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Introduction

This thesis develops e�cient statistical procedures to price a barrier option
using the Monte Carlo (MC) approach.

European options are very popular standard derivatives. An investor has
the right to buy or to sell a risky asset, named underlying asset, at a future
date, called maturity : in the �rst case, the option is called call, in the second
case put. This right can be exercised by paying (for a call) or receiving (for a
put) an amount, called strike price.

Barrier options are European options whose existence depends on several
prede�ned prices, named barriers. More precisely, we can distinguish two types
of barrier options: knock-out and knock-in (for more details on barrier options
we refer to [60, 59, 92]).

A knock-out is active at the beginning of its life, but becomes inactive if the
underlying asset reaches the barriers. The payo� of a knock-out is equal to the
vanilla payo� if the underlying does not reach the barriers, otherwise it is null.

On the contrary, a knock-in is inactive at the beginning of its life, but it
is activated if the underlying reaches the barriers. The payo� of a knock-in is
equal to the vanilla payo� if the underlying reaches the barriers, otherwise it is
null.

A barrier option can be classi�ed on the basis of the number of monitoring
instants (continuous or discrete) and the number of barriers (single or double).

• Continuous. The underlying is monitored at every instant.

• Discrete. The underlying is monitored at a �nite set of instants.

• Single. The barrier level is unique.

• Double. The barrier level is double.

In this thesis we deal with the problem of pricing a barrier option. A very com-
mon approach to price a barrier option is the so-called martingale approach: the
price of a barrier option can be expressed as the actualized expected option pay-
o� under a particular probability measure, named risk-neutral measure (RNM).
We study this problem �rstly under the assumption of the constant volatility,
i.e. Black-Scholes model (BSM), and, successively, under the assumption of the
stochastic volatility (SV), i.e. stochastic volatility model (SVM).

Under the BSM [15], the barrier option pricing problem is well-posed because
the completeness of the market ensures the existence and uniqueness of the RNM
[29]. From a numerical point of view, the option price can be computed using
three types of techniques: closed formulas, MC methods, numerical schemes.
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Under a SVM [16, 103], the barrier option pricing problem is not well-posed
because the incompleteness of the market implies that more RNMs exist. In
this case we proceed as suggested by Back [6]: the RNM is chosen on the basis
of the investors' preferences and endowments and on the basis of the production
possibilities. From a numerical point of view, since no closed formulas exist, the
option price can be computed using MC methods or numerical schemes.

In this thesis we consider only MC methods. We start from the basic MC
methods, known as standard Monte Carlo (MCst) methods. A MCst method
works as follows: �rstly, it generates a set of underlying paths over a discrete
time set and, successively, it computes the standard average of the actualized
option payo� realizations over the underlying paths, called MCst estimator. It
results evident that the crucial point of a MCst procedure is the generation of
the underlying paths.

The goodness of a MC estimator is measured by three variables: the preci-
sion, the accuracy and the bias.

• Precision. The inverse of the variance.

• Accuracy. The inverse of the mean squared error.

• Bias. The di�erence between the expected value of the estimator and the
real price value.

They are related as

1

Accuracy
= Bias2 +

1

Precision
,

which implies that, in order to evaluate the performance of a MC estimator, we
can analyze only the bias and the precision. In order to achieve a good level
of performance, a large number of paths is required because the value of the
precision and of the accuracy is inversely proportional to the number of the
underlying paths.

The main problems of a MCst estimator for barrier options are: the high
bias and the low precision.

The problem of the bias is mainly related to the case of a continuous barrier
option [39]. In order to simulate the payo� correctly, we should check if the
underlying reaches the barriers at every instant, but a MCst estimator takes
in account the underlying values only over a discrete time set: this loss of
information introduces a bias in a MCst estimator.

The problem of the low precision is related to the possibility that the under-
lying paths could be rejected: this phenomenon is very common for a knock-out
with initial underlying value approaching the barriers [96]. This implies that
the variance of the estimator is high and, consequently, the precision is low.

These issues can be overcome using a class of MC methods, known as
Bayesian MC (BMC) methods. The goal of these methods is to construct an
estimator of the actualized conditional expected payo� given a set of variables
correlated with the underlying, named observations. It is summarized as follows:
�rstly, at every time step, a sample of underlying values are generated from the
conditional density of the underlying value given the observations, then we eval-
uate the standard average of the actualized option payo� realizations over the
underlying paths. In short, a BMC procedure is a MCst procedure to evaluate
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the actualized conditional expected payo� and, consequently, the crucial point
is the sampling step.

In this thesis we propose some sampling schemes: the Metropolis-Hastings
algorithm (MHA), the Kalman �lter (KF), Sequential Monte Carlo methods
(MCse) and the bootstrap �lter (BF).

The MHA [81] addresses the problem of simulating a Markov process us-
ing, at every time step, the past underlying values as observations. It can be
summarized as follows: �rstly, at every time step, a set of the stochastic pro-
cess values are sampled from a pre�xed density, called proposal distribution,
and, successively, they are accepted or rejected according to a �xed probability
distribution, named acceptance probability.

The KF [66] addresses the problem of simulating a linear Markov stochastic
process by choosing the observations on the basis of the problem to solve. It
works as follows: �rstly, it �nds a prior estimate of the process using the past
values of the process and, successively, using the information inferring from the
observations, it constructs a new estimator, depending on the prior estimate, in
order to minimize the loss function. The great advantage of the KF is that, by
exploiting the linearity of the Markov process, we obtain a linear estimate of
the process.

A MCse method [64] is more general than the previous algorithms because
no too strong assumptions about the state variable are required. As in the KF,
the choice of the observations depends on the particular problem to solve. The
idea underlying a MCse is that the distribution of the process to simulate is
approximated by a family of densities, named importance densities, depending
on the observations and selected in order to decrease the variance of a MC
estimator. A MCse procedure works as follows: �rstly, the stochastic process
is simulated using the importance densities and, successively, if the variance is
not su�ciently low, the simulations are subject to a resampling procedure.

The BF [45] is a particular MCse method, where, at every step, the impor-
tance density is given by the conditional density of the stochastic process to
simulate given its historical values, called transition density, and the observa-
tions depend on the particular problem to solve.

In this thesis we �rstly present the main BMC methods under the BSM: the
conditional Monte Carlo (CMC) method, the exponential twisting (ET) method
and the weighting functions (WF) method.

The CMC method estimates the price of a discrete barrier option, whose
observations are represented by the underlying values until the �rst instant when
the barriers are crossed. Using this approach, the barrier option is written as
the expected value of a vanilla option price computed at the �rst instant of
crossing the barriers. In short, the CMC method generates the paths using the
Black-Scholes formula to draw a sample of vanilla price values at the �rst instant
when the barriers are reached and, successively, it �nds the standard average of
these values.

The ET addresses the problem of pricing a discrete barrier option using a
MCse sampling technique: at every time step, the observations are given by the
past underlying values, and the importance densities belong to the class of the
exponential family densities.

