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ABSTRACT

The purpose of this research is to investigate a set of miiltiple
criteria, decomposition models for hierarchical organizations. To
facilitate this investigation the paper has three objectives. First,
it presents a generalized decomposition approach to an organizational
resource allocation problem. This approach results in a three-level,
decision-making hierarchy applicable to a set of decomposition models.
Second, it specifies the basic decisions and coordinative mechanisms
used by each organizational model within this decision-making hierarchy.
Third, it discusses the relationship between these organizational models
and pure mathematical decomposition procedures. Finally, an alternative
objective function formulation is proposed in order to overcome diffi-
culties with the models.





I. Introduction

In recent years, a number of researchers have noted the strong

similarities between the solution procedures utilized by a family of

mathematical programming decomposition algorithms and the information

exchanges inherent in the decision-making processes within hierarchical

organizations. Within the last decade, several alternative formulations,

often referred to as organizational models have evolved. These organ-

izational models focus upon a multiple critera formulation of the re-

source allocation problem faced by a multi-level organization. Although

several of these organizational models utilize classical mathematical

decomposition algorithms, their authors have defined a specific organ-

izational decision-making hierarchy without reference to an overall or-

ganizational problem. The highest level of this decision-making hier-

archy is typically concerned with generating goals for and/or allocating

resources to lower level units. The decisions at the intermediate levels

are structured as goal programming problems and attempt to minimize devi-

ations from the goals generated at the highest level. These deviations

are minimized by selecting alternative proposals that are aimed at ful-

filling policy goals. The proposals are obtained from subordinate units

at the lowest level of the organization.

The initial effort in this type of organizational modeling was

Ruefli's Generalized Goal Decomposition (GGD) model [14, 15]. Sub-

sequently, Freeland [9, 11] and Freeland and Baker [10] developed a

similar model based upon the principles of Benders' partitioning

procedure [2]. After testing these organizational algorithms, Davis [4]

and Davis and Talavage [5] proposed two additional algorithms: the
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Centralized Goal Decomposition (CGD) and the Hybrid Goal Decomposition

(HGD) models. Unlike the Ruefli and Freeland formulations, which used

shadow prices as their principal coordinative mechanism, the CGD and HGD

models incorporated goal deviations as a coordinative input. Later

Davis [7] developed another algorithm, dubbed the Generalized Hierarchical

Model (GHM) , which incorporated a goal programming structure at each

level of the decision hierarchy and relied upon deviations as the sole

coordinative mechanisms.

The purpose of this paper is to compare and contrast these organ-

izational models. To facilitate this comparison, the paper has three

objectives. First, it will present a generalized decomposition approach

for a specific organizational resource allocation problem. This approach

will result in a three- level, decision-making hierarchy which is appli-

cable to these organizational models. Second, it will specify the basic

decisions and coordinative mechanisms used by each organizational model

within this decision-making hierarchy. Finally, it will discuss the

relationship between these organizational models and mathematical decom-

position procedures. Pursuant to these objectives Section II will out-

line an overall resource allocation problem faced by a three-level

hierarchical organization and will discuss how this problem can be de-

composed. Section III provides a description of how each organizational

model implements this decomposition. Section IV contains a discussion

of these models as pure mathematical decomposition procedures and proposes

an alternative objective function formulation to overcome difficulties

in the algorithms. A final section provides a summary of the paper and

outlines areas for future research.
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II. Development of the Decomposition Approach

This section of the paper focuses upon the resource-allocation prob-

lem faced by a three-level hierarchical organization. It will begin with

the definition of the organization's overall mathematical programming

problem. It will be shown that this problem can be decomposed and solved

by the algorithms proposed by Ruefli [14], Freeland and Baker [10], Davis

and Talavage [5] and Davis [6, 7]. In addition, another potential algo-

rithm, which is a hybrid of the Freeland-Baker and Davis models, will be

discussed. It should be noted that each of these algorithms' author (s)

used a different set of varible definitions and, in some cases, slightly

different constraints in the original statement of his (their) algorithm.

