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Abstract

Somatic mutations in the isocitrate dehydrogenase genes IDH1 and IDH2 occur at high frequency in several tumour types. 

Even though these mutations are confined to distinct hotspots, we show that gliomas are the only tumour type with an 

exceptionally high percentage of  IDH1R132H mutations. Patients harbouring  IDH1R132H mutated tumours have lower levels 

of genome-wide DNA-methylation, and an associated increased gene expression, compared to tumours with other IDH1/2 

mutations (“non-R132H IDH1/2 mutations”). This reduced methylation is seen in multiple tumour types and thus appears 

independent of the site of origin. For 1p/19q non-codeleted glioma (astrocytoma) patients, we show that this difference is 

clinically relevant: in samples of the randomised phase III CATNON trial, patients harbouring tumours with IDH mutations 

other than  IDH1R132H have a better outcome (hazard ratio 0.41, 95% CI [0.24, 0.71], p = 0.0013). Such non-R132H IDH1/2-

mutated tumours also had a significantly lower proportion of tumours assigned to prognostically poor DNA-methylation 

classes (p < 0.001). IDH mutation-type was independent in a multivariable model containing known clinical and molecular 

prognostic factors. To confirm these observations, we validated the prognostic effect of IDH mutation type on a large inde-

pendent dataset. The observation that non-R132H IDH1/2-mutated astrocytomas have a more favourable prognosis than 

their  IDH1R132H mutated counterpart indicates that not all IDH-mutations are identical. This difference is clinically relevant 

and should be taken into account for patient prognostication.

Keywords Astrocytoma · Genome-wide DNA methylation · Gene expression · IDH1 · IDH2

Introduction

Somatic mutations in the isocitrate dehydrogenase genes 

IDH1 and IDH2 occur at high frequency in various tumour 

types including gliomas (primary malignant central nerv-

ous system tumours), intrahepatic cholangiocarcinomas (bile 

duct tumours), enchondromas and chondrosarcomas (bone 

tumours), sinonasal undifferentiated carcinomas and leukemias 

[12, 33]. More sporadic but similar mutations have been found 

in a wide variety of other tumour types including melanoma, 

and prostate and pancreatic cancer [54]. IDH1/2 mutations 

are causal for the disease and tumours often remain depend-

ent on the mutation for growth [22, 42]. The importance of 

the mutation is confirmed by the activity of IDH-inhibitors: 

inhibiting the mutant activity of either IDH1 or IDH2 shows 

anti-tumour activity in relapsed/refractory IDH1/2 mutated 

acute myeloid leukemia [14, 45] and cholangiocarcinoma 
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patients [1]. The objective response rates in these trials are 

in the order of 40%, though patients eventually relapse. In 

gliomas, however, mutant IDH1/2 inhibitors have thus far not 

shown a survival benefit, but further studies on early-stage 

tumours are ongoing [32].

The IDH1/2 mutations are confined to defined gene hot-

spots and affect either arginine 132 (R132) in IDH1 or 

arginines R172 or R140 in IDH2. Although IDH1/2 muta-

tions are confined to these three hotspots, several reports have 

shown that the IDH-mutation spectrum differs per tumour type 

[12, 15, 20, 37]. The hotspot mutations all change the activity 

of the wild-type (wt) protein from an enzyme that produces 

alpha-ketoglutarate (aKG) to an enzyme that produces D-2 

hydroxyglutarate (D-2HG) [12, 27] which ultimately keeps 

cells in an undifferentiated state [19, 30], but individual 

IDH1/2 mutations differ in their ability to produce D-2HG 

[5, 40].  IDH1R132H, the IDH1/2 mutation with relatively low 

D-2HG production capacity, is the most common mutation 

in gliomas; other mutations such as  IDH1R132C have tenfold 

lower KM and have higher enzymatic efficiency [5, 40]. This 

difference may have biological implications as not all aKG-

dependent enzymes are equally well inhibited by D-2HG [11, 

53]. For example, tet methylcytosine dioxygenase 2 (TET2) 

enzymes that mediate the first step in DNA-demethylation, 

requires relatively high D-2HG levels for inhibition [31, 53].

