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MRI investigation of granular interface rheology
using a new cylinder shear apparatus

Pascal Moucheront, François Bertrand, Georg Koval1, Laurent Tocquer,
Stéphane Rodts, Jean-Noël Roux, Alain Corfdir and François Chevoir2

Université Paris-Est, UMR Navier (LCPC-ENPC-CNRS), Champs sur Marne, France

Abstract

The rheology of granular materials near an interface is investigated through proton magnetic resonance imaging. A
new cylinder shear apparatus has been inserted in the MRI device, which allows the control of the radial confining
pressure exerted by the outer wall on the grains and the measurement of the torque on the inner shearing cylinder.
A multi-layer velocimetry sequence has been developed for the simultaneous measurement of velocity profiles in
different sample zones, while the measurement of the solid fraction profile is based on static imaging of the sample.
This study describes the influence of the roughness of the shearing interface and of the transverse confining walls on
the granular interface rheology.
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1. Introduction

The interaction of a granular material with a solid in-
terface is of interest in various engineering problems,
such as industrial conducts [1], geotechnics [2, 3], and
in geophysical situations, such as tectonophysics [4] or
gravity flows [5].

At the immediate vicinity of the shearing interface,
a thin granular layer, where the shear and dilation is lo-
calized, plays a significant role in the stress transmission
between the solid interface and the bulk granular mate-
rial. This rheology is influenced by the roughness of the
shearing surface [6, 7, 8, 9, 10, 11, 12].

In this paper, we focus our attention on the annular
(Couette) shear geometry, where the material is con-
fined between two cylinders and sheared by the ro-
tation of the inner rough one (see [13] for a recent
review). This geometry has been used to measure
the rheological properties of granular materials, both
in two dimensions [14, 15, 16, 17] and three dimen-
sions [18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28]. How-
ever, the visualization of the granular interface is usu-
ally limited to the upper (free surface) or bottom layers
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(through a transparent glass window) [19, 7, 29]. Fol-
lowing previous magnetic resonance imaging investiga-
tion of granular rheology [30, 31, 32, 33]: flows in ro-
tating drum [34, 35, 36, 37], vertical chute [38], annular
shear cell [39, 20, 25], segregation and convection un-
der vibration [40, 41, 42, 43, 44, 45, 46, 47], we have
used MRI to measure the granular rheology (velocity
and solid fraction profiles) well inside the sample.

Sec. 2 is devoted to the description of a new annular
shear cell, specially designed to be inserted in a MRI
device. Based on a geotechnical cylinder shear appara-
tus [19, 48, 49, 7, 29, 50, 51], its originality relies on
the control of the radial confining pressure exerted by
the outer wall on the grains and on the measurement of
the torque on the inner shearing cylinder.

Sec. 3 explains the multi-layer MRI velocimetry.
MRI velocity measurements were performed using
a spin-warp / phase encoding technique previously
adapted from [52] and used for routine liquid rheology
in annular Couette cells (see for instance [53, 54, 55, 56,
57]). It was here further modified on purpose of quasi-
simultaneous assessment of different regions in the sam-
ple.

Sec. 4 describes the measurement of the velocity and
solid fraction profiles, as well as the shear stress on the
shearing wall, from which we deduce the influence of
the roughness of the shearing interface and of the trans-
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verse confining walls on the granular interface rheology.
Our study is restricted to the quasi-static regime (small
shear velocity and/or high confining pressure).

Preliminary and complementary results are presented
in [7].

2. Annular shear cell

The annular shear cell is inserted in the MRI de-
vice through an external support. The figure 1 shows a
schematic view of the cell, which components are made
of PMMA.

Figure 1: Schematic view of the shear cell.

The sample has a hollow cylinder shape. The gran-
ular material is confined between two fixed horizontal
(bottom and upper) plates (heightH = 10 cm), an in-
ternal rotating cylinder (radiusRi = 3 cm) and an ex-
ternal latex homemade dip molded membrane (radius
Re = 6 cm) filled with water. A pressure-volume con-
troller (GDSr) applies a radial confining pressureP to
the sample, in the range 0− 15 kPa. An optical fiber
sensor (FOP MEMS 1000kPa - Fiso Technologiesr)
precisely measures this pressure close to the membrane.

The internal rotating cylinder is guided by two jour-
nal bearings set in the external support, while the main
cell (membrane, bottom and upper plates) is only con-
nected to the external support through the torque sensor,
which measures the whole torsion effort.