This paper presents an universal formulation for the organization's

overall problem. Although this formulation's variables and constraints

differ slightly from the originals, they are applicable to all of these

organizational algorithms. As will become more apparent, the essential

differences among the algorithms are not their original variable/constraint

definitions, but rather the basic approach that each algorithm employs to

decompose and solve the overall problem.

Before developing the decomposition approach for each algorithm,

it is appropriate to investigate this overall problem and focus upon

the structural interactions among decision variables and constraints.

This study will show that the overall problem possesses a specific

structure which can be decomposed into three levels of hierarchial

decision-making. In adopting this three-level decomposition strategy,

however, certain fundamental problems can be expected to occur in the

coordination of the decisions at each level. These problems will be
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discussed in detail. A second paper by the authors [19] will relate the

computational consequences of these problems of coordination in a real

world application.

The overall organizational problem is defined by equations (1)

through (4).

^^in ^^^[^\ .1 C.X. + wJy^ -f w+y;^ + w'y; + w;;y- + C G^] (1)

k-1 k
s.t. B.X. - I Y, + I Yr _ G, =

1 1 m, k \r ^ ^
(2.k)

B!X. - I ,y, + I .y," = g,i X m/^k mJ-'k ^k

for k=l, . .., M

D.X. . < F. (3.i)11 — 1

for i=l, . .., N

^k=l \S ^ ^o
^'^

All variables ^0, and I and I , are (m, x m, ) and (m/ and mJ)

Iv IN.

identity matrix, respectively, .

Given the complex nature of the equations, the structure of the overall

problem is not immediately evident. Figure 1 gives the variable/con-

straint diagram for this problem. In Figure 1 each row of boxes repre-

sents a specific equation of the overall problem; the defining equation

is given in the upper left-hand corner of the left-most box. The boxes

contain the decision variables for each equation. By grouping equations

(2.1) through (2.M), the classic block-angular structure of the overall

problem is apparent. Thus a two-level decomposition approach to the

problem can easily be applied where equations (2.1) through (2,M) define
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the restricted master program and equations (3.1) through (3.N) and (4)

define the appropriate column generators.

The structure of this overall problem, however, permits the con-

sideration of a more sophisticated decomposition approach. It is evident

that the overall problem is nearly separable into M subproblems; only

constraint (4) prevents this separation. Therefore, to permit separation

constraint (4) will be initially neglected, and the vectors (G , ...,G )

will be assumed to be constant. The first of the M-subproblems would

then consist of constraints (2.1) and (3.1) through (3.r ) with the

first term of the summation (k=l) in equation (1) serving as its objec-

tive fvinction. Because G is assumed to be a constant, it can be placed

in the right-hand-side vector of equation (2.1), The resulting sub-

problem is shown graphically in Figure 2 as SP.l. In Figure 2, each of

the M subproblems, SP.l through SP.M, possesses a similar block angular

structure. For the subproblem SP.k, constraint (2,k) defines the

restricted master program, while constraints (3.r, - + 1) through (3.r, )

define column generators supporting the restricted master.

In the original problem statement, however, these subproblems are

coupled through constraint (4). This coupling is illustrated in Figure 2

by the dashed lines. Hence, a mechanism through which constraint (4) can

generate the composite vector (G , ...,G ) is required. The incorpor-

ation of such a mechanism represents the third level of decision-making

employed by the decomposition procedure. The development of this essen-

tial coordination mechanism is a difficult task. In the next section.

The terms block-angular structure, restricted master program, and

column generators are standard terminology in decomposition theorj'.

A brief overview of this theory is given in Appendix 1; in addition,

an excellent presentation is given in Lasdon [13],
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three procedures which have been employed in existing three-level (or-

ganizational) decomposition models are discussed.

In contrasting the three-level decomposition approach with the two-

level approach applicable to block-angular structure of Figure 1, several

fundamental differences emerge. First, the single restricted master pro-

gram resulting from constraints (2.1) through (2.M) in Figure 2 has now been

replaced by M restricted master programs defined for each constraint (2.k)

(k=l,..,,M). In Figure 1, constraint (4) defines an appropriate column

generator for the restricted master program. For the three-level approach,

it must be used to develop a coordination mechanism for the M separate

restricted master programs. Perhaps the most fundamental difference,

however, is that under the proposed decomposition procedure, no single

decision-making subsystem has been assigned the task of optimizing the

organization's overall objective function. That is, each of the M re-

stricted master programs will consider only the k-th term of the summa-

tion given in equation (1), Both the two-level and three-level decompo-

sition procedures will, however, use equations (3.1) through (3.N) to define

column generators that support their respective restricted master program.