Here, we have used data from six large and independent 

DNA methylation datasets (the randomised phase III CAT-

NON clinical trial on anaplastic 1p/19q non-codeleted glio-

mas [49], the TCGA-LGG cohort [8], samples included in 

the TAVAREC randomised phase 2 clinical trial on astrocy-

tomas [51], a large cohort of acute myeloid leukemias (AML) 

[48] and a cohort of chondrosarcomas [52]) derived from four 

different tumour types, to examine the molecular effects of 

different types of IDH1/2 mutations. We report that tumours 

harbouring  IDH1R132H mutations, regardless of tumour type, 

have lower genome-wide DNA methylation levels compared 

to those harbouring other IDH1/2 hotspot mutations (‘non-

IDH1-R132H IDH1/2-mutated tumours’). For astrocytoma 

patients, we show this difference has clinical relevance as 

patients harbouring such non-IDH1R132H IDH1/2-mutated 

tumours have improved survival compared to those harbour-

ing  IDH1R132H mutations. Our data support the notion that 

increased genome-wide DNA methylation levels are associ-

ated with improved outcome in this tumour type and indicate 

that the type of IDH1/2 mutation should be taken into account 

for prognostication of astrocytoma patients.

Materials and methods

Datasets

The COSMIC database (Assessed 27 December 2019) was 

screened for hotspot IDH1 (R132) and IDH2 (R172 and 

R140) mutations. Mutations were stratified by tumour type; 

tumours with a low prevalence of mutations were concat-

enated (site of origin of ‘other tumours’: prostate n = 11, 

pancreas n = 6, skin n = 32, large intestine n = 1, soft tis-

sue n = 22, endometrium n = 1, breast n = 9, urinary tract 

n = 2, liver n = 7, stomach n = 1, upper aerodigestive tract 

n = 35, salivary gland n = 1, thyroid n = 1). CATNON clini-

cal data [49] and IDH1/2 mutation and DNA methylation 

data (Tesileanu, submitted) were reported previously. TCGA 

glioma data (DNA methylation and RNA-seq) [8], MSK-

IMPACT data [9] and AML data [48] were downloaded from 

the TCGA data portal. Clinical data and mutation status for 

the chondrosarcoma data were reported previously [52]. 

Clinical data from the TAVAREC trial were derived from 

ref [51], and supplemented with DNA methylation data of 89 

tumours. Most (80%) TAVAREC samples were derived from 

the initial tumour. Processing of CATNON and TAVAREC 

DNA methylation data was performed as described (Tesile-

anu, submitted). For the CATNON, TCGA-astrocytoma 

and TAVAREC datasets, we included only IDH1/2 mutated 

samples from non 1p/19q-codeleted tumours. Although all 

CATNON and TAVAREC samples were initially diagnosed 

as astrocytomas, DNA methylation analysis found 1p/19q 

codeletion in 8 samples included in the CATNON trial and 

3 samples in the TAVAREC trial (Tesileanu, submitted). To 

ensure a molecularly homogenous sample cohort, all 1p/19q 

codeleted samples were removed prior to any analysis pre-

sented. For IDH1/2 mutated MSK-IMPACT samples, the 

distinction between astrocytic and oligodendrocytic tumours 

was made by absence or presence of telomerase reverse tran-

scriptase (TERT) promoter mutations [26, 46]. In the Chi-

nese Glioma Genome Atlas [CGGA] [23], the exact IDH1/2-

mutation was not noted and therefore limited for the scope of 

this analysis. We used only the 1p/19q codeleted tumours in 

this dataset with IDH2 mutations being designated as “non-

IDH1R132H IDH1/2-mutations” and all IDH1 mutations 

as “R132H”. In oligodendrogliomas, IDH1 mutations virtu-

ally always result in R132H [20]. RNA-seq data (raw read 

counts) were normalized and processed using DEseq2.

