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Abstract

The effect of reaction delay, temporal sampling, sensory quantization and control torque
saturation is investigated numerically for a single-degree-of-freedom model of postural sway
with respect to stability, stabilizability and control effort. It is known that reaction delay
has a destabilizing effect on the balancing process: the later one reacts to a perturbation the
larger the possibility of falling. If the delay is larger than a critical value then stabilization
is not even possible. In contrast, numerical analysis showed that quantization and control
torque saturation have a stabilizing effect: the region of stabilizing control gains is larger than
that of the linear model. Control torque saturation allows the application of larger control
gains without overcontrol while sensory quantization plays a role of a kind of filter when
sensory noise is present. These beneficial effects are reflected in the energy demand of the
control process. On the other side, neither control torque saturation nor sensory quantization
improve stabilizability properties. In particular, the critical delay cannot be increased by
adding saturation and/or sensory quantization.

Aging western societies are facing an epidemic of falling [49]. For example, in the
US an older adult is treated for a fall in the emergency room every 11 minutes and
every 19 minutes an elderly person dies from a fall. Measurements of postural sway,
namely the fluctuations in the center-of-pressure (COP) while a subject stands quietly
on a force platform with eyes closed, can identify those most at risk for a fall [26, 70].
The principle sensory input for postural sway is proprioception at the ankle joint [15].
Since the sensory threshold for proprioception increases with aging and certain diseases
which effect the nervous system (e.g. diabetic neuropathy), it has been suggested
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that this sensory threshold increases the risk for falling [33, 49, 55]. Generalization
of sensory dead zone is sensory quantization, which is a combination of a series of
shifted sensory dead zones. However, mathematical and computer modeling studies
suggest that sensory quantization can have stabilizing effects [12, 24, 32, 40, 42, 48, 60].
Computer simulations of an inverted pendulum model for balance stabilized by time-
delayed feedback are used to assess the effects of sensory quantization on control effort
[19, 20]. The results suggest that sensory quantization can slightly decrease control
effort and that this benefit increases due to the effects of sensory masking to alter
quantization thresholds [55]. These observations provide insights into the possible
benefits of shoes with “noisy insoles” for reducing falling risk in elderly subjects [33].

1 Introduction

Falls in older adults typically occur while subjects are moving and are related to a variety of issues
including weight transfer, slips and trips [56]. The lone exceptions are those falls related to disorders
of the cardiovascular system (e.g. asystole, vasovagal episodes) and nervous system (e.g. spinal
cord disease, intoxication, epileptic seizures). Thus it is counter-intuitive that measurements of
postural fluctutations while standing quietly predict the propensity of an individual to fall while
moving [26, 70].

The dynamics exhibited by postural sway are very complex and consequently have attracted
a great deal of attention [8, 12, 27, 36, 47, 38, 67, 68] Typically sway is modeled in terms of an
inverted pendulum stabilized by time-delayed feedback [12, 27, 32, 38, 43, 59]. The time delay, τ ,
arises because it takes time for the nervous system to detect a deviation from vertical and then act
upon it. A manifestation of the importance of τ for balance control is the observation that it is
easier to balance longer poles at the fingertip than shorter ones [43]. The critical time delay, τcrit
is the longest delay for which a pole of length ` can be balanced. For proportional-derivative (PD)
feedback, it is typically proportional to

√
`. Figure 1 shows τcrit as a function of the length of the

inverted pendulum in the model of postural sway for different passive ankle stiffness as discussed
in Section 2. The time delay for human postural control is estimated to be between 100− 200 ms
[27, 32, 39, 50, 52, 53, 66]. The fact that τ < τcrit suggests that the critical delay does not set any
limitation on models of postural control with delayed feedback.