The WF approach estimates the price of a continuous barrier option using a
MCse method: at every time step, the observations are represented by the past
underlying values, and the importance density is the transition density.



4 CONTENTS

As discussed before, in literature the BMC approach has been developed only
under the BSM. In the last part of the thesis we describe our contributes to the
option pricing problem: construction of BMC estimators for continuous barrier
options to solve the problem of high bias and low precision of a MCst estimator
under a SVM. More precisely, we propose the following procedures: the extended
weighting functions (EWF) algorithm and the bootstrap BMC (BBMC) method.

The EWF approach generalizes the WF approach, illustrated before, under a
SVM: at every time step, the observations are the past underlying and volatility
values, and the importance density is the conditional density of the current
underlying value given these observations.

The BBMC method addresses the problem of pricing a continuous barrier
option using the BF technique, where at every time step, the observations are
given by the past underlying values and by the past and current volatility values.

In order to test the validity of the last two schemes, we have applied them
to price three continuous barrier options under a particular SVM, the SABR
model [49]. This model is very common in �nancial sector because it provides a
numerical procedure to estimate a barrier option price, which is described in the
following: �rstly the implied volatility is evaluated using Hagan formula [49],
then the price of the option, whose volatility is given by the implied volatility
and all the other parameter are not changed, is calculated by applying the
Kunimoto-Ikeda formula. The consequence of replacing the real value with this
approximation is that the bias of both the EWF and BBMC estimators is not
null. In our numerical experiments we have studied the e�ect of the distance
between the initial underlying value and the barriers on the bias and precision of
MC estimators: �rstly we have priced three continuous knock-out put options
with single constant barrier by applying the MCst, the EWF and the BBBC
estimators with di�erent numbers of time steps, successively the results have
been compared in terms of bias and precision. The options di�er among them
only for the barrier values: in the �rst one, the initial underlying value is distant
from the barriers, in the second one we decrease this distance and, �nally, in
the third one the initial underlying value approaches the barriers.

The results of the experiments are summarized in the following.
Firstly, while in the �rst case the three MC estimators provide good results,

the picture changes in the other two cases because the MCst estimator has a high
bias and a low precision. As mentioned before, this phenomenon is related to the
distance between the initial underlying value and the barriers: the probability
that the underlying crosses the barriers is inversely proportional to the distance
between the barriers and the initial underlying value.

Secondly, the BBMC method provides better results than the EWF ap-
proach. The reason is that in the �rst one the underlying simulations are ob-
tained using a greater information set than the second one: at every time step,
the BBMC uses not only the past underlying and volatility values, as in the
EWF approach, but also the current volatility values.

Thesis Organization

This thesis is structured as follows. Chapter 1 formulates the barrier option
price problem and reviews the main results about MCst estimators for barrier
options. Chapter 2 explores the main BMC methods under the hypothesis of



CONTENTS 5

constant volatility. Chapter 3 discusses the BMC methods under the hypothesis
of SV and provides the numerical test. Finally, we draw the conclusions.
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Chapter 1

Barrier option pricing

problem

This chapter is divided into two parts. In the �rst part we formulate the
barrier option pricing problem: using the martingale approach, the price of a
barrier option is expressed as the actualized expected option payo� under a
particular measure, named risk-neutral measure (RNM). In the last part of the
chapter we detail a class of statistical procedures to compute the option price,
named standard Monte Carlo (MCst) methods, and we investigate their issues:
the bias and the low precision and accuracy.

Section 1.1 reviews the basic probabilistic and statistical notions. Section 1.2
is devoted to the �nancial background. Section 1.3 formulates the martingale
approach for barrier options. Section 1.4 treats MCst methods.

1.1 Mathematical Background

This section recalls the basic de�nitions of probability (Subsection 1.1.1),
stochastic calculus (Subsection 1.1.2) and the basic statistical notions (Subsec-
tion 1.1.3).

1.1.1 Basic concepts

We start with the de�nition of probability space and random variable and,
successively, we introduce some notions linked to them, as probability density
function, expected value, cumulative distribution function. For more details see
[36, 14]).

De�nition 1. [Probability space] A probability space S is a triplet S = (Ω,F,P),
where:

(DF1): Ω is a nonempty set, named sample space;

(DF2): F, named σ-algebra, is a family of subsets of Ω, named events, closed
respect to the union and the intersection;

(DF3): Ω ∈ F;

7
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(DF4): the function P : F → [0; 1], named probability, satis�es

P

(
I⋃
i=1

Ai

)
=

I∑
i=1

P(Ai),

with {Ai}Ii=1 a �nite or in�nite family of disjoint events.

Property (DF4) is known as Kolmogorov axioms.

In �nance, a σ-algebra is the set of the available information about a system
variable.

De�nition 2. Let S be a a probability space (1) and I ∈ N. An I-dimensional
random variable X de�ned in S = (Ω,F,P) is a F−measurable function X :
Ω→ RI , i.e.

(X ∈ A) := {ω ∈ Ω/X(ω) ∈ A} ∈ F, (1.1)

for every A ⊂ RI .

The values that a random variable can assume are called outcomes. A ran-
dom variable X is continuous if the set of the outcomes is uncountable. A
random variable X is discrete if the set of outcomes is �nite. Given M ∈ N, a
discrete random variable X with M outcomes can be represented as

X =

(
x1 · · · xM
p1 · · · pM

)
, (1.2)

or equivalently X = (xm; pm)Mm=1. The values xm ∈ RI are the outcomes of X,
the values pm = P(X = xm) are called probabilistic weights.

The smallest σ-algebra containing the sets (1.1) is called σ-algebra generated
by X, and it is indicated with the symbol <X>.

Remark 1.1.1. In the following, given a a probability space S = (Ω,F,P) (1),
an I-dimensional random variable X : Ω→ RI (2) will be simply called random
variable. In the case I = 1, X will be also called real random variable.

De�nition 3. Let X be a random variable (2). The probability density function
(pdf) of X is the function π(·) : RI → [0; 1] de�ned as:

π(x) := P(X = x), (1.3)

for every x ∈ RI .

If a random variable X is continuous, its density function π(·) has the fol-
lowing properties:

(P1): π(x) ≥ 0, ∀x ∈ RI ;

(P2):
∫
π(x) dx = 1.

If a random variable X is discrete, the pdf coincides with the probability weights
(1.2, which satisfy the following conditions:

(P1): pm ≥ 0 m = 1, ...,M ;
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(P2):
∑M
m=1 pm = 1.

The notion of pdf lets us de�ne the expected value and variance of a random
variable.

