on georeferenced UAV images. A
convolutional neural network is trained to regress grain size
distributions as well as the characteristic mean diameter from
raw images. GRAINet allows for the holistic analysis of en-
tire gravel bars, resulting in (i) high-resolution estimates and
maps of the spatial grain size distribution at large scale and
(ii) robust grading curves for entire gravel bars. To collect
an extensive training dataset of 1491 samples, we introduce
digital line sampling as a new annotation strategy. Our eval-
uation on 25 gravel bars along six different rivers in Switzer-
land yields high accuracy: the resulting maps of mean di-
ameters have a mean absolute error (MAE) of 1.1 cm, with
no bias. Robust grading curves for entire gravel bars can be
extracted if representative training data are available. At the
gravel bar level the MAE of the predicted mean diameter is
even reduced to 0.3 cm, for bars with mean diameters rang-
ing from 1.3 to 29.3 cm. Extensive experiments were carried
out to study the quality of the digital line samples, the gener-
alization capability of GRAINet to new locations, the model
performance with respect to human labeling noise, the limi-
tations of the current model, and the potential of GRAINet to
analyze images with low resolutions.

1 Introduction

Understanding the hydrological and geomorphological pro-
cesses of rivers is crucial for their sustainable development
so as to mitigate the risk of extreme flood events and to pre-

serve the biodiversity in aquatic habitats. Grain size data of
gravel- and cobble-bed streams are key to advance the un-
derstanding and modeling of such processes (Bunte and Abt,
2001). The fluvial morphology of the majority of the world’s
streams is heavily affected by human activity and construc-
tion along the river (Grill et al., 2019). Human interventions
like gravel extractions, sediment retention basins in the upper
catchments, hydroelectric power plants, dams, or channels
reduce the bed load and lead to surface armoring, clogging
of the bed, and latent erosion (Surian and Rinaldi, 2003; Si-
mon and Rinaldi, 2006; Poeppl et al., 2017; Gregory, 2019).
Consequently, the natural alteration of the river bed is hin-
dered, eventually deteriorating habitats and potential spawn-
ing grounds. Moreover, the process of bed-load transport can
cause bed or bank erosion, the destruction of engineering
structures (e.g., due to bridge scours), or increased flooding
due to deposits in the channel that amplify the impact of se-
vere floods (Badoux et al., 2014). What makes modeling of
fluvial morphology challenging are the mutual dependencies
between the flow field, grain size, movement, and geome-
try of the channel bed and banks. While channel shape and
roughness define the flow field, the flow moves sediments
– depending on their size – and the bed is altered by ero-
sion and deposition. This mutually reinforcing system makes
understanding channel form and processes hard. Transport
calculations in numerical models are thus still based on em-
pirical formulas (Nelson et al., 2016).

One important key indicator for modeling sediment dy-
namics of a river system is the grading curve of the sedi-
ment. Depending on the complexity of the model, the grain
size distribution is either described by its characteristic di-
ameters (e.g., the mean diameter dm defined by Meyer-Peter
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and Müller, 1948) or by the fractions of the grading curve
(fractional transport; Habersack et al., 2011). The grain size
of the river bed is crucial because it defines the roughness
of the channel as well as the incipient motion of the sedi-
ment (Bunte and Abt, 2001). Thus, knowledge of the grain
size distribution is essential to specify flood protection mea-
sures, to assess bed stability, to classify aquatic habitats, and
to evaluate geological deposits (Habersack et al., 2011). Col-
lecting the required calibration data to describe the compo-
sition of a river bed is time-consuming and costly, since it
varies strongly along a river (Surian, 2002; Bunte and Abt,
2001) and even locally within individual gravel bars (Babej
et al., 2016; Rice and Church, 2010). Traditional mechani-
cal sieving to classify sediments (Krumbein and Pettijohn,
1938; Bunte and Abt, 2001) requires a substantial amount
of skilled labor, and the whole process of digging, transport,
and sieving is time-consuming, costly, and destructive. Con-
sequently, it is rarely implemented in practice. An alternative
way of sampling sediment is surface sampling along tran-
sects or on regular grid. We refer to Bunte and Abt (2001)
for a detailed overview of traditional sampling strategies. A
simplified, efficient approach that collects sparse data sam-
ples in the field is the line sampling analysis of Fehr (1987),
the quasi-gold standard in practice today.1 This procedure of
surface sampling is commonly referred to as pebble counts
along transects (Bunte and Abt, 2001). Yet, this approach is
still very time-consuming and, worse, potentially inaccurate
and subjective (Bunte and Abt, 2001; Detert and Weitbrecht,
2012). Moreover, in situ data collection requires physical ac-
cess and cannot adequately sample inaccessible parts of the
bed, such as gravel bar islands (Bunte and Abt, 2001).

An obvious idea to accelerate data acquisition is to esti-
mate grain size distribution from images. So-called photo-

sieving methods that manually measure gravel sizes from
ground-level images (Adams, 1979; Ibbeken and Schleyer,
1986) were first proposed in the late 1970s. While the ac-
curacy of measuring the size of individual grains may be
compromised compared to field sampling, manual image-
based sampling brings many advantages in terms of trans-
parency, reproducibility, and efficiency. Since it is nonde-
structive, multiple operators can label the exact same loca-
tion. Much research tried to automatically estimate grain size
distributions from ground-level images (Butler et al., 2001;
Rubin, 2004; Graham et al., 2005; Verdú et al., 2005; De-
tert and Weitbrecht, 2012; Buscombe, 2013; Spada et al.,
2018; Buscombe, 2019; Purinton and Bookhagen, 2019). On
the contrary, relatively little research has addressed the au-
tomatic mapping of grain sizes from images at larger scale
(Carbonneau et al., 2004, 2005; Black et al., 2014; de Haas
et al., 2014; Carbonneau et al., 2018; Woodget et al., 2018;
Zettler-Mann and Fonstad, 2020), which is needed for prac-

1To the best of our knowledge, this includes at least the follow-
ing German-speaking countries: Switzerland, Germany, and Aus-
tria.

tical impact. Monitoring of river systems over time suffers
from biases introduced by different operators in the field
(Wohl et al., 1996). Hence, objective, automatic methods for
large-scale grain size analysis offer great potential for con-
sistent monitoring over time.

Other researchers have proposed to analyze 3D data ac-
quired with terrestrial or airborne lidar or through pho-
togrammetric stereo matching (Brasington et al., 2012;
Vázquez-Tarrío et al., 2017; Wu et al., 2018; Huang et al.,
2018). However, working with 3D data introduces much
more overhead in data processing compared to 2D imagery.
Moreover, terrestrial data acquisition lacks flexibility and
scalability, while airborne lidar remains costly (at least until
it can be recorded with consumer-grade UAVs). Photogram-
metric 3D reconstruction is limited by the reduced resolution
of the reconstructed point clouds (relative to that of the origi-
nal images), which suppresses smaller grains. Woodget et al.
(2018) have shown that, for small grain sizes, image-based
texture analysis is beneficial over roughness-based methods.

While automatic grain size estimation from ground-level
images is more efficient than traditional field measurements
(Wolman, 1954; Fehr, 1987; Bunte and Abt, 2001), it is com-
monly less accurate, and scaling to large regions is hard.
Threshold-based image analysis for explicit gravel detection
and measurements is affected by lighting variations and thus
requires much manual parameter tuning. In contrast, statisti-
cal approaches avoid explicit detection of grains and empir-
ically correlate image content with the grain size measure-
ment. Although these data-driven approaches are promising,
their predictive accuracy and generalization to new scenes
(e.g., airborne imagery at country scale) is currently limited
by manually designed features and small training datasets.

In this paper, we propose a novel approach based on
convolutional neural networks (CNNs) that efficiently maps
grain size distributions over entire gravel bars, using geo-
referenced and orthorectified images acquired with a low-
cost UAV. This not only allows our generic approach to es-
timate the full grain size distribution at each location in the
orthophoto but also to estimate characteristic grain sizes di-
rectly using the same model architecture (Fig. 1). Since it
is hard to collect sufficiently large amounts of labeled train-
ing data for hydrological tasks (Shen et al., 2018), we in-
troduce digital line sampling as a new, efficient annotation
strategy. Our CNN avoids explicit detection of individual ob-
jects (grains) and predicts the grain size distribution or de-
rived variables directly from the raw images. This strategy
is robust against partial object occlusions and allows for ac-
curate predictions even with coarse image resolution, where
the individual small grains are not visible by the naked eye.
A common characteristic of most research in this domain
is that grain size is estimated in pixels (Carbonneau et al.,
2018). Typically, the image scale is determined by recording
a scale bar in each image, which is used to convert the grain
size into metric units (e.g., Detert and Weitbrecht, 2012) but
limits large-scale application. In contrast, our approach esti-

Hydrol. Earth Syst. Sci., 25, 2567–2597, 2021 https://doi.org/10.5194/hess-25-2567-2021



N. Lang et al.: GRAINet: mapping grain size distributions in river beds from UAV images 2569

Figure 1. Illustration of the two final products generated with GRAINet on the river Rhone. Left: map of the spatial distribution of charac-
teristic grain sizes (here dm). Right: grading curve for the entire gravel bar population, by averaging the predicted curves of individual line
samples.

mates grain sizes directly in metric units from orthorectified
and georeferenced UAV images.2

We evaluate the performance of our method and its robust-
ness to new, unseen locations with different imaging con-
ditions (e.g., weather, lighting, shadows) and environmen-
tal factors (e.g., wet grains, algae covering) through cross-
validation on a set of 25 gravel bars (Irniger and Hunziker,
2020). Like Shen et al. (2018), we see great potential of deep
learning techniques in hydrology, and we hope that our re-
search constitutes a further step towards its widespread adop-
tion. To summarize, our presented approach includes the fol-
lowing contributions:

– end-to-end estimation of the full grain size distribution
at particular locations in the orthophoto, over areas of
1.25m × 0.5m;

– robust mapping of grain size distribution over entire
gravel bars;

– generic approach to map characteristic grain sizes with
the same model architecture;

– mapping of mean diameters dm below 1.5 cm;

– robust estimation of dm, for arbitrary ground sampling
distances up to 2 cm.

