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a b s t r a c t 

We present a parametric physics-informed neural network for the simulation of personalised left- 

ventricular biomechanics. The neural network is constrained to the biophysical problem in two ways: (i) 

the network output is restricted to a subspace built from radial basis functions capturing characteristic 

deformations of left ventricles and (ii) the cost function used for training is the energy potential func- 

tional specifically tailored for hyperelastic, anisotropic, nearly-incompressible active materials. The radial 

bases are generated from the results of a nonlinear Finite Element model coupled with an anatomical 

shape model derived from high-resolution cardiac images. We show that, by coupling the neural network 

with a simplified circulation model, we can efficiently generate computationally inexpensive estimations 

of cardiac mechanics. Our model is 30 times faster than the reference Finite Element model used, includ- 

ing training time, while yielding satisfactory average errors in the predictions of ejection fraction (-3%), 

peak systolic pressure (7%), stroke work (4%) and myocardial strains (14%). This physics-informed neural 

network is well suited to efficiently augment cardiac images with functional data and to generate large 

sets of synthetic cases for training deep network classifiers while it provides efficient personalization to 

the specific patient of interest with a high level of detail. 

© 2021 The Author(s). Published by Elsevier B.V. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 

1. Introduction 

In-silico models of patient-specific cardiac mechanics are based 

on the solution of multi-physics, nonlinear partial differential 

equations integrating electrophysiology, fluid dynamics and con- 

tinuum mechanics ( Chabiniok et al., 2016 ). These models can be 

personalised upon definition of the anatomy, the microstructure 

and the characteristics of the circulatory system. In general, this 

process includes the identification of one or more parameters in 

an iterative process that requires multiple complete runs of the 

multi-physics model ( Pfaller et al., 2019; Mollro et al., 2019 ). Once 

the parameters have been determined, the model offers the as- 

sessment of cardiac function for multiple physiological scenarios 

of interest ( Corral-Acero et al., 2020 ). In-silico models can also be 

used to generate training data for neural networks and to aug- 

ment existing datasets with realistic synthetic images, for exam- 

ple by combining the anatomical model with conditional image 

synthesis ( Joyce and Kozerke, 2019; Abbasi-Sureshjani et al., 2020 ). 

These applications might require hundreds or thousands of runs of 
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the same model. Despite the increase in available computational 

power, the large dimension of the model and its intrinsic nonlin- 

earity mean that each of the solutions requires considerable com- 

putational resources and long computing times. Therefore, the gen- 

eration of left-ventricular functional models from patient-specific 

anatomical data remains prohibitive for most practical applications 

of interest. 

Different abstraction levels can be used to balance the com- 

putational cost of the in-silico model against the level of detail. 

Lumped-parameter models ( Charlton et al., 2019 ) provide an ap- 

proximation of the physics with a considerable reduction of com- 

putational time and complexity. These methods are commonly 

used to represent the interaction between the heart and the cir- 

culatory system, and also bulk heart dynamics ( Caruel et al., 2014 ). 

However, they greatly simplify the physics and do not allow for a 

sufficient level of personalisation to the specific patient. 

An alternative approach, provided by parametric reduced-order 

models (ROMs), aims at reducing the cost associated with the so- 

lution of the full order model (FOM). ROMs have been extensively 

studied in the last decade in the context of fluid dynamics ( Buoso 

et al., 2019; Manzoni et al., 2012; Quarteroni and Rozza, 2007; 

Rowley, 2011 ) and, to a lesser extent, for structural dynamics and 
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fluid-structure interaction ( Buoso and Palacios, 2017; Pfaller et al., 

2020 ). An important feature of ROM approaches is that they can 

account for parameter variations: this is mandatory in clinical ap- 

plications due to the intrinsic variability of anatomical and phys- 

iological features in the population. ROMs are commonly based 

on the definition of a set of radial bases with lower dimension- 

ality than the original system onto which the nonlinear FOM de- 

scription is projected. It is essential to identify the expected vari- 

ability to ensure that the radial bases can accurately represent all 

possible scenarios. While these approaches have shown good pre- 

dictive features ( Buoso et al., 2019 ), they often require access to 

matrices and solution structures of the FOM solver (intrusive ap- 

proaches) which is difficult or even not possible with commercial 

software. 

Recently, non-intrusive approaches based on neural networks 

have been developed. Hesthaven and Ubbiali (2018) and Del Santo 

et al. (2020) proposed to learn the correlation between the weights 

of the radial bases and boundary conditions using a supervised 

learning approach. In these works, the radial basis functions cor- 

respond to the last, non-trainable layer of the network. Lee and 

Carlberg (2020) and Fresca et al. (2020) exploited convolutional 

autoencoders for the derivation of nonlinear low-order subspaces 

for ROMs. The system dynamics are also approximated with neural 

networks, which are trained simultaneously with the autoencoders. 

In the present work we propose a physics-informed neural net- 

work (PINN) that can be personalised for each patient and pro- 

vides fast and reliable estimations of cardiac function. It can gen- 

erate a functional cardiac model from anatomical clinical images 

at an affordable computational cost and in a fraction of the time 

when compared to standard Finite Element (FE) solvers. As in 

Hesthaven and Ubbiali (2018) ; Del Santo et al. (2020) , the aim is 

to design a network to predict the amplitude of a set of radial 

basis functions encoding preselected deformation features of left- 

ventricular mechanics. These are computed using Proper Orthogo- 

nal Decomposition (POD) on a dataset of synthetic cardiac defor- 

mations obtained from a parametric FE biophysical model. The FE 

model is based on a parametric shape model (SM) obtained from 

high fidelity cardiac images. The SM provides a uniform and con- 

sistent framework to compare different anatomies and simulations 

and it is the key enabler for the parametric variations used to ob- 

tain the radial bases for the neural network. The FM allows for 

representation of cardiac deformations using a low-rank approxi- 

mation, which reduces the size of the PINN. 