The observations in Figure 1 suggest that instabilities in postural balance are most likely due
to the limitations of the nervous system to detect deviations from vertical and/or the inability
to generate sufficient ankle torque to correct displacements from vertical. The principle sensory
input for postural sway is proprioception. Proprioceptive sensors at the ankle joint have a sensory
threshold of ≈ 0.1◦ [15, 45] which is about 20% of the amplitude of postural sway. The sensory
dead zone introduces a strong, small-scale nonlinearity into the control since the feedback is either
on or off depending on whether the displacement angle is respectively, larger or smaller than the
dead zone [12, 24, 41, 42]. A second strong nonlinearity arises because of saturation of the control
torque at the ankle, i.e. the person may not be able to exert the required amount of torque at the
ankle [9, 48, 54, 69]. Finally, experimental observations indicate that controlling forces are exerted
intermittently [5, 36, 62]. This switching type of feedback may simply be a consequence of the
sensory dead zone or part of the neural strategy for exerting control [1, 4, 18, 44, 50].
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Figure 1: Critical delay as function of person’s height H(m) for different values of passive ankle
stiffness kt (see equation (2)).
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There have been two views of the roles played by a sensory dead zone in the control of human
balance during quiet standing with eyes closed. The first considers that the sensory dead zone
represents a threshold that must be overcome for effective control to occur. This point of view
suggests the possibility of adding sensory stimuli to the soles of the feet to improve balance control
by altering quantization thresholds [3, 57]. Indeed standing on a noisily vibrating platform [55] or
wearing shoes with noisy insoles [33] decreases the amplitude of the fluctuations of human postural
sway. The second considers that a sensory dead zone is necessary to avoid the deleterious effects of
“over-control” [32, 40, 44]. In this case the stabilizing effects of vibration on human balance arise
from the interplay between the sensory dead zone and the time-delayed feedback [42].

Recently it has been shown that influences for balance control which are typically thought
to be destabilizing, such as sensory quantization and muscle torque saturation, can actually be
stabilizing when they work together [48]. Here we investigate the effects of sensory quantization
and muscle torque saturation on a model of postural sway which includes “temporal sampling”.
The temporal sampling takes into the account the observation that the force generated by a muscle
fiber depends on the frequency that it is stimulated at [11]. Our goal is to determine the control
effort of this model as a function of sensory quantization and muscle torque saturation. Section 2
presents the model and Section 3 describes the main steps of the numerical analysis. Results on
practical stability, critical delay and control effort are given in Section 4 and conclusions are drawn
in Section 5.

2 Model

We model postural sway as an inverted pinned pendulum supported by a torsional spring and a
torsional dashpot at the pivot point. Together the torsional spring and torsional dashpot represent
the passive resistance of the ankle joint against falling. The mechanical model is shown in Figure 2.
The equation of motion is

JAθ̈(t) + btθ̇(t) + ktθ(t)−mg`AC sin(θ(t)) = −Q(t) , (1)

where θ is the postural angle of the body measured from the upper (unstable) equilibrium position,
θ̇ and θ̈ indicate its first and second derivative, JA is the moment of inertia of the body with respect
to the ankle joint A, kt and bt are the torsional stiffness and the torsional damping at the ankle,
respectively, m is the mass of the body, g is the gravitational acceleration, `AC is the distance
between the center of gravity C and the suspension point A and Q(t) is the active control torque.
The passive resistance of the ankle joint is attributed to the foot, Achilles’ tendon and aponeurosis
and cannot be regulated by the nervous system during quiet standing.

Linearization around the upright position gives

JAθ̈(t) + btθ̇(t) + (kt −mg`AC)θ(t) = −Q(t) . (2)

This form shows that the intrinsic ankle stiffness kt plays a key role in the stabilization process of
upright stance [65]. If kt < mg`AC then the open-loop system is unstable. As shown by [35] for
a group of fifteen healthy subjects, aged between 20 and 68 years, the passive ankle stiffness was
substantially constant and was increasing only slightly with ankle torque, which verifies the linear
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Figure 2: Mechanical model for postural sway during quiet standing in the anterior-posterior plane.

spring model. They found that nine out of the fifteen subjects had kt < mg`AC and the average
of the ratio kt/mg`AC for the fifteen subjects was 0.91 with standard deviation 0.23. Other studies
used slightly different values for kt/mg`AC ranging between 0.5 ∼ 0.9 [38, 1, 61, 29]. These studies
indicate that the intrinsic mechanical stiffness of the ankle is just not enough to stabilize passively
the upright stance. Thus active feedback control is required to guarantee stability.