An organizational hierarchy based upon this three-level decomposi-

tion approach is depicted in Figure 3. The two lower levels of the or-

ganization result from the application of a given decomposition procedure

to subproblems SP.l through SP.M. The restricted master program for

each subproblem, SP.k (k=l,..,,M), will be called Management Subsystem

or Manager k. Manager k will coordinate the decision-making of the

Infimal Subsystem or Operating Unit i (i=r,^ + l,.,.,r, ). Each sub-

ordinate Infimal i will iteratively generate a proposal vector, X.(t), for
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its Managment Subsystem at iteration t. To coordinate the generation of

this proposal vector, X.(t), Manager k must generate coordinative input

vector, Y.(t) (i=r,_- + l,...,r,). Each Infimal will incorporate this

Y.(t) vector into its decision-making process. Furthermore, the i-th

Infimal is responsible for assuring that the proposal vector, X (t), satisfies

constraint (3.i). In the generation of a composite proposal vector for

the i-th Infimal, X.(t), Management Subsystem k must also insure that con-

straint (2.k) is satisfied while simultaneously attempting to minimize

the k-th term of the summation given in equation (1).

The detailed nature of this interaction can not be completely specified

imtil a specific decomposition procedure is applied to subproblem SP.k,

Nevertheless, these basic flows of information must occur irrespective of

the selected decomposition procedure. Further, because there are M sub-

problems to be decomposed, there must be M corresponding interactions

betV'jeen Management Subsystem k and its subordinate Infimal Subsystems

or column generators.

Finally, to coordinate the simultaneous solution of the M subprob-

lems, SP.l through SP.M, a third level of decision-making is introduced

as the Supremal Subsystem or Central Unit. The Supremal Subsystem will

interact with each Management Subsystem k (k=l,...,M). This inter-

action again will be iterative in nature. To coordinate Management

Subsystem k's decision, the Supremal will generate the external goal

vector, G (t+1). In the generation of G (t), the Supremal Subsystem has
ifi K.

two primary considerations. First, constraint (4) must be satisfied.

Second, the degree of success that Management Subsystem k has experienced

in meeting its goal vector, G, (t), must be considered. To expedite the

I
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latter consideration, each Management Subsystem must generate a feed-

back vector r, (t) (k=l,,..,M), that the Supremal Subsystem can incorporate

into its decision process at the next iteration. Once the Supremal Sub-

system generates the vector G, (t), Management Subsystem k will incorpor-

ate it into the right-hand-side of its constraint (2.k). The specific

nature of the interaction between the Supremal and the subordinate

Management Subsystems will be defined in Section 3.

This section has developed the three levels of decision-making

resulting from the basic decomposition approach to the overall organi-

zational problem. In addition the basic flows of coordinative informa-

tion which allow individual decision-making subsystems to interact

have been specified. The next section will describe the specific nature

of the interactions among the decision-making subsystems. Through this

process the specific organizational models mentioned previously will

em.erge.

III. Definition of the Organizational Models

In the previous section a general decomposition approach was out-

lined for an organization's resource allocation problem. This approach

resulted in three hierarchial levels of decision-making. In this sec-

tion specific decisions will be defined for each level of the decision-

making hierarchy. Included in this definition will be a short discus-

sion of the decision strategy being employed by the decision-making sub-

system. For the Supremal and the Infimal Subsystems, more than one type

of decision will be presented. Sy selecting the alternative decision

processes for each level of the hierarchy, specific organizational models
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will result. In this manner, the decision strategies of several organi-

zational models can be contrasted. Section IV will then return to basic

decomposition approach and discuss in greater detail some of the funda-

mental deficiencies of the organizational models. This discussion will

focus upon the model's ability to solve the overall organizational prob-

lem. Subsequently, the decisions for each subsystem will be defined.

