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ABSTRACT

Carbapenemase-producing and colistin resistant Klebsiella pneumoniae has become a worldwide
healthcare problem. This study describes molecular characterization of carbapenemase-producing and
colistin resistant clinical K. pneumoniae isolates.

A total of 93 non-replicate carbapenem and colistin resistant K. pneumoniae were recovered from
clinical specimens in a university hospital during 2017–2019. Detection of blaOXA-48, blaKPC, blaNDM-1,
blaIMP, blaVIM-1 and mcr-1, -2, -3, -4, -5, -6, -7, and -8 genes was performed by PCR. The bacterial
isolates were assigned to clonal lineages by pulsed-field gel electrophoresis (PFGE) and multilocus
sequence typing (MLST).

All isolates harbored blaOXA-48 and only two isolates harbored blaOXA-48, and blaNDM-1 genes
together. In colistin resistant K. pneumoniae, mcr-1 was detected in two (2.1%) isolates. Ninety three
isolates of K. pneumoniae were categorized into three clusters and five pulsotypes. MLST revealed two
different sequence types, ST101 (89/93) and ST147 (4/93).

In our study ST101 was found to be a significantly dominant clone carrying blaOXA-48 and among
our strains a low frequency of mcr-1 gene was determined. The emergence of colistin resistance was
observed in K. pneumoniae ST101 isolates. ST101 may become a global threat in the dissemination of
carbapenem and colistin resistance.
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INTRODUCTION

Klebsiella pneumoniae is an opportunistic pathogen which can cause different types of
healthcare-associated infections. Enhanced use of carbapenems in clinical practice, promoted
emergence of carbapenem-resistant K. pneumoniae (CRKP) worldwide in recent years [1].
CRKP has mainly been link to K. pneumoniae carbapenemase (KPC), oxacillinase-48 (OXA-
48), and metallo-b-lactamases (MBLs), such as NDM, IMP, and VIM type carbapenemases.
While these plasmid-encoded carbapenemases have been increasingly reported worldwide,
their prevalence varies geographically [2]. The first identified OXA-48 producer was a K.
pneumoniae strain isolated in Turkey in 2003 [3]. Since then, OXA-48 producers have been
extensively reported from Turkey as a source of nosocomial outbreaks [4–8]. Worldwide
distribution of OXA-48 now includes countries in Europe, in the southern and eastern part of
the Mediterranean Sea, and Africa [3–8].

Treatment of infected patients with CRKP is always problematic due to their multidrug
resistance phenotype, and several therapeutic options have been considered. Colistin is one of
these therapeutic options. However, colistin resistance had been observed in CRKP isolates,
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and rapid dissemination of colistin resistant isolates has
been recently reported [9]. Colistin resistance mechanisms
are presumed to be linked to chromosomal mutation
untransferable via horizontal gene transfer [10]. Recently,
several plasmid-mediated colistin resistance genes, named
mcr, encoding pEtN transferases, have also been reported in
K. pneumoniae [11].

Dissemination of CRKP is mainly caused by the spread
of a few successful clones. Major representatives of these
high-risk clonal lineages include sequence type (ST) 11,
ST15, ST307, ST17, ST37, ST101, and ST147 strains [1].
ST258 strains are major players in the worldwide spread of
KPC-type carbapenemases, and are responsible for 68% of
the CRKP outbreaks [12]. ST101 strains harbor different
clinically-relevant resistance determinants, such as carba-
penemases of the KPC, OXA-48, VIM, and NDM types [1].

In this study, carbapenemase producing and colistin
resistant clinical K.pneumoniae isolates were characterized
to evaluate genetic differences and relationships, and prev-
alence of carbapenem resistance determinants, as well as to
determine plasmid-mediated colistin resistance mechanism.