An aluminum-alloy torque sensor was specially de-
signed, based on resistive strain gages, in the range

±10 Nm. This measurement was not possible during
MRI experiment, but when displacing the cell bellow
the MRI device. This prototype is a first step toward the
realization of a torque sensor working inside the MRI
device.

Depending on the way upper and bottom plates are
mounted, it is possible to measure the whole torsion ef-
fort or only the fraction transmitted to the lateral mem-
brane (the difference between those two measurements
provides the torque transmitted by the horizontal walls).

The cell is connected to the transmission axis of a
rheometer previously designed to be inserted within the
MRI facility [58, 56, 59, 60], through a gearbox. This
two-stage, timing-belt and pulley system is placed close
to the cell and far from the motor. Its reduction factor of
10 provides a rotation range 1/600≤ Ω ≤ 1/6 RPS.

This configuration allows to place down the cell (out
of the MRI tunnel) during the sample preparation and
torque measurement and then move it up to the observa-
tion position.

The complete cell has a total diameter of≈ 19.5 cm
and a total height, without gearbox, of 28cm, which fits
inside the RF coil.

3. Multi-layer MRI velocimetry

MRI experiments were carried out on a Bruker
Biospec 24/80 MRI facility operating at 0.5 T (21MHz
proton frequency). The MRI magnet is a vertical su-
perconducting prototype (Magnex Scientific, Oxford),
with a 40 cm bore. These characteristics are particu-
larly suited for the study of large and inhomogeneous
samples, exhibiting strong internal susceptibility con-
trasts. The magnet is equipped with a birdcage RF coil
(height: 20cm, inner diameter: 20cm, hardπ/2 pulse
duration: 100µs), and a BGA26 shielded gradient sys-
tem (Bruker), delivering a 0.05 T/m gradient strength
with a rising time of 500µs.

MRI methodology for radial velocimetry inside the
cell was that of [52] as further modified by [59]
and [60]. It is based on a two-pulse spin echo se-
quence (Fig. 2a), in which the two pulses are made
space-selective inzandy direction respectively so as to
virtually cut a beam along one cell diameter (Fig. 2b).
A read-out gradient inx directions permits to get af-
ter Fourier transform of the signal a 1D magnetization
profile along the beam. An additional pair of gradient
pulses iny direction (in black) induces on the magneti-
zation profile anx dependent phase shift reading:

ϕ(x) = γGδ∆vy(x), (1)
2



where γ is the gyromagnetic ratio of proton,G the
strength of these ’velocity’ pulses,δ and∆ are timing
components of the sequence as described in Fig. 2, and
vy(x) is they velocity component along the selected di-
ameter. In order to get a velocity profile, one performs
two MRI measurements with respectively positive and
negative velocity gradients, and then compares in each
pixel the phase of the two magnetization profiles. When
the thickness of the beam iny direction is small enough
as compared with the cell diameter, such measurement
may be regarded as a direct measurement of the orthora-
dial velocity componentvθ versus the radial coordinate
r (Fig. 2b).
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Figure 2: (a) MRI sequence used for velocity measurements, and its
coherence pathway. Velocity encoding gradients are shown in black.
(b) Cell scheme and virtual beam cut.

In this sequence, only the phase of NMR signal bears
relevant information. It is then safe to use recycling
timesTRequal or even shorter thanT1 values. Indeed,
an incomplete spin-lattice relaxation between two suc-
cessive sequences may only affect the signal to noise ra-
tio, but is not prone to introduce any bias, provided that
the magnetization be correctly cleaned from past solic-
itations before each sequence. Such cleaning was here
performed with a saturation module at the beginning of
theTRdelay.

Thanks to saturation,TR may even be chosen so as
to optimize the signal to noise ratio of the experiment.
Let’s imagine that, because of experimental constraints,
one has a fixed delayTexp to perform a velocity mea-
surement. If someTR delay is used, then it will be
possible to repeat the sequenceN = Texp/TR times.
Granted that the available magnetization at the begin-
ning of each sequence scales as 1− exp(−TR/T1), and
that the improvement of signal to noise ratio when re-
peating sequences scales as

√
N, the signal to noise ratio

S NRof the whole measurement process scales as:

S NR(TR) ∝
{

1− exp

(

−
TR
T1

)}

√

Texp

TR
. (2)

This quantity is maximum for:

TRopt = 1.26T1, (3)

and fairly stays above 90% of this maximum in the
range 0.57T1 ≤ TR ≤ 2.59T1 . Saturation then turns
out a useful tool for signal optimization.