For the Supremal Subsystem, three basic decisions processes are

stated in equations (5) though (15). For Management Subsystem k, a single

decision type is given by equation (16) through (21), Finally, for the

Infimal Subsystems, two basic decision processes are specified by equa-

tions (22) through (29). Because the Management Subsystems serve as the

primary coordinators between the Supremal and the Infimal Subsystems,

their decisions will be discussed first.

On iteration t, each Mangement Subsystem (k=l,...,M) has an external

goal vector, G, (t), which has been generated by the Supremal, and an

internal goal vector, g^, which is assumed to be constant throughout the

iterative solution process. For each of its subordinate Infimal Sub-

systems, (i=r, ^+1 '^v^*
Matiagement Subsystem k has a set of vectors,

(X. (1) , . . .,X. (t)) , which Infimal Subsystem i has generated during the

preceding iterations. These vectors may be interpreted as a series of

operating proposals submitted by Infimal i. Using equations (19) and

(20), Manager k generates a composite proposal vector, X.(t), for each of

its subordinate Infimals as a convex combination of the previous vectors

or operating proposals. The B. and B'. matrices linearly relate these

composite proposal vectors, X.(t), to the external goal vector, G, (t), and
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Supremal Subsystem

Type I

''^' Cl \Sc^^-^^) i ^0 (6)

G^Ct+l) >
(7)

for k=l,... ,M

Feedback Information: r (t+1) = IL (t)

Type II

^^ 'k=l ^k^^-^l) <8)

s.t. ?j^(t+l) + [Y.^(s) - C^ ]Gj.(t+l) ^
k

^(s) + [n^(s) - C^ ]C^(s) (9)
s

for k=l M; s=l,...,t

ClW^^+i^lS (10)

(^(t+l)^0
(l;^)

for k=l,. . . ,M

Feedback Information: T (t+1) = IT (t)

In equation (9) zj;(s) is the optimal value of Manager k's objective

function, i.e. equation (16), for iteration s.
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Supremal Subsystem (cont'd)

Type III

Min Z^ AC„ G, (t+1) + w;*'s;^(t+l) + wrsrCt+l)] (12)

s.t. (^(t+l) + I^sJ(t+l) - I^S-(t+l) =

G^(t) + rj^(t+i) (13)

for k=l, . . . ,M

^k=l \V-'^ ^ % ^"-'^

Gj^(t+1), S^(t+1), S;^(t+1) 10 (15)

for k=l,. . . ,M

Feedback Information: Tj^Ct+D = \(t) " \^^^
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Managing Subsystem k

^I=r,_^.l «K(^) - ^^^(O + I^y-(t) = g^

^-
^i=r,, ,+1 CiX*(t) + W^Y^(t) + w+y+(t) + W'Y-Ct) + w^y'Ct) (16)

Aj(j) ^0 for i=rj^_^+l,...rj^ and j=l,...,t

j^(t). Y~(t), y^(t), y~(t) >

(18)

X*(t) = zJ^^X.(j)X.(j) (19)

for i=rj^_^+l,...,rj^

^j=l \^J^ == ^ (20)

for i=rj^_^+i,...,rj^-

(21)
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Infimal Subsystem i

Type I

Min [C. - n, (t)B. - n;(t)B!]X.(t+l)
1 k 1 k X X

s.t. D,X. (t+1) < F.
i i — X

X.(t+1) >
X —

Coordinative Input: Y.(t+1)

n^(t)

nj(i)

(22)

(23)

(24)

Type II

Min ex. (t+1) + wJ^JCt+l) + w!*^ij;"!'(t+l) + W"v7(t+1) + w"i(»7(t+l) (25)11 iCcC ICX ICl xCl

s.t.

b:
X

X.(t+1) - I
J. ,

^"[(t+i)!