De�nition 4 (Expected value). Let X be a random variable with pdf π(·) and
f : RI → R an integrable real function, whose domain contains X(Ω).
If X is continuous, the expected value of f(X) is de�ned as:

E[f(X)] :=

∫
f(x)π(x) dx. (1.4)

In particular, if X is real and f is the identical function in (1.4), one has the
expected value of X:

E[X] :=

∫
xπ(x) dx. (1.5)

If X is discrete (1.2), the expected value of f(X) is de�ned as:

E[f(X)] :=

n∑
m=1

pmf(xm), (1.6)

In particular, if X is real and f is the identical function in (1.4), one has the
expected value of X:

E[X] :=

M∑
m=1

pmxm, (1.7)

with M ∈ N.

De�nition 5 (Variance and standard deviation). Let X be a random variable
and f : RI → R an integrable real function, whose domain contains X(Ω).
If X is continuous, the variance of f(X) is de�ned as:

V[f(X)] := E[f(X)2]− E2[f(X)], (1.8)

If X is real and f is the identical function in (1.8), one has the variance of X:

V[X] := E[X2]− E2[X], (1.9)

The square root
√
V [X] is the standard deviation of X.

In economics the variance and the standard deviation are the most common
risk measures.

De�nition 6 (Cumulative distribution function). The cumulative distribution
function (cdf) F (·) of a real random variable X is the function F : R → [0; 1]
de�ned as

F (x) := P(X ≤ x), (1.10)

for every x ∈ R.

If X is continuous, the cdf of X takes the form:

F (x) :=

∫ x

−∞
π(y) dy, ∀x ∈ R. (1.11)
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If X is discrete, the cdf of X takes the form:

F (x) :=
∑
xm≤x

πmxm, m = 1, ...,M. (1.12)

Two common examples of continuous random variables are the Normal and the
Uniform.

De�nition 7. [Normal random variable] Given µ ∈ R, σ ∈]0; +∞[, a continu-
ous real random variable X is a Normal with mean µ and standard deviation
σ, in symbols X ∼ N(µ;σ), if its pdf π(·) (1.3) is:

π(x) =
1

σ
√

2π

∫
e−

(x−µ)2

σ2 dx, ∀x ∈ R. (1.13)

If µ = 0 and σ2 = 1, X is named standard.

De�nition 8. Given a, b ∈ R, with a < b, a continuous real random variable
X is a Uniform in [a; b], in symbols X ∼ U([a; b]), if its pdf π(·) is:

π(x) =

{
1
b−a if a ≤ x ≤ b
0 othewise,

(1.14)

with a, b ∈ R.

Let N,M ∈ N. We consider N random variables X1, ..., XN , de�ned in the
same probability space S (1). For every n = 1, ..., N , we set

(N1): xn is an outcome of Xn, named particle of Xn;

(N2): X1:n := (X1, ..., Xn);

(N3): x1:n := (x1, ..., xn) is a path of X1:N ;

(N4): if Xn is discrete, its M outcomes are denoted with the symbol xnm, m =
1, ...,M .

In the following we de�ne the joint density, marginal density and conditional
density; successively, we provide the notions of covariance matrix and uncorre-
lated random variables.

De�nition 9. The joint density of X1:N is its pdf:

π(x1:N ) := P(X1 = x1, ..., XN = xN ). (1.15)

For every n = 1, ..., N , the marginal density of Xn is the pdf of Xn:

π(xn) := P(Xn = xn). (1.16)

If π(x1:n−1, xn+1:N ) 6= 0, the conditional density of Xn given X1:n−1, Xn+1:N

is

π(xn|x1:n−1, xn+1:N ) :=
π(x1;N )

π(x1:n−1, xn+1:N )
. (1.17)

The random variables X1:N are said independent if:

π(xn|x1:n−1, xn+1:N ) = π(xn), n = 1, ..., N.

A vector of independent random variables with the same density function is
denoted with the symbol i.i.d (independent and identically distributed).
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In the following, a particle x of Xn is also indicated with the symbol x ∼
π(xn), a path x of X1:N is also indicated with the symbol x ∼ π(x1:N ).

From an economic point of view, the conditional density π(xn|x1:n−1) is the
density of Xn using information relative to X1:n−1: this implies that, if we in-
crease the number of conditioning random variable, we increase the information
set and, consequently, we improve our estimation.

Using recursively (1.17), we obtain:

π(x1:n) =

N∏
n=1

π(xn|x1:n−1). (1.18)

De�nition 10 (Covariance matrix). The covariance matrix of a random vector
X1:N , with expected values µn = E[Xn] and variances σ2

n = V[Xn], n = 1, ..., N ,
is the matrix C = (ci,j)

N
i,j=1 ∈ RN × RN de�ned as

cij =

{
σ2
i if i = j

E[(Xi − µi)(Xj − µj)] if i 6= j,
(1.19)

for every i, j = 1, ..., N .

De�nition 11 (Uncorrelation). For every i, j = 1, ..., N with i 6= j, the random
variables Xi and Xj are uncorrelated if:

E[XT
i Xj ] = E[XT

j Xi] = E[Xi]E[Xj ], (1.20)

where AT denotes the transpose of a matrix A .

The conditional and joint densities of a random vector are linked by the
marginalization rule (MR).

Theorem 12 (MR). If Xn is a discrete then:

π(xn|x1:n−1, xn+1:N ) =

M∑
m=1

π(x1:n−1, xnm, xn+1:N ). (1.21)

If Xn is continuous, then:

π(xn|x1:n−1, xn+1:N ) =

∫
π(x1:N ) dxn, (1.22)

for every n = 1, ..., N .

The marginal densities and the conditional density of a random vector are
related by the law of total probability (LTP).

Theorem 13 (LTP). If, Xn is discrete, then:

π(xn) =

M∑
m=1

π(xn|x1:n−1,m, xn+1:N,m)π(x1:n−1,m, xn+1:N ;m) n = 1, ..., N,

(1.23)
if Xn are continuous, then:

π(xn) =

∫
π(xn|x1:n−1, xn+1:N )π(x1:n−1, xn+1:N ) dx1:n−1dxn+1:N , (1.24)

for every n = 1, ..., N .
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The conditional density (1.17) lets us de�ne the conditional expected value
and conditional variance of a random variable.

De�nition 14 (Conditional expected value and variance). Let f : RI → R be
an integrable real function whose domain contains Xn(Ω) for every n. If Xn is
continuous, the conditional expected value of f(Xn) given X1:n−1, Xn+1:N is:

E[f(Xn)|X1:n−1, Xn+1:N ] :=

∫
f(xn)π(xn|x1:n−1, xn+1:N ) dxn. (1.25)

If Xn is discrete, the conditional expected value of f(Xn) given X1:n−1, Xn+1:N

is

E[f(Xn)|X1:n−1, Xn+1:N ] :=

M∑
m=1

f(xm)π(xnm|x1:n−1, xn+1:N ). (1.26)

The conditional variance of f(Xn) given X1:n−1, Xn+1:N is:

V[f(Xn)|X1:n−1, Xn+1:N ] = E[f(Xn)2|X1:n−1, Xn+1:N ]

− E2[f(Xn)|X1:n−1, Xn+1:N ]. (1.27)

If Xn is real and f is the identical function in (1.25), one has the conditional
expected value and the conditional variance.