MATERIAL AND METHODS

Bacterial isolates and susceptibility testing

We retrospectively analyzed ninety-three carbapenem and
colistin resistant K. pneumoniae isolates consecutively iso-
lated from patients who were hospitalized at the Hacettepe
University Hospitals between October 2017 and December
2019. The Hacettepe University Hospitals are tertiary care
hospitals of 1,040 beds that provides specialized attention to
a population size of ∼5.504 million habitants in the capital
of Turkey. In the period between October 2017 and
December 2019, altogether 8624 K. pneumoniae isolates
were obtained from routine microbiological cultures of
clinical samples. In total, 93 carbapenem and colistin resis-
tant K. pneumoniae isolates were obtained. These isolates
were detected from blood (n 5 34), urine (n 5 26), abscess
(n5 13), tracheal aspirate (n5 11), peritoneal fluid (n5 4),
cerebrospinal fluid (n 5 2), synovial fluid (n 5 1), pleural
fluid (n 5 1), and pericardial fluid (n 5 1). Isolates were
identified with conventional tests (Gram staining, catalase
and oxidase tests), and matrix assisted lazer desorption
ionization time of flight mass spectrometry (MALDI-TOF
MS, Bruker Daltonics, Germany). All isolates were identified
with a score ≥2.0; accurate identification to the species level
by MALDI-TOF MS. Antibiotic susceptibility profiles of
isolates were determined by BD Phoenix� automated sus-
ceptibility testing system (Becton Dickinson and Company
BD, USA). Isolates non-susceptible to at least one carbape-
nem (ertapenem, meropenem, and imipenem) were also
tested for carbapenem resistance by gradient test (bioM�erieux,
France) according to manufacturer’s instructions. CRKP was
defined when the isolate was resistant to ertapenem, mer-
openem or imipenem by gradient test. Colistin MICs were
determined for 93 CRKP isolates using the Sensititre� plate

(Thermo Fisher, UK). Results were interpreted according to
the European Committee on Antimicrobial Susceptibility
Testing breakpoints [13]. Escherichia coli ATCC 25922 and E.
coli NCTC 13846 (mcr-1 positive) was used for quality con-
trol. The isolates were stored in tryptic soy broth containing
10% (v/v) glycerol at �80 8C until use.

Molecular analysis of carbapenem and colistin
resistance

Genomic DNA was isolated using the QIAsymphony DSP
Virus/Pathogen kit in the QIAsymphony system according
to the manufacturer’s instructions (Qiagen, USA). OXA-48,
KPC, NDM-1, IMP, and VIM-1 carbapenemases were
identified by PCR amplification and sequencing as described
previously [14]. The colistin resistant isolates were screened
by simplex PCRs for the presence of mcr-1, mcr-2, mcr-3,
mcr-4, mcr-5, mcr-6, mcr-7, and mcr-8 genes [15–21]
(Supplementary Table S1).

PFGE

Pulsed-field gel electrophoresis (PFGE) was performed as
per a method described in a previous study [22]. A thin slice
of plug was digested overnight at 37 8C with 50 U of the
XbaI restriction enzyme according to the manufacturer’s
instructions. The restriction fragments were separated
through PFGE in 1% agarose gel (Bio-Rad, USA) with 0.5x
TBE buffer (45 mM Tris, 45 mM boric acid, and 1.0 mM
EDTA [pH 8.0]) for 22 h at 200 V and 14 8C, with ramp
times of 2 s-40 s using the CHEF Mapper apparatus (Bio-
Rad, USA). The gels were stained in ethidium bromide (1
mg/mL), were viewed under an ultra-violet trans-
illumination. Digital images were stored electronically.
PFGE banding patterns were analysed with the BioNumerics
Software (Applied Maths, Belgium) using the dice coefficient
and unweighted pair group method with arithmetic averages
algorithm. PFGE patterns were compared and analysed ac-
cording to the criteria mentioned by Tenover et al. [23].