,J;^(t4-l) I V^+ I

y.Ct+1)

'i^T(t+i)

= Yj^(t+l) (26)

D.X.(t+l) < F.XX — X
(27)

X^(t+1), -{-^(t+l), i^^(t+l), 'i'^(t+l), 'j^^(t+l) >.0 (28)

Coordinative Input: y
i(t+l)

= "
i

X (t) -

1— -1
-~ —

+ Hill-i (29)
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the internal goal vector, g, , through equations (17) and (18), respec-

tively. In these constraints, the deviation vectors, Y (t), Y~(t), y, (t)

and y, (t), are computed. The objective function of Manager k minimizes

the weighted sum of these deviation vectors in conjunction with the actual

2
cost of the composite proposal vectors. This objective function cor-

responds to the k-th term of the summation comprising equation (1). There-

fore, in solving its decision on iteration t, Management Subsystem k

generates the optimal set of composite Infimal proposal vectors X.(t)

for i=r, ^ + l,...,r, and an optimal set of deviation vectors Y, (t),

Y^(t), yi^(t) and y, (t). Associated with this solution are two

simplex multipler vectors, tt, (t) and Tr'(t), for equations (17) and (18),

respectively. From this solution. Management Subsystem k generates the

essential coordinative inputs for the decisions at the other hierarchial

levels. These coordinative inputs include the feedback vector, T. (t), for

the Supremal Subsystem and the coordinative input vector, Y.(t), for each

Infimal Subsystem. The specific formulation of these coordinative inputs

are unique to the three decision structures specified for the Supremal

in equations (5) through (15) and two decision types for the Infimal

specified in equations (22) through (29).

The Supremal Subsystem's role is to coordinate the Management

Subsystems. This is achieved through the generation of the set of

external goal vectors, (G (t+l),...,G (t+1)), which will be used by the

Management Subsystems on the next iteration. Three basic decision types

2
Omission of all cost vectors, C, from the mathematical statement

of each decision type creates a pure goal programming structure. In

certain situations, non-zero cost vectors are desirable; see Davis [6].
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have been given for the Supremal Subsystem. In all three decision struc-

tures, equation (4) of the overall problem is considered during the gener-

ation of the external goal vectors. However, the basic strategy employed

by the Supremal Subsystem to generate the goal vectors differs for each

decision type. In the Type I Decision, the Supremal simply minimizes

the reduced cost of the external goals with respect to Management Sub-

systems' optimal solutions for the previous iteration. In this manner,

the Supremal Subsystem behaves as a column generator for equation (4) in

Figure 1. That is it is acting as if the Dantzig-Wolfe decomposition

procedure [3] were applied to the block-angular structure displayed in

the Figure 1,

The second decision type for the Supremal Subsystem uses the compu-

tational approach of Benders' decomposition procedure [2] to generate par-

tioning constraints upon the feasible goal space given by equation (4),

Contrasted with Supremal Decision Type I, this approach allows the Supremal

to generate any goal vector, (G. (t+1) , , , ,,G (t+1)) , contained in the

feasible region defined by equation (4). With Supremal Decision Type I,

the Supremal Subsystem can only generate extreme points of this feasible

region as potential goals. Like the Supremal Decision Type I, the Supremal

Subsystem uses the simplex multiplier associated with equation (17) as

the primary feedback information from the Management Subsystem k.

The Supremal Decision Type III differs from the two previous Supremal

decisions in that it uses the deviation vectors, Y, (t) and Y, (t), resulting

from Managing Subsystem k's decision on the previous iteration as the

source of feedback information. Using this information and the goal

vector which the Supremal Subsystem generated on the previous iteration
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for Management Subsystem k, G, (t), the Supremal Subsystem generates the

effective goal vector which Management Subsystem k's current decision

* *
(X .(t),...,X (t)) would satisfy as an equality. This effective

'^k-l -^
'^k

goal vector is given as the right-hand-side to equation (13). The devia-

tion vectors S, (t+l) and S, (t+1) are then introduced to the left-hand-

side of equation (13) in order to compute the deviations of G, (t+1) from

this effective goal vector. Like the Supremal Decision Type II, equation

(13) allows the Supremal Subsystem to generate any composite goal vector

(G (t+1),..., G (t+1)) satisfying equation (A) for consideration by the

Management Subsystems on the next iteration. Through this procedure,

the Supremal attempts to adjust the composite goal vector so that the

combination of the cost of the goals and the weighted sum of the result-

ing deviations from the effective goal vectors, G, (t) + T, (t) (k=l,...,M),

are minimized.

For the Infimal Subsystems, two basic decisions have been presented.