If Xn is continuous, the conditional expected value takes the form:

E[Xn|X1:n−1, Xn+1:N ] =

∫
xnπ(xn|x1:n−1, xn+1:N ) dxn, (1.28)

if Xn is discrete, then:

E[Xn|X1:n−1, Xn+1:N ] :=

M∑
m=1

xnmπ(xnm|x1:n−1, xn+1:N ). (1.29)

The conditional variance is equal to:

V[Xn|X1:n−1, Xn+1:N ] = E[X2
n|X1:n−1, Xn+1:N ] +

− E2[Xn|X1:n−1, Xn+1:N ], (1.30)

for every n = 1, ..., N .

The variance of a random variable can be expressed in terms of conditional
expected value and conditional variance by means of the law of total variance
(LTV)

Theorem 15 (LTV). The variance V[Xn] of Xn can be expressed as:

Ωn = E[Xn|X1:n−1, Xn+1:N ]

∆n = V[Xn|X1:n−1, Xn+1:N ]

V[Xn] = V[Ωn] + E[∆n], (1.31)

for every n = 1, ..., N .

A theoretical result involving the concepts of expected value and conditional
expected value of a random variable is the law of total expectations (LTE):
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Theorem 16 (LTE). The expected value E[Xn] can be expressed as:

Ωn = E[Xn|X1:n−1, Xn+1:N ] (1.32)

E[Xn] = E[Ωn], (1.33)

for every n = 1, ..., N .

This subsection concludes with the Bayes theorem [10] and the notion of
multivariate Normal random variable.

Theorem 17 (Bayes theorem). Let X1:N and Y1:N be random vectors de�ned
in the same probability space and, for every n, x1:n and y1:n respectively generic
outcomes of X1:n and Y1:n. If π(y1:n) 6= 0, the conditional densities π(x1:n|y1:n)
and π(y1:n|x1:n) (1.17) are related as:

π(x1:n|y1:n) =
π(y1:n|x1:n)

π(y1:n)
π(x1:n), (1.34)

for every n = 1, ..., N .

A common example of random vector is the multivariate Normal random
variable.

De�nition 18 (Multivariate Normal random variable). Let µ1:N be a N -dimensional
real vector and C = (cij)

N
i,j=1 a real matrix. A random vector X1:N is a mul-

tivariate Normal random variable with mean µ1:N and covariance matrix C
(1.19), in symbols X1:N ∼ N(µ1:N , C), if Xn ∼ N(µn; cnn) for every n (1.13).
If Xn ∼ N(0; 1), n = 1, ..., N , the random vector X1:N is said standard.

Next section is devoted to basic results of stochastic calculus.

1.1.2 Stochastic calculus

We begin with the de�nition of �ltered probability space and stochastic
process (for more references see [97, 86]).

De�nition 19 (Filtered Probability Space). Let T be a positive real number.
A �ltered probability space ST is a triplet ST = (Ω, (Ft)t∈[0;T ],P), where

(DF1): Ω is the sample space;

(DF2): (Ft)t∈[0;T ]) is a family of continuous σ-algebras increasing respect to the
inclusion, called �ltration;

(DF3): P is a probability measure.

In �nance a �ltration is the set of available information in a time interval [0;T ].

De�nition 20 (Stochastic process). Let ST be a �ltered probability space (19),
and tn, n = 1, ..., N , a set of N elements of [0;T ].
An uncountably family of random variables (Xt)t∈[0;T ] (2) is a continuous stochas-
tic process if Xt is Ft−measurable for every t ∈ [0;T ].
A discrete family of N random variables X1:N := (Xn)Nn=1 is a discrete stochas-
tic process if Xn is Ftn−measurable for every n = 1, ..., N .
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For the rest of this section all the stochastic process are supposed to be
de�ned in a �xed �ltered probability space ST .

A discrete stochastic process can be seen as a random vector whose random
variables are de�ned in di�erent probability spaces: this lets us extend the con-
cepts relative to random vectors (joint density, marginal density and conditional
density) to discrete stochastic processes.

For every n = 1, ..., N , all these notions have the following �nancial inter-
pretations:

(I1): a discrete stochastic process X1:n models a time-varying variable of a
dynamic system over the discrete time set t1:n;

(I2): Xn is the state of the system variable at tn;

(I3): the marginal density π(xn) represents the probability that the system
variable stays at the state n;

(I4): the conditional density π(xn|xn−1), named transition density, is the prob-
ability that the system variables moves from the state n− 1 to n.

Given an integrable function f : RNI → R and a discrete stochastic process
X1:N of continuous random variables, we de�ne the expected value of f(X1:n)
as

E[f(X1:n)] :=

∫
f(x1:n)π(x1:n) dx1:n, n = 1, ..., N. (1.35)

In the following we consider some very common stochastic processes in �nance:
martingales, Brownian motion, Brownian bridge motion, Markov processes.

De�nition 21. A discrete stochastic process X1:N satisfying the following con-
ditions:

(DF1): E[|Xn|] < +∞ (1.7),

(DF2): E[Xn|X1:n−1] for every n (1.29),

is said discrete martingale. A continuous stochastic process (Xt)t∈[0:T ] satisfy-
ing the following conditions:

(DF1): E[|Xs|] < +∞ for all s ∈ [0;T ] (1.4);

(DF2): E[Xt|Xt:s] for all t, s ∈ I, with 0 ≤ t < s (1.25).

is said continuous martingale.

De�nition 22 (Brownian motion). A continuous stochastic process (Wt)t∈[0;T ]

is a Brownian motion if it has the following properties:

(DF1): W0 = 0;

(DF2): Wt is Ft-measurable for every t ∈ [0;T ] (2);

(DF1): the random variable Wt−Ws is a Normal random variable for every s, t ∈
[0;T ] (7);

(DF2): the random variable Wt −Ws is independent of Ws −Wz for every t, s, z
with z < s < t (1.17).
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Given a Brownian motion (Wt)t∈[0;T ] and µ ∈ R, the process (W̃t)t∈[0;T ], de�ned
as

W̃t := µt +Wt ∀t ∈ [0;T ], (1.36)

is said Brownian motion with drift µt.

De�nition 23 (Brownian bridge motion). Let (W̃t)t∈[0;T ] be a Brownian motion
with drift µ (1.36), with a, b ∈ R and W0 = a and WT = b, w̃t an outcome of

W̃t for every t ∈ [0;T ].
A continuous stochastic process (Bt)t∈[0;T ] is a Brownian bridge motion if,

given an outcome bt of Bt, its marginal density π(bt) (9) is the conditional
density of Wt respect to a and b.

π(bt) := π(w̃t|W0 = a,WT = b), (1.37)

for every t ∈ [0;T ].