Statistical analysis

Survival curves were created using the Kaplan–Meier 

method. The log-rank test was used to determine survival 

differences. A Wilcoxon rank test on beta values (i.e. the 
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intensity of the methylated probe/sum of methylated and 

unmethylated probe intensity) was used to identify differ-

entially methylated probes in CATNON and TCGA-astro-

cytoma datasets. To increase power in the smaller sized 

datasets, we performed an F test on M values (i.e. the log2 

ratio of the methylated/unmethylated probe intensities) to 

identify differentially methylated CpGs using the dmp-

Finder function in the Minfi Bioconductor package [4]. To 

further increase statistical power in the chondrosarcoma 

dataset (required as this dataset had few samples), we first 

made a selection of the most variable probes (i.e. those 

with a standard deviation > 2; ~ 5% of the total number of 

probes) followed by an F test on the M values. In all dif-

ferential methylation analysis, p-values were corrected for 

false discovery rate (adjusted p-value).

Differences in mutation frequencies were determined 

using a chi-squared test. Pathway analysis was performed 

using Ingenuity pathway analysis (Qiagen, Venlo, The 

Netherlands). An association model was made with the Cox 

proportional hazards method and included, next to IDH1/2 

mutation type, factors that are known to be related to out-

come from literature such as sex, treatment with temozo-

lomide, age at randomization, WHO performance score, 

O6-methylguanine DNA methyltransferase (MGMT) pro-

moter methylation status, use of corticosteroids at randomi-

zation, and DNA methylation profiling. All p values below 

0.05 were considered significant. Statistical analysis was 

performed using R version 3.6.3 and packages minfi, stats, 

rms, survival.

Results

The IDH1R132H mutation predominates in gliomas

We screened the catalogue of somatic mutations in the can-

cer (COSMIC) database [16], extracted IDH1/2 hotspot 

mutation data  (IDH1R132,  IDH2R172 and  IDH2R140) and 

stratified them by tumour organ site. As expected, tumours 

with a high frequency of IDH1/2 mutations include the cen-

tral nervous system (CNS), biliary tract, bone, haematopoi-

etic and lymphoid tumours (leukemias). Interestingly, even 

if there are only three mutational hotspots, there are marked 

differences in the distribution of mutations between tumour 

sites (Fig. 1). For example, the  IDH1R132H mutation is by 

far the most predominant IDH1/2 mutation in CNS tumours 

(n = 7265/8026, 90.5%) whereas this mutation is present at 

much lower frequencies in bone (n = 49/361, 13.6%), leuke-

mic (n = 519/2995, 17.3%) and other tumours (n = 14/129, 

10.9%), and thus far has never been identified in biliary 

tract tumours (n = 212) (p < 0.001, chi-square test). In con-

trast, the mutation that results in  IDH1R132C is quite rare in 

gliomas (223/8026, 2.8%) but much more prevalent in all 

other tumour types: bone (n = 212/361, 67.1%), leukemic 

Fig. 1  IDH1 and IDH2 hotspot mutation distribution separated by site of origin.  IDH1R132H mutations are the most predominant mutation in 

gliomas, IDH2 mutations are most common to haematopoietic tumours
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(n = 493/2995, 16.5%), biliary tract (n = 114/212, 53.8%) and 

other tumours (n = 14/129, 10.9%). There is also a major dif-

ference in the distribution of IDH2 mutations which are very 

common in haematopoietic and lymphoid tumours but rare 

in all other tumour types. Mutations of the R140 in IDH2 are 

virtually exclusive to haematopoietic and lymphoid tumours.

DNA methylation is lower in IDH1R132H mutant glioma

We used genome-wide DNA methylation data from CAT-

NON trial samples and compared profiles of  IDH1R132H 

mutated tumours (n = 369) to those harbouring other “non-

R132H” IDH1 and IDH2 hotspot mutations (n = 69). Our 

data shows that the overall level of DNA methylation was 

significantly lower in tumours harbouring  IDH1R132H muta-

tions compared to tumours harbouring non-IDH1R132H 

IDH1/2-mutations. For example, there are 2461 probes 

showing a reduction in beta values > 0.2 in  IDH1R132H 

mutated tumours (at p < 0.01) but there are no probes show-

ing an increase > 0.2. This is exemplified in the volcano plot 

where a strong skew towards increased DNA methylation 

in non-IDH1R132H IDH1/2- mutated samples is observed 

(Fig.  2a). Probes showing the largest increase in DNA 

methylation were those that were partially methylated in 

 IDH1R132H mutated tumours (i.e. probes with beta values 

between 0.25 and 0.75); there were few probes that became 

(partially) methylated from an unmethylated state (Fig. 2b).

