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Abstract: The minimum sum of clustering is the most used clustering method. The
minimum sum of clustering is usually solved by the heuristic K-means algorithm which
converges to a local optimum. Much effort was put into solving such kind of problem, but
a mixed integer linear programming formulation (MILP) is still missing. In this paper, we
formulate MILP models and solve them up to sample size 100. The advantage of MILP
formulation is that users can extend the original problem with arbitrary linear constraints.
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1 INTRODUCTION

Clustering is one of the most used methods in data science. Inside this area, K-means
clustering is the most used approach which aims to minimize the within cluster sum of
squares of distances. K-means clustering algorithm is a very fast method, but it is a heuristic
algorithm without any guarantee for global optimum. In data science, it is said that the
K-means algorithm is sensitive to the initial cluster centers, in optimization terminology
the K-means algorithm converges to a local optimum. This phenomenon is well known,
however, this method is implemented in most used statistical and data science softwares till
nowadays, contrary to the fact that exact algorithms are known (see for instant du Merle
et al. (1999), Peng and Wei (2007)).

Solving clustering problem using linear programming appeared early in the literature,
see Vinod (1969), Rao (1971). Later, different types of clustering problems were solved
using LP, see for instance Cornuejols et al. (1980), Kulkarni and Fathi (2007), Dorndorf and
Pesch (1994), Gilpin et al. (2013), but the most frequently used minimum sum of squares
clustering was less investigated. Du Merle at al. (1999) proposed an exact algorithm to
solve the minimum sum of squares clustering problem, but this approach did not appear in
statistical packages, probably due to the fact that it is a quite complicated algorithm.

We can also form the minimum sum of squares clustering problem as Semidefinite Pro-
gramming (SDP) problem (see Peng and Wei (2007)). The drawback of this possibility is
that SDP problems can be solved only for moderate size problems.
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In this paper, we present Mixed Integer LP formulations for the minimum sum of squares
problem. These formulations can be extended to problems with many types of constraints
(for instance lower bound on the cardinality of clusters or must-link constraints: Bradley et
al. (2000), Davidson and Ravi (2007)). The presented MILP model is based on formulation
appeared in Awasthi et al. (2015).

2 MILP FORMULATION FOR MINIMUM SUM OF SQUARES

CLUSTERING PROBLEM

We have N points in the n-dimensional space: A = {a1, . . . , aN} ⊂ Rn. Our aim is to group
these points into K clusters in a way that we minimize the within cluster sum of squared
distances. Clusters of points are denoted by Ak, k = 1 . . . K. These sets form a partition of
A, since Ak ∩A` = ∅, ∪Kk=1Ak = A and Ak 6= ∅ for all k = 1, . . . , K. Let PA denote the set
of partitions of A into eaxctly K non-empty subsets. The center of cluster Ak is denoted
by ck, which is defined as the multidimensional mean. Sum of squared distances within the
cluster Ak is given by the formula:

∑
ai∈Ak

d(ai, ck)2, where d(a, b) is the Euclidean distance
between points a and b (also called `2 norm). We can reformulate this sum of squares
formula as 1

|Ak|
∑

ai,aj∈Ak
d(ai, aj)

2 (see du Merle et al. (1999), Awasthi et al. (2015)). The
minimum sum of squares clustering problem is the following:

min
(A1,A2,...,Ak)∈PA

K∑
k=1

∑
ai,aj∈Ak

d(ai, aj)
2

|Ak|
.

In Awasthi et al. (2015), we can find a promising formulation:∑
i,j

d(ai, aj)
2 zij → min (1)

s.t.

N∑
j=1

zij = 1 ∀ i ∈ [N ] (2)

zij ≤ zii ∀ i, j ∈ [N ] (3)

N∑
i=1

zii = K (4)

zij ≥ 0 ∀ i, j ∈ [N ] (5)

zij ∈ {0, 1/|At(j)|} ∀ i, j ∈ [N ]

where At(j) is the cluster which contains aj, |A| is the cardinality of the set A and [L] :=
{1, . . . , L}. Except for the last constraint, this is a linear model with nonnegative decision
variables zij which indicates whether element i and j belongs to the same cluster or not.
There are several problems with the last constraint, we do not know apriori the value of t(j)
and the cardinality of cluster At(j). However, it can be reformulated as zij(zij − zii) = 0,
but it is still not a linear constraint.
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Unfortunately (but not surprisingly), the optimal solution of the problem minimizing
(1) subject to (2)-(5) does not give a ’legal’ clustering. To ensure this, we need further
constraints.

It is worth prescribing the symmetry of the variables zij, that is,

zij = zji ∀ i, j ∈ [N ] . (6)

Another possible linear constraint is the ‘triangle inequality’:

zij + zi` − zj` ≤ zii ∀ i, j, ` ∈ [N ] . (7)

Indeed, if both variables zij and zi` take positive value (meaning elements i and j are in the
same cluster and also elements i and ` are in the same cluster), then variable zj` has to take
positive value, and in this case, the values of all of the three variables have to equal variable
zii. If both variables zij and zi` are 0, then the value of variable zj` is not constrained.