The parametrization of left-ventricular anatomies has also been 

very recently used by Maso Talou et al. (2020) in conjunction with 

neural networks. Using Principal Component Analysis on a set of 

left-ventricular anatomies, they derived a low-order representation 

which was then provided as input to a set of Siamese networks 

trained using a supervised approach to simulate diastolic left- 

ventricular function. In their approach, the networks are trained 

only once but they require the availability of a reference solution 

dataset from a biophysical model. Additionally, left-ventricular me- 

chanics is only restricted to the diastolic phase. 

Instead of having to compute input-output pairs for supervised 

network training, we adopt a custom cost function that encodes 

the minimization of the potential energy of the cardiac problem 

( Raissi, 2018; Nguyen-Thanh et al., 2020 ). Our cost function is 

specifically designed to include the effect of the microstructure of 

the heart and the active contraction resulting from myocytes acti- 

vation. In this way we can simulate full cardiac cycles and avoid 

expensive FE simulations for the training of the network for each 

new patient of interest. To the authors’ knowledge, this is the first 

time physical constrains are enforced in two complementary ways 

simultaneously. Firstly, by using POD radial basis functions, the so- 

lution is forced to belong to a prescribed linear subspace repre- 

senting left ventricular dynamics. Secondly, the cost function pe- 

nalises deformations that do not satisfy momentum conservation 

equations. 

We present the key methodological aspects in Section 2 includ- 

ing the generation of the SM, the biophysical FE model, the POD 

radial basis subspace and the network architecture. We then com- 

pare the predictions of the proposed PINN relative to the conven- 

tional FE model using metrics of clinical interest, such as ejec- 

tion fraction, maximum ventricular systolic pressure, net ventric- 

ular work and myocardial strains. 

2. Methods 

The personalized model proposed in this work hinges on two 

sets of radial basis functions. The first set, the shape model (SM, 

Fig. 1 , block I), is derived from high-resolution cardiac images and 

it provides an approximations of left-ventricular anatomies. The 

SM allows us to standardise the setup of the FE model and to im- 

plement a common structure for processing cardiac deformations. 

The generation of the SM is described in Section 2.1 . The shape 

model does not contain information on shape torsion and twisting, 

so it can not approximate deformations over the cardiac cycle. For 

this reason, we also build a second set of basis functions, the func- 

tional model (FM, Fig. 1 , block II), obtained from the displacement 

fields of left-ventricular anatomies computed with the biophysical 

FE model. The generation of the FM is described in Section 2.2 . The 

FM bases will define the non-trainable, physics-based final layer of 

the PINN. All other layers can be trained for each patient-specific 

anatomy at a low computational cost ( Fig. 1 , block III) as described 

in Section 2.3 . 

2.1. Left-ventricular shape model 

The left-ventricular shape model is derived from high resolution 

cardiac Magnetic Resonance (MR) and Computed Tomography (CT) 

images of the Multi-Modal Whole Heart (MMWH) dataset ( Zhuang 

and Shen, 2016; Zhuang, 2013; Zhuang et al., 2010 ). MRI images 

were acquired on a 1.5 T clinical scanner (Philips Healthcare, Best, 

The Netherlands) using a balanced steady state free precession (b- 

SSFP) turbo field echo (TFE) sequence. All the data was acquired 

at 2 × 2 × 2 mm 3 and reconstructed to 1 × 1 × 1 mm 3 . Contrast 

enhanced cardiac CT data was obtained using a standard coro- 

nary CT angiography protocol on clinical scanners (Philips Health- 

care, Netherlands) with a resolution of 0 . 44 × 0 . 44 × 0 . 60 mm 3 . The 

dataset includes a single cardiac phase from healthy patients and 

subjects with cardiovascular disease all aged between 5 and 80. 

Left-ventricular anatomies up to the mitral valve plane are ob- 

tained from 75 cases of the dataset. Of these, 40 cases (20 CT 

and 20 MRI) already had masks provided with the data, while 

the other 35 MRI cases were processed using a U-Net based seg- 

mentation model ( Ronneberger et al., 2015 ), which was trained 

to segment the left ventricle in short-axis slices using labelled 

data from MMWH and the Automated Cardiac Diagnosis Challenge 

( Bernard et al., 2018 ). Our network was implemented in Keras 

( Chollet et al., 2015 ) using the Tensorflow backend ( Abadi et al., 

2015 ), and trained on a single Titan X GPU. Training takes approxi- 

mately 1.5 h, after which the labels for the 35 additional cases can 

be predicted in approximately 5 s. 

All shapes are manually corrected and cut with a plane passing 

from just below the aortic tract and approximately parallel to the 

mitral valve plane. Finally, endocardium, epicardium and the co- 

ordinates of apex and inferior intersection between left and right 

ventricles are identified. For each anatomy, a shape-adapted physi- 

ological parametrization (PP) is defined. It approximates the pro- 

late ellipsoid radial, circumferential and longitudinal coordinates 

( Toussaint et al., 2013 ). In detail, the transmural coordinate is set 
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Fig. 1. The methodological steps are schematically shown here split in three main blocks: generation of the shape model (I), generation of the functional model (II) and 

definition of the personalised biophysical left ventricular model (III). In block I left-ventricular anatomies are extracted from medical data (a) and mapped with a physiological 

parametrization which is used for generating meshes with inter-anatomy consistency (b). By applying POD we then obtain the basis functions of the SM (c). In block II we 

use the variability observed in the medical images to generate synthetic anatomies with the SM and define realistic operative conditions using a biophysical finite element 

model (d). We obtain a dataset of anatomical deformations (e) and POD is then used to construct the FM (f). In block III a personalised model is generated for each case of 

interest: starting from medical images we can extract the left-ventricular anatomy (or alternatively generate a realistic one using the SM), prescribe micro-structure, tissue 

properties and systemic circulation parameters (g). The personalised PINN is trained (h) for the prediction of left ventricular deformations and function (i). (For interpretation 

of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

to 0 and 1 for all points at the endocardium and epicardium, re- 

spectively. An Eikonal problem ( Fares and Schröder, 2002 ) is solved 

on the endocardium and epicardium to compute the distance of 

each point from the apex. Endocardium and epicardium are then 

mapped on the unit disc centered at the origin of a Cartesian co- 

ordinate system ( Paun et al., 2017 ) imposing the mapping of the 

inferior intersection point to the position (1,0) and of the apex to 

the disc center. The circumferential coordinate of the surfaces is 

obtained from the angular positions of the points on the discs. The 

longitudinal coordinate is given by the distance from the apex nor- 

malised by the maximum distance at the same angular position. 