Gliomas with higher levels of genome-wide DNA methyl-

ation generally are associated with longer survival in adults 

[8, 13, 28, 35]. Since non-R132H IDH1/2-mutated gliomas 

have increased DNA methylation levels, we compared the 

overall survival of patients with different IDH mutations. 

In patients included in the CATNON randomised phase III 

clinical trial, those harbouring tumours with non-R132H 

IDH1/2-mutations indeed had longer overall survival com-

pared to patients harbouring  IDH1R132H mutated tumours 

(Fig. 2c). The hazard ratio for non-R132H IDH1/2-muta-

tions compared to  IDH1R132H mutations was 0.41, 95% CI 

[0.24, 0.71], p = 0.0013.

DNA methylation profiling can also assign tumours to 

specific (prognostic) methylation subclasses. In line with 

the poorer survival,  IDH1R132H mutated tumours also had 

a significantly higher proportion assigned to the prognos-

tically poorer subclass A_IDH_HG (“IDH-mutant, high-

grade astrocytoma”, n = 100/366 vs. 9/71, p = 0.036, Chi-

squared test) using the subclasses as defined by Capper et al. 

(“CNS-classifier”) [7]. They also have a higher proportion of 

G-CIMP low tumours (18/369 vs. 0/62) and G-CIMP-high 

tumours with risk to progression to G-CIMP low (111/335 

vs. 2/62) in the classifier as defined by the TCGA and de 

Souza et al. (“glioma classifier”, p < 0.001, chi-squared test, 

Table 1) [8, 13].

A heatmap of the most differentially methylated 

CpGs of CATNON data (n = 677, selected on a beta 

value change > 0.25 and false discovery corrected p val-

ues < 10e−5) shows a gradient from high to low methyla-

tion levels. As expected, the non-R132H IDH1/2-mutated 

tumours cluster together at the high-methylation end of 

this spectrum. Interestingly, most of the tumours with less 

favourable molecular subtypes (A_IDH_HG, G-CIMP low, 

G-CIMP high with risk to progression) clustered together at 

the other, demethylated end (Fig. 2e). Although the clinical 

follow-up of CATNON patients is limited, the number of 

mortality events also tended to cluster at the demethylated 

end of the heatmap which suggests that there is a strong 

correlation between the level of methylation of these 677 

probes and survival.

To determine whether the type of mutation is a prognostic 

factor independent of the DNA methylation subtypes, we 

stratified these subtypes by IDH1/2 mutation  (IDH1R132H 

vs. non-R132H IDH1/2 mutated). Our data show that, even 

within the prognostic DNA methylation subtypes, patients 

harbouring non-R132H IDH1/2-mutated tumours had a 

significantly longer survival compared to those harbour-

ing  IDH1R132H-mutated tumours, regardless of the classifier 

used (Fig. 2d, supplementary Fig. 1, Online resource). The 

type of IDH1/2 mutation was also an independent prognostic 

factor in a multivariable analysis that included all known 

factors associated with survival in this trial (treatment, age, 

corticosteroid use and sex, supplementary Table 1, online 

resource). It remained significant when DNA methylation 

subclass was included in this analysis (Table 1, Supplemen-

tary Table 2, online resource). These data demonstrate that 

the type of IDH1/2 mutation is an independent factor associ-

ated with patient survival.

To confirm these observations, we performed a simi-

lar analysis on the IDH1/2 mutated, 1p/19q non-code-

leted glioma patients included in the TCGA dataset [8]. 