MLST

Multilocus sequence typing (MLST) was performed on K.
pneumoniae isolates according to the protocol described on
the K. pneumoniae MLST website (https://bigsdb.pasteur.fr/
klebsiella/klebsiella.html). Seven conserved housekeeping
genes (gapA, infB, mdh, pgi, phoE, rpoB, and tonB) were used
[24]. MLST results were typed according to the updated
international K. pneumoniae MLST database at the Pasteur
Institute in Paris, France.

RESULTS

Bacterial isolates and susceptibility testing

In the period between October 2017 and December 2019, a
total of 8,624 clinical isolates of K. pneumoniae were isolated
from patients admitted to Hacettepe University Hospitals.
Among those, 2,259 isolates (26.2%) were non-susceptible to
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at least one carbapenem by gradient test and were tested for
colistin resistance. A total of 93 isolates (4.1%) out of this
subset showed a colistin resistant phenotype by Sensititre
with minimum inhibitory concentrations (MIC) that ranged
between 4 and 128 mg/m. Carbapenem and colistin MIC
ranges, MIC50 and MIC90 profiles of the isolates are sum-
marized in Table 1. Overall carbapenem and colistin resis-
tance rates are shown in Supplementary Table S2.

Molecular analysis of carbapenem and colistin
resistance

The PCR results indicated that blaOXA-48 gene was detected
in all K. pneumoniae isolates (100%), and 2.1% (n 5 2) of
the isolates co-produced blaOXA-48, and blaNDM-1. Other
tested carbapenemase genes, such as blaKPC, blaIMP, and
blaVIM-1 could not detected in any of the isolates. Detection
of mcr 1-8 genes using PCR technique revealed that two
(2.1%) isolates were positive for mcr-1. No mcr-2, -3, 4, -5,
-6, -7, and -8 were detected among all tested isolates.

PFGE

The characteristics of the molecular epidemiology of the 93
carbapenem and colistin resistant K. pneumoniae isolates are
displayed in Fig. 1. All the 93 carbapenem and colistin
resistant K. pneumoniae isolates were grouped into three
cluster and five pulsotypes. Cluster three is the largest cluster
that possesses 71 isolates. Fourteen isolates belonged to
cluster one and eight isolates belong to cluster two. PFGE
discriminatory power was of 96%, as calculated by Simp-
son’s Index of Diversity [25].

MLST

Ninety-three carbapenem and colistin resistant K. pneumo-
niae isolates were analysed by MLST, and two ST types were
detected. ST101(95.6%, 89/93) was the dominant ST type
followed by ST147 (4.4%, 4/93). Among four isolates of

ST147, two isolates carried both blaOXA-48 and blaNDM-1

genes, and the other two ST147 clones coproduce blaOXA-48
and mcr-1 genes (Fig. 1).

DISCUSSION

Multidrug resistant pathogens have become a global prob-
lem recently [12]. K. pneumoniae is an important nosoco-
mial multidrug resistant pathogen that can cause high
morbidity and mortality [26]. After widespread dissemina-
tion of carbapenemase producing K. pneumoniae isolates;
colistin resistance has emerged in K. pneumoniae isolates
and caused problems in treatment modalities [9, 26, 27].
CRKP isolates that produce carbapenemases such as the
OXA-48, KPC, VIM-1, NDM-1, and IMP, have been re-
ported worldwide [1, 3, 5–7, 9, 10, 26]. KPCs are the most
clinically common enzymes, and have been detected in
North America (especially the United States), South Amer-
ica (Colombia, Argentina), Europe (Greece, Italy, Poland),
Asia (China), and the Middle East (Israel) [28–30]. Turkey is
a country with a specific epidemiology, where OXA-48
carbapenemase has been extensively identified. However,

Table 1. MIC (mg/mL) profiles of carbapenem and colistin resistant
K. pneumoniae isolates

2017 (n 5 18) 2018 (n 5 38) 2019 (n 5 37)