The active feedback is most often assumed to be a delayed PD feedback of the form [27, 32, 38,
47, 50, 52, 59]

Q(t) = Kpθ(t− τ) +Kdθ̇(t− τ) , (3)

where Kp and Kd are the proportional and the derivative feedback gains and τ is the reaction delay.
Substituting (3) into (2) and dividing by JA gives

θ̈(t) + bθ̇(t) + aθ(t) = −kpθ(t− τ)− kdθ̇(t− τ) , (4)

where

b =
bt
JA

, a =
kt −mg`AC

JA
< 0 , (5)

kp =
Kp

JA
, kd =

Kd

JA
. (6)

In what follows, the parameters are set as shown in Table 1 following the paper by Asai at al.
[1]. The intrinsic damping parameter bt of the ankle joint is the most uncertain parameter in the
model, estimates in the literature range between 4 ∼ 500 Nms/rad [1, 52, 39] and it is often simply
set to zero [48, 29]. It should also be noted that bt does not contribute to the passive stabilization
directly since the only condition for stability is bt ≥ 0.
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Table 1: Parameters

mh 60 kg
JA 60 kgm2

`AC 1 m
kt 470 Nm/rad (80% of mg`AC)
bt 4 Nms/rad (will be set to zero)

2.1 Linear stability

The stability criteria for the system can be derived by means of the D-subdivision method [58, 59].
The characteristic function reads

D(λ) = λ2 + bλ+ a+ kp e−λ + kdλ e−λ . (7)

Substitution of λ = jω gives the D-curves in the form

if ω = 0 : kp = −a , kd ∈ R , (8)

if ω 6= 0 :

{
kp = (ω2 − a) cos(ωτ) + bω sin(ωτ) ,

kd = ω2−a
ω

sin(ωτ)− b cos(ωτ) .
(9)

Characteristic exponents can exist on the imaginary axis only along the D-curves. Thus the number
of unstable characteristic exponents is constant within the regions separated by the D-curves. The
stable region is the one associated with zero unstable characteristic exponents.

Stability diagrams and the number of unstable characteristic exponents are shown in Figure 3.
The parameters correspond to those in Table 1. It can be seen that the stable region does not
typically change as the damping is increased from 0 to 4 Nms/rad (which is the value suggested
by Asai et al.[1]), while the change is more relevant with the change of the delay. This observation
highlights that the delay parameter is more relevant with respect to the stabilizability than the
damping term.

2.2 Critical delay

As can be seen in Figure 3, the stable region shrinks with the increase of the delay. When the
tangent of the parametric curve (9) becomes vertical at ω = 0 then the stable region totally
disappears. It can be shown that this happens when

aτ 2 + 2bτ + 2 = 0, (10)

hence the critical delay is

τcrit,PD = −1

a

(
b+
√
b2 − 2a

)
. (11)

If τ > τcrit,PD then the system cannot be stabilized by delayed feedback for any kp and kd. If bt = 0
then τcrit,PD = 1.0096 s, if bt = 4 Nms/rad then τcrit,PD = 1.0442 s. This shows that bt does not
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Figure 3: D-curves and the number of unstable characteristic roots for (4) for different delays and
different intrinsic ankle damping.
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affect stabilizability for the relevant parameter regions. In the discussion which follows we assume
that bt (and hence b) is equal to zero.

If the human body is modeled as a homogeneous rod with JA = 1
3
mH2 and `AC = 1

2
H with H

being the height of the person and kt = 0.8mg`AC, then one gets a rough estimate for the critical
delay as function of the person’s height H as

τcrit,PD =

√
2

−a
=

√
20H

3g
. (12)

2.3 Spatial and temporal quantization

When temporal quantization (‘sampling effect’) is taken into account then the governing equation
reads

θ̈(t) + bθ̇(t) + aθ(t) = −kpθ(tj − r∆t)− kdθ̇(tj − r∆t) , t ∈ [tj, tj+1), (13)

where tj = j∆t are the sampling instants and ∆t is the sampling period such that τ = r∆t. Here,
we take ∆t = 10 ms.