Similar to observed in the CATNON dataset, a striking 

increase in DNA methylation levels was seen in non-

R132H IDH1/2-mutated tumours compared to those 

harbouring a  IDH1R132H mutation (Fig.  3a, b). Also 

similar was the observation that patients harbouring non-

R132H IDH1/2-mutated tumours survived significantly 

longer; the hazard ratio (HR) of patients harbouring 

Fig. 2  Non-R132H IDH1/2-mutations are associated with higher 

DNA methylation levels and improved survival of 1p19q non-code-

leted astrocytoma patients included in the CATNON trial. Volcano 

plot (a) and XY plot (b) showing differences in methylation in non-

R132H IDH1/2 vs.  IDH1R132H mutated tumours. c Patients harbour-

ing non-R132H IDH1/2-mutated tumours have improved outcome, 

which is independent of methylation class (d). e Heatmap of the most 

differentially methylated probes (red dots in a and b), shows a gradi-

ent in methylation levels. Non-R132H IDH1/2-mutated tumours clus-

ter at the far left (high methylation), where poor prognostic methyla-

tion subtypes (epigenetics subtypes) cluster at the opposite end

◂
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non-R132H IDH1/2- mutated tumours (n = 37) versus 

 IDH1R132H-mutated tumours (n = 177) was 0.20 (95% 

CI [0.047, 0.837], p = 0.028 Fig. 3c). Finally,  IDH1R132H 

mutated tumours also had a higher proportion of tumours 

assigned to the prognostically poorer G-CIMP low DNA 

methylation class (4/116 vs. 0/27) and a higher number 

at risk of progression to G-CIMP low (29/111 vs. 0/24, 

p = 0.016). The type of IDH mutation remained a factor 

significantly associated with survival in a multivariable 

model that contained tumour grade and patient age (sup-

plementary Table 3, online resource).

DNA methylation generally shows a negative correla-

tion with gene expression, especially when the methyl-

ated CpGs are located near the transcriptional start site 

[44, 50]. We, therefore, examined whether the reduction in 

DNA methylation in  IDH1R132H mutated tumours is associ-

ated with an increase in gene expression in the 1p/19q non-

codeleted gliomas present in the TCGA dataset. Indeed, of 

the genes differentially expressed between IDH mutation 

types (with > twofold change in expression level at p < 0.01 

significance level) in astrocytomas, most (157/183, 86%) 

were upregulated in  IDH1R132H mutated tumours (Fig. 3d, 

Supplementary Table 4, online resource). Pathway analysis 

using these 183 genes indicates that genes upregulated 

in  IDH1R132H mutated tumours were involved in cellular 

movement, cell death and survival, cell-to-cell signalling 

and interaction and carbohydrate metabolism (Supplemen-

tary Fig. 2, online resource).

We performed a second validation using 1p/19q non-

codeleted samples included in the randomised phase II 

TAVAREC clinical trial. Again, the vast majority of probes 

had lower DNA methylation levels in  IDH1R132H mutated 

tumours (n = 83) compared to non-R132H IDH1/2- mutated 

tumours (n = 11, Fig. 4a) and the most differentially methyl-

ated probes were those partially methylated in  IDH1R132H 

mutated tumours (Fig. 4b). Moreover, there was a large 

degree of overlap in differential DNA methylation between 

CATNON and TAVAREC samples (Fig. 4c). In TAVAREC, 

there was no significant difference in survival between 

patients harbouring  IDH1R132H and non-R132H IDH1/2-

mutated tumours (HR 1.21, 95% CI [0.60, 2.45], p = 0.60). 

This, however, may be related to the specific inclusion 

criteria of this trial: patients were included only when the 

tumour showed signs of malignant progression at the time 

of progression (i.e. contrast enhancement on the MRI scan). 

In this respect, it is interesting to note that the percentage 

of non-R132H IDH1/2-mutated tumours was almost two-

fold lower in TAVAREC trial samples (13%) compared to 

CATNON (19%) and TCGA (20%). Although this differ-

ence in frequency was not significant, these numbers are 

in line with the notion that non-R132H IDH1/2-mutated 

tumours have lower frequencies of malignant progres-

sion. The small number of patients harbouring non-R132H 

IDH1/2-mutated tumours (n = 11) may also mask poten-

tial survival differences. A heatmap of most differentially 

methylated probes shows that non-R132H IDH1/2-mutated 

tumours and tumours assigned to the prognostically poorer 

subclass A_IDH_HG clustered at opposite ends of this heat-

map (Fig. 4d).

A forest plot of the combined CATNON, TCGA and 

TAVAREC survival data shows a summary estimate HR for 

non-R132H IDH1/2-mutated tumours of 0.56 with 95% CI 

[0.37, 0.85], association p = 0.006 (Fig. 4e).