For the assessment of the velocity profiles at differ-
ent height inzdirection, sequences were repeated while
systematically shifting the vertical position of the beam.
In order to study unsteady granular flows, it was impor-
tant to make these multi-layer measurements as simul-
taneous as possible.

First of all, looking back at the NMR sequence, the
measurement of one beam at a given position clearly af-
fects all the magnetization of a larger region in the cell,
composed of the sum of the two slices selected by each
RF pulse. This, together with the use of the saturation
module, prevents considering measurements at different
z positions as independent: it is not possible to run the
sequence at one height immediately after running the
sequence at another height, even if the two associated
beams are well separated. Real simultaneous measure-
ments of velocity in multiple layers were then not pos-
sible.

We proceeded instead as follows (Fig 3). The whole
measurement consisted in two nested loops. In the first
loop the vertical location of the beam was shifted af-
ter each single sequence, so as to go through all neces-
sary beam positions. The procedure was then just re-
peated with inverted velocity gradient strength. This
first loop was inserted in a second one consisting in stan-
dard phase cycling and signal accumulation. One could
get this way velocity profiles at different height mea-
sured over exactly the same period of time.

In the present work, the thicknesst of the beam iny
direction was 10mm, and the recycling timeTR was

3
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Figure 3: Organization of MRI velocimetry sequences for the quasi-
simultaneous assessment of n layers in the cell.

taken as 100ms. The typical echo-time was about
20ms. Strong enough velocity gradients were here suf-
ficient to select the proper coherence pathway. Our MRI
system did not suffer any visible acquisition quadrature
defect, so that the phase cycling procedure simply con-
sisted here in a base-line correction, and could be com-
pleted in two steps. The minimal value of the heighth
of the beams was 1.5 mm. The maximum relevant value
was the cell size. Thinner layers are well adapted to
study regions with a strong vertical gradient of veloc-
ity, like the zone close to the horizontal walls. Because
of hardware constraints, the maximum number of layers
was 10. The total experimental time was 13 minutes for
three layers of 1.5 mmwidth, 104 minutes for five lay-
ers of 0.4 mmwidth and 208 minutes for five layers of
0.15mmwidth.

4. Experimental results

Three roughness levels of the rotating cylinder are
tested: the first one corresponds to a vertically corru-
gated surface (triangular shape with thickness equal to
depth of 1mm), the second one to a glued seeds sur-
face and the third one to sandpaper (medium grain - 80).
The horizontal walls (upper and bottom) are originally
smooth. To modify their roughness we have sticked
sandpaper and glass beads with the same diameter as
the seeds (for practical reasons the beads are glued to
sandpaper and not directly over the plate surface).

Mustard seeds are used as model granular material
(mean diameterd = 1.5 mm, quite monodisperse, mass

density of 1200kg/m3). The relaxation times areT1 ≈
100msandT2 ≈ 40ms.

The granular material is poured inside the cell with
a funnel from the top and then levelled off (see Fig.4).
After closing the cell, the sample is confined by the ap-
plication of the radial pressure through the membrane.
Then, the material is pre-sheared (at least 15 rotations of
the cylinder, corresponding to≈ 2800mmof tangential
displacement of the wall) to drive it in a steady-state.
Then data acquisition starts.

Figure 4: (Color on line) Sample preparation.

Tab. 1 summarizes the parametric study (wall rough-
ness, confining pressureP and velocity at the wallVθ =
2πRiΩ).

cylinder plates pressure1 velocity2

corrugated smooth 3.5− 13.5 0.314—3.14
glued seeds smooth 3.5− 13.5 0.314—3.14

sandpaper 8.5 3.14
glass beads 8.5 3.14

sandpaper smooth 3.5− 13.5 0.314—3.14
1 pressure (kPa) 2 velocity (mm/s)

Table 1: List of velocimetry experiments.

Internal stresses associated to gravity (of the order of
0,7 kPa) can be considered to be dominated by the ap-
plied confining pressures.

The maximum value of the inertial number [13], used
to qualify the granular flow regime, can be estimated
around 3· 10−4, indicating that the granular material is
in the quasi-static regime.