2 Related work

In this section, we review related work on automated grain
size estimation from images. We refer the reader to Piégay
et al. (2019) for a comprehensive overview of remote sensing

2It is worth noting that the annotation strategy and the CNN are
not tightly coupled. Since the CNN is agnostic, it could be trained
on grain size data created with different sampling strategies to meet
other national standards.

approaches on rivers and fluvial geomorphology. Previous re-
search can be classified into traditional image processing and
statistical approaches.

Traditional image processing, also referred to as object-
based approaches (e.g., Carbonneau et al., 2018), has been
applied to segment individual grains and measure their sizes,
by fitting an ellipse and reporting the length of its minor
axis as the grain size (Butler et al., 2001; Sime and Fergu-
son, 2003; Graham et al., 2005, 2010; Detert and Weitbrecht,
2012; Purinton and Bookhagen, 2019). Detert and Weit-
brecht (2012) presented BASEGRAIN, a MATLAB-based ob-
ject detection software tool for granulometric analysis of
ground-level top-view images of fluvial, noncohesive gravel
beds. The gravel segmentation process includes grayscale
thresholding, edge detection, and a watershed transforma-
tion. Despite this automated image analysis, extensive man-
ual parameter tuning is often necessary, which hinders the
automatic application to large and diverse sets of images. Re-
cently Purinton and Bookhagen (2019) introduced a python
tool called PebbleCounts as a successor of BASEGRAIN, re-
placing the watershed approach with k-means clustering.

Statistical approaches aim to overcome limitations of
object-centered approaches by relying on global image statis-
tics. Image texture (Carbonneau et al., 2004; Verdú et al.,
2005), autocorrelation (Rubin, 2004; Buscombe and Mas-
selink, 2009), wavelet transformations (Buscombe, 2013),
or 2D spectral decomposition (Buscombe et al., 2010) are
used to estimate the characteristic grain sizes like the mean
(dm) and median (d50) grain diameters. Alternatively, one can
regress specific percentiles of the grading curve individually
(Black et al., 2014; Buscombe, 2013, 2019).

Buscombe (2019) proposed a framework called SediNet,
based on CNNs, to estimate grain sizes as well as shapes
from images. Overall, the used dataset of 409 manually la-
beled sediment images was halved into training and test por-
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tions, and CNNs were trained from scratch, despite the small
amount of data.3

In contrast to previous work, we view the frequency or vol-
ume distribution of grain sizes as a probability distribution
(of sampling a certain size), and we fit our model by min-
imizing the discrepancy between the predicted and ground
truth distributions. Our method is inspired by Sharma et al.
(2020), who proposed HistoNet to count objects in images
(soldier fly larvae and cancer cells) and to predict absolute
size distributions of these objects directly, without any ex-
plicit object detection. The authors show that end-to-end es-
timation of object size distributions outperforms baselines
using explicit object segmentation (in their case with Mask-
RCNN; He et al., 2017). Even though Sharma et al. (2020)
avoid explicit instance segmentation, the training process is
supervised with a so-called count map derived from a pixel-
accurate object mask, which indicates object sizes and loca-
tions in the image. In contrast, our approach requires neither
a pixel-accurate object mask nor a count map for training,
which are both laborious to annotate manually. Instead, the
CNN is trained by simply regressing the grain size distribu-
tion end-to-end. Labeling of new training data becomes much
more efficient, because we no longer need to acquire pixel-
accurate object labels. Our model learns to estimate object
size frequencies by looking at large image patches, without
access to explicit object counts or locations.

3 Data

We collected a dataset of 1491 digitized line samples ac-
quired from a total of 25 different gravel bars on six Swiss
rivers (see Table B1 in Appendix B for further details). We
name gravel bar locations with the river name and the dis-
tance from the river mouth in kilometers.4 All gravel bars
are located on the northern side of the Alps, except for two
sites at the river Rhone (Fig. 2). All investigated rivers are
gravel rivers with gradients of 0.01 %–1.5 %, with the ma-
jority (20 sites) having gradients < 1.0 %. The river width at
the investigated sites varies between 50 and 110 m, whereby
Emme km 005.5 and Emme km 006.5 correspond to the nar-
rowest sites, and Reuss km 017.2 represents the widest one.

One example image tile from each of the 25 sites is shown
in Fig. 3. This collection qualitatively highlights the great
variety of grain sizes, distributions, and lighting conditions
(e.g., shadows, hard and soft light due to different weather
conditions). The total number of digital line samples col-
lected per site varies between 4 (Reuss km 021.4) and 212

3While not clearly explained in Buscombe (2019), the results
seem to suffer from overfitting, due to a flaw in the experimen-
tal setup. Our review of the published source code revealed that
the stopping criterion for the training uses the test data, leading to
overly optimistic numbers.

4With the exception of location Emme –, which is a gravel pile
outside the channel.

Figure 2. Overview map with the 25 ground truth locations of the
investigated gravel bars in Switzerland.

(Kl. Emme km 030.3), depending on the spatial extent and
the variability of grain sizes within the gravel bar.

3.1 UAV imagery

We acquired images with an off-the-shelf consumer UAV,
namely, the DJI Phantom 4 Pro. Its camera has a
20 megapixel CMOS sensor (5472×3648 pixels) and a nomi-
nal focal length of 24 mm (35 mm format equivalent).5 Flight
missions were planned using the flight planner Pix4D cap-
ture.6 Images were taken on a single grid, where adjacent
images have an overlap of 80 %. To achieve a ground sam-
pling distance of ≈ 0.25 cm, the flying height was set to 10 m
above the gravel bar. This pixel resolution allows the human
annotator to identify individual grains as small as 1 cm. Fur-
thermore, to avoid motion blur in the images, the drone was
flown at low speed. We generated georeferenced orthophotos
with AgiSoft PhotoScan Professional.7

The accuracy of the image scale has a direct effect on the
grain size measurement from georeferenced images (Carbon-
neau et al., 2018). To assure that our digital line samples are
not affected by image scale errors, we compare them with
corresponding line samples in the field and observe good
agreement. Note that absolute georeferencing is not crucial
for this study. Because ground truth is directly derived from
the orthorectified images, potential absolute georeferencing
errors do not affect the processing.

3.2 Annotation strategy

We introduce a new annotation strategy (Fig. 4), called digi-

tal line sampling, to label grain sizes in orthorectified images.

5https://www.dji.com/ch/phantom-4-pro (last access: 23 March
2020)

6https://www.pix4d.com/de/produkt/pix4dcapture (last access:
4 April 2020)

7https://www.agisoft.com/ (last access: 4 April 2020)
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Figure 3. Example image tiles (1.25m×0.5m) with 0.25 cm ground
sampling distance. Each of the 25 example tiles is taken from a
different gravel bar.

To allow for a quick adoption of our proposed approach, we
closely follow the popular line sampling field method intro-
duced originally by Fehr (1987). Instead of measuring grains
in the field, we carry out measurements in images. First, or-
thorectified images are tiled into rectangular image patches
with a fixed size of 1.25m × 0.5m. We align the major axis
with the major river flow, either north–south or east–west.
A human annotator manually draws polygons of 100–150
grains along the center line of a tile (Fig. 4a) which takes
10–15 min per sample on average. We asked annotators to
imagine the outline of partially occluded grains if justifiable.
Afterwards, the minor axis of all annotated grains is mea-
sured by automatically fitting a minimum bounding rectan-
gle around the polygons (Fig. 4b). Grain sizes are quantized
into 21 bins as shown in Fig. 5, which leads to a relative
frequency distribution of grain sizes (Fig. 4c). Line samples
are first converted to a quasi-sieve throughput (Fig. 4d) by
weighting each bin with the weight wb = dmb

α (Fehr, 1987),
where dmb is the mean diameter per bin and α is set to 2
(assuming no surface armoring). Usually undersampled finer
fractions are predicted by a Fuller distribution, which results
in the final grading curve (Fig. 4e). This grading curve can ei-
ther be directly used for fractional bed-load simulations or be
used to derive characteristic grain sizes corresponding to the
percentiles of the grading curve (Fig. 4f). These are needed,
for instance, to calculate the single-grain bed-load transport
capacity (d50, d65, dm), to determine the flow resistance (dm,
d90), and to describe the degree of surface armoring (d30, d90;
Habersack et al., 2011).

Our annotation strategy has several advantages. First, dig-
ital line sampling is the one-to-one counterpart of the cur-
rent state-of-the-art field method in the digital domain. Sec-
ond, the labeling process is more convenient, as it can be
carried out remotely and with arbitrary breaks. Third, image-
based line sampling is repeatable and reproducible. Multiple
experts can label the exact same location, which makes it
possible to compute standard deviations and quantify the un-
certainty of the ground truth. Finally, digital line sampling

allows one to collect vast amount of training data, which is
crucial for the performance of CNNs. For modern machine
learning techniques, data quantity is often more important
than quality, as shown for example in Van Horn et al. (2015).
As it is common machine learning terminology, we use the
term ground truth to refer to the manually annotated digital

line samples that are used to train and evaluate our model.