We refer to the model minimizing (1) subject to (2)-(7) as MSSR: Minimum Sum of
Squares Relaxation. It still does not surely result in a ‘legal’ clustering structure, but as the
numerical tests show, we already get an optimal clustering with this model in most of the
cases. To get an exact model, we use binary variables. It can be done in different ways, we
will discuss two of them.

First we introduce binary variable ζij, which takes value 1, if elements i and j are in the
same cluster, otherwise it takes value 0:

ζij ∈ {0, 1} ∀ i, j ∈ [N ] . (8)

Values of variables zij and ζij are not independent, hence we need constraints to ensure
the relationship between them:

zij ≤ ζij ∀ i, j ∈ [N ] . (9)

zii − zij ≤ 1− ζij ∀ i, j ∈ [N ] . (10)

Now the problem minimizing (1) subject to (2)-(10) gives an exact model for the K-
means problem. However, we can add further constraints (cuts) to help the MILP solver to
find an optimal solution faster. Two possibilities are considering the following constraints

(N −K + 1)zij ≥ ζij ∀ i, j ∈ [N ] . (11)

(N −K + 1)(zii − zij) ≥ 1− ζij ∀ i, j ∈ [N ] . (12)

We reach the MSS formulation: minimizing (1) subject to (2)-(12). It is easy to see
that if an optimal solution of MSSR is a ’legal’ clustering, then all binary variables ζij take
integer values, i.e. branch and bound tree will only contain the root node.

In MSS formulation the number of binary variables can be quite large, its number increase
quadratically as the number of elements increases. We tried another formulation, in which
the number of binary variables is significantly less. Let γik denote the binary variable which
indicates if element i is assigned to cluster k:

γik ∈ {0, 1} ∀ i ∈ [N ], k ∈ [K] . (13)
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Since every element belongs to exactly one cluster

K∑
k=1

γik = 1 ∀ i ∈ [N ] , (14)

furthermore every cluster contains at least one element:

N∑
i=1

γik ≥ 1 ∀ k ∈ [K] . (15)

We need to connect variables γik to variables zij. If elements i and j are in different
clusters, then zij has to be zero, therefore

zij ≤ 1 + γik − γjk ∀ i 6= j ∈ [N ] . (16)

Now the problem minimizing (1) subject to (2)-(5) and (13)-(16) gives an exact model
for the K-means problem. We call it AMSS (Assignment-type Minimum Sum of Squares)
formulation. Let us again show some further constraints that can help the MILP solver.
One possibility is to enforce i and j into different clusters if zij = 0:

γik + γjk ≤ 1 + (N −K + 1)zij ∀ i, j ∈ [N ], k ∈ [K] . (17)

Furthermore, in a clustering problem, the essential result is a grouping, meaning which
elements are in the same cluster and which are in different ones. The ’label’ of the cluster
is irrelevant. If we have K clusters the labels can be assigned in K! way. We can break this
symmetry by prescribing that the first element belongs to the first cluster:

γ1,1 = 1 . (18)

We could go further. If the second element belongs to the same cluster as the first element,
it will be assigned to cluster 1 as well. Otherwise, let it be in the second cluster, so we have
γ2,k = 0, for k ≥ 3. Similarly for the third element, γ3,k = 0 for k ≥ 4. Surprisingly, these
constraints also slow down the process, it is not worth using all of them.

AMSS has signficantly less binary variables than MSS (N ×K vs. (N − 1)× (N − 1)).
A further advantage of AMSS formulation is that more constraints can be formulated with
the help of variables γik than with the help of ζij. On the other hand, it is not true that if
the optimal solution of MSSR formulation gives a legal clustering, then all binary variables
in the relaxation of AMSS take integer values.

3 NUMERICAL RESULTS

In order to test the above formulations, we generated uniformly distributed random points
in the unit square. On these instances, we tested the MSSR, MSS and AMSS formulations.
We used a desktop computer with 3.60 GHz Intel Pentium processor and 8 GB RAM.
Operating system is Windows 10 Enterprise. We used Gurobi 9.1.1 solver with the default
parameter settings for solving MILP problems.
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instance (N,K) #var. (bin.) #conns. # nonzero #iter. time (sec) o.f. value
(50,2) 2,500 (0) 62,526 245,100 44,891 5.41 8.7706
(75,2) 5,625 (0) 210,976 832,650 47,323 29.55 14.4857

(100,2) 10,000 (0) 500,051 1,980,200 113,292 146.49 18.8850
(50,3) 2,500 (0) 62,526 245,100 32,493 2.30 4.8643
(75,3) 5,625 (0) 210,976 832,650 112,711 17.09 8.6184

(100,3) 10,000 (0) 500,051 1,980,200 271,365 110.24 11.8003
(50,5) 2,500 (0) 62,526 245,100 21,525 1.40 2.7192
(75,5) 5,625 (0) 210,976 832,650 74,264 9.46 4.3356