Physiological directions in the radial, longitudinal and circumferen- 

tial directions are obtained from the normalised gradient directions 

of the corresponding scalar parametric field. 

The PP is then used to map a reference tetrahedral mesh built 

on a unit disc onto each of the anatomies considered. For the 

disc, the PP is simply obtained by the cylindrical coordinates of 

the points. This approach ensures that all meshes have the same 

number of nodes and it preserves the mesh connectivity and the 

anatomical correspondence between the different cases. Addition- 

ally, the calculation of the longitudinal coordinate with the Eikonal 

model ensures reduced distortion of the mesh elements during 

mapping. For the specific application in this work, the reference 

mesh is generated using 40, 30 and 4 nodes in the circumferen- 

tial, radial and height directions, respectively, for a total of 4804 

nodes and 21,240 tetrahedral elements. This results in 40, 30 and 

4 nodes in the circumferential, longitudinal and radial directions of 

the anatomies. 

All meshes are then translated to centre the encodardium con- 

tour at the cut plane to the origin of the Cartesian coordinate sys- 

tem, rotated to align the plane normal to the positive z axis and 

place the inferior intersection point on the negative x axis. For 

each anatomy, we generate a snapshot defined as a column vec- 

tor containing mesh nodal coordinates and vectors of the physio- 

logical directions. Proper Orthogonal Decomposition (POD) is ap- 

plied as in Buoso et al., 2019, 2020 to the set of snapshots to ex- 

tract thebases that gives the optimal linear approximation of the 

set in a least square sense. Thus, when applying POD, we obtain 

the bases to reconstruct both the anatomy and the local physio- 

logical directions simultaneously ( Buoso et al., 2020; Joyce et al., 

2020 ). The bases are ordered in decreasing order of contribution 

to the total variance of the input dataset. The SM projection ma- 

trix is �0 = [ ψ 1 . . . ψ M ] , where the i th column, ψ i , is the i th basis 

computed with POD. The number of basis, M, determines the accu- 

racy of the approximation ( Buoso et al., 2019 ). The coordinates of 

the nodes of each mesh, X can be approximated as X ≈ �0 a where 

the vector of modal amplitudes becomes the parametric represen- 

tation of the mesh in the selected POD subspace. Thanks to the in- 

clusion of the local direction vectors in the snapshots, each physio- 

logical direction can be similarly reconstructed. This approach gen- 

erates an anatomical low-dimensional representation that captures 

the dominant modes of variation of the high-dimensional training 

dataset. Synthetic realistic geometries can be generated by sam- 

pling a vector of amplitudes for the SM bases ( Joyce et al., 2020 ). 

2.2. Biophysical and functional models 

The FE biophysical model for the left ventricle is based on 

the finite deformation framework ( Bonet, 2001; Bonet and Wood., 

2008; Simo and Hughes, 1998 ). Let �0 be the initial reference 

configuration of the left ventricle with boundaries Ŵendo , Ŵepi , 

and Ŵbase being the endocardium, epicardium and base, respec- 

tively. Given a deformed configuration, �, the deformation gra- 

dient is defined as F = ∇u + I where u ( X, t ) is the displacement 

field and I ∈ R 3 ×3 is the identity tensor. The deformation gradi- 

ent F is decomposed into its volumetric and isochoric components 

( Bonet, 2001 ) so that F iso = F J −
1 
3 represents the isochoric defor- 

mation and J = det (F ) measures changes in volume. The deforma- 

tion of the left ventricle is determined by the equilibrium of the 

passive stresses generated by the pressure loading at the endo- 

cardium and the active contraction of the myocytes. The passive 

mechanical response is defined using the quasi-incompressible for- 

mulation of the anisotropic strain energy function, W p , proposed 

by Holzapfel and Ogden (2009) : 

W p ( C, J ) = 
a 

b 

[

e b ( I 1 −3 ) 
− 1 

]

+ 
a f 

2 b f 

[ 

e b f ( I 4 , f −1 ) 
2 
− 1 

] 

+ 
a s 

2 b s 

[ 

e b s ( I 4 ,s −1 ) 2 
− 1 

] 

+ 
a fs 

b fs 

[ 

e b fs I 
2 
8 , fs − 1 

] 

+ 
K 

2 

(

J 2 − 1 
)2 

, (1) 
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where a, b, a f , b f , a s , b s , a f s and b f s are material coefficients, K is 

the bulk modulus penalising volume variations and 

I 1 = J −
2 
3 tr C, I 4 , f = J −

2 
3 f 0 ·C f 0 , 

I 4 ,s = J −
2 
3 s 0 ·Cs 0 I 8 , f s = J −

2 
3 f 0 ·Cs 0 , 

(2) 

are the invariants of C = F T F and f 0 ∈ R 3 ×1 and s 0 ∈ R 3 ×1 are the 

local fibres and sheet directions of the heart tissue in the reference 

configuration �0 . 

The active contribution to the stresses determined by the con- 

traction of the myocytes is defined with the potential function 

( Finsberg, 2017 ) 

W a = 
T a 

2 J 

[(

I 4 , f − 1 . 0 
)

+ η( I 4 ,s − 1 . 0 ) + η( I 4 ,n − 1 . 0 ) 
]

, (3) 

where T a is the stress in the fibre direction, η is a coefficient in 

the range [0,1] that accounts for the contribution of the stress 

in the cross fibres directions and I 4 ,n = J −
2 
3 n 0 ·Cn 0 where n 0 is 

the direction normal to fibres and sheets. The value of T a is 

usually determined from electrophysiological models ( Roth and 

Wikswo, 1986; Potse et al., 2006; Neic et al., 2017 ). However, 

Finsberg et al. (2018) and Balaban et al. (2017) have used an av- 

eraged fibre stress approach to analyse in-vivo patient cardiac data 

and showed good discriminating properties of such global metric. 