The first is simply the basic column generator for equation (3.1) derived

from the application of the Dantzig-Wolfe decomposition procedure [3] to

the overall organizational problem. In this approach the i-th Infimal Sub-

system attempts to minimize the relative cost of its proposal, X.(t+1),

with respect to Management Subsystem k's current solution while simul-

taneously insuring the feasibility of X.(t+1) with respect to equation

(3.1), The coordinative inputs to the Infimal Subsystem are the simplex

multipliers associated with its superordinate Management Subsystem's

equations (17) and (18).

The formulation of Infimal Decision Type II is similar to the

Supremal 's Decision Type III, However, the formulations differ in that
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the Supremal Subsystem must be concerned with the current solutions for all

the Management Subsystems, while the i-th Infimal Subsystem is concerned

only with the current solution of its superordinate Management Subsystem,

The coordinative input for Infimal Subsystem i's decison is its goal

vector, Y.(t+1). Management Subsystem k generates this prospective goal

vector, Yj(t+1), using equation (29). If the i-th Infimal Subsystem could

generate a proposal vector, X, (t+1) , that fulfills each of the goals con-

tained in Y.(t+1), then the Management Subsystem could completely' satisfy

its current goals, G, (t) and g, . Equation (26) allows Infimal Subsystem

i to estimate the deviations from G, (t) and g, that will result from its

proposal, X.(t+1). The feasibility of X.(t+1) with respect to equation

(3.1) is also insured. The selection of the optimum X.(t+1) is determined

by the minimization of the cost of the proposal vector and the penalty

costs of the deviations.

The discussion of the basic decision types for each of decision-

making subsystems is admittedly sketchy in detail. For a more detailed

discussion of Supremal Decision Types I and III, Management Decision

Type I and Infimal Decision Type I, the reader is referred to Davis

[6, 7], Davis and Talavage [5] or Whitford [17, 18], For a discussion

of the Supremal Decision Type II, the reader is referred to Benders [2],

Freeland [11] or Freeland and Baker [10]. The remainder of this section

will focus upon the application of these basic decision types in the three-

level organizational models listed in Table 1. To this end, one decision

type will be selected for each decision-making level in the organiza-

tional hierarchy depicted in Figure 3.

For this study, five models have been identified in the literature.

These models are:
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1. The Generalized Goal Decomposition Model defined in Ruefli [14, 15]

2. Freeland and Baker's model defined in Freeland [9 , 11] and its two-

level version defined in Freeland and Baker [10]

3 and 4, The Centralized and Hybrid Goal Decomposition Models defined

in Davis [4] and Davis and Talavage [5]

5. The Generalized Hierarchial Model defined in Davis [7] and Whitford

[17].

Table 1 outlines the decision type utilized by each model for each level

of the decision-making hierarchy. With the exception of the Hybrid Goal

Decomposition (HGD) model, a single decision type has been assigned for

each level. The HGD model uses a two-stage decision-making process at

the Supremal level. First a tentative goal, G (t+1), is generated using

the Supremal Decision Type I, The G, (t+1) vectors are subsequentially

modified via Supremal Decision Type III, This model was originally de-

signed to test the advantages of using both simplex multipliers and

deviation vectors resulting from the Management Subsystems* decisions

as feedback information to the Supremal Subsystemo

One should note that the five models described previously do not

encompass all potential combinations of decision types at the appropriate

decision-making levels. For example, an alternative model could use

Supremal Decision Type II in conjunction with Infimal Decision Type II.

This model, referred to as a study or Freeland-Baker/Davis (F-B/D) model

in Table 1, represents a hybrid of the Freeland and Baker and Davis

Generalized Hierarchial models and decision types. The following sec-

tion will describe the decomposition procedures of each of these six

organizational models.
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IV. Organizational Models as Decomposition Procedures

Before discussing the efficacy of the organizational models in Table

1 as decomposition procedures, several points are worth noting. Recently,

research has defined organizational models as composition approaches.