De�nition 24 (Markov process). A discrete stochastic process is a Markov
process if the following condition holds:

π(xn|x1:n−1, xn+1:N ) = π(xn|xn−1), n = 1, ..., N. (1.38)

The transition density π(xn|xn−1) is also called the transitional kernel from
Xn−1 to Xn.

LetX1:N be a Markov process. IfXn is discrete with outcomes xnm, Formula
(1.23) and De�nition (1.38) imply that:

π(xn) =

M∑
m=1

π(xn|xn−1,m)π(xn−1,m), n = 1, ..., N. (1.39)

If Xn is continuous, Formula (1.24) and De�nition (1.38) imply that:

π(xn) =

∫
RN

π(xn|xn−1)π(xn−1) dxn−1, n = 1, ..., N. (1.40)

An important result about a Markov process is the Chapman-Kolmogorov law
(CKL).

Theorem 25 (CKL). Let X1:N be a Markov process with Xn continuous random
variables. Then:

π(xi|xj) =

∫
π(xi|xj+1:i−1)π(xj+1:i−1|xj) dxj+1:i−1, (1.41)

for every i, j = 1, ..., N , with i > j.

This subsection concludes with some basic results of stochastic integral and
stochastic di�erential equation (SDE). We set:

(N1): [0;T ] is a real interval.

(N2): 0 = t0 < t1 < ... < tn = T indicates a partition of [0;T ].

(N3): (Wt)t∈[0;T ] denotes a Brownian motion.
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(N4): ai : Ω → R are Fti−measurable function with E[a2i ] < +∞ for every
i = 1, ..., n.

(N5): (Xt)t∈[0;T ] indicates a stochastic process with∫ T

0

E[X2
t ] dt < +∞.

(N6): Ii =]ti−1; ti], i = 1, ..., n.

(N7): 1Ii(ω) is the index function of Ii, i = 1, ..., n.

De�nition 26 (Stochastic integral). The stochastic integral of Xt is de�ned
as follows [62, 61]:

(D1): if Xt =
∑n
i=1 ai(ω)1Ii(ω), one has∫ T

0

Xt dWt :=

n∑
i=1

ai∆Wi, ∆Wi = Wi+1 −Wi.

(D2): if Xt is a generic process, at every t ∈ [0;T ] it can be approximated by a
sequence of simple processes Xnt such that

lim
n→+∞

E

[∫ T

0

|Xnt −Xt|2 dt

]
= 0.

The stochastic integral
∫ T
0
Xt dWt is∫ t

0

Xt dWt := lim
n→+∞

Xnt,

for every t ∈ [0;T ]. The process Xt is said Ito integrable.

De�nition 27 (Stochastic di�erential equations). Let µt(ω), σt(ω) : [0;T ] ×
RN → R be real functions such that µt is Riemann-integrable and the process
σt(Xt) is Ito-integrable. The process Xt is said an Ito process if the following
relation holds:

Xt = X0 +

∫ t

0

µs (Xs) ds+

∫ t

0

σs (Xs) dWs, ∀t ∈ [0;T ], (1.42)

which can be rewritten, in terms of a stochastic di�erential equation (SDE), as:

dXt = µt (Xt) dt+ σt (Xt) dWt, (1.43)

for every t ∈ [0;T ].

For the rest of this thesis we make the following assumptions about a SDE [85]:

(A1): For every n ∈ N, exists a constant Kn such that

|µt(x)− µt(y)|2 + |σt(x)− σt(y)|2 ≤ Kn|x− y|2,

with |x|, |y| ≤ n and t ∈ [0;T ].
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(A2): exists a C ∈ R such that:

|µt(x)|2 + |σt(x)|2 ≤ C(1 + x2),

for every x ∈ RN and t ∈ [0;T ].

Next subsection explores the notions of accuracy, precision and bias of an esti-
mator (for more details we refer to [23, 57]).

1.1.3 Accuracy, precision, bias

In order to de�ne the notions of accuracy, precision and bias, we introduce
the following notations:

(N1): X is a random variable;

(N2): θ ∈ R indicates a real parameter associated to X;

(N3): π(·, θ) denotes the density function of X;

(N4): x1:M is a set of M i.i.d. particles xm ∼ π(·, θ), m = 1, ...,M ;

(N5): θ̃(·) : RM → R is a random variable depending on x1:M .

The random variable θ̃ is named estimator and lets us estimate the value of θ.
Given D ∈ N, for every d = 1, ..., D, we set:

(N1): xd,1:M := (xd1, ..., xdM );

(N2): θd := θ(Xd);

(N3): θ̃d := θ̃(Xd).

The goodness of an estimator is measured by the precision, accuracy and bias,
which are de�ned in the following.

De�nition 28 (Precision, Accuracy and Bias). The accuracy of θ̃, indicated

with the symbol ACC(θ, θ̃), is given by:

ACC(θ, θ̃) :=
D∑D

d=1[(θd − θ̃d)2]
. (1.44)

The precision of θ̃, indicated with the symbol PREC(θ, θ̃), is given by:

µd =
1

D

D∑
n=1

θ̃d (1.45)

PREC(θ, θ̃) =
D∑D

d=1[(θ̃d − µd)2]
. (1.46)

Remark 1.1.2. From (1.7−1.9) it follows that the precision PREC(θ, θ̃) is the
inverse of the variance of the following discrete random variable (1.2)(

θ̃1 · · · θ̃D
1
D · · · 1

D .

)
Consequently, we can apply all the theoretical results about the variance to
PREC(θ, θ̃).
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The bias of θ̃, indicated with the symbol BIAS(θ, θ̃), is:

BIAS(θ, θ̃) =
1

D

D∑
d=1

(
θ̃d − θd

)
. (1.47)

If BIAS(θ, θ̃) = 0, the estimator θ̃ is said unbiased.

The notions of MSE, bias and variance of an estimator θ̃ are related as:

1

ACC(θ, θ̃)
= BIAS2(θ, θ̃) +

1

PREC(θ, θ̃)
. (1.48)

Thanks to (1.48), the analysis of the goodness of an estimator is reduced to the
analysis of its bias and of its precision.

Given a continuous real random variable X, a possible parameter is repre-
sented by its expected value E[X]. A very common estimator of E[X] is the
sample average µM of a set of independent particles x(m), m = 1, ...,M , de�ned
as:

µM :=
1

M

M∑
m=1

x(m). (1.49)

The notion of sample average can be generalized to the case of a discrete stochas-
tic process X1:N (20), with Xn continuous for every n. Given an integrable
function f : RNI → R, an estimator of the expected value E[f(X1:N )] is the
sample average µMN of the realizations of f over a set of M independent paths

x
(m)
1:N , m = 1, ...,M :

µMN :=
1

M

M∑
m=1

f(x
(m)
1:N ), (1.50)

for every M ∈ N.
This subsection concludes with the de�nition of index function of a set.