Sensory quantization is a simplified model of the inaccuracies of human sensory perception,
namely, the feature that small changes in sensory input are not followed by changes in the output.
For instance, 1.2◦ and 1.3◦ angular excursion may induce the same corrective action, but when the
angle exceeds, e.g., 1.5◦ then larger action is triggered. When spatial quantization of the perceived
sensory signals are also modeled, then the equation changes to

θ̈(t) + bθ̇(t) + aθ(t)

= −kpρpInt

(
1

ρp
θ(tj − r∆t)

)
− kdρvInt

(
1

ρv
θ̇(tj − r∆t)

)
,

t ∈ [tj, tj+1), (14)

where ρp and ρv are the quantization step of the perceived angular position θ and the perceived
angular velocity θ̇, respectively. The sensory quantization has been implemented using the function
Int( ) which rounds towards zero, e.g., Int(1.6) = 1, Int(−1.6) = −1 [46, 47, 60, 20]. Note that
Int(x) = 0 if −1 < x < 1, therefore sensory quantization also presents a sensory dead zone when
the system is close to the equilibrium. The size of sensory quantization for human perception is
a debate of questions [15, 40, 32, 46]. Here we reduce our analysis to ρp < 8◦ and ρv < 8◦/s. In
the following, (14) is analyzed numerically. Particularly, the stability and stabilizability properties,
and the control effort are determined for different time delays and quantization steps.

2.4 Control torque saturation

Falling is often associated to the saturation of the control torque, i.e., the subjects cannot exert
the required amount of torque at their ankle (see, for example, [7, 54]. From a dynamics point of
view, control torque saturation presents strong nonlinearity associated with subcritical bifurcation
which reduces the domain of attraction of the stabilized fixed point [69]. The governing equation
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for the model which takes into account saturation is

θ̈(t) + bθ̇(t) + aθ(t) =
1

JA
Q̃(t) , (15)

where

Q̃(t) =


Qmax if Q(t) ≥ Qmax

Q(t) if |Q(t)| < Qmax

−Qmax if Q(t) ≤ −Qmax

(16)

and

Q(t) = −KpρpInt

(
1

ρp
θ(tj − r∆t)

)
−KdρvInt

(
1

ρv
θ̇(tj − r∆t)

)
,

t ∈ [tj, tj+1). (17)

Here Qmax is the maximum exertable control torque, which, following [48], is taken to be Qmax =
20 Nm. Note that the factor 1/JA in (15) is compensated by using Kp and Kd in (17) according
to (6).

2.5 Limitation by basin of support

Maintaining static balance is not possible if the projection of the centre of mass to the ground is
outside of the basin of support. Assuming an average foot length of 28 cm with `AC = 1 m, one
gets the limiting angle θlim ≈ 8◦. We assume the balance is lost at time instant t = tfall when
|θ(tfall)| > θlim.

2.6 Control effort

The energy demand of the control process for each simulation was calculated as

E =

∫ tmax

0

∣∣∣Q(s) θ̇(s)
∣∣∣ ds . (18)

Clearly, one control goal is the minimization of the energy during balancing. For numerical calcu-
lations, the time duration was set to tmax = 100 s.

3 Numerical method

The solution for (15) with (16) and (17) was determined numerically for a set of control gains
(kp, kd) and for different quantization steps ρp and ρv. Since the right hand side of (15) is piecewise
constant, the solution over each sampling period can be given in closed form using the variation of
constants formula. Step-by-step solution over the succeeding sampling periods gives a discretized
time history of θ and θ̇ over the interval [0, tmax]. The system parameters were set according to Table
1, the damping was set to b = 0. Simulations were performed for four different initial conditions:
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(θ(0), θ̇(0)) = (ρp, 0), (ρp, ρv), (0, ρv), (ρp,−ρv) such that |θ(s)| < ρp and |θ̇(s)| < ρv for s ∈ [τ, 0].
Thus, the simulations were started from the ‘edge’ of the sensory dead zone, and the history function
did not have any affect on the solution. Note that the initial conditions (θ(0), θ̇(0)) = (−ρp, 0),
(−ρp,−ρv), (0,−ρv), (−ρp, ρv) give the same response but with opposite sign. Simulations were
terminated either after tmax = 100 s or when the angular position exceeded θlim.

Diagrams of practical stability were determined by running simulations for a fixed delay and
for fixed spatial quantization steps over the plane of the control gains (kp, kd). The control gains
were varied between Kp = 0 ∼ 1000 Nm/rad and Kd = 0 ∼ 1000 Nms/rad. Those control gain
pairs were assessed as practically stable where the balance time exceeded tmax with |θ(s)| < θlim for
s ∈ [0, tmax].