3.3 Ground truth

In total, > 180000 grains over a wide range of sizes have
been labeled manually (Fig. 5). Individual grain sizes range
from 0.5 to approx. 40 cm. The major mode of individual
grain sizes is between 1 and 2 cm, and the minor mode is be-
tween 4 and 6 cm. Mean diameters dm per site vary between
1.3 (Aare km 178.0) and 29.3 cm (Grosse Entle km 002.0)
with a global mean of all 1491 annotated line samples at
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Figure 4. Overview of the line sampling procedure. (a) Digital line sample with 100–150 grains, (b) automatic extraction of the b axis,
(c) relative frequency distribution of grain sizes, (d) relative volume distribution, (e) grading curve, and (f) characteristic grain sizes (e.g.,
dm).

Figure 5. Overview of the ground truth data. (a) Average of the 1491 relative frequency distributions; (b) histogram of the respective
characteristic mean diameter dm. The solid red line corresponds to the mean dm, and the dashed red lines correspond to mean ± SD.

6.2 cm and a global median at 5.3 cm. The distribution of
the mean diameters dm (Fig. 5b) follows a bimodal distri-
bution as well. The major mode is around 4 cm and the mi-
nor mode around 8 cm. We treat all samples the same and
do not further distinguish between shapes when training our
CNN model for estimating the size distribution, such that
the learned model is universal and applicable to all types of
gravel bars. Furthermore, to train a robust CNN, we not only
collect easy (clean) samples but also challenging cases with
natural disturbances such as grass, leaves, moss, mud, water,
and ice.

4 Method

Many hydrological parameters are continuous by nature and
can be estimated via regression. Neural networks are generic
machine learning algorithms that can perform both classifi-
cation and regression. In the following, we discuss details
of our methodology for regressing grain size distributions of
entire gravel bars from UAV images.

4.1 Image preprocessing

Before feeding image tiles to the CNN, we apply a few stan-
dard preprocessing steps. To simplify the implicit encoding
of the metric scale into the CNN output, the ground sam-
pling distance (GSD) of the image tiles is unified to 0.25 cm.
The expected resolution of a 1.25m × 0.5m tile after the re-

sampling is 500 × 200 pixels. Inaccuracies may arise due to
rounding effects from the prior cropping. For simplicity, the
tile size is cropped to 500 × 200 pixels. Additionally, hori-
zontal tiles are flipped to be vertical.

Finally, following best practice for neural networks, we
normalize the intensities of the RGB channels to be standard
normal distributed with mean of 0 and standard deviation of
1, which leads to faster convergence of gradient-based op-
timization (LeCun et al., 2012). It is important to note that
any statistics used for preprocessing must be computed solely
from the training data and then applied unaltered to the train-
ing, validation, and test sets.

4.2 Regression of grain size distributions with

GRAINet

Our CNN architecture, which we call GRAINet, regresses
grain size distributions and their characteristic grain sizes di-
rectly from UAV imagery. CNNs are generic machine learn-
ing algorithms that learn to extract texture and spectral fea-
tures from raw images to solve a specific image interpreta-
tion task. A CNN consists of several convolutional (CONV)
layers that apply a set of linear image filter kernels to their
input. Each filter transforms the input into a feature map by
discrete convolution; i.e., the output is the dot product (scalar
product) between the filter values and a sliding window of
the inputs. After this linear operation, nonlinear activation

functions are applied element-wise to yield powerful nonlin-
ear models. The resulting activation maps are forwarded as
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input to the next layer. In contrast to traditional image pro-
cessing, the parameters of filter kernels (weights) are learned
from training data. Each filter kernel ranges over all input
channels fin and has a size of w × w × fin, where w defines
the kernel width. While a kernel width of 3 is the minimum
width required to learn textural features, 1×1 filters are also
useful to learn the linear combination of activations from the
preceding layer.

A popular technique to improve convergence is batch nor-

malization (Ioffe and Szegedy, 2015), i.e., renormalizing the
responses within a batch after every layer. Besides better gra-
dient propagation, this also amplifies the nonlinearity (e.g.,
in combination with the standard rectified linear unit (ReLU)
activation function).

Our proposed GRAINet is based on state-of-the-art resid-
ual blocks introduced by He et al. (2016). An illustration
of our GRAINet architecture is presented in Appendix A in
Fig. A1. Every residual block transforms its input using three
convolutional layers, each including a batch normalization
and a ReLU activation. The first and last convolutional layers
consist of 1×1×fin filters (CONV 1×1), while the second
layer has 3×3×fin filters (CONV 3×3). Besides this series
of transformations, the input signal is also forwarded through
a shortcut, a so-called residual connection, and added to the
output of the residual block. This shortcut allows the training
signal to propagate better through the network. Every second
block has a step size (stride) of 2 so as to gradually reduce
the spatial resolution of the input image and thereby increase
the receptive field of the network.

We tested different network depths (i.e., number of
blocks/layers) and found the following architecture to work
best: GRAINet consists of a single 3×3 “entry” CONV layer
followed by six residual blocks and a 1×1 CONV layer that
generates B final activation maps. These activation maps are
reduced to a one-dimensional vector of length B using global
average pooling, which computes the average value per acti-
vation map. If the final target output is a scalar (i.e., a charac-
teristic grain size like the dm), B is set to 1. To predict a full
grain size distribution, B equals the number of bins of the
discretized distribution. Finally, the vector is passed through
a softmax activation function. The output of that operation
can be interpreted as a probability distribution or grain size
bins, since the softmax scales the raw network output such
that all vector elements lie in the interval [0,1] and sum up
to one.8 The total number of parameters of this network ar-
chitecture is 1.6 million, which is rather lean compared to
modern image analysis networks that often have > 20 mil-
lion parameters.

8In contrast to Sharma et al. (2020), we estimate relative instead
of absolute distributions. While they show that the L1 loss and the
KL divergence can be combined to capture scale and shape of the
distribution, respectively, we simply fix the scale of the predicted
distribution with a softmax before the output.

4.2.1 CNN output targets

As CNNs are modular learning machines, the same CNN
architecture can be used to predict different outputs. As al-
ready described, we can predict either discrete (relative) dis-
tributions or scalars such as a characteristic grain size. We
thus train GRAINet to directly predict the outputs proposed
by Fehr (1987) at intermediate steps (Fig. 4):

(i) relative frequency distribution (frequency),

(ii) relative volume distribution (volume),

(iii) characteristic mean diameter (dm).

4.2.2 Model learning

Depending on the target type (probability distribution or
scalar), we choose a suitable loss function (i.e., error met-
ric; Sect. 4.3) that is minimized by iteratively updating the
trainable network parameters. We initialize network weights
randomly and optimize with standard mini-batch stochastic
gradient descent (SGD). During each forward pass the CNN
is applied to a batch (subset) of the training samples. Based
on these predictions, the difference compared to ground truth
is computed with the loss function, which provides the super-
vision signal. To know in which direction the weights should
be updated, the partial derivative of the loss function is com-
puted with respect to every weight in the network. By ap-
plying the chain rule for derivatives, this gradient is back-

propagated through the network from the prediction to the
input (backward pass). The weights are updated with small
steps in negative gradient direction. A hyperparameter called
the learning rate controls the step size. In the training pro-
cess, this procedure is repeated iteratively, drawing random
batches from the training data. One training epoch is finished
once all samples of the training dataset have been fed to the
model (at least) once.

We use the ADAM optimizer (Kingma and Ba, 2014) for
training, which is a popular adaptive version of standard
SGD. ADAM adaptively attenuates high gradients and am-
plifies low gradients by normalizing the global learning rate
with a running average for each trainable parameter. Note
that SGD acts as a strong regularizer, as the small batches
only roughly approximate the true gradient over the full train-
ing dataset. This allows for training neural networks with
millions of parameters.

To enhance the diversity of the training data, many tech-
niques for image data augmentation have been proposed,
which simulate natural variations of the data. We employ ran-
domly horizontal and vertical flipping of the input images.
This makes the model more robust and, in particular, avoids
overfitting to certain sun angles with their associated shadow
directions.
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4.3 Loss functions and error metrics

Various error metrics exist to compare ground truth distri-
butions to predicted distributions. Here, we focus on three
popular and intuitive metrics that perform best for our task:
the Earth mover’s distance (shortened to EMD; also known
as the Wasserstein metric), the Kullback–Leibler divergence
(KLD), and the Intersection over Union (IoU; also known as
the Jaccard index).

The Earth mover’s distance (Eq. 1) views two probabil-
ity density functions (PDFs) p and q as two piles of earth
with different shapes and describes the minimum amount of
“work” that is required to turn one pile into the other. This
work is measured as the amount of moved earth (probabil-
ity mass) multiplied by its transported distance. In the one-
dimensional case, the Earth mover’s distance can be imple-
mented as the integral of absolute error between the two re-
spective cumulative density functions (CDFs) P and Q of the
distributions (Ramdas et al., 2017). Furthermore, for discrete
distributions, the integral simplifies to a sum over B bins.