We now discuss the radial profiles of velocity and
solid fraction. They are presented as a function ofr−Ri,
normalized by the diameterd of the grains.
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4.1. Velocity profiles

We have first measured the profiles of the orthoradial
velocityvθ(r), normalized byVθ, far from the horizontal
walls, comparing three layers 15mmthick separated by
10mm(Fig. 5).

10 mm

0 mm

layer 2

layer 1

layer 3

z1=50 mm

z3=25 mm

z2=75 mm

15 mm

100 mm

Figure 5: Scheme of layers in the central zone.

Fig.6 shows thatvθ(Ri) < Vθ, which signifies that
there is significant sliding at the wall. Fig.6 also shows
that there is no influence of the roughness of the hori-
zontal walls in the central zone. An approximately ex-
ponential decay of the orthoradial velocity profilesvθ(r)
is measured, with a maximum value at the shearing wall,
consistently with previous studies [18, 19, 20, 14, 29,
13, 15, 25]. Qualitatively, this shear localization is ex-
plained by the strong decrease of the shear stress away
from the inner wall, while the normal stress remains ap-
proximately constant. As expected in the quasi-static
regime, no influence of the velocity at the wallVθ nor of
the confining pressureP has been observed.

4.1.1. Influence of the roughness of the horizontal walls
In a 2D system, the shear stress is entirely transmit-

ted from the inner to the outer wall by the granular ma-
terial [7, 13]. In a 3D system, the granular material in-
teracts with the horizontal walls, to which part of the
torque is transmitted. This changes the stress distri-
bution within the sample, and may consequently affect
the 3D velocity profile. This influence of frictional lat-
eral walls has been evidenced in granular surface flows
between vertical walls [61], especially when they are
rough [62]. We now wonder if such effect is observed
close to the horizontal walls.

The analysis of the influence of the horizontal walls
was based on a comparison of the profiles of 5 lay-
ers 1.5 mm thick separated by a distance of 1.75 mm
(Fig. 7). The gap of 0.45 mm between the horizontal

0 5 10 15
0.0

0.2

0.4

0.6

0.8

1.0

0 1 2 3 4 510-2

10-1

100

 

 

v
/V

(r-Ri)/d

(a)

 

 

v
/V

(r-Ri)/d

0 5 10 15
0.0

0.2

0.4

0.6

0.8

1.0

0 1 2 3 4 510-2

10-1

100

 

 

v
/V

(r-Ri)/d

(b)

 

 

v
/V

(r-Ri)/d

Figure 6: (Color on line) Velocity profiles (glued seeds cylinder).
(a) Smooth horizontal walls (layers1, 2 and 3). (b) Influence of the
roughness of the horizontal walls (layer1): (•) smooth, (⊕) sandpa-
per, (◦) glued glass beads. In inserts, the region closer to the shearing
cylinder in semi-logarithmic scale.

wall and the first layer ensured that only moving parti-
cles were considered in the measure. In the rough case,
a similar gap was taken from the glued glass beads sur-
face giving a total thickness of 2.5 mm.

The horizontal roughness made of glass beads is not
detectable by MRI, which provided a correct evaluation
of the velocity of the grains in direct contact with this
surface. The motion of the grains could be clearly dis-
tinguished from the motion of the cylinder, given the
strong velocity gradient.

Fig. 8 shows a comparison between the profiles in
the central zone and near the horizontal wall. In the
case of a smooth horizontal wall, there is no significant
influence. This result has practical applications, vali-
dating the measure of displacements of granular mate-
rials through transparent glass walls [19, 7, 29]. Con-
versely, in the case of a rough horizontal wall, a signif-
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Figure 7: Scheme of layers close to the inferior plate.

icant decrease is observed very close to the horizontal
wall, particularly in the first layer. This indicates the
transmission of shear stress between the granular mate-
rial and the horizontal walls. However, the perturbation
remains very localized, in contrast with granular surface
flows [62]. The fluctuations of the velocity profiles in
the first layers close to the horizontal wall is explained
by the small thickness of those layers, which strongly
decreases the signal to noise ratio.

4.1.2. Influence of the cylinder roughness
Fig. 9 shows that the cylinder roughness has a sig-

nificant influence on the velocityvθ, causing offsets of
the whole velocity profiles. Sliding, defined as the ra-
tio between the maximum value of the particle velocity
and the wall velocityVθ [29, 13], decreases from sand-
paper cylinder to the corrugated one, that is to say as the
roughness increases.