This terminology implies that the modeler defines the type of decisions

used at each level of the hierarchy, independently of any characteriza-

tion of the overall problem for the organization. Although Sweeney, et

al. [16] recently focused upon the overall problem for these composition

models, they maintained a distinction between the composition and

decomposition approaches. They proposed the existence of two overall

problems. The first or "Ideal Organizational Problem" was defined as the

organization's actual problem. The second, called the "Design Problem,"

represented a separate formulation. The optimum solution of the Design

problem and the optimum solution generated by a particular organizational

algorithm are identical. This necessarily implies that the application

of different organizational algorithms could result in different Design

Problem formulations. Unforttmately Sweeney et al. provided no math-

ematical definition of either the Design or Ideal Organizational Problems.

Several difficulties and questions are created by the existence of

two organizational problems. First the interrelationship of one problem

to the other must be defined. Do the two problems have the same optimal

solution? If not, are the set of feasible solutions for both the prob-

lems the same? If not, what leads to the differences? Does the compo-

sition approach lead to additional constraints necessitated by the intro-

duction of an organizational structure? If so, can the nature of these

constraints be defined or explained? The list of questions continues.
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The most serious implication created by the existence of two problems

infers that a complete specification of either overall organizational

problem and, in particular, the Design Problem is a difficult, if not

impossible task.

It has also been conjectured that composition models can incorpor-

ate the hierarchical structure of a organization. Further it has been

suggested that a change in the structure of an organization will result

in a change in the composition model's optimal solution. This implies

that the Design Problem changes as modifications are made in an organi-

zation's structure. These assertions have not been computationally tested.

This paper has treated organisational models as decomposition

approaches. Section II defined this approach, while Section III specified

the specific decomposition procedure used by each model. Computational

experience [19] has shown that these models do converge to a limiting

solution quickly. However, in computational testing, the potential for

a nonoptimal limiting solution to the "overall problem" given by equations

(1) through (4) has been demonstrated [5].

This nonoptimality does not justify the existence of a Design Problem.

Instead it points to the ineffectiveness of an individual algorithm's ability

to solve the overall problem. There are several potential sources for each

algorithm's shortcomings. First, no true master program for the decomposi-

tion of the overall problem has been defined. Instead each of the models

utilizes a partial master program, in which each algorithm considers only

a portion of the overall problem's constraints. Although these partial

masters are coordinated through the Supremal Subsystem, the effective-

ness of this coordination has not been demonstrated. Further, no
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individual decisison maker is concerned with the organization's overall

objective.

Second, the partial master programs tend to be highly degenerate.

This implies the existence of multiple optimal solutions to their dual

problems. Because these multiple yet distinct optimal dual solutions or

simplex multipliers are used as coordinative mechanisms in certain algo-

rithms, the efficacy of these models is at best marginal. To test the

effectiveness of the simplex multiplier as a coordination mechanism, a

Dantzig-Wolfe decomposition procedure was applied to the two-level sub-

problem, SP.i, described by equations (2.k), (3.i) (i=r -+l,...,r,), a

fixed goal vector, G, , and the k-th term of the summation in equation (1),

This Dantzig-Wolfe formulation converged to a nonoptimal solution.

Clearly the existence of multiple dual solutions could have played a

role in creating this nonoptimal ity. However, another and more impor-

tant factor must -be considered. This primary factor is the linear for-

mulation of the objective function. This structure implies a constant

marginal penalty cost. In contrast, a quadratic objective function

would create a increasing marginal penalty cost as a deviation from an

individual gcal increases. A quadratic penalty function has been in-

corporated into the GEM [1, 8], and this quadratic GEM converges to the

optimxjm solution. Further, it appears that insertion of quadratic pen-

alty functions will achieve similar results for the other organizational

models. If this is the case, then each of the organizational models in

Table 1, is a true decomposition procedure. Accordingly, the existence

of both an Ideal and Design problem as advocated by Sweeny _et_ al . is

suspect.
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V, Summary and Conclusions

The purpose of this research has been to investigate a series of

decomposition models that focus upon a multicriteria approach to resource

allocation in hierarchical organizations. A description of an overall

resource allocation problem faced by an organization was given. Next

description of the strategies utilized by each algorithm to decompose

and solve this overall problem was presented. Difficulties created by

the use of shadow prices as coordination mechanisms were shoxjn to limit

the efficacy of the Ruefli and Freeland models. Further the inability of

all multicriteria algorithms to converge to the optimal solution of the

overall problems was discussed. In order to overcome problems of non-

optimality, use of a quadratic objective function was proposed.