EMD(P,Q) =

B
∑

b=1

|P(b) − Q(b)| (1)

Alternatively, the Kullback–Leibler divergence (Eq. 2) is
widely used in machine learning, because minimizing the
forward KLD is equivalent to minimizing the negative like-
lihood or the cross-entropy (up to a constant). It should be
noted though that Kullback–Leibler divergence is not sym-
metric. For a supervised approach, the forward KLD is used,
where p denotes the true distribution and q the predicted dis-
tribution. This error metric only accounts for errors in the
bins that actually contain a ground truth probability mass,
i.e., when p(b) > 0. Errors in empty ground truth bins do
not contribute to the forward KLD. Therefore, optimizing
the forward KLD has a mean-preserving behavior. In con-
trast, the reverse KLD has a mode-preserving behavior. Note
that KLD only accounts for errors in bins containing ground
truth probability mass. Thus, the overestimation of empty
bins does not directly contribute to the error metric, but as
we treat the grain size distribution as a probability distribu-
tion, this displaced probability mass is missing in the bins
that are taken into account.9

DKL(p ‖ q) =

B
∑

b=1

p(b) log

(

p(b)

q(b)

)

(2)

In contrast to the EMD and KLD, the Intersection over Union
(Eq. 3) is an intuitive error metric that is maximized and
ranges between 0 and 1. While it is often used in object detec-
tion or semantic segmentation tasks, it allows one to compare
two 1D probability distributions as follows:

9For completeness, we note that there is a smoothed and sym-
metric (but less popular) variant of KLD, i.e., the Jensen–Shannon
divergence.

IoU(p,q) =

∑B
b=1min(p(b),q(b))

∑B
b=1max(p(b),q(b))

. (3)

During the training process the loss function (Eq. 4) simply
averages the respective error metric over all samples within a
training batch. To evaluate performance, we average the error
over the unseen test dataset:

L =
1

N

N
∑

i=1

D(yi,f (xi)) , (4)

where D corresponds to the error metric, f denotes the CNN
model, N the number of samples, xi the input image tile,
yi the ground truth PDF or CDF, and f (xi) the predicted
distribution.

To optimize and evaluate CNN variants that directly pre-
dict scalar values (like, for example, GRAINet, which di-
rectly predicts the mean diameter dm), we investigate two
loss functions: the mean absolute error (MAE, also known
as L1 loss, Eq. 5) and the mean squared error (MSE, also
known as L2 loss, Eq. 6).

MAE =
1

N

N
∑

i=1

|f (xi) − yi | (5)

MSE =
1

N

N
∑

i=1

(

f (xi) − yi

)2
(6)

Furthermore, we evaluate the model bias with the mean error
(ME):

ME =
1

N

N
∑

i=1

f (xi) − yi, (7)

where a positive mean error indicates that the prediction is
greater than the ground truth.

4.4 Evaluation strategy

The trained GRAINet is quantitatively and qualitatively eval-
uated on a holdout test set, i.e., a portion of the dataset that
was not seen during training. We analyze error cases and
identify limitations of the proposed approach. Finally, with
our image-based annotation strategy, multiple experts can la-
bel the same sample, which we exploit to relate the model
performance to the variation between human expert annota-
tions.

4.4.1 Tenfold cross-validation

To avoid any train–test split bias, we randomly shuffle the full
dataset and create 10 disjoint subsets, such that each sample
is contained only in a single subset. Each of these subsets is
used once as the hold-out test set, while the remaining nine
subsets are used for training GRAINet. The validation set is
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created by randomly holding out 10 % of the training data
and used to monitor model performance during training and
to tune hyperparameters. Results on all 10 folds are com-
bined to report overall model performance.

4.4.2 Geographical cross-validation

Whether or not a model is useful in practice strongly depends
on its capability to generalize across a wide range of scenes
unseen during training. Modern CNNs have millions of pa-
rameters, and in combination with their nonlinear properties,
these models have high capacity. Thus, if not properly regu-
larized or if trained on a too small dataset, CNNs can poten-
tially memorize spurious correlations specific to the training
locations which would result in poor generalization to unseen
data. We are particularly interested to know if the proposed
approach can be applied to a new (unseen) gravel bar. In or-
der to validate whether GRAINet can generalize to unseen
river beds, we perform geographical cross-validation. All im-
ages of a specific gravel bar are held out in turn and used to
test the model trained on the remaining sites.

4.4.3 Comparison to human performance

The predictive accuracy of machine learning models depend
on the quality of the labels used for training. In fact, label
noise that would lead to inferior performance of the model
is introduced partially by the labeling method itself. Grain
annotation in images is somewhat subjective and thus dif-
fers across different annotators. The advantage of our digital

line sampling approach is that multiple experts can perform
the labeling at the exact same location, which is infeasible if
done in situ, because line sampling is disruptive and cannot
be repeated. We perform experiments to answer two ques-
tions. First, what is the variation of multiple human annota-
tions? Second, can the CNN learn a proper model, despite
the inevitable presence of some label noise? We randomly
selected 17 image tiles that are labeled by five skilled oper-
ators, who are familiar with traditional line sampling in the
field.

4.5 Final products

On the one hand, by combining the output of GRAINet

trained to either predict the frequency or the volume distri-
bution with the approach proposed by Fehr (1987), we can
obtain the grading curve (cumulative volume distribution) as
well as the characteristic grain sizes (e.g., dm). On the other
hand, GRAINet can also be trained to directly predict char-
acteristic grain sizes. The characteristic grain size dm is only
one example of how the proposed CNN architecture can be
adapted to predict specific aggregate parameters. Ultimately,
the GRAINet architecture allows one to predict grain size
distributions or characteristic grain sizes densely for entire
gravel bars, with high spatial resolution and at large scale,
which makes the (subjective) choice of sampling locations

redundant. These predictions can be further used to create
two kinds of products, illustrated in Fig. 1:

1. dense high-resolution maps of the spatial distribution of
characteristic grain sizes,

2. grading curves for entire gravel bars, by averaging the
grading curves at individual line samples.

4.6 Experimental setup

For all experiments, the data are separated into three disjoint
sets: a training set to learn the model parameters, a validation

set to tune hyperparameters and to determine when to stop
training to avoid overfitting, and a test set used only to assess
the performance of the final model.

The initial learning rate is empirically set to 0.0003, and
each batch contains eight image tiles, which is the maximum
possible within the 8 GB memory limit of our GPU (Nvidia
GTX 1080). While we run all experiments for 150 epochs
for convenience, the final model weights are not defined by
the last epoch but taken from the epoch with the lowest val-
idation loss. An individual experiment takes less than 4 h to
train. Due to the extensive cross-validation, we parallelize
across multiple GPUs to run the experiments in reasonable
time.

5 Experimental results

Our proposed GRAINet approach is quantitatively evaluated
with 1491 digital line samples collected on orthorectified im-
ages from 25 gravel bars located along six rivers in Switzer-
land (Sect. 3). We first analyze the quality of the collected
ground truth data by comparing our digital line samples with
field measurements. We then evaluate the performance of
GRAINet for estimating the three different outputs:

i. relative frequency distribution (frequency),

ii. relative volume distribution (volume),

iii. characteristic mean diameter (dm).

In order to get an empirical upper bound for the achievable
accuracy, we compare the performance of GRAINet with the
variation of repeated manual annotations. All reported results
correspond to random 10-fold cross-validation, unless spec-
ified otherwise. In addition, we analyze the generalization
capability of all three GRAINet models with the described
geographical cross-validation procedure and investigate the
error cases to understand the limitations of the proposed data-
driven approach. Finally, as our CNN does not explicitly de-
tect individual grains, we investigate the possibility to esti-
mate grain sizes from lower image resolutions.
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5.1 Quality of ground truth data

We evaluate the quality of the ground truth data in two ways.
First, the digital line samples are compared with state-of-the-
art in situ line samples from field measurements. Second, the
label uncertainty is studied by comparing repeated annota-
tions by multiple skilled operators.

5.1.1 Comparison to field measurements

From 22 out of the 25 gravel bars, two to three field measure-
ments from experienced experts were available (see Fig. 6).
These field samples were measured according to the line
sampling proposed by Fehr (1987). To compare the digital
and in situ line samples, we derive the dm values and compare
them at the gravel bar level, because the field measurements
are only geolocalized to that level. Some field measurements
were accomplished a few days apart from the UAV surveys.
We expect grain size distributions to remain unchanged, as
no significant flood event occurred during that time. Fig-
ure 6 indicates that the field-measured dm is always within
the range of the values derived from the digital line samples.
Furthermore, the mean of the field samples agrees well with
the mean of the digital samples. Comparing the mean dm de-
rived from field and digital line samples across the 22 bars
results in a mean absolute error of 0.9 cm and in a mean er-
ror (bias) of −0.3 cm, which means that the digital dm is on
average slightly lower than the dm values derived from field
samples. The wide range of the digital line samples empha-
sizes that the choice of a single line sample in the field is
very crucial and that it requires a lot of expertise to chose
a few locations that yield a meaningful sample of the en-
tire gravel bar population. Considering that the field samples
are unavoidably affected by the selected location and also by
operator bias (Wohl et al., 1996), we conclude that within
reasonable expectations the digital line samples are in good
agreement with field samples and constitute representative
ground truth data. Nevertheless, to better understand the dif-
ference between digital line sampling and field sampling, a
new dataset should be created in the future, where field sam-
ples are precisely geolocated to allow for a direct comparison
at the tile level.

5.1.2 Label uncertainty from repeated annotations

We compute statistics of three to five repeated annotations
of 17 randomly selected image tiles (see Table C1 in the
Appendix) to analyze the (dis)agreement between human
annotators. The standard deviation of dm across different
annotators varies between 0.1 (Aare km 172.2) and 2.0 cm
(Rhone km 083.3); the average standard deviation is 0.5 cm.
Although these 17 samples are too few to compute reliable
statistics, we get an intuition for the uncertainty of the digital

line samples. Figure 7 shows two different annotations for
the same image tile, to demonstrate the variation introduced

by the subjective selection of valid grains. While the distri-
bution in the upper annotation (in green) contains a larger
fraction of smaller grains following closely the center line,
the lower annotation (in blue) contains a larger fraction of
larger grains, including some further away from the center
line.