To simplify the model in this work, we consider a uniform activa- 

tion of the myocytes and prescribe the time evolution of T a using 

a fourth-order polynomial. The stress tensor in the deformed con- 

figuration, σ, is given by the Cauchy stress tensor as 

σp = J −1 F T SF . (4) 

where S = 2 ∂W 
∂C 

is the second Piola–Kirchhoff stress tensor defined 

in R 3 ×3 and W = W p + W a . 

The momentum balance equation, in the reference configura- 

tion, neglecting body forces and inertia effects, reads: 
⎧ 

⎪ 
⎨ 

⎪ 
⎩ 

∇ 0 · P = 0 in �0 , 

P N = t on Ŵendo , 

P N = 0 on Ŵepi , 

u = 0 on Ŵbase , 

(5) 

where P = JσF −T ∈ R 3 ×3 is the first Piola–Kirchhoff stress tensor, 

N ∈ R 3 ×1 is the surface normal vector and t is the traction stress 

on the endocardium, Ŵendo , determined by pressure, p endo , gen- 

erated by the blood pool. In this work, we neglect the effect of 

the pericardium by applying a zero traction condition at the epi- 

cardium, Ŵepi and we assume a stress-free reference configuration 

�0 in equilibrium with a zero pressure. We also set to zero the dis- 

placement at the cut plane position, Ŵbase , Eq. (5) is solved in FEn- 

iCs ( Alnæs et al., 2015; Logg et al., 2012 ) using linear tetrahedral 

elements obtained with the discretisation described in Section 2.1 . 

During the filling phase, the pressure is linearly increased up 

to a prescribed end-diastolic value, p ED . For the isovolumetric con- 

traction and relaxation phases, we iteratively solve Eq. (5) to de- 

termine the value of p endo that, when combined with the instan- 

taneous actuation stress T a , preserves the target constraint volume 

(end-diastolic and end-systolic volumes for the isovolumetric con- 

traction and relaxation, respectively). In our model, the systolic 

phase starts when p endo exceeds the end-diastolic aortic pressure, 

p A , and the pressure values are computed using a two element 

Windkessel model ( Westerhof et al., 2009 ). When the ventricular 

volume returns to the initial end-systolic value or the blood inflow 

is negative, the isovolumetric contraction starts. 

An important metric used in this work are physiological strains. 

Given a deformation field u from the reference configuration �0 

to a deformed state �, the Lagrangian strain tensor is defined as 

E = 
1 
2 ( C − I ) . The physiological strain, e i in one of the physiologi- 

cal directions v i is obtained as e i = v T 
i E v i . In our work we consider 

strains in the radial, longitudinal and circumferential directions de- 

fined by the PP, as e r , e l and e c , respectively. 

The biophysical FE model can be used to obtain a dataset of 

left-ventricular deformations for given left-ventricular anatomical, 

mechanical, micro-structural and functional variations. Specifically, 

anatomical variability is prescribed using the SM. The SM basis 

accounting for 99% of the energy observed and in the MMWHS 

dataset ( Buoso et al., 2019 ) are used to generate 100 synthetic of FE 

anatomical configurations, �0 , by uniform-randomly sampling the 

corresponding amplitudes within the range boundaries of the SM 

( Young and Frangi, 2009 ). Passive material properties for the model 

of Eq. (1) are taken from ( Sack et al., 2018 ) and, for each synthetic 

anatomy, the values a, a f , a s , a f s are randomly scaled by a factor D 

in the range [0.5,1.5]. The bulk modulus, K, is set to 100 times the 

values of a f . Linear transmural laws are used for the definition of 

the fibre directions ( Carruth et al., 2016 ). Epicardium, αepi , and en- 

docardium, αendo , helix angles are randomly selected in the range 

[60 ◦, 30 ◦] and [40 ◦, 75 ◦], respectively. The transmural angles of fi- 

bres and sheets are 0 ◦ and 65 ◦, respectively, for all anatomies. For 

Eq. (3) , maximum active stress values, T a , range between 10 kPa 

and 200 kPa and η is set to 0.3 for all cases. The active stress 

is identically zero during diastole and, during systole, it is scaled 

by a fourth-order polynomial with a peak at half systole. The re- 

sistance, R, and capacitance, C, of the Windkessel model for the 

systemic circulation are 50.0 Pa ·s 
ml 

and 5.5 mm 3 

kPa 
, respectively. The 

values of end diastolic pressure, p ED , and aortic diastolic pressure, 

p A , are 20 mmHg and 70 mmHg, respectively. Simulations start at 

beginning of diastole and have a duration of 950 ms. Diastole is 

set to 650 ms, while the duration of the other phases depend on 

the value of the maximum active stress and the interaction of the 

left ventricle with the systemic circulation. Simulated deformations 

are discarded if the ejection fraction and peak systolic pressure are 

not in the pre-selected range [0.3–0.8] and [50–150]mmHg, respec- 

tively. Additionally, we also ensured that the volume is monoton- 

ically increasing during diastole, and decreasing during systole. If 

a simulation is discarded, a new one is considered until these cri- 

teria are met. For each anatomy, the simulated displacement fields 

from 30 equally spaced frames are stored and used to build the FM 

projection matrix as �u = [ ϕ 1 . . . ϕ N ] using POD. The FM allows the 

definition of a low-rank representation of the displacements of the 

dataset used for POD analysis. It implicitly encodes the modelling 

assumptions used for the generation of the snapshots. 