De�nition 29 (Index function). Let A be a nonempty subset of RN , with N ∈
N. The index function 1A(·) is the function 1 : RN → {0, 1} de�ned as

1A(x) =

{
1 if x ∈ A
0 if x /∈ A, (1.51)

for every x ∈ RN .

Let (An)Nn=1 be a sequence of N non-empty sets. Then:

AN :=

N⋂
n=1

An

N∏
n=1

1An(x) := 1AN (x). (1.52)

In the case of a uncountable family of non-empty sets (At)t∈[0;T ], we set:

AT :=
⋂

t∈[0;T ]

At

(1At(x))t∈[0;T ] := 1AT (x), (1.53)

for every T ∈]0; +∞[.
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1.2 Financial Background

This section provides some basic �nancial concepts (for more details we refer
to [85]). We begin with the de�nition of security and �nancial market.

De�nition 30 (Securities and �nancial markets). A security is every tradable
asset. The set M of securities which are traded in the same place is named
�nancial market 1 .

We make the following assumptions.

(A1): All the the securities belong to the same market.

(A2): The market is composed of a risk-free asset and a risky asset.

(A3): Every trader can invest an amount of money at a constant risk-free interest
rate.

(A4): The value function of the risky asset is described by a continuous stochastic
process.

In the following we will make use of the following notations.

(N1): M denotes the market.

(N2): r indicates the constant interest rate, r ∈ [0; 1].

(N3): [0;T ] denotes the time interval, T ∈]0; +∞[.

(N4): ST indicates the �xed �ltered probability space (19).

(N5): σt is the volatility, σt ∈]0; 1[ for every t ∈ [0;T ] 2 .

(N6): (St)t∈[0;T ] indicates the value function of the risky asset.

(N7): (W s
t )t∈[0;T ] and (Wσ

t )t∈[0;T ] are two Brownian motions (22).

(N8): S0 ∈ R0 and σ0 denote respectively the values of St and σt at 0.

(N9): αt(·) : [0;T ] × R2 → R, βt(·), γt(·) : [0;T ] × R → R are real continuous
functions.

(N10): 0 = t0 < t1 < ... < tN = T indicate a discretization of [0;T ], with N ∈ N.

(N11): Sn and σn denote respectively the values of St and σt at tn.

(N12): αn, βn, γn indicate respectively the value of αt, βt, γt at tn.

In option pricing, St and σt are generally de�ned as the solution of a particular
system of SDE, called �nancial security model. This notion is formalized in
Subsection 1.2.1.

1In a more general context, the term market indicates the set of all the assets, the place
where they added and all the laws to which transactions are subjects (for more details see
[47]).

2The volatility of a risky asset is the degree of variation of the asset value of the security.
It is measured by the standard deviation of logarithmic returns of the security [33].
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1.2.1 Financial security models

We begin with the de�nition of �nancial security model (FSM).

De�nition 31 (FSM). Let αt, βt, σt be functions satisfying (1.1.2). A FSM is
a system of SDEs taking the form:

dSt = rStdt+ αt(St, σt)dW
s
t (1.54)

dσt = βt(σt)dt+ γt(σt)dW
σ
t , (1.55)

for every t ∈ [0;T ].

In the following we examine two kinds of FSMs: the Black-Scholes model
(BSM) and stochastic volatility models (SVMs).

The BSM [15] is characterized, for every t ∈ [0;T ], by:

(P1): αt(St, σ) = σSt.

(P2): βt(σt) = 0.

(P3): γt(σt) = 0.

System (1.54−1.55) becomes:

dSt = rStdt+ σtStdW
s
t (1.56)

dσt = σ.

The solution St of (1.56) is obtained using Ito lemma [62, 61]:

St = S0exp

[(
r − 1

2
σ2

)
t+ σW s

t

]
, ∀t ∈ [0;T ], (1.57)

which is called Geometric Brownian motion (GBM). Since St in (1.57) is posi-
tive, we can de�ne the process Xt = lnSt:

µt = lnS0 + (r − 1

2
σ2)t

Xt = µtt+ σW s
t , ∀t ∈ [0;T ]. (1.58)

The process Xt is a Brownian motion with time-dependent drift µt. Given
0 = t0 < t1 < ... < tN = T with constant time step h = T/N , the value Sn is
related to Sn−1 by

Xn := Xn−1 +

(
r − σ2

2

)
h+
√
hσZn Zn ∼ N(0; 1) (1.59)

Sn = exp [Xn] , n = 1, ..., N, (1.60)

and Xn ∼ N(µn;hσ2), with µn = Xn−1 +
(
r − σ2

2

)
h. The discrete process

S1:N resulting from (1.60) is positive and a Markov process (1.38)
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A SVM [16, 103, 55, 49] takes the form (1.54−1.55), with αt, γt 6= 0. Since
a SVM cannot be solved analytically, given tn = nh, n = 1, ..., N , we are only
able to determine an approximation Sn of St at tn using the Euler scheme [70]:

Sn = (1 + rh)Sn−1 +
√
hσn−1αn−1Z

s
n, Zsn ∼ N(0; 1) (1.61)

σn = σn−1 + βn−1h+
√
hγn−1Z

σ
n , Zσn ∼ N(0; 1) (1.62)

n = 1, ..., N.

As under the BSM, the discrete processes (S1:N and σ1:N ) are Markov process.
The error of approximation of St with Sn, n = 1, ..., N , is of order of

√
h, as

estimated in [8]−[43]:

sup
1≤n≤N

|Sn − Stn | = O(
√
h).

This subsection concludes with two common examples of SVMs: the Heston
model (HM) and the SABR model.

The HM [55] is characterized by:

(P1): αt(St, σ) = σtSt.

(P2): βt(σt) = k(θ − σ2
t ).

(P3): γt(σt) = εσt.

The HM takes the form:

dSt = rStdt+ σtStdW
s
t (1.63)

dσ2
t = k(θ − σ2

t )dt+ εσtdW
σ
t . (1.64)

In (1.64) θ is the expected value of µt when t tends to in�nite, k is the mean
reversion rate towards θ, which controls the speed of the volatility going back
to its mean, and ε is the volatility of the volatility, also called vol -vol. Here
all these parameters have been supposed to be constant, but an extended HM
assumes that the parameters are time-dependent [82, 12].

The SABR model, introduced by Hagan in [49] and successively developed
in [48, 2], is characterized, for every t ∈ [0;T ], by:

(P1): αt(St, σ) = σtS
β
t , γ ∈ [0; 1].

(P2): βt(σt) = 0.

(P3): γt(σt) = ασt.

The SABR model takes the following form:

dSt = rStdt+ σtS
β
t dW

s
t (1.65)

dσt = ασtdW
σ
t . (1.66)

In (1.65−1.66) β determines the shape of the risky asset, α, named vol -vol, is
the volatility of σt.