Stabilizability diagrams were determined as follows. First, the spatial quantization steps were
fixed between the values ρp = 0 ∼ 10◦ and ρv = 0 ∼ 15◦/s. Then the maximum delay for which
none of the simulations resulted in a fall was determined over the three-dimensional space (kp, kd, τ)
using the multi dimensional bisection method [2]. The critical delay was determined as the delay
τcrit = rcrit∆t, for which the simulation was stable for tmax, but for τ = (rcrit + 1)∆t the simulation
was not stable any more (i.e., |θ(s)| exceeded θlim). For a given pair of spatial quantization, the
critical delay was set to the maximum of the delay that could be achieved over the plane (kp, kd).

4 Results

Stability, stabilizability (i.e., critical delay) and control effort were investigated based on the nu-
merical simulations.

4.1 Practical stability

In order to show the effect of spatial quantization and control torque saturation separately, simu-
lations were performed with and without quantization and saturation. The corresponding stability
diagrams are shown in Figure 4. Grey and blue regions correspond to practically stable system,
i.e., when |θ(s)| < θlim for s ∈ [0, tmax] in all simulations with different initial conditions. In the
grey region, the control force was not saturated at all, i.e., |Q(s)| < Qmax for s ∈ [0, tmax] in all sim-
ulations. In the blue region the control force was saturated at least in one sampling instant during
the simulation. In the white region, the solution was not practically stable. Black line indicates
the stability boundaries of the linear system, i.e., without spatial quantization and without control
torque saturation, for reference. Figure 4 compares four cases.

• When there are no quantization (ρp = 0 and ρv = 0) and no saturation (Qmax = ∞), then
the practically stable region coincides with the region of linear stability. The small difference
between the two boundaries is due the temporal discretization [25].

• When there is saturation but no quantization (ρp = 0, ρv = 0), Qmax = 20 Nm), then the
stable region opens up for larger control gains compared to the linear model. In this case,
application of large control gains do not result in over control due to the saturation.
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Figure 4: Regions of practical stability with (bottom) and without (top) quantization and with
(right) and without (left) saturation for τ = 200 ms. Grey region: bounded solution such that Q
does not exceed the saturation limit Qmax. Blue region: bounded solution such that Q is actually
saturated.

• When there is quantization but no saturation (ρp = 1◦, ρv = 1◦/s), Qmax =∞), then the size
of the stable region is again larger than that of the linear model.

• The case when both quantization and saturation are present (ρp = 1◦, ρv = 1◦/s, Qmax =
20 Nm) gives a combination of the previous two cases. The stable region is the largest in this
case.

The effects of different quantization steps is illustrated in Figure 5 for Qmax = 20 Nm. As can
be seen, the size of the practically stable regions slightly increases when spatial quantization is
larger. On the other side, it can also be seen that for larger quantization steps the saturation-free
region (grey region) is smaller.

4.2 Critical delay

The critical delay over the plane of the spatial quantization (ρp, ρv) is shown in Figure 6. It can be
seen that the maximum critical delay is obtained for zero quantization. Thus, although the size of
the stable region increases due to the quantization, the critical delay cannot be increased by adding
quantization. This result is similar to that of the quantized Hayes equation (a first-order delay
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Figure 5: Regions of practical stability for different quantization steps (ρp, ρd) for τ = 200 ms and
Qmax = 20 Nm.
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(ms)

Figure 6: Critical delay as function of quantization steps (ρp, ρd) for Qmax = 100 Nm.

equation) in [60]. Note that small fragmentation in the surface plot is due to the finite resolution
of the parameters space used during the numerical calculations.

4.3 Control effort

Control effort over the plane of the control gains for different spatial quantizations is shown in
Figure 7. Different levels of control energy E are shown by different color. The unstable region is
indicated by red color. Small control energy is indicated by blueish (from blue to purple) colors.
It can be seen that the smallest control energy is required in the stable region of the quantization-
free case. The reason for this is that the corresponding ideal motion is exponentially decaying.
Besides this, there are some parameter regions, where the quantization reduces the control effort.
For instance the blue region (low energy region) in the case ρp = 1◦, ρv = 1◦/s, is larger than in
the case ρp = 1◦, ρv = 0◦/s. The orange region (large energy region) disappears when there is
quantization in the velocity. Thus, we can conclude that quantization slightly decreases control
effort in certain parameter regions. Note that the colorbar in Figure 7 corresponds to a logarithmic
scale.