Several implications follow from the findings of this research.

First, Ruefli [15] has noted that a change in the bureaucratic structure

of an organization should lead to a change in the allocation of the

organization's resources. As long as effective coordinating mechanisms

are in place, our findings indicate that this may not be the case, un-

less of course, a bureaucratic change explicitly modifies the constraints

of the organization's overall problem. On the other hand, bureaucratic

reshuffling could easily precipitate a shift in penalty weightings asso-

ciated with goal deviations. These shifts in priorities could impact

upon the eventual allocation of resources. However, a priority shift

would of course change the overall problem's objective function.

Most organizational models utilize shadow prices as coordinating

mechanisms. Clearly information exchanges in most if not all organi-

zations are more detailed that the mere passing of dual variables.



-27-

Computational testing [5, 18, 19] indicates that the inclusion of per-

formance targets or goals and deviations from those goals provides a

more realistic and efficient mechanism for coordinating hierarchical

decision-making systems.

Finally, the linear penalty fimctions associated with organizational

models represents a rather naive or simplistic view of decision making,

A quadratic penalty function is clearly more realistic and captures the

economic and behavioral concepts of diminishing marginal utility and/or

increasing marginal disutility. At the theoretical level, incorporation

of a quadratic penalty function solves many if not all of the problems

of organizational models as pure mathematical, decomposition procedures.

At the intuitive lev-el, a quadratic penalty function injects common

sense into the mathematical modeling of organizational behavior.

Computational testing of these conclusions is underway, and partial

results are reported in a companion paper [19]. Clearly the need for

future research that will confirm, refute and/or extend these findings

•for actual administrative problems is needed.
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Appendix 1

An Overview of Mathematical Decomposition

A decomposition algorithm can basically be described as a procedure

which breaks down a large linear programming problem into a collection

of smaller subproblems whose solutions in a prescribed manner will gen-

erate the solution to the original linear programming problem. To

facilitate the application of a decomposition procedure, the original

problem should possess what is known as a block-angular structure. This

structure is defined by assuming initially that the original vector of

decision variables, X, can be partitioned into a set of decision vectors,

X., 1=1,.,,, N. This partitioning is effected so that the majority of

the constraints can be expressed in the form:

^i^i ^>'^ ^1 ^°^ ^^^-^ ^^*

where D , is a matrix relating the decision X. to the right-hand-side

vector F,. The remaining constraints, however, involve a coupling of

the components of the X, vectors. These constraints are of the form:

where B . is a matrix is a matrix relating X. to the right-hand-side

vector G. Defining the objective function as

Min(Max) C^X^ + ... + C^,X^,

the block-angular structure bacomes apparent whan the original linear

programming problem is summarized in equations (A.l) through (A. 4).



A-2

Min (Max) C^X^ + ... + C^^X^ (A.l)

s.t. B^X^ + ... + B^ {=} G (A. 2)

« •

(A.3)

X^ >_ (i=l,...,N) (A. 4)

The decomposition algorithm consists of three primary components:

the restricted master program, the set of N column generators (i=l,...,N)

and a coordinative informational flow. The restricted master program has

three functions

:

1) It attempts to optimize equation (A.l),

2) It furnishes the coordinative information flow to each column

generator. The coordinative exchange assists each column gen-

erator in the selection of X.(t) at iteration t of the solution

process.

3) It generates a composite decision vector, {X- (t) , . . .,X^(t) }, from

the set of decision vectors from iterations 1 through t,

{X.(l) X. (t)}, for each column generator (i=l,..,N). The

composite decision vector is generated such that it explicitly

satisfies equation (A. 2) and, through the generation process,

'- implicitly satisfies equations (A.3) and (A. A).
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The column generator responds to the flow of coordinative informa-

tion and iteratively generates Xj(t) such that:

D.X.(t) {-} F. and (A.5)11 > 1

X.(t) >_0. (A.6)

The coordinative information directs this iterative process toward the

eventual solution of the original linear programming problem.
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