22 CHAPTER 1. BARRIER OPTION PRICING PROBLEM

Equation (1.65) models the underlying as a CEV model [26], Equation (1.66)
models the volatility as a GBM (1.57):

σt = σ0exp

(
−α

2

2
t+ αWσ

t

)
, t ∈ [0;T ]. (1.67)

Subsection 2.3 introduces the concept of (RNM) and its link with the properties
of no-arbitrage (NA) and a complete market (CM).

1.2.2 Arbitrage and completeness

Following the martingale approach, a barrier option price is expressed as the
actualized expected option payo� under the RNM. For this reason, the existence
and uniqueness of this particular measure, linked to the notions of NA and CM,
are central issues in option pricing.

We start with the de�nitions of portfolio, arbitrage and completeness.

De�nition 32 (Portfolio de�nition). A portfolio is every linear combination of
assets of M.

De�nition 33 (Arbitrage de�nition). An arbitrage portfolio (or simply called
arbitrage) is a portfolio whose value function (St)t∈[0;T ] satis�es the following
properties:

(P1): P(S0 = 0) = 1.

(P2): P(∃t ∈]0;T ] : St 6= 0) = 1.

An arbitrage is a free-cost portfolio which ensures a positive future payo�. If
the market has no-arbitrage (NA) portfolios, it is said that in the market the
no-arbitrage principle (NAP) holds.

De�nition 34 (Completness de�nition). A market M is complete if and only
if all the tradable assets belong to the market.

The NAP and CM are related to the notion of RNM thanks to the First Fun-
damental Theorem of Asset Pricing (FFTAP) and Second Fundamental Theo-
rem of Asset Pricing (SFTAP) (for more details see [29, 52, 53]).

Theorem 35 (FFTAP). The NAP holds if and only if exists a density function
q(·), such that the process (e−rtSt)t∈[0;T ] results a martingale (21):

ersSs = E[ertSt|Su, s ≤ u ≤ t], (1.68)

for every s, t ∈ [0;T ] with s < t.

Theorem 36 (SFTAP). A market M is complete if and only if a RNM exists
and is unique.

As it will be discussed in Section 1.3, the notion of the RNM lets us de�ne
the NA price of a barrier option. Under the BSM, the SFTAP holds: this implies
that the barrier option price problem is well-posed. Under a SVM, where the
SFTAP does not hold, many densities functions satisfying (1.68) exist: in this



1.3. BARRIER OPTION PRICING PROBLEM 23

case the barrier option price problem is not well-posed. In order to overcome this
issue, we proceed as in Back [6]: �rstly, we assume for the rest of this thesis that
the NAP holds, then we select the RNM among all the possible candidates on the
basis of the investors' preferences and endowments and production possibilities.

Formula (1.68) can be generalized to the case of a derivative. A deriva-
tive is a contract whose payo� depends on the value function of a risky asset
St, in symbols F (St). From (1.68) it follows that also the process F (St) is a
martingale:

F (Ss) = er(t−s)E[F (St)], ∀s, t ∈ [0;T ], s < t, (1.69)

Section 3 formalizes the notion of the NA price.

1.3 Barrier option pricing problem

We preliminarily introduce the concepts of vanilla and barrier option (for
more details see [60, 59, 47] and for barrier options also [92]).

De�nition 37. A vanilla option is a contract giving the right to buy (call) or
to sell (put) a quantity of a risky asset (underlying) at a future date (maturity).
In order to exercise this right, an investor pays (in the case of a call) or receives
(in the case of a put) an amount (strike price).

De�nition 38. A barrier option is a vanilla option which is activated (knock-
in) or extinguished (knock-out) if the underlying reaches some speci�ed levels
(barriers).

In Introduction barrier options have been classi�ed on the basis of the num-
ber of monitoring instants sets (continuous or discrete) and of the number of
the barriers (single barrier or double barriers).

The payo� of a knock-in coincides with the one of the vanilla option with
the same �nancial variables (underlying, maturity, strike price) if the underlying
crosses the barriers, otherwise it is null.

The payo� of a knock-out coincides with the one of the vanilla option with
the same �nancial variables (underlying, maturity, strike price) if the underlying
does not hit the barrier, otherwise it is null.

Now we formulate the barrier pricing problem using the notion of the RNM.
We introduce the following notations:

(N1): Lt : [0;T ]→ R is a decreasing function, named lower barrier.

(N2): Ut : [0;T ]→ R is an increasing function, named upper barrier, with Lt <
Ut for every t ∈ [0;T ].

(N3): It indicates the barrier interval, de�ned as

It =

{
]Lt;Ut[ if knock-out
(]Lt;Ut[)

c if knock-in 3 ,
(1.70)

for every t ∈ [0;T ].

(N4): K indicates the strike price;
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(N5): h(·) denotes the function h : R+ → R+ de�ned as

h(x) =

{
max{x−K; 0} if Call
max{K − x; 0} if Put,

(1.71)

which is the payo� of a vanilla option;

(N6): E[·] denotes the expected value under the RNM q.

(N7): 0 < t1 < ... < tN = T is a set of N instants of [0;T ].

(N8): Ln and Un indicate respectively the values of Lt and Ut at tn, n = 1, ..., N ;

(N9): In denote the value of It at tn, n = 1, ..., N ;

(N10): Ψc
t is the value of a continuous barrier option at t ∈ [0;T ];

(N11): Ψd
t is the value at t ∈ [0;T ] of a discrete barrier option with monitoring

instants tn, n = 1, ..., N ;

The payo� Ψc
T of a continuous option is equal to

Ψc
T = h(ST ) (1It(St))t∈[0;T ] . (1.72)

Using (1.69), the price Ψc
0 of a barrier option can be expressed as

Ψc
0 = E[e−rTΨc

T ]. (1.73)

The payo� Ψd
T of a discrete barrier option is equal to

Ψd
T = h(SN )

(
N∏
n=1

1n(Sn)

)
. (1.74)

The price Ψd
0 of a discrete barrier option can be expressed as

Ψd
0 = E[e−rTΨd

T ]. (1.75)

Pricing closed formulas for continuous barrier options have been derived under
the strong assumption of the �at structure of market parameters ([79, 56, 74,
91]). In general, a continuous barrier option can be priced only via simulation
because the integrals in (1.73) are analytically intractable or the density function
of the underlying is unknown. The most common simulation techniques are:
quadrature formulas [5, 101, 28], �nite di�erence schemes [30], lattice rules
([58, 68, 9]), Monte Carlo (MC) methods [42, 63].

Discrete barrier option can be priced only using the same simulation tech-
niques [72, 100, 84].

In the following we will treat a particular family of MC methods, MCst meth-
ods (for general results about MC methods we refer to the following textbooks
[87, 73, 93, 50]).
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1.4 Standard Monte Carlo

MC methods, introduced by Metropolis in a very celebrated paper [80], is
a very large and heterogeneous family of statistical procedures to evaluate the
expected value of a discrete stochastic process. They �nd application in many
�nancial �elds, as portfolio management [21], capital allocation [102] and, in
partiular, in option pricing [19, 18]. In option pricing, they are a good tool
to price a discrete barrier option (1.75) and a continuous barrier option (1.73)
because, as illustrated in Section 1.3, the barrier option price can be expressed
as the actualized expected value of the payo� under the RNM.