Colistin
MIC range 4–64 4–128 4–64
MIC50 4 4 4
MIC90 16 32 64
Meropenem
MIC range 16–128 16–128 16–256
MIC50 16 16 16
MIC90 32 64 128
Imipenem
MIC range 16–64 16–128 8–64
MIC50 16 16 8
MIC90 32 64 32
Ertapenem
MIC range 2–64 2–128 2–64
MIC50 2 16 16
MIC90 32 32 32

Fig. 1. Dendrogram based on pulsed-field gel electrophoresis
pattern analysis (PFGE) of 93 colistin and carbapenem resistant

K. pneumoniae isolates from different wardss and their ST
determined via multilocus sequence typing (MLST)
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first KPC-2-positive K. pneumoniae have been identified in
Turkey, in 2014 [31]. Since then, sporadic KPC-producing
K. pneumoniae was reported [32, 33]. In the present study,
we didn’t detect blaKPC gene among tested carbapenem and
colistin resistant K. pneumoniae isolates.

MBLs identified in K. pneumoniae mainly reported from
Japan (IMP), Taiwan (IMP), Indian subcontinent (NDM),
Balkan states (NDM), and Greece (VIM) [33]. Recent findings
suggest that the Balkan states and the Middle East may act as
secondary reservoirs of NDM-1 producers. In the European
Survey of Carbapenemase-Producing Enterobacteriaceae
(EuSCAPE) study, Turkey was classified as a stage 3 country
on a scale of 1–5 (1: no reported case; 5: endemic situation) for
the existence of NDM carbapenemases. Among CRKP,
NDM-1 carbapenemases detected between 6.3% and 52.9% in
our country [34, 35]. Moreover, the coproduction of both
OXA-48 and NDM-1carbapenemases has been frequently
reported. We detected two (2.1%) NDM-1-producing isolates,
which have already been found to harbour OXA-48 carba-
penemases. Interestingly, NDM-1 carbapenemase detected in
a very low rate compared to our country results. Our hospital
setting is not an endemic region for blaNDM-1 positive
K. pneumoniae. The carbapenemase genes blaIMP and blaVIM
were reported in a low but notable incidence in Turkey like
other countries [27, 35–38]. In our study, blaIMP and blaVIM
genes were not detected in any of the isolates.

OXA-48-producing K. pneumoniae was first reported
from Turkey and it is endemic for our country [30, 32, 36,
37]. The emergence of the OXA-48 enzyme is mediated by
the rapid spread of a broad host-range conjugative plasmid
harboring the blaOXA-48 gene. Plasmid harboring
blaOXA-48 with the Tn1999.2 transposon detected from a
K. pneumoniae isolate in Turkey [39]. OXA-48-producing
K. pneumoniae is also endemic in certain North African and
European countries (Morocco, Tunisia, Spain, Belgium)
[40]. OXA-48-producing K. pneumoniae remain relatively
uncommon in the United States and Canada [41]. As it was
expected, we detected blaOXA-48 gene in all tested CRKP
isolates. However, two of these isolates were positive for both
blaNDM-1 and blaOXA-48 genes.

Multilocus sequence typing is an excellent method in
evolutionary studies for exploring the common ancestral
lineages of bacterial isolates [20]. Various ST types (ST11,
ST14, ST101, ST147, and ST258) and resistance mechanisms
can be related to carbapenem and colistin resistance in K.
pneumoniae [41]. A single K. pneumoniae clone ST258 was
identified extensively worldwide, indicating that it may have
contributed to the spread of the blaKPC genes [26]. On the
other hand, KPC-producing K. pneumoniae remains rare for
our country [31, 32]. Among all tested isolates, we didn’t
detect KPC-producing K. pneumoniae and also its emerging
high-risk clone ST258. We found that the epidemic Klebsi-
ella pneumonia isolate in our hospital was in ST101 type.
ST101 was previously accepted as a high-risk epidemic
clone, and it was reported that the ST101 clone was asso-
ciated with various b-lactamases, including NDM-1, OXA-
48, and CTX-M-15 [38]. Nevertheless, CRKP assigned to
ST101 are carbapenem resistant frequently because of the