Recall that this comparison of multiple annotators is only
possible because digital line sampling is nondestructive. In
contrast, even though variations of similar magnitude are
expected in the field, a quantitative analysis is not easily
possible. Nevertheless, Wohl et al. (1996) found that sedi-
ment samples are biased by the operator. Although CNNs are
known to be able to handle a significant amount of label noise
if trained on large datasets (Van Horn et al., 2015), the uncer-
tainty of the manual ground truth annotations is also present
in the test data and therefore represents a lower bound for
the performance of the automated method. Therefore, while
we do not expect the label noise to degrade the CNN train-
ing process, we do not expect root-mean-square errors below
0.5 cm due to the apparent label noise in the test data.

5.2 Estimation of grain size distributions

As explained in Sect. 3.2, the process of obtaining a grad-
ing curve according to Fehr (1987) involves several empir-
ical steps (Fig. 4). In this processing pipeline, the relative
frequency distribution can be regarded as the initial measure-
ment. However, as the choice of the proper CNN target is a
priori not clear, we investigate the two options to estimate (i)
the relative frequency distribution and (ii) the relative volume

distribution. In the latter version, the CNN implicitly learns
the conversion from frequency to fraction-weighted quasi-
sieve throughput, making that processing step obsolete. We
experiment with three loss functions to train GRAINet for the
estimation of discrete target distributions: the Earth mover’s
distance (EMD), the Kullback–Leibler divergence (KLD),
and the Intersection over Union (IoU). For each trained
model, all three metrics are reported in Table 1. The stan-
dard deviation quantifies the performance variations across
the 10 random data splits. Theoretically, one would expect
the best performance under a given error metric D from the
model trained to optimize that same metric; i.e., the best per-
formance per column should be observed on the diagonals in
the two tables. Note that each error measure lives in its own
space; numbers are not comparable across columns.

5.2.1 Regressing the relative frequency distribution

When estimating the relative frequency distribution, all three
loss functions yield rather similar mean performance, in all
three error metrics (Table 1a). The lowest KLD (mean of
0.13) and the highest IoU (mean of 0.73) are achieved by
optimizing the respective loss function, whereas the low-
est EMD is also achieved by optimizing the IoU. However,
all variations are within 1 standard deviation. The KLD is
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Figure 6. Comparison of digital line samples with 22 in situ line samples collected in the field.

Table 1. Results for GRAINet regressing (a) the relative frequency distribution and (b) the relative volume distribution. Mean and standard
deviation (in parenthesis) for the random 10-fold cross-validation. The rows correspond to the CNN models trained with the respective loss
function. Arrows indicate if the error metric is minimized (↓, lower is better) or maximized (↑, higher is better).

(a) (b)

EMD (↓) KLD (↓) IoU (↑) EMD (↓) KLD (↓) IoU (↑)

L
os

s

EMD 0.43 0.15 0.72 0.65 0.79 0.61
(0.03) (0.02) (0.01) (0.03) (0.24) (0.01)

KLD 0.44 0.13 0.72 0.68 0.32 0.60
(0.05) (0.01) (0.01) (0.05) (0.02) (0.01)

IoU 0.42 0.16 0.73 0.69 0.80 0.61
(0.04) (0.03) (0.01) (0.05) (0.19) (0.01)

Figure 7. Repeated annotations of the same tile by two experts.

slightly more sensitive than the other loss functions, with the
largest relative difference (0.13 vs. 0.16) corresponding to a
23 % increase. All standard deviations are 1 order of magni-
tude smaller than the mean, meaning that the reported perfor-
mance is not significantly affected by the specific splits into
training and test sets.

5.2.2 Regressing the relative volume distribution

The regression performance for the relative volume distribu-
tion is presented in Table 1b. Here, the best mean perfor-
mance is indeed always achieved by optimizing the respec-
tive loss function. The relative performance gap under the
KLD error metric increases to 250 %, with 0.32 when trained
with the KLD loss vs. 0.80 with the IoU loss. Also the stan-
dard deviation of the KLD between cross-validation folds ex-
hibits a marked increase.

5.2.3 Performance depending on the GRAINet

regression target

In comparison to the values reported in Table 1a, the KLD
on the volume seems to be even more sensitive regarding the
choice of the optimized loss function. Furthermore, all error
metrics are worse when estimating the volume instead of the
frequency distribution: the best EMD increases from 0.42 to
0.65, the KLD increases from 0.13 to 0.32, and the best IoU
decreases from 0.73 to 0.61.

Looking at the difference between the frequency and the
volume distribution, we see a general shift of the probabil-
ity mass to the right-hand side of the distributions, which is
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clearly visible in Fig. 8c and f. While the frequency is gen-
erally smoothly decreasing to zero probability mass towards
the larger grain size fractions of the distribution, the volume

has a very sharp jump at the last bin (Fig. 8c and f), where
the largest grain – often only a single one (Fig. 9b and f) –
has been measured.

Figure 8 displays examples of various lighting conditions
and grain size distributions, where GRAINet yields a good
performance for both targets. On the other hand, the error
cases in Fig. 9 represent the limitations of the model. While,
for example, extreme lighting conditions deteriorate the per-
formance on both targets similarly (Fig. 9a), the rare radiom-
etry caused by moss (Fig. 9d) has a stronger effect on the
volume prediction.

Comparing the predictions with the ground truth distribu-
tions in Fig. 9, the GRAINet predictions seem to be generally
smoother for both frequency and volume. More specifically,
the predicted distributions have longer tails (Fig. 9a, c, and
e) and closed gaps of empty bins (Fig. 9f).

In combination with the smoother output of the CNN, the
sharp jump in the volume distribution could be an explanation
for the generally worse approximation of the volume com-
pared to the frequency.

5.2.4 Learned global texture features

To investigate to what degree the texture features learned by
the CNN are interpretable with respect to grain sizes, we vi-
sualize the activation maps of the last convolution layer, be-
fore the global average pooling, in Fig. 10. In that layer of
the CNN there is one activation map per grain size bin, and
those maps serve as a basis for regressing the relative fre-
quencies. Therefore, each of these 21 activation maps cor-
responds to a specific bin of grain sizes, with bin 0 for the
smallest grains and bin 20 for the largest ones. Light colors
denote low activation, and darker red denotes higher activa-
tion. To harmonize the activations to a common scale, [0,1],
for visualization, we pass the maps through a softmax over
bins. This can be interpreted as a probability distribution over
grain size bins at each pixel of the downsampled patch. The
resulting activation maps in Fig. 10 exhibit plausible patterns,
with smaller grains activating the corresponding lower bin
numbers.

5.2.5 Grading curves for entire gravel bars

We compute grading curves from the predicted relative fre-

quency and volume distributions as described in Sect. 3.2.
Furthermore, we average the individual curves to obtain a
single grading curve per gravel bar. We show example grad-
ing curves obtained with the three different loss functions
in Fig. 11. The top row shows a distribution of rather fine
grains, while the bottom row represents a gravel bar of coarse
grains. Regarding the fine gravel bar (Fig. 11a–c), the dif-
ference between the three loss functions is hard to observe.

Yet, there is a tendency of overestimating the coarse frac-
tion if optimizing for KLD. However, only KLD can repro-
duce the grading curve of the coarse gravel bar reasonably
well (Fig. 11d–f). Overall, the experiments indicate that the
KLD loss yields best performance for all three error met-
rics. Thus, to assess the effect of the target choice (frequency

vs. volume) on the final grading curves of all 25 gravel bars,
we use the GRAINet trained with the KLD loss (Fig. 12).
Both models approximate the ground truth curves well and
are able to reproduce various shapes (e.g., Aare km 171.2 vs.
Reuss km 001.3) . However, the grading curves derived from
the predicted frequency distribution (dashed curves) tend to
overestimate higher percentiles (e.g., Aare km 171.0).

This qualitative comparison indicates that regressing the
volume distribution with GRAINet yields slightly better grad-
ing curves than for the frequency distribution. If computing
the grading curve from the predicted frequency distribution,
small errors in the bins with larger grains are propagated and
amplified in a nonlinear way due to the fraction-weighted
transformation described in Sect. 3.2. In contrast, the vol-

ume distribution already includes this nonlinear transforma-
tion and consequently errors are smaller.

5.3 Estimation of characteristic grain sizes

Characteristic grain sizes can be derived from the predicted
distributions, or GRAINet can be trained to directly predict
variables like the mean diameter dm as scalar outputs.

5.3.1 Regressing the mean diameter dm

We again analyze the effect of different loss functions,
namely, the mean squared error (MSE) and the mean ab-
solute error (MAE) when training GRAINet to estimate dm

end-to-end; see Table 2. Note that minimizing MSE is equiv-
alent to minimizing the root-mean-square error (RMSE). Op-
timizing for MAE achieves slightly lower errors under both
metrics (3.04 cm2 and 0.99 cm, respectively). However, opti-
mizing for MAE results in significantly stronger bias, with a
ME of −0.11 cm (underestimation) compared to 0.02 cm for
the MSE. As for practical applications a low bias is consid-
ered more important, we use GRAINet trained with the MSE
loss for further comparisons. This yields a MAE of 1.1 cm
(18 %) and an RMSE of 1.7 cm (27 %), respectively. Anal-
ogous to Buscombe (2013), the corresponding normalized
errors in parenthesis are computed by dividing through the
overall mean dm of 6.2 cm (Fig. 5).