To test whether mutation-dependent DNA methylation 

differences were restricted to 1p/19q non-codeleted glio-

mas (astrocytomas), we analysed the genome-wide meth-

ylation profiles of (i) IDH1/2 mutated, 1p/19q codeleted 

gliomas (oligodendrogliomas, TCGA), (ii) acute myeloid 

leukemias (TCGA) and (iii) chondrosarcomas. Although 

the sample sizes of these datasets were relatively small in 

all tumour types (1p/19q codeleted gliomas n = 135 vs. 14; 

acute myeloid leukemias n = 4 vs. n = 24; chondrosarcomas 

n = 3 vs. n = 17 for  IDH1R132H and non-R132H IDH1/2-

mutated tumours respectively), there was less DNA methyla-

tion in  IDH1R132H vs. non-R132H IDH1/2-mutation tumours 

(Fig. 5a–c). These data demonstrate that the level of DNA 

methylation is lower in tumours harbouring IDH1/2 muta-

tions with presumed low D-2HG production.

Table 1  Multivariable model

HR 95% CI p value

IDH mutation type

 Non-R132H v. R132H 0.486 0.278 0.852 0.012

Sex

 Male v. female 1.465 1.033 2.076 0.032

Treatment

 RT → TMZ vs. RT 0.410 0.257 0.653 0.000

 TMZ/RT vs. RT 0.802 0.520 1.237 0.319

 TMZ/RT → TMZ vs. RT 0.385 0.231 0.639 0.000

Age

 40–60 vs. < 40 years 1.121 0.656 1.914 0.677

 > 60 vs. < 40 years 3.824 1.812 8.069 0.000

Performance score

 1 vs. 0 1.404 0.991 1.990 0.056

 2 vs. 0 2.282 0.704 7.401 0.169

MGMT promoter methylation

 UM vs. M 1.001 0.640 1.567 0.996

Corticosteroid use

 Yes vs. no 1.099 0.742 1.627 0.639

Methylation subtype

 A_IDH_HG vs. A_IDH 2.650 1.828 3.842 0.000

 O_IDH vs. A_IDH 0.362 0.083 1.584 0.177

 Other vs. A_IDH 10.763 3.410 33.970 0.000
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Gene expression analysis of 1p/19q codeleted gliomas 

present in the TCGA dataset identified 148 differentially 

expressed genes (expression fold change > 1 or < − 1 and 

p < 0.01). Similar to observed in astrocytic tumours, the 

majority of identified genes (123/148, 83%) were upregu-

lated in  IDH1R132H mutated tumours (Supplementary 

Table 5, online resource). Moreover, there was a relatively 

large degree of concordance in differential expression 

between the two analyses (Fig. 5d) and sixteen genes were 

identified in both analyses.

The number of samples and events of the various datasets 

in patients with 1p/19q codeleted gliomas was insufficient to 

determine mutation type-dependent survival differences. For 

example, there were only 14 non-R132H IDH1/2-mutated 

1p/19q codeleted tumours in the TCGA dataset, with only 

1 event noted (in the  IDH1R132H mutated tumours there 

were 14 events in 135 patients). The HR for TCGA samples 

was 0.59 (95% CI [0.077, 4.595], p = 0.62, Fig. 5e). Also 

in the MSK-Impact [9] and the Chinese Glioma Genome 

Atlas (CGGA) [23] there were too few samples and events 

to determine survival benefit in patients harbouring non-

R132H IDH1/2–mutated tumours. In these datasets, the 

events/number in non-R132H IDH1/2 vs.  IDH1R132H 

mutated samples was 0/6 vs. 3/34 and 0/5 vs. 3/31 in MSK 

impact, and CGGA datasets respectively. We were not able 

to determine survival differences in AML (n = 12 with 5 

events vs. n = 89, 54 events, HR 1.49, 95% CI [0.59, 3.75], 

p = 0.39, Fig. 5f).