2.3. Physics informed neural network 

We propose to use a dense neural network as an anatomy- 

specific solver to calculate the vector of the amplitudes, a u , such 

that the predicted displacement, u = �u a u satisfies Eq. (5) with 

p endo and T a as inputs. As for the FEM model, inertial effects are 

neglected and quasi-static solutions are sought. The total number 

of hidden layers and their size can be selected during the design 

of the network. The only requirement is that the layer before the 

linear projection must have N neurons, where N is the number of 

columns of the FM. The final layer is non-trainable and projects 

the a u prediction from the network (using fixed weights �u ) to 

the displacement field of the left ventricle, u defined at each mesh 

node. The network structure is shown in Fig. 2 . 

The cost function to be minimised with the training is the po- 

tential energy functional ( Bonet, 2001 ) 

J = 

∫ 

�0 

W d V −

∫ 

Ŵendo 

t · u d A, (6) 

where t are the traction forces acting on the boundaries, which, 

in our case, are determined by the pressure acting on the endo- 

cardium. The solution to Eq. (5) corresponds to the solution of the 

minimization problem of the functional (6) . 
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Fig. 2. High level structure of the neural network. The input layer consists of the instantaneous values of the pressure at endocardium, p endo , and actuation stress, T a . 

We use m dense hidden layers, H 1 , . . . , H m , with k neurons and trainable weights and biases. The output layer predicts the amplitudes a u = [ a 1 , . . . , a N ] of the FM modes, 

�u = [ ϕ 1 , . . . , ϕ N ] , which are the input to the projection layer, with non-trainable parameters, resulting in the discrete displacement field u for all vertices of the mesh. The 

displacements u are used to compute the cost function J during training. We note that p endo and T a are also given in the cost function. The PINN is personalised to the case 

of interest generating the cost function from the gradient operator defined on the anatomy, the microstructure and the tissue stiffness. (For interpretation of the references 

to colour in this figure legend, the reader is referred to the web version of this article.) 

The calculation of the first term of the cost function re- 

quires us to compute the gradient of the displacement field 

in the reference configuration, ∇u . We use the approach from 

Mancinella et al. (2019) for the estimation of the gradient of a 

scalar function, f ( x ) , defined on the nodes of tetrahedral meshes. 

In our case f ( x ) can be any of the components of the displacement 

field vector. The gradient at the centroid of a tetrahedral element 

with vertices v i , v j , v k , v l can be computed as 

[ 
v j − v i 

v k − v i 

v l − v i 

] [ 
∇ f ( x c ) x 
∇ f ( x c ) y 
∇ f ( x c ) z 

] 

= 

[ 
f 
(

x j 
)

− f ( x i ) 

f ( x k ) − f ( x i ) 
f ( x l ) − f ( x i ) 

] 

, (7) 

where v p = 
(

x p , y p , z p 
)

is the v ect or of coordinates of node p and 

∇ f ( x c ) = 
(

∇ f ( x c ) x , ∇ f ( x c ) y , ∇ f ( x c ) z 
)

is the gradient at the cell 

centroid, x c . The gradient at each node is then computed as the 

weighted volume averaged of all the elements that contain that 

node. The matrices can be precomputed and assembled in a global 

matrix such that the nodal gradient can be obtained as the prod- 

uct of the global matrix and the vector of the selected component 

of the displacement field of the points. We excluded from the as- 

sembly the contribution of the elements containing the apex nodes 

since their inclusion resulted in inaccurate results due their small 

size. 

In this work, the cost function (6) is computed with respect to 

the reference configuration �0 . As a result, the matrix for the gra- 

dient computations is a function of the initial anatomy and not of 

the displacement field. Thus, it just needs to be assembled once 

beforehand. Traction forces, t, need to be expressed in the refer- 

ence configuration as well. In our case, they can be expressed as 

t = −Jp endo NF −T dA, (8) 

where N and dA are the normal and the area of the faces of the 

elements belonging to the endocardium, respectively, in the refer- 

ence configuration �0 . 

Specifically for this work, all PINN hidden layers have a number 

of neurons equal to the number of selected FM bases. A swish ac- 

tivation function ( Ramachandran et al., 2017 ) is used on every hid- 

den layer, except for the last trainable one. The network is trained 

with 400 input conditions, i.e ( p endo , T a ) tuples, considering a ten- 

sor grid sampling for p endo and T a in the range [0,150 mmHg] and 

[0,100 kPa], respectively. We use the Adam optimizer ( Kingma and 

Ba, 2014 ) and train the system for 300 epochs with a learning rate 

of 1e −4 on a single CPU (Intel(R) Core(TM) i7-8700, 3.20 GHz). 

Network design and training use the libraries from Tensorflow 

( Abadi et al., 2015 ). The PINN can be thought of as a solver that 

maps each input pair to a deformed configuration satisfying (5) . 

Such a map is learned during training, and can then provide in- 

stantaneous deformation predictions for any input pair within the 

upper and lower bounds of p endo and T a seen during training. 

We summarise here the sequence of steps involved in the gen- 

eration of the personalised model and its use (refer to Fig. 2 ): 

[1] Define a mesh using medical images or directly with the SM. 

The resulting mesh must be parametrized ( Section 2.1 ) and pro- 

jected onto the SM. 

[2] Define microstructure, stiffness and expected ranges of p endo 
and T a . 

[3] Construct the gradient operators on the mesh with Eq. (7) . 

[4] Steps [1] –[3] provide the building blocks for the calculation of 

the deformation gradient and of the cost function using Eq. (6) . 

[5] Build the PINN architecture and use the FM bases as the last 

layer of the network. 

[6] Select the training pairs for the PINN. In our work 400 tuples 

obtained from the tensor grid sampling of the 2D space in p endo 
and T a are used. 

[7] Train the PINN minimizing the functional designed in step 4. 

[8] The PINN can now be used as a solver that predicts the dis- 

placement of the mesh nodes for input values of p endo and T a . 