5.3.2 Performance for different regression targets

If our target quantity is the dm, we now have different strate-
gies. The classical multistep approach would be to measure
frequencies, convert them to volumes, and derive the dm from
those. Instead of estimating the frequency, we could also di-
rectly estimate volumes or predict the dm directly from the
image data. Which approach works best? Based on the results
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Figure 8. Example image tiles where the GRAINet regression of the relative frequency and volume distributions yields good performance.

Table 2. Results for GRAINet regressing the mean diameter dm
[cm]. Mean and standard deviation (in parenthesis) for the random
10-fold cross-validation. The rows correspond to the CNN models
trained with the respective loss function. While both MSE and MAE
are minimized (↓), the ME is optimal with zero bias (0).

MSE (↓) MAE (↓) ME (0)

L
os

s

MSE 3.05 1.05 0.02
(1.03) (0.13) (0.18)

MAE 3.04 0.99 −0.11
(1.03) (0.12) (0.25)

shown so far (Tables 1 and 2), we compare the dm values de-
rived from frequency and volume distributions (trained with
KLD) to the end-to-end prediction of dm (trained with MSE);
see Fig. 13. Regardless of the GRAINet target, the ME lies
within ±0.7 cm, the MAE is smaller than 1.5 cm, and the ab-
solute dispersion increases with increasing dm. With ground
truth dm values ranging from 1.3 to 29.3 cm, only the end-
to-end dm prediction covers the full range down to 1.3 and
up to 24 cm. In contrast, the smallest dm values derived from

the predicted frequency and volume distributions are 2.9 and
2.3 cm, respectively. That is, dm values < 3.0 cm tend to be
overestimated when derived from intermediate histograms.
This is mainly due to unfavorable error propagation, as slight
overestimates of the larger fractions are amplified into more
serious overestimates of the characteristic mean diameter dm.
While the dm derived from the volume prediction yields a
comparable MAE of 0.7 cm for ground truth dm < 3 cm, only
the end-to-end regression is able to predict extreme, small,
but apparently rare, values (Fig. 14). The end-to-end dm re-
gression yields a MAE of 0.9 cm for dm values between 3
and 10 cm and 2.2 cm for values > 10 cm.

We conclude that end-to-end regression of dm performs
best. It achieves the lowest overall MAE (< 1.1 cm), and at
the same time it is able to correctly recover dm below 3.0 cm.

5.3.3 Mean dm for entire gravel bars

Robust estimates of characteristic grain sizes (e.g., dm, d50)
for entire gravel bars or a cross-sections are important to sup-
port large-scale analysis of grain size characteristics along
gravel-bed rivers (Rice and Church, 1998; Surian, 2002; Car-
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Figure 9. Error cases where the GRAINet regression of the relative frequency and volume distributions fails.

bonneau et al., 2005). To assess the performance of GRAINet

for this purpose, the GRAINet end-to-end dm predictions are
averaged over each gravel bar and compared with the respec-
tive mean dm of the digital line samples (Fig. 15). The perfor-
mance averaged over all 25 gravel bars results in a MAE of
0.3 cm and a ME of 0.1 cm. The error is < 1 cm for all gravel
bars, even for the bars at the rivers Gr. Entle and Rhone,
which have a mean ground truth dm > 10 cm (Table B1). For
13 gravel bars, the error is below ±0.2 cm.

5.3.4 Comparison to human performance

The average standard deviation σ of dm from repeated dig-
ital line samples accounts for 0.5 cm (see Sect. 5.1) for 17
randomly selected tiles. In comparison, regressing dm with
GRAINet yields a root-mean-square error (RMSE) of 1.7 cm,
of which ≈ 30 % can be explained by the label noise in the
test data. We illustrate the performance of GRAINet versus
human performance in Fig. 16. The predicted dm values lie
within 1σ for 9 tiles (53 %) and within 2σ for 12 tiles (70 %).

5.3.5 High-resolution grain size maps

GRAINet offers the possibility to predict and map charac-
teristic grain sizes densely for entire gravel bars with high
resolution (1.25m × 0.5m). Three example maps are pre-
sented in Fig. 17. The mean ground truth dm per gravel bar
varies between 3.0 cm (Reuss km 012.0, a and b), 3.3 cm
(Aare km 171.0, c and d), and > 10 cm (Gr. Entle km 002.1,
e and f). For all three examples, the river flows northwards.

Obviously, the map created with GRAINet offers full cov-
erage of the entire gravel bar, whereas digital line samples

deliver only a sparse map. Not only do we see that GRAINet

successfully predicts the spatial distribution of the dm in the
ground truth but it also reveals spatial patterns at a finer res-
olution.

Hence, GRAINet enables not only the assessment of differ-
ence between gravel bars but also the spatial variability and
heterogeneity of dm values within a single gravel bar. Despite
a similar mean dm of approximately 3 cm, the spatial layout
differs greatly between Reuss (top) and Aare (center), which
becomes clear when looking at dense maps of the complete
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Figure 10. Activation maps after the last convolutional layer for two examples. Each of the 21 maps corresponds to a specific histogram bin
of the grain size distribution, where bin 0 corresponds to the smallest and bin 20 to the largest grains. Light colors are low activation, and
darker red denotes higher activation.

gravel bars. Such sorting effects are not observable in the
third example of Gr. Entle.

5.4 Generalization across gravel bars

We study the generalization capability of GRAINet to an un-
seen gravel bar with geographical cross-validation for re-
gressing the grain size distribution and dm. Note that we can-
not completely isolate the effect of unseen grain size distri-
butions from the influence of unseen imaging conditions, as
each gravel bar was captured in a separate survey.

5.4.1 Grading curves

Grading curves for all 25 gravel bars are given in Fig. 18.
A qualitative comparison to Fig. 12 shows the effect of not
seeing a single sample of the respective gravel bar during
the training. The grading curves derived from the predicted
frequency distribution seem to be less robust, and overesti-
mation of higher percentiles is increased for more than 50 %
of all gravel bars. Exceptions are Gr. Entle km 002.0 and
Rhone km 083.3, where all percentiles are underestimated.

As no striking differences are visible for about 20 gravel
bars, we can say that the grading curves derived from the
predicted volume distribution generalize (still) well in 80 %
of the cases.

5.4.2 Mean diameter dm

We also study the generalization regarding the estimation of
the dm (Figs. 19 and D1). The MAE of the random splits is
< 1 cm for 18 bars and < 2 cm for 24 bars. When GRAINet is
tested on unseen gravel bars (geographical cross-validation),
the MAE does generally increase leading to only 15 bars
< 1 cm and 19 < 2 cm. We observe the largest performance
drop for Aare km 156.7, where the MAE increases from
1.4 cm (random 10-fold cross-validation) to 6 cm (geograph-
ical cross-validation). On this particular gravel bar, several
tiles contain some wet and even flooded grains. Although
the refraction of the shallow water could in principle change
the apparent grain size, it is most likely not the main reason
for the poor generalization. Rather, the model has simply not
learned the radiometric characteristics of wet grains, as there
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Figure 11. Grading curves resulting from optimizing different loss functions (from left to right: EMD, KLD, IoU) for two example gravel
bars, namely, Gr. Entle km 002.0 (a–c) and Reuss km 001.6 (d–f).

Figure 12. Grading curves of the 25 gravel bars, estimated with random 10-fold cross-validation.
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Figure 13. Scatter plots of the estimated dm [cm] from the three GRAINet outputs: frequency, volume, and dm (left to right). The ground
truth dm is on the horizontal axis, and predicted dm is on the vertical axis.

Figure 14. Mean absolute error of the predicted dm for three dm-
categories: < 3 cm, 3–10 cm, and > 10 cm

are not any among the samples from the other bars used for
training.

5.5 Effect of the image resolution

GRAINet does not explicitly detect individual grains but
learns to identify global texture patterns. It thus seems fea-
sible to apply GRAINet to images of lower resolution, where
individual grains would no longer be recognizable by a hu-
man annotator (see example in Fig. 20). To simulate that sit-
uation, we bilinearly downsampled the original image reso-
lution of 0.25 cm by factors of 2, 4, 8, 16, 32, and 40, corre-
sponding to pixel sizes of 0.5, 1.0, 2.0, 4.0, 8.0, and 10.0 cm,
respectively. The CNN model is then trained and evaluated at
each resolution separately. When regressing frequency or vol-

ume distributions, the performance decreases rather continu-
ously with decreasing resolution (Fig. E1 in Appendix E).

Interestingly, the performance for regressing dm with
GRAINet drops only after downsampling with factor 16
(4 cm resolution) to a MAE of 1.4 cm and reaches a MAE of
1.9 cm at factor 40 (10 cm resolution) (Fig. 21). Correspond-
ing dm scatter plots are shown in Fig. E2, where dispersion
grows with coarser resolution. Avoiding the explicit detec-
tion of individual grains with the proposed regression ap-

proach has great potential and allows us to make reasonable
predictions of dm even at lower image resolutions, as well as
to adapt the resolution to the accuracy requirements of the
application. In contrast to Carbonneau (2005), our GRAINet

is able to predict mean diameters smaller than the ground
sampling distance (Fig. E2), taking a big step towards grain
size mapping beyond the image resolution. We believe that,
in principle, GRAINet could even be used to process airborne
imagery from countrywide flight campaigns, depending on
the accuracy requirements of the application.