Discussion

Our data shows that IDH1/2mt gliomas are distinct when 

compared to other IDH1/2mt tumours in that they have 

a disproportionally high percentage of  IDH1R132H muta-

tions and raise the attractive clinical association between 

Fig. 3  Non-R132H IDH1/2-mutations are associated with higher 

DNA methylation levels, lower gene expression and improved sur-

vival of 1p19q non-codeleted astrocytoma patients of the TCGA. 

Volcano plot (a) and XY plot (b) showing differences in methylation 

in non-R132H IDH1/2  vs.  IDH1R132H mutated tumours. c Patients 

harbouring non-R132H IDH1/2-mutated tumours have improved 

outcome. d Volcanoplot showing differential expression of genes 

between non-R132H IDH1/2 and  IDH1R132H mutated tumours. 

Most differentially expressed genes (red dots) have lower expression 

in non-R132H IDH1/2-mutated tumours (see also Supplementary 

Table 2, online resource)
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different rarer (codon 132) mutations and outcome. 

Patients harbouring  IDH1R132H mutated tumours have 

lower levels of genome-wide DNA methylation, regardless 

of tumour type (1p/19q non-codeleted gliomas, 1p/19q 

codeleted gliomas, AML and chondrosarcomas). For 

1p/19q non-codeleted IDH1/2mt gliomas, this difference 

is clinically relevant as patients harbouring non-R132H 

IDH1/2-mutated tumours have improved outcome. Since 

 IDH1R132H mutations are presumed to be relatively poor in 

D-2HG production, our data are in line with the observa-

tion that glioma patients with higher D-2HG levels have 

improved outcome [34]. Our data are also in line with data 

from a meeting abstract showing similar mutation-specific 

survival differences [17].

The observation that patients harbouring non-R132H 

IDH1/2-mutated gliomas have longer survival is of impor-

tance for clinical practice as the specific IDH1/2 mutation 

could alter patient prognostication. In this respect diagnostic 

assays should be able to discriminate between the type of 

IDH-mutation present; non-R132H IDH1/2-mutations com-

prise ~ 10% of all IDH-mutations in astrocytomas. Moreo-

ver, the efficacy of treatment with alkylating agents, IDH1/2 

Fig. 4  Non-R132H IDH1/2-mutations are associated with higher 

DNA methylation levels in 1p19q non-codeleted astrocytoma sam-

ples of patients included in the Tavarec trial. Volcano plot (a) and XY 

plot (b) showing differences in methylation in non-R132H IDH1/2 

vs.  IDH1R132H mutated tumours. c Differential methylation between 

non-R132H IDH1/2 vs.  IDH1R132H mutated tumours showed a large 

degree of overlap in CATNON (x axis) and Tavarec (y axis) samples. 

d Heatmap of the most differentially methylated probes (red dots in a 

and b), shows a gradient in methylation levels. Non-R132H IDH1/2-

mutated tumours cluster at the far left (high methylation), where poor 

prognostic methylation subtypes (epigenetics subtypes) cluster at 

the opposite end. e Forrest plot showing the summary HR estimate 

of 1p19q non-codeleted astrocytoma patients harbouring non-R132H 

IDH1/2 vs.  IDH1R132H mutated tumours
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inhibitors, or other novel treatments might vary per mutation 

type, and therefore may be taken into account as a stratifica-

tion factor in future clinical trials.