This is specific for the anatomy defined through steps [1] and 

[2] . The PINN can be coupled with circulation models to simu- 

late the full cardiac cycle of the left ventricle 

For the comparison of the PINN prediction performance against 

the FE model, 10 additional anatomies are generated selecting SM 

amplitudes, micro-structure and material properties with the same 

approach used for building the FM ( Section 2.2 ). For each anatomy 

the PINN is trained and used to simulate six different operative 

conditions by varying reference pressure values, maximum actu- 

ation stress and parameters of the systemic circulation, for a total 

of 60 cases used for the calculation of the error statistics. We com- 

pare the predictions of the biophysical FE model and the PINN with 

different numbers of FM bases. The minimum number of bases is 

set such that at least 95% of the total energy of the deformation 

dataset is captured ( Buoso et al., 2019 ). Although the optimization 

of the PINN architecture is beyond the scope of this work, we also 
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Fig. 3. Average left ventricle SM mesh and longitudinal parameter (a), circumfer- 

ential parameter (b) and transmural parameter (c). (For interpretation of the refer- 

ences to colour in this figure legend, the reader is referred to the web version of 

this article.) 

investigate the variation of the PINN predictions with 5 and 7 hid- 

den layers. 

The code for PINN training, including the SM and FM bases used 

in this work, is publicly available at https://github.com/sbuoso/ 

Cardio-PINN/ under MIT license conditions. 

3. Results 

3.1. Shape and functional models 

The average mesh of the SM is shown in Fig. 3 a–c display the 

longitudinal, circumferential and transmural parameters, respec- 

tively. Fig. 4 shows the first four SM bases derived with POD, which 

account for approximately 99% of the total energy in the dataset 

and 80% of the observed variance. We present the impact of each 

basis on the final anatomy by visualizing the mode weighted by 

the maximum (blue) and minimum (orange) computed amplitudes 

added to the mean shape. 

The first 4 SM bases are therefore used to generate the syn- 

thetic anatomies for the generation of the FM. 

Similarly to the SM, the functional model is characterised by a 

quick decrease of the impact of each base, with the first 5 account- 

ing already for 95% of the total energy of the system and for 85% 

of its variance. Here, we compare PINNs using 5, 10, 15 and 20 FM 

bases. 

3.2. Physics informed neural network 

The 60 test simulation (6 operative conditions for each of the 10 

test anatomies) are simulated with the FE model which provides 

the ground-truth for the anatomical deformations and the met- 

rics of cardiac function. The variation of the operative conditions 

is obtained by coupling the anatomy to different circulation mod- 

els and selecting different maximum actuation values. The range of 

ejection fractions, EF, peak systolic pressures, PSV, and stroke work, 

W stroke , are [0.3–0.5], [37.0–125.0] mmHg and [0.01–0.7] W, respec- 

tively. The range of EF obtained goes from severe left-ventricular 

dysfunction to the boundary of physiological conditions. 

Fig. 5 show the error statistics for the predictions of PINN and 

FE models for EF, PSV and W stroke . Errors are computed from the 60 

total cases generated for the comparison and they are presented as 

mean and standard deviation. 

The mean and standard deviation for EF errors for m = 5 

( Fig. 5 a) significantly reduce when increasing the number of FM 

bases, N, from 5 to 10 (from −0 . 25 ± 0 . 21 to −0 . 03 ± 0 . 05 , respec- 

tively). A further increase in dimension slightly worsen EF predic- 

tion with errors of −0 . 09 ± 0 . 08 and −0 . 12 ± 0 . 07 for N = 15 and 

20, respectively. An increase in the number of hidden layers, m, 

from 5 to 7 worsen prediction performance for N = 5 , increasing 

the mean error to 0.29 with a variance of 0.17. For larger N val- 

ues, mean errors are reduced, but larger standard deviation are 

observed. With 7 hidden layers, error statistics are −0 . 01 ± 0 . 09 , 

−0 . 03 ± 0 . 10 , −0 . 09 ± 0 . 08 for N = 10 , 15 and 20, respectively. 

PSV errors are shown in Fig. 5 b. For m = 5 , errors are 0 . 06 ±

0 . 07 , 0 . 07 ± 0 . 06 , 0 . 13 ± 0 . 05 , 0 . 16 ± 0 . 06 for N = 5 , 10, 15 and 20, 

respectively. Error statistics are almost unchanged when consider- 

ing 7 hidden layers. 

W stroke errors ( Fig. 5 c) exhibit a similar trend to those of the EF 

errors. An initial improvement in both mean and standard devia- 

tion of the error is observed for m = 5 when N is increased from 5 

to 10, from −0 . 12 ± 0 . 17 to +0 . 04 ± 0 . 14 , respectively. Further in- 

creasing N results in higher means and standard deviations of the 

errors ( 0 . 15 ± 0 . 14 and 0 . 23 ± 0 . 15 for N = 15 and 20, respectively. 

As was also the case for PSV errors, an increase of m from 5 to 7 

has little effect on W stroke predictions. 

Prediction differences between the two models for radial, e r , 

longitudinal, e l , and circumferential, e c , strains, respectively are 

shown in Fig. 6 a–c. All three cases show error statistics which are 

only slightly affected by the PINN depth and number of FM bases. 

Error statistics show a minimum for N = 5 and m = 5 , with val- 

ues of −0 . 09 ± 0 . 07 , −0 . 06 ± 0 . 05 , −0 . 12 ± 0 . 11 for e r , e l and e c , 

respectively. Increasing N to 10 sets the error statistics to −0 . 13 ±

0 . 12 , −0 . 11 ± 0 . 09 , −0 . 14 ± 0 . 13 for e r , e l and e c , respectively, with 

almost no variations for further increases of N. 

The calculation of one single operative condition with the 

FE model takes approximately 2.5 h on a single core (Intel(R) 

Core(TM) i7-8700, 3.20 GHz), while it takes only 4 min for the 

PINN, including training time, on the same hardware. We note that 

the PINN must be trained only once when multiple operative con- 

ditions are considered for the same anatomy. 