production OXA-48. David et al., analysed the genome se-
quences of K. pneumoniae strains, isolated from patients in
244 hospitals in 32 countries during the European Survey of
Carbapenemase-Producing Enterobacteriaceae. CRKP are
concentrated in four clonal lineages, ST11, ST15, ST101,
ST258/512, and authors identified OXA-48-producing
ST101 clones in Romania, Spain, and Turkey [39]. Also, the
emergence of colistin resistance has been observed in CRKP
isolates, and colistin resistance was shown to be associated
with the ST101 clone. Detection of carbapenem and colistin
resistant K. pneumoniae ST101 was reported from Italy and
Serbia [42, 43]. A large multicentre cohort study, describe
the molecular characteristics of clinical colistin and carba-
penem resistant K. pneumoniae isolates. Researchers
observed a significant association between ST101, OXA-48,
and colistin resistance [44]. Our study reports the clonal
expansion of emerging ST101 clone associated with OXA-48
producing and colistin resistance in our hospital settings.

K. pneumoniae ST147 is an emerging high-risk clone that
was first identified in Greece and has been associated with
VIM and KPC carbapenemases in that country [45]. This
global ST has also been associated with NDM and OXA-181
carbapenemases in various countries, including Switzerland,
Iraq, Canada, United Kingdom, India, and Italy [26, 46]. In
the current study, two isolates of ST147 were detected which
co-harbored blaNDM-1 and blaOXA-48 genes.

Carbapenem-resistance among K. pneumoniae isolates
makes colistin the last therapeutic option for the treatment.
With the rise in consumption of colistin, cases of colistin
resistant CRKP isolates are reported globally [1, 9, 11].
Chromosomal mutations in phoP/phoQ, pmrA/pmrB, mgrB
and plasmid-borne mobile colistin resistance genes (mcr-1 to
mcr-9) positivity have an important role in increasing
colistin resistance in K. pneumoniae [47, 10, 11]. The highest
colistin resistance rate was reported in Asia (especially Korea
and Singapore), followed by Europe (especially Greece) and
America, where colistin resistance rates are continually
increasing [48]. Nowadays, all known mcr genes have been
detected in various K. pneumoniae isolates, whereas a small
number of studies have shown the presence of mcr genes in
clinical K. pneumoniae isolates [49]. Several studies sug-
gested that chromosomal mutations rather than mcr genes
positivity might have an important role in colistin resistance
[47, 44, 50]. Different STs such as ST274, ST461, ST15,
ST16, ST416, ST1890, ST37, ST1942, ST101, ST147, ST258,
ST152, and ST15 were detected in carbapenem and colistin
resistant K. pneumoniae [42, 50, 51]. We detected two ST
types, ST101 (95.6%) and ST147 (4.4%) in carbapenem and
colistin resistant K. pneumoniae. In Turkey, a few study
investigated mcr-1 to -3 genes among carbapenem and colistin
resistant K. pneumoniae isolates and only Arabacı et al.,
determined mcr-1 positive KRCP (5.2%) [44, 51–53]. In this
study, we investigated mcr-1 to -8 genes in colistin and car-
bapenem resistant K. pneumoniae and reported the molecular
characteristics ofmcr-1 positive CRKP. To our knowledge, this
is the first report of mcr-1 positive K. pneumoniae isolates that
produce both NDM-1 and OXA-48 while also belonging to
the one of the emerging clones ST147 from Turkey.
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CONCLUSION

We identified two different STs, namely, ST101 and ST147
among the carbapenem and colistin resistant K. pneumoniae
isolates identified during 2017 and 2019. ST101 is a
epidemic ST and has been associated with OXA-48. Our
results show that this ST also has the ability to develop
colistin resistance. Early detection and surveillance can
prevent the spread of carbapenem and colistin resistant K.
pneumoniae isolates.
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