4.2. Friction coefficient

The average shear stress at the inner cylinder is
simply deduced from the measured torqueC as S =
C/(2πR2

i H). Consistently with previous studies [63, 50,
9, 10], a linear relation between the shear stressS and
the confining pressureP is observed (Fig. 10), from
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10-1

100
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v
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distance from the 
  horizontal plate

Figure 8: (Color on line) Velocity profiles near the bottom horizontal
wall (semi-logarithmic scale, glued seeds cylinder). (a) Smooth hor-
izontal wall (layers described in Fig. 7a), (b) horizontal wall with
glued glass beads (layers described in Fig. 7b). (�) layer 1, (•)
layer 2, (N) layer 3, (H) layer 4, (�) layer 5, (�) central profile.

which an effective friction coefficient S/P is deduced
(considering that the normal stress at the cylinder wall
is approximately equal toP) for each of the three cylin-
ders: 0.35 for sandpaper, 0.38 for glued seeds and 0.4
for corrugation. This increase seems consistent with the
decrease of the particle sliding shown in Fig. 9. The
roughness of the horizontal walls does not affect this
value, which is consistent with the very localized influ-
ence of this roughness.

4.3. Solid fraction profile

In order to measure the influence of the shear on the
radial distribution of grains, 3D spin density pictures
(20 layers 5mmthick in z direction, with a space reso-
lution of 0.2 mm in both x andy directions) were per-
formed at rest before and after shearing (at least 200
rotations, making≈ 38 m of tangential displacement).
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Figure 9: (Color on line) Influence of the cylinder roughness on the
velocity profiles: (�) sandpaper, (•) glued seeds and (N) corrugated.
(a) Linear scale and (b) detail of the region near the shearing cylinder
in semi-logarithmic scale.

Fig. 11a and Fig. 11b show typical density pictures ob-
tained before and after shearing respectively.

For each radial coordinate, grayscale pictures were
then integrated together in the orthoradial direction.
Granted that the integrated spin density profile in radial
direction provides a relative measurement of the solid
fraction, these solid fractionsν(r) are normalized by the
mean valueνm obtained before shearing, and shown in
Fig. 12.

Before shearing, after the granular material has been
poured in the cell, the solid fraction is relatively homo-
geneous, with a certain structuration (ν(r) oscillations)
near the inner wall. After shearing, a much clearer struc-
turation (already visible on the static images (Fig. 11))
together with a significant dilation is observed close to
the shearing cylinder (r − Ri / 7d). However, the zone
7d / r − Ri / 12d does not reveal significant solid
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Pa
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P (kPa)

S/P=0.38
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Figure 10: (Color on line) Average shear stress at the inner cylin-
der S as a function of the confining pressure P for different cylinder
roughness: (�, �) sandpaper, (•) glued seeds and (N, △) corrugated.
The full symbols indicate smooth horizontal walls, while hollow ones
indicate rough horizontal walls (Vθ = 3.14 mm/s)

fraction changes. This indicates that most of the vol-
umetric variations are localized in the region near the
cylinder, as reported by other experiments and simula-
tions [7, 29, 13].

5. Conclusions

As a way to study the rheology of granular materials
near an interface, we have developed a cylinder shear
apparatus inserted in the MRI device, which allows the
control of the radial confining pressure exerted by the
outer wall on the grains and the measurement of the
torque on the inner shearing cylinder. We have also
developed a multi-layer velocimetry sequence for the
simultaneous measurement of velocity profiles in dif-
ferent sample zones. This study shows that the rough-
ness of the shearing interface significantly affects the
granular interface rheology (sliding velocity and fric-
tion coefficient), while the influence of the roughness of
the transverse confining walls remains localized in the
very first layers. Moreover the measurement of the solid
fraction profiles, based on static imaging of the sample,
shows that, when starting to shear the material, its volu-
metric variations remains localized close to the shearing
interface. Those data are useful to test models attempt-
ing to describe granular interface rheology [64, 15, 65]
for annular shear. Using this device together with the
velocimetry sequence, work is under progress to study
the transient behavior of the granular material, under
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(a)

      layer
structuration

(b)

Figure 11: Static images used for the measurement of the solid frac-
tion profile (sample quarter). Definition:25 pixels/mm2. (a) Before
and (b) after shear (corrugated cylinder).

monotonic or cyclic shear, and the influence of liquid
saturation.
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