Fig. 7 compares the the pV loop predictions from PINN and FEM 

for two of the 10 comparison anatomies and two sets of operative 

conditions. They show representative differences between the two 

models that are coherent with the statistics presented in Fig. 5 . 

Fig. 8 presents the comparison of the three-dimensional deforma- 

tion predictions for cases 2 and 4 of Fig. 5 . 

4. Discussion 

We have proposed a physics informed neural network (PINN) 

embedding physical constrains of cardiac mechanics both in the 

network architecture and in the cost function used for the train- 

ing. The network is a biophysical solver that predicts deformations 

of personalized left-ventricular anatomies from the values of left- 

ventricular pressure, p endo and actuation force, T a generated by the 

myocyte contraction. The PINN does not require the expensive gen- 

eration of input-output pairs for training and it hinges on the use 

of two sets or radial basis functions defining shape (SM) and func- 

tional (FM) models. 

The left-ventricular SM is generated from high-resolution car- 

diac MR and CT images and it ensures anatomical correspondence 

of all shapes and results. It uses a shape-adapted physiological 

parametrization to map a reference mesh to all anatomies of the 

dataset with limited mesh distortion ( Fig. 3 ). Proper Orthogonal 

Decomposition (POD) is used to extract the dominant anatomical 

features in the dataset. The rapid decay of the contribution of 

the POD bases in Fig. 4 f shows that the main global anatomical 

variations in the original dataset can be represented by a low 

number of basis and that each basis encodes very distinctive 

features: global scaling (base 1), base angle tilting (bases 2, 3), 

thickening of the wall (basis 4) and so on. Such features are con- 

sistent with those reported in previous studies on left ventricular 

shape analysis ( Farrar et al., 2016; Suinesiaputra et al., 2018 ). 
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Fig. 4. Long and short axis views of the effects of SM bases from 1 to 5. For each panel the corresponding basis weighted by the maximum (blue) and minimum (orange) 

amplitudes from the MMWHS dataset are added to the mean shape. The values in brackets refer to the variance represented by each base. The contribution of each basis to 

the total variance is shown in panel f. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 5. Relative errors (with sign) on predicted EF (a), PSV (b) and SW (c) between PINN and FEM solutions as function of FM bases and number of hidden layers ( m = 5 

for the black stars, m = 7 for red circles). Vertical bar represents ± one standard deviation of the error values. (For interpretation of the references to colour in this figure 

legend, the reader is referred to the web version of this article.) 

An innovative aspect of our SM is that it can efficiently recon- 

struct local physiological directions together with the anatomy 

( Buoso et al., 2020 ). Therefore, once we have identified the ampli- 

tudes of the SM basis that match the desired anatomy of interest, 

we automatically obtain also the PP directions. This can be effi- 

ciently done using a neural network as in Joyce et al. (2020) . 

Additionally, we can also randomly select the interpola- 

tion weights of the SM bases to generate realistic synthetic 

anatomies spanning the variability included in the SM training 

dataset. 

The second key aspect of the PINN design is the use of a func- 

tional model (FM) providing a low-dimensional representation of 
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Fig. 6. Relative errors (with sign) on predicted radial (a), longitudinal (b) and circumferential (c) strains between PINN and FEM solutions as function of FM bases and 

number of hidden layers ( m = 5 for the black stars, m = 7 for red circles). Vertical bar represents ± one standard deviation of the error values. (For interpretation of the 

references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 7. Comparison of the pressure-volume curves for two anatomies out of the 10 comparison cases. Both operative conditions are plotted for each anatomy. Solid lines 

refer to the PINN predictions (network depth m = 5 and POD modes N = 10 ), dotted lines with symbols to the FEM solutions. Consistently with the average error predictions, 

we observe under-estimation of the EF, over-estimation of the PSV a larger SW in the PINN model. (For interpretation of the references to colour in this figure legend, the 

reader is referred to the web version of this article.) 

Fig. 8. Contours of prediction errors between PINN and FEM models for cases 2 (first row) and 4 (second row) of Fig. 7 . Grey and colour shapes show the ground truth 

deformations predicted by FEM and the PINN error prediction, respectively for early diastole (a,f), mid diastole (b,g), end diastole (c,h), mid systole (d,i) and end systole (e,j). 

(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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the characteristic deformations of left-ventricular mechanics. This 

is obtained from a dataset of cardiac deformations from a biophys- 

ical Finite Element model on 100 synthetic geometries generated 

using the SM and realistic parameters for passive and active tissue 

properties, microstructure and systemic circulation. Using POD on 

the deformation fields, we generate a functional model (FM) en- 

coding the dominant deformation features of left ventricles. Sim- 

ilarly to the SM, the first 5 modes retain 95% of the total energy 

of the deformations in the synthetic dataset. The projection matrix 

generated from the FM basis is used in the last, non-trainable layer 

of the network architecture to constrain the predicted deformation 

to be in the subspace of the FM. 

Lastly, the PINN is trained using a cost function derived from 

the potential energy of the model constraining the network to pro- 

vide a solution of the momentum conservation laws. The model 

only requires the definition of the anatomy and the assembly of 

the matrix for the calculation of the gradients of the displace- 

ments. It can then be trained without the need of input-output 

pairs thanks to the cost function selected. 

We compared the predictions of the PINN with those from a 

FE biophysical model in 20 cases generated within the variabil- 

ity of the SM and FM. Model performance shows a large standard 

deviation of errors for 5 FM basis, which rapidly decrease when 

augmenting the size of the FM. We observed good accuracy in the 

metric of interest for the evaluation of left ventricle function, such 

as ejection fraction, maximum pressure and stroke work, with er- 

rors of −0 . 03 ± 0 . 05 , 0 . 07 ± 0 . 06 and 0 . 04 ± 0 . 14 , respectively, for 

10 FM basis and 5 hidden layers. The largest contribution to the er- 

ror predictions in the clinical metrics and strains are concentrated 

around the apex region ( Fig. 8 ). 