The most common MC procedures, i.e. MCst methods, address the problem
of computing the expected value E[f(X1:N )] (1.35). A MCst scheme is summa-
rized in the following: �rstly, M independent paths x(m)

1:N of X1:N , m = 1, ...,M ,

are simulated and, successively, it computes the sample average of f(x
(m)
1:N ),

called standard MCst estimator :

∆M
N =

1

M

M∑
m=1

f(x
(m)
1:N ). (1.76)

The crucial point of a MCst is the simulation step. This can be performed
by sampling from the joint density π(x1:N ) or, as in the case of the pricing of
barrier option, by applying a numerical scheme if X1:N is the solution of a SDE.
The variance of ∆M

N is equal to

V[∆M
N ] =

V[f(x11:N )]

M
. (1.77)

Equation (1.77) implies that, in order to achieve low levels of variance, a large
number of paths is required.

In the following we enunciate the Law of large numbers (LLN), which claims
that ∆M

N is an estimator of E[f(X1:N )].

Theorem 39 (LLN). Let (Xm)m∈N be an in�nite sequence of i.i.d random
variables, with the same expected value µ ∈ R, and, for every M ∈ N, XM the
sample average of X1:M :

XM =
1

M

M∑
m=1

Xm.

The sequence XM converges in probability to µ, i.e.

P
(

lim
M→+∞

(XM − µ)

)
= 1,

i.e. ∆M
N is an estimator of µ.

Now we develop the MCst approach for barrier option, which can be formal-
ized as follows:

(A1): The process X1:N is represented by S1:N .

(A2): The function f is the actualized payo� e−rTΨd
T (1.74).

(A3): The price Ψd
0 is E[f(S1:N )].
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(A4): The independent paths s(m)
1:N , m = 1, ...,M , are generated using (1.57)

(under the BSM) or (1.61−1.62) (under the SVM).

The MCst estimator ∆M
N of a barrier option price (1.75−1.73) is:

∆M
N =

1

M

M∑
m=1

(
N∏
n=1

1In(s(m)
n )h(s

(m)
N )

)
. (1.78)

As illustrated in Subsection 1.1.3, for (1.48), the goodness of a MCst estimator
is measured by the bias and the precision. Di�erently to other kinds of options,
MCst estimators for barrier options are biased and have a low precision.

The problem of the bias is related to a continuous barrier option [39]. In
(1.73), the payo� depends on the underlying for every instant. But a MCst
estimator considers only a �nite set of underlying values: this implies that a
MCst procedure is not able to simulate correctly the option payo�. This loss of
information introduces a bias in the MCst estimator.

The problem of the precision is linked to the number of survival paths. For
(1.77), a high value ofM is required in order to achieve good levels of precision.
In the case of a barrier option, the number of paths could be low because many
paths generally cross the barriers and they are rejected: this phenomenon is
very common when S0 approaches the barriers, as observed in [96, 64, 94, 84].

In order to overcome these issues, in the following chapters we discuss a par-
ticular MC approach, named Bayesian MC approach, under the BSM (Chapter
2) and a SVM (Chapter 3).



Chapter 2

Bayesian MC methods under

the BSM

In this chapter we present the Bayesian MC methods under the BSM, a class
of MC methods to solve the problems of the bias and the low precision of MCst
methods, investigated in Chapter 1. A Bayesian MC method estimates the ac-
tualized conditional expected option payo� given a set of variables correlated
with the underlying, named observations. It is summarized in the following:
�rstly a set of underlying paths are generated using a family of sampling tech-
niques, named Bayesian MC sampling techniques, then the standard average of
the actualized payo� realizations over the underlying paths is computed.

Section 2.1 recalls the main Bayesian sampling techniques for the simulation
of the paths. Section 2.2 describes the general Bayesian MC framework. Section
2.3 proposes the main Bayesian MC schemes for barrier options.

2.1 Bayesian sampling techniques

Bayesian methods sampling techniques simulate a stochastic process, named
state variable, using information coming from a set of random variable correlated
with the state variable, named observations. For the rest of this section the state
variable and the observations will be indicated respectively with X1:N and Y1:N ,
both de�ned in the same �ltered probability space ST (20). The symbols x1:n
and y1:n denote respectively a generic outcome of X1:N and Y1:n, n = 1, ..., N .

We assume that:

(A1): Xn is correlated with X1:n−1 and Y1:n, n = 1, ..., N ;

(A2): Xn is independent of Yn+1:N , n = 1, ..., N ;

Our goal is to sample from π(x1:N |y1:N ). This can be factorized, using (1.18),
as:

π(x1:N |y1:N ) =

N∏
n=1

π(xn|x1:n−1, y1:n). (2.1)

In particular, if X1;N is a Markov process (1.38), Expression (2.1) is simpli�ed

27
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as

π(x1:N |y1:N ) =

N∏
n=1

π(xn|xn−1, y1:n). (2.2)

Thanks to (2.1−2.2), in the following we address the problem of sampling from
the densities π(xn|x1:n−1, y1:n), n = 1, ..., N .

This section examines the following Bayesian sampling methods: Metropolis-
Hastings algorithm (MHA) (Subsection 2.1.1), Kalman �lter (KF) (Subsection
2.1.2), Sequential Monte Carlo (MCse)methods (Subsection 2.1.3) and the Boot-
strap �lter (BF) (Subsection 2.1.4)

2.1.1 Metropolis-Hastings algorithm

The MHA, introduced by Metropolis [81] and successively redeveloped by
Hastings [54], was originally applied in chemistry to simulate a liquid in equilib-
rium with its gas phase. It is an acceptance-rejection method for the simulation
of a Markov process (for a general treatment of the MHA see [25, 40, 83]).

The MHA is based on the following assumptions:

(A1): Yn := 0, n = 1, ..., N .

(A2): X1:N is a Markov process (1.38);

(A3): the transition densities are independent of time, i.e. π(xn|xn−1) = K(xn−1, xn),
n = 1, ..., N (homogeneity);

(A4): the marginal densities are independent of time (invariance) and of the
initial density (ergodicity).

Expression (2.2) takes the form:

π(x1:N |y1:N ) =

N∏
n=2

K(xn−1, xn). (2.3)

The marginal densities are named target densities, the function K(·, ·) is named
invariant kernel and it satis�es the following condition, known as the detailed
balance equation [24, 3].

π(xn−1)K(xn−1, xn) = π(xn)K(xn, xn−1), n = 2, ..., N. (2.4)

Every invariant kernel is obtained by solving the previous equation.
Given an input density q(·), named proposal density, the MHA is divided

into two