4.4 Size of postural sway

An important feature of postural sway is the size of the oscillations. Figure 8 shows the maximum
values of the fluctuations during the simulations for the same parameters as in Figure 7. It can be
seen that the oscillations are larger in the lower left region of the stability diagrams when ρp > 0
and ρv > 0 (this can be observed especially for ρp = 2◦ and ρv = 2◦/s). A combination of Figures 7
and 8 suggest that the control gains are tuned by optimizing a combination of control effort and
resulted oscillations.
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Figure 7: Distribution of the control effort in the space of control gains and quantization steps for
reaction delay τ = 200 ms.
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Figure 8: Maximum of the fluctuations obtained by numerical simulations for reaction delay τ =
200 ms.
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5 Discussion

Sensory quantization and control torque saturation are unavoidable elements of control systems
due to physical limits in sensory perception and in actuation. In human balancing, finite resolution
of perception and maximum exertable effort can also be described in terms of quantization and
saturation. Moreover, it is also necessary to take into account temporal sampling since the corrective
forces generated by muscle contractions depend on the frequency of discrete neural inputs. Acting
together these effects can produce low-amplitude chaotic or at least seemingly chaotic vibrations
that resemble the random-like motion during postural sway [30, 50, 31, 60, 47]. Both quantization
and saturation have a beneficial effect on the performance. Quantization does not allow reactions
to perturbations that are smaller than the quantization step, hence, it serves as a kind of filter to
reduce noise [37]. One of the simplest realization of quantization is sensory dead zone: a threshold
below which changes in sensory input are not reflected by changes in output. Saturation prevents
overcontrol [48], which means that large control gains can be used without actually generating large
control action. An extreme case of the control torque saturation result in a bang-bang control: the
control torque is switched between two constant values [12, 25].

Sensory quantization decreases the control effort for stabilizing balance during quiet standing.
The beneficial effects of noisy insoles on balance [33, 55] is thought to be mediated through the
effects of sensory masking to alter the threshold for sensory quanization [55]. The benefits of
sensory quantization do not increase τcrit, but rather makes the control more robust in the presence
of fluctuations in the control gains. It is difficult to attribute these effects to a benefit of noise per
se since about 80 % of the amplitude fluctuations are greater than the sensory threshold. Thus it
appears that it is the saturation of muscle torque together with sensory quantization that provides
the main benefits for control. The tendency of the effect of quantization, saturation and their
combination can be seen in Figure 4. The control torque is saturated in the blue region, which
shows that the extension of the region of practical stability to large control gains is indeed related
to saturation.

The control gains which are most robust in the face of stochastic fluctuations, sensory quanti-
zation and control torque saturation are those located in the left corner of the D-shaped stability
region in the plane of the control gains. Similar observations have been obtained for pole balancing
at the fingertip [46], virtual pole balancing [28], and in studies of the effects of structured, real
perturbations on postural sway [21]. Estimations of the control gains for standing balance obtained
by modeling the responses to mechanical perturbation also place the control gains in this same
regions of parameter space (A. Zelei, J. Milton, G. Stepan and T. Insperger, in preparation). The
reason why the employed control gains are located not exactly on the edge of the stability region
is that the resulted oscillations for small gains are larger as shown in Figure 8. The magnitude of
the oscillations is smaller for larger control gains. Hence, the actual control gains applied might be
a result of a trade-off between small control effort and small fluctuations.

Our observations support two beneficial proposal for stabilizing standing balance in the elderly:
1) increase the torque that can be exerted across the ankle joint, and 2) addition of noisy perturba-
tions. It is important to keep in mind that both of these benefits can be implemented non-invasively.
It is likely that increasing ankle torque would provide the most benefit; however, our results do not
eliminate the possible benefits of wearing footwear with noisy insoles [33, 55]. However, it must be
kept in mind that these benefits are small and do not reverse the effects of aging. Of course the
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major unsolved problem is understanding how these effects reduce the risk of falling while moving.
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