6 Discussion

We have shown that GRAINet is able to estimate the full grain
size distribution at particular locations in the orthophoto.
Hence, we can derive the mean grading curve of entire gravel
bars. The same architecture can also be trained to densely
map the spatial distribution of the dm.

6.1 Manual component of the presented approach

Obviously, creating a large, manually labeled training dataset
is time-consuming, which is a property our CNN shares with
other supervised machine learning methods. However, at test
time the proposed approach requires no parameter tuning by
the user, which is a considerable advantage for large-scale
applications, where traditional image processing pipelines
struggle, since they are fairly sensitive to varying imaging
conditions. Semiautomatic image labeling with the support
of traditional image processing tools (Detert and Weitbrecht,
2012; Purinton and Bookhagen, 2019) might be an alter-
native way to speed up this annotation process. However,
one would have to carefully avoid systematic algorithmic
biases in the semiautomatic procedure, otherwise the CNN
will almost certainly learn to faithfully reproduce those bi-
ases. Manual (re)labeling would still be required to prevent
the CNN from replicating the systematic biases and failures
of the rule-based system but could be limited to challenging
samples. Similarly, systematic behaviors of specific annota-
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Figure 15. Error of the mean dm per gravel bar derived from the GRAINet end-to-end dm predictions.

Figure 16. Variation of dm annotated by three to five different hu-
man experts, compared to end-to-end dm regression of GRAINet.

tors may also be learned by the model. Ideally, training data
should thus be generated by different skilled annotators.

The CNN predictions for a full orthophoto are masked
manually to the gravel bars. Our CNN is only trained on
gravel images and did not see any purely non-gravel images
patches with, e.g., vegetation, sand, or water. Consequently
such inputs lie far outside the training distribution and re-
sult in arbitrary predictions that need to be masked out by
the user. The network could also be trained to ignore sam-
ples with land cover other than gravel, but this is beyond the
scope of the present paper. It could be added in the future to
further reduce manual work.

Figure 17. Maps of the characteristic mean diameter dm, manually
labeled ground truth, i.e., digital line samples (a, c, e) and GRAINet

end-to-end dm predictions (b, d, e). Gravel bars (top to bottom):
Reuss km 012.0, Aare km 171.0, and Grosse Entle km 002.1. The
background is a grayscale version of the input UAV image.
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Figure 18. Grading curves of the 25 gravel bars, estimated with geographical cross-validation.

Figure 19. Mean absolute error of the GRAINet end-to-end dm regression per gravel bar (random and geographical cross-validation).

6.2 Geographical generalization

We present experiments to evaluate the generalization of our
approach to new locations, i.e., unseen gravel bars. In this
setup, the data are exploited best, allowing the CNN to learn
features invariant to the imaging conditions by providing 24
different training orthophotos in each experiment. That ex-
perimental setup is valid to investigate geographical gener-
alization, since there is no strong correlation between bars
from the same river. An alternative experiment would be to
hold out all bars from a specific river for testing. This might
be necessary in some geographical conditions with slowly
varying river properties to avoid any misinterpretation and

overly optimistic results. We have compared the average per-
formance drop in the generalization experiment between five
gravel bars on individual river reaches, i.e., bars that are sep-
arated by tributaries with new input of sediment, against all
bars. Both groups yield comparable performance drops. We
conclude that, within our dataset, seeing bars from the same
river during training does not lead to over-optimistic results
(see Fig. G1). Generalization is mainly affected by unique
local environmental factors (e.g., wet stones, algae covering)
that were not seen during training. Thus, in our case, we fa-
vor the former to maximize the number of training samples
as well as the number of drone surveys with varying imaging
conditions and local environmental factors.
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Figure 20. Example image tile resampled to lower resolutions. Left to right: full resolution of 0.25 cm and tested downsampling factors: 2,
4, 8, 16, 32, and 40, corresponding to 0.5, 1.0, 2.0, 4.0, 8.0, and 10.0 cm, respectively.

Figure 21. Performance of GRAINet dm regression with different
image resolutions (trained with MSE loss).

The per bar generalization experiment is furthermore jus-
tified by the fact that the characteristics of the investigated
gravel bars vary greatly along the same river, both quanti-
tatively (mean dm, dm range in Table B1) and qualitatively
(see Fig. F1 in Appendix F, where tiles are grouped by river
name). Not only is this due to the distance between the bars
but also due to the changing slope and the varying river
bed widths in mountain environments (Reuss, Aare, Emme).
Furthermore, the bars are geographically separated through
tributaries (Aare, Rhone), leading to a drastic increase in
the catchment areas between the bars. For example, at the
river Rhone the catchment area is more than doubled from
982 km2 (at km 083.3) to 2485 km2 (at km 114.0). Addition-
ally, the sediment transport is affected by dams at the rivers
Aare, Rhone, and Reuss. Finally, the characteristics may also
be artificially altered, as it is nowadays common in central
Europe to replenish gravels of 2–3 cm to create spawning
grounds for fish. For instance, the grain size distribution at
the bar Reuss km 022.1 (and probably Reuss km 012.0) is
very likely affected by such a targeted replenishment of sed-
iment.

If we were to hold out, say, the whole river Aare, we
would not only substantially reduce the number of training
samples but also the diversity of imaging conditions. In fact,
within our experimental setup we already present one hold-
one-river-out experiment for the river Kleine Emme, from
which only one bar is included in our dataset. Even though
this bar contains the largest number of digital line samples,
its estimated grain size distribution fits rather well in the geo-

graphical cross-validation experiment (see Fig. 18). The ob-
served performance drop between the random and geograph-
ical cross-validation experiment for individual bars in Fig. 19
is rather explained by coarse gravel bars with a large mean
dm and a wide dm range. Seeing bars from the same river
during training and testing does not seem to have an effect
(for instance, Aare).

Ultimately, it is important to keep in mind that data-driven
approaches, like the one proposed, will only give reasonable
estimates if the test data approximately match the training
data distribution. These approaches will not perform well
for out-of-distribution (OOD) samples. Detecting such OOD
samples is an open problem and an active research direction.

6.3 Comparison to previous work

While existing statistical approaches are limited to output
characteristic grain sizes (dm, d50), to the best of our knowl-
edge GRAINet is the first data-driven approach that is able
to regress a full, local grain size distribution at each location
in an orthophoto. We are not aware of any previous work that
evaluates grain size estimation over entire gravel bars in river
beds or of a comparable study regarding geographical gener-
alization.

Nevertheless, we present a generic learning approach; i.e.,
the same architecture can also be trained to directly predict
other desired grain size metrics derived from the distribution,
such as the mean diameter dm. Due to the end-to-end learn-
ing, our proposed CNN approach is able to extract global
texture features that are informative about grain size beyond
the image resolution and thus beyond the sensitivity of hu-
man photointerpretation or traditional image processing that
relies on local image gradients to delineate individual grains.
Even the latest work of Purinton and Bookhagen (2019) can
only detect individual grains that have a b axis 20 times
the ground sampling distance. Also, previous statistical ap-
proaches based on global image texture (Carbonneau et al.,
2004) are limited by the input resolution and can only predict
the median diameter d50 down to 3 cm at a comparable spa-
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tial resolution of 1 m. Hence, we believe that our approach
advances the state of the art.

A direct quantitative comparison to previous work with
different application focus and different data is only possible
to a limited extent. For example, Buscombe (2013) evaluate
on a mixed dataset with samples from rivers, natural beach,
and continental shelf sediments and report normalized mean
absolute errors of the estimated percentiles ranging from 10
to 29 %. In comparison, our dm regression yields a normal-
ized mean absolute error of 18 %.

6.4 Advantages and limitations of the approach

Our CNN-based approach makes it possible to robustly es-
timate grain size distributions and characteristic mean diam-
eters from raw images. By analyzing global image features,
GRAINet avoids the explicit detection of individual grains,
which makes the model more efficient and leads to a ro-
bust performance, even with lower image resolutions. The
proposed approach enables the automatic analysis of entire
gravel bars without destructive measures and with reasonable
effort.

Advantages are manifold. First, results are objective and
reproducible, as they are not influenced by a subjectively
chosen sampling location and grain selection. Second, the
resulting curves and dm represent the whole variability of
grains of a gravel bar; thus, the disproportionately high ef-
fect of single coarse grains on the curve and on dm can be
reduced. Consequently, the derived mean curves and its char-
acteristic grain sizes can be considered representative.

Our experiments highlight some limitations due to the lim-
ited sample size for training. While 10-fold cross-fold vali-
dation yields very satisfying results, the poorer performance
of the geographical cross-validation reveals that collecting
and annotating sufficiently large and varied training sets is
essential. Unseen unique local environmental factors such
as wet stones or algae covering caused performance drops
in the generalization experiment. However, if the model has
seen a few of these samples (random cross-validation) the
performance is more robust against such disturbances. Ad-
ditionally, the performance of GRAINet deteriorates for very
coarser gravel bars, as indicated by the error metrics of the
distributions as well as for dm. The lower performance is
caused by larger variability and by the high impact of in-
dividual, large grains, as well as by the unbalanced data dis-
tribution (only 14 % of the digital line samples have a dm >

10 cm). Application of GRAINet, trained with our dataset, is
thus not always satisfactory for coarse, unseen gravel bars.
In order to improve results and extend potential applications
fields, further digital line samples from additional UAV sur-
veys should be collected.