(100,5) 10,000 (0) 500,051 1,980,200 134,661 68.26 6.0120

Table 1: Essential information about MSSR formulation

instance (N,K) #var. (bin.) #const. # nonzero #iter. time (sec) o.f. value
(50,2) 3,725 (1,225) 67,426 257,350 13,057 4.86 8.7706
(75,2) 8,400 (2,775) 222,076 860,400 85,215 69.00 14.4857

(100,2) 14,950 (4,950) 519,851 2,029,700 199,582 547.48 18.8850
(50,3) 3,725 (1,225) 67,426 257,350 7,231 3.53 4.8643
(75,3) 8,400 (2,775) 222,076 860,400 51,086 45.91 8.6184

(100,3) 14,950 (4,950) 519,851 2,029,700 122,879 345.28 11.8003
(50,5) 3,725 (1,225) 67,426 257,350 8,950 3.58 2.7192
(75,5) 8,400 (2,775) 222,076 860,400 42,963 38.07 4.3356

(100,5) 14,950 (4,950) 519,851 2,029,700 199,143 1,064.93 6.0156

Table 2: Essential information about MSS formulation

instance (N,K) #var. (bin.) #const. # nonzero #iter. time (sec) o.f. value
(50,2) 2,600 (100) 70,029 267,451 559,853 306.13 8.7706
(75,2) 5,775 (150) 227,854 883,201 64,316 45.55 14.4857

(100,2) 10,200 (200) 530,054 2,070,101 155,495 270.05 18.8850
(50,3) 2,650 (150) 73,755 278,776 211,463 88.09 4.8643
(75,3) 5,850 (225) 236,255 908,476 81,300 56.23 8.6184

(100,3) 10,300 (300) 545,005 2,115,051 205,222 312.18 11.8003
(50,5) 2,750 (250) 81,207 301,226 182,144 72.10 2.7192
(75,5) 6,000 (375) 253,057 959,026 73,654 56.49 4.3356

(100,5) 10,500 (500) 574,907 2,204,951 766,669 16,128.02 6.0156

Table 3: Essential information about AMSS formulation

Some important statistics about the size of LP problems and some information about
the solution process can be found in Table 1, Table 2 and Table 3.

As we can see in Table 1, 2 and 3, except the instance (100,5), the optimum solution
of MSSR will result in a legal clustering structure, actually we do not need the integer
variables. For all presented instances, the running times are less than 2.5 minutes for MSSR
formulation. Not surprisingly, running times for MSS and AMSS formulations are higher,
but still tolerable (except for the instance (100,5)). There is not a strict dominance between
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MSS and AMSS formulations, MSS seems to have slightly better performance (mostly for
instance (100,5)).

4 CONCLUSION

In this paper we investigated MILP formulations for the minimum sum of squares clustering
problem. These formulations have higher running times than the well-known K-means
algorithm, however for sample size at most 100 still tolerable. If in some application it is
crucial to work with global optimum these formulations give a possibility for it. Furthermore,
we are able to insert further (linear) constraints in the model.

References

Awasthi, P., Bandeira, A. S., Charikar, M., Krishnaswamy, R., Villar, S. and Ward, R. (2015).
Relax, no need to round: integrality of clustering formulations. arXiv:1408.4045

Bradley, P. S., Bennett, K. P., and Demiriz, A. (2000). Constrained K-Means Clustering.
https://www.microsoft.com/en-us/research/publication/constrained-k-means-clustering/

Cornuejols, G., Nemhauser, G. L. and Wolsey, L. A. (1980). A canonical representation of simple
plant location-problems and its applications. SIAM Journal On Algebraic And Discrete Methods,
vol(1), pp. 261–272.

Davidson, I. and Ravi, S. S. (2007). The complexity of non-hierarchical clustering with instance
and cluster level constraints. Data Mining and Knowledge Discovery, vol. 14, pp. 25–61.

Dorndorf, U. and Pesch, E. (1994). Fast Clustering Algorithms, vol. 6, pp. 141–153.

Gilpin, S., Nijssen, S. and Davidson, I. N. (2012). Formalizing hierarchical clustering as integer
linear programming. In Proceedings of the Twenty- Seventh AAAI Conference on Artificial
Intelligence, July 14-18, 2013, Bellevue, Washington, USA, pp. 372–378.

du Merle, O., Hansen, P., Jaumard, B. and Mladenovic, N. (1999). An Interior Point Algorithm
for Minimum Sum-of-Squares Clustering. SIAM Journal on Scientific Computing, vol(21), pp.
1485–1505.

Kulkarni, G. and Fathi, Y. (2007). Integer programming models for the q-mode problem. European
Journal of Operational Research, vol. 182, pp 612-625.

Peng, J. and Wei, Y. (2007). Approximating K–means–type Clustering via Semidefinite Program-
ming. SIAM Journal on Optimization, vol(18), pp. 186–205.

Rao, M. R. (1971). Cluster Analysis and Mathematical Programming. Journal of the American
Statistical Association, vol(66): pp. 622–626.

Vinod H. D. (1969). Integer Programming and the Theory of Grouping. Journal of the American

Statistical Association, vol(64): pp. 506–519.

54