It has been reported that individual IDH1/2 mutations 

differ in their ability to produce D-2HG. In fact, the most 

common mutation in gliomas,  IDH1R132H, is reported to be 

Fig. 5  non-R132H IDH1/2-mutations are associated with higher 

DNA methylation levels independent of tumour type. Volcano plot of 

1p19q codeleted oligodendrogliomas (a), AML (b) and chondrosar-

comas (c) showing differences in methylation in non-R132H IDH1/2 

vs.  IDH1R132H mutated tumours. Red dots depict CpGs that had 

a > 0.2 change in beta value and were significant (p < 0.01). Although 

the difference in chondrosarcomas is less than in other tumour types, 

the majority of significant CpGs was in non-R132H IDH1/2-mutated 

tumours (e.g. 225 CpG showed a > 0.3 increase in beta value at 

p < 0.01 where only 47 showed a similar decrease). d Gene expres-

sion differences between non-R132H IDH1/2 vs.  IDH1R132H mutated 

tumours in 1p19q non-codeleted astrocytomas (x-axis) and 1p19q 

codeleted oligodendrogliomas (y-axis) shows a large degree of over-

lap. Blue, green and red dots depict genes significantly differentially 

expressed in astrocytomas, oligodendrogliomas or both respectively 

(see also Supplementary Tables 2 and 3, online resource). e Survival 

of 1p19q codeleted oligodendroglioma patients present in the TCGA 

database harbouring non-R132H IDH1/2 vs.  IDH1R132H mutated 

tumours. There were too few events evaluate survival differences per 

mutation type. f Mutation type-specific survival differences in AML
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relatively inefficient in producing this oncometabolite [5, 

40]. The differential capacity of IDH mutations in D-2HG 

production is supported by observations from cell lines and 

clinical samples where tumours harbouring the  IDH1R132H 

mutation generally have lower D-2HG levels compared to 

those with other IDH mutations [21, 24, 25, 29, 40] (but 

not in all [10]) though confounding factors such as tumour 

purity may influence these observations. Previous reports 

have shown that D-2HG is a weak inhibitor of TET2 

enzymes as relatively high levels of D-2HG are required 

to inhibit the enzyme [31, 53]. In fact, the IC50 value for 

TET2 inhibition (~ 5 mM) is in the same range as the intratu-

moral D-2HG levels [10, 21, 29, 31]. As TET2 mediates the 

first step in DNA demethylation, lower D-2HG levels may 

result in reduced inhibition of DNA-demethylation. There-

fore, although we did not directly measure D-2HG levels, 

the partial inhibition of TET2 may explain the lower overall 

methylation in  IDH1R132H-mutated tumours.

The improved outcome of non-R132H IDH1/2-mutated 

astrocytomas may be explained by a reduced expression 

of genes that support tumour growth and/or induce treat-

ment sensitivity caused by the increase in CpG methylation. 

Evidence supporting this hypothesis is the observation that 

many of the differentially expressed genes are involved in 

pathways associated with cancer. However, the improved 

outcome of non-R132H IDH1/2-mutated astrocytomas may 

also be related to the observation that D-2HG is toxic to 

cells, though only at high concentrations. For example, we 

have previously shown that exposure to D-2HG or expres-

sion of mutated IDH constructs reduced proliferation 

of cells, both in-vitro and in-vivo [6]. Later independent 

studies largely confirmed these observations and also con-

versely, reduction of D-2HG levels by mutant IDH inhibitors 

increased cell proliferation [18, 38, 40, 47, 55]. It should be 

noted, however, that in some preclinical model systems a 

growth inhibitory effect of IDH-inhibitors was observed [39, 

41]. Functional experiments should confirm this hypothesis. 

Alternatively, differences in genetic stress and related muta-

tional signatures may also explain the differential distribu-

tion of mutations in IDH [2, 3].

Apart from the type of IDH mutation present in the 

tumour, other prognostically relevant factors have also been 

described [43]. This includes histological tumour grade 

where patients with grade 2 astrocytomas have longer sur-

vival than those with grade 3 or grade 4 [36]. It should be 

noted, however, that we find that tumour grade is not a prog-

nostic factor for the TCGA samples included in this study 

while the type of IDH-mutation is. In addition, the CAT-

NON trial was performed on anaplastic (grade 3) tumours 

only.

Limitations of this study include the relatively small sam-

ple size of several datasets, especially those with a diagnosis 

other than the non-1p/19q codeleted gliomas. In addition, 

the absence of D-2HG level data limits the exploration of 

a direct correlation between IDH1/2 mutation type and 

genome-wide DNA methylation.

In short, we described the effect of IDH1/2 mutation 

type on patient outcome and the strong correlation between 

these specific mutations and genome-wide DNA methylation 

status. Our observation that non-R132H IDH1/2-mutated 

1p/19q non-codeleted gliomas have a more favourable prog-

nosis than their  IDH1R132H mutated counterpart is clini-

cally relevant and should be taken into account for patient 

prognostication.

Supplementary Information The online version contains supplemen-

tary material available at https:// doi. org/ 10. 1007/ s00401- 021- 02291-6.
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