Finally, the best performance has been achieved with high-
resolution imagery taken at 10 m flying altitude. At this alti-
tude it takes approximately 15 min to cover an area of 1 ha
with a DJI Phantom 4 Pro (that has a max flight time of ap-

prox. 30 min per battery). It would be advantageous to reduce
the flight time per area by flying at higher altitudes. As our
resolution study on artificially downsampled images shows,
the CNN may yield satisfactory performance on images with
1–2 cm resolution corresponding to 40–80 m flying altitude.
While this is a promising result, it remains to be tested on
images taken at such flying altitudes. We expect that retrain-
ing the model with high altitude image–label pairs will lead
to similar performance as in the artificial case.

6.5 Potential applications

The presented GRAINet method can be applied to all rivers
that fulfill the following conditions: dry gravel bars (mean-
ing low water conditions, as grains in deeper water cannot
be analyzed) and no obstacles in the flight area (especially
trees along the rivers can cause occlusions). Despite these
limitations, we are convinced that our results confirm the
large potential of UAV surveys in combination with CNNs
for grain size analysis. There are several applications which
become possible with GRAINet in a quality that was hitherto
not achievable. Perhaps the greatest asset is the creation of
dense, spatially explicit, georeferenced maps of dm. Not only
can they help to understand spatial sorting effects of bed-load
transport processes but they can also be used to calibrate two-
or even three-dimensional fractional transport models. In ad-
dition, the variability of dm within a gravel bar can provide
important information regarding the bed-load regime and the
ecological value of the river (e.g., as aquatic habitat). For ex-
ample, a lack of variability in the finer grain sizes is a clear
sign for bed armoring and thus an important indicator for
a bed-load deficit. Consequently, the maps of dm are ideal
for large-scale monitoring in space and time, since they open
up the possibility to study entire bars or river branches at
virtually no additional cost. Our automatic approach handles
all samples consistently and allows for unbiased monitoring
over long times, as there is no variation due to changing op-
erators (Wohl et al., 1996). Furthermore, the ability to esti-
mate mean diameters from lower image resolutions (up to
2 cm ground sampling distance) will allow us to cover even
larger regions flying the UAV at higher altitudes. Due to the
high resolution of the resulting maps and distribution esti-
mates, local effects on bars can be investigated. Ultimately,
this could allow hydrologists to explore new research direc-
tions that advance the understanding of fluvial geomorphol-
ogy. While spatially explicit data may lead to an improved
calibration of numerical models, we may gain new insights
into how spatial heterogeneity affects the sediment transport
capacity as well as the aquatic biodiversity.

7 Conclusions and future work

We have presented GRAINet, a data-driven approach cen-
tered on deep learning to analyze grain size distributions
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from georeferenced UAV images with a convolutional neural
network. In an experimental evaluation with 1491 digital line

samples, the method achieves an accuracy that makes it rel-
evant for several practical applications. The new possibility
to carry out holistic analyses of entire gravel bars overcomes
the limitations of sparse field sampling approaches (e.g., line

sampling by Fehr, 1987), which is cumbersome and prone to
subjective biases.

As CNNs are generic machine learning models, they of-
fer great flexibility to directly predict other variables, like,
for example, the ratio d84/d16 or other specific percentiles
(Buscombe, 2019). In fact, it might be promising to design a
multi-task approach, in order to exploit the correlations and
synergies between different variables and parametrizations
describing the same grain size distribution. Obviously, col-
lecting more training data can be expected to benefit the gen-
eralization performance of GRAINet. Data annotation could
potentially be supported with active learning (e.g., Settles,
2009), where the model is gradually updated and interme-
diate predictions guide the selection of the most informa-
tive samples that should be labeled to further improve the
model. Another technically interesting direction to explore is
domain adaptation, in order to exploit unlabeled image data
as a source of information and improve the generalization to
a new domain with potentially different characteristics (i.e.,
new gravel bars).
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Appendix A: CNN architecture illustration

Figure A1. Illustration of the convolutional neural network architecture. Left: full architecture where F = (F1,F2,F3) denotes the number
of filters of the three convolutional layers within the residual blocks. The number of outputs B corresponds to the estimated histogram bins.
To estimate a scalar (e.g., mean diameter) this B can be set to one. Right: the respective residual blocks. The ConvBlock has a learnable
skip connection and is used when the number of output features is not equal to the number of input features. If constant, the IdentityBlock

forwards the input.
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Appendix B: Overview of investigated gravel bars

Table B1. Overview of the 25 investigated gravel bars. From left to right: slope and bed width of the river at this location with the corre-
sponding annual mean water runoff. Number of annotated image tiles (digital line samples). Ground truth statistics of the characteristic mean
diameter dm.

Gravel bar name Slope Bed width Annual mean runoff No. of labels Mean dm Min dm Max dm Range dm

[%] [m] [m3 s−1] [–] [cm] [cm] [cm] [cm]

Aare km 040.8 0.02 75 221 114 3.5 1.7 8.5 6.8
Aare km 149.4 0.07 100 172 30 3.6 1.9 5.4 3.6
Aare km 149.5 0.07 100 172 12 5.2 4.2 7.8 3.6
Aare km 156.0 0.02 75 122 5 4.1 3.2 5.5 2.2
Aare km 156.7 0.02 75 122 40 4.5 1.6 15.9 14.3
Aare km 171.0 0.12 60 122 42 3.3 1.5 5.3 3.8
Aare km 172.2 0.12 60 122 60 2.9 1.7 4.4 2.8
Aare km 178.0 0.12 60 122 32 2.7 1.3 5.0 3.8
Emme km – – – – 14 7.9 6.3 9.5 3.2
Emme km 005.5 0.46 50 14 190 4.7 2.0 8.0 6.0
Emme km 006.5 0.46 50 14 116 4.6 2.5 7.7 5.2
Emme km 015.0 0.59 75 14 78 4.8 2.9 8.9 6.0
Grosse Entle km 002.0 1.50 60 2.5 76 13.4 6.0 29.3 23.4
Grosse Entle km 002.1 1.50 60 2.5 90 10.5 4.9 22.3 17.4
Kleine Emme km 030.3 1.40 63 6.2 212 8.8 3.7 24.1 20.5
Reuss km 000.8 0.14 70 140 22 7.8 6.3 9.8 3.5
Reuss km 001.3 0.14 70 140 16 7.3 5.0 10.3 5.3
Reuss km 001.6 0.14 70 140 22 8.6 6.8 10.8 4.0
Reuss km 012.0 0.17 80 140 34 3.0 1.5 4.5 3.0
Reuss km 017.2 0.19 110 140 66 6.6 3.8 11.0 7.2
Reuss km 021.2 0.18 60 140 6 4.5 3.9 4.8 1.0
Reuss km 021.4 0.18 60 140 4 3.9 3.3 4.1 0.8
Reuss km 022.1 0.18 60 140 30 3.7 2.1 6.4 4.4
Rhone km 083.3 1.50 100 110 74 11.4 4.7 19.0 14.3
Rhone km 114.0 0.18 60 42 106 3.6 1.7 7.7 6.0
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Appendix C: Repeated human annotation

Table C1. Statistics of the mean diameter dm [cm] from three to five human annotations for 17 randomly selected image tiles.

Image tile name Mean Standard deviation Min Max Range

Aare km 040.8 5.3 0.5 4.6 6.0 1.4
Aare km 156.0 3.4 0.2 3.2 3.8 0.5
Aare km 149.5 6.1 0.1 5.9 6.3 0.4
Aare km 172.2 3.1 0.1 3.0 3.2 0.2
Aare km 171.0 2.1 0.4 1.5 2.6 1.1
Aare km 178.0 3.3 0.1 3.1 3.5 0.3
Emme km 005.5 5.0 0.3 4.8 5.6 0.8
Emme km 006.5 4.4 0.3 3.9 4.9 1.0
Emme km 015.0 4.2 0.2 4.0 4.5 0.5
Grosse Entle km 002.0 6.6 0.4 6.2 7.3 1.1
Grosse Entle km 002.1 7.3 0.6 6.4 8.2 1.7
Kleine Emme km 030.3 6.9 0.6 6.3 8.0 1.6
Reuss km 022.1 6.6 0.4 6.1 7.1 1.1
Rhone km 083.3 11.3 2.0 7.4 12.8 5.4
Rhone km 114.0 a 6.5 0.8 5.8 7.8 2.0
Rhone km 114.0 b 4.6 0.6 3.8 5.3 1.5
Rhone km 114.0 c 2.9 0.2 2.7 3.3 0.6

Appendix D: Generalization across gravel bars

Figure D1. Mean error (bias) of the GRAINet end-to-end dm regression per gravel bar (random and geographical cross-validation). A positive
error implies that the GRAINet prediction was higher than the ground truth.
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Appendix E: Resolution study

Figure E1. Resolution study for GRAINet regressing the relative frequency distribution (a) and regressing the relative volume distribution
(b) by optimizing the KLD loss.

Figure E2. Scatter plots of GRAINet dm regression with different image resolutions (trained with MSE loss).
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Appendix F: Tiles grouped by river name

Figure F1. Tiles grouped by river name. The examples illustrate the variability between different bars along the same river.
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Appendix G: Generalization performance per gravel

bar

Figure G1. Generalization performance per gravel bar. Increase of mean absolute error (MAE) from the random cross-validation to the
geographical generalization experiment for the GRAINet end-to-end dm regression. A positive value means that the generalization experiment
has a higher error. Gravel bars on individual river reaches (i.e., separated by tributaries) are depicted in gray.
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Code and data availability. The code with a demonstration on
a subset of the data is available: https://github.com/langnico/
GRAINet (last access: May 2021). Due to licensing restrictions,
the complete dataset (Irniger and Hunziker, 2020) may only be
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