Further, end-diastolic strains show satisfactory agreement with 

the predictions from the biophysical model. For radial, longitudinal 

and circumferential strains, mean and standard deviation of the er- 

rors were −0 . 13 ± 0 . 12 −0 . 11 ± 0 . 10 and 0.14 ±13, respectively. 

These errors are within commonly reported ranges or ROMs 

where radial basis function are used. Recent work have also shown 

that such errors can potentially be corrected using statistical clo- 

sure models for the PINN predictions as shown in the recent work 

of ( Pagani et al., 2019 ). This will be the investigated in our future 

research efforts. 

The network provides a significant reduction of the computa- 

tional cost as compared to the FE model. For the calculation of 

one single operative condition the PINN is 30 times faster than 

the FE model when both run on the same CPU (Intel(R) Core(TM) 

i7-8700, 3.20 GHz). If we consider the computing times for mul- 

tiple operative conditions for each anatomy, the PINN gain is even 

higher since the training is done only once and the solution time is 

around 1 min. These results come without any network optimiza- 

tion, and we believe these results could be further improved with 

a more refined network architecture. 

In contrast to Maso Talou et al. (2020) , our PINN needs to be 

trained for each new anatomy. We believe, however, that our ap- 

proach offers several benefits. Firstly, the problem is regularised 

by including the physics at two levels, in the network architec- 

ture and in the cost function ( Raissi, 2018 ). Additionally, despite re- 

quiring very short training times, our method allows for high flex- 

ibility in the variation of the PINN with respects to initial choices 

made before an expensive training process. In fact, parametric de- 

pendence on physiological and microstructural parameters can be 

easily included as inputs to the PINN, which can be re-trained in 

few minutes (assuming these inputs are within the variability of 

the parameters used for the generation of the FM). In this case, 

our preliminary experiments suggest that prediction performance 

could also be further increased by optimizing the network struc- 

ture. Moreover, additional physical aspects can be included in the 

model by modifying the cost function (and the FM) appropriately. 

It is possible, for example, to include the effect of pericardium by 

prescribing an additional traction term in Eq. (6) . 

The PINN could be used in many applications where the speed 

of the calculation is more important than an accurate pointwise 

metric prediction. It will enormously speed up the calculation 

of activation stresses from clinical data as in the approach from 

Finsberg et al. (2018) . Additionally, we believe the approach could 

be used for computationally cheap yet physiological realistic data 

augmentation, potentially allowing for training better classification, 

segmentation and generative models down stream. A third poten- 

tial application is the use of the energy based cost function pro- 

posed as a physically informed regulariser, for example in predict- 

ing meshes from tagged MRI data. 

5. Limitations 

The model is based on a SM defined from an input dataset of 

limited dimension. A generalization to clinical applications of this 

work will require to extend the variability of anatomical shapes 

used as input to the SM. Additionally, although we observed that 

the SM bases derived can efficiently express anatomical variabil- 

ity in healthy and global diseased conditions ( Joyce et al., 2020 ), 

the large impact of basis 2 ( Fig. 4 ) suggests an inconsistency on 

the definition of the orientation of the cut plane. This approach al- 

lows to observe the same modes of variations presented in pre- 

vious works but, nevertheless, alternative approaches for shape 

alignment and processing should be considered ( Zhang et al., 2014; 

Lewandowski et al., 2013 ). 

Additionally, an extended dataset would allow to quantify the 

probability of the distribution of the weights for the generation 

of synthetic anatomies. The MMWHS does not contain specific la- 

bels for the clinical status of the anatomies provided, therefore we 

could not differentiate SM weights distributions for the different 

conditions. Knowledge on the probability distributions of the SM 

weights for healthy and pathological cases would allow to train 

dedicated PINNs. The SM also hinges on bases modelling mostly 

global anatomical features. Therefore, it is well suited to repre- 

sent healthy cases or global cardiac conditions, such ad dilated car- 

diomyopathy and hypertrophy. Including anatomies with local me- 

chanical defects, such as scars, would require the use of a much 

larger set of modes. 

We also consider here simplified electrophysiological and me- 

chanical models, neglecting potential actuation dynamics in the 

anatomy and the presence of the pericardium. Although our ap- 

proach has shown discriminating features between healthy and 

diseased heart conditions ( Finsberg et al., 2018; Balaban et al., 

2017 ), it would be very interesting for clinical applications to in- 

clude local defects in the electrophysiological response of the ven- 

tricle and the constraining effect of pericardium. Our modelling as- 

sumptions are not constrained by limitations in our approach, but 

they are only done to limit the computational cost of this first in- 

vestigation on the PINN performance for cardiac mechanic mod- 

elling. The effect of these assumptions will be inherently encoded 

in the FM bases, which are generated to provide a low-rank ap- 

proximation of the deformation fields computed with such model. 

Selecting different boundary conditions and modelling strategies 

would only require to modify the cost function and generate a 

new set of FM bases. Finally, our investigation is limited to a small 

number of bases for the FM. While this shows good accuracy when 

compared to the FEM model, it certainly results in higher errors 

when considering local strains in the anatomy and apex displace- 

ments. To allow a sector-wise local evaluation of ventricular con- 

traction and deformation, more bases should be included and, in 

this case, appropriate network sizing and architecture design are 

mandatory. 

9 



S. Buoso, T. Joyce and S. Kozerke Medical Image Analysis 71 (2021) 102066 

6. Conclusion 

We propose a physics-informed neural network for person- 

alized simulations of left ventricular mechanics. To the authors’ 

knowledge, this is the first time personalised PINN are applied to 

cardiac mechanics. The network is constrained to produce defor- 

mation fields contained in the subspace of radial bases of a func- 

tional model encoding characteristic deformation of left ventricu- 

lar anatomies. Additionally, the network is trained with a physics- 

based cost function that does not require input-output solutions 

pairs. The network, when compared to the corresponding biophys- 

ical Finite Element models, yields 30-fold reduction in compute 

time while ensuring good approximation of metrics of clinical in- 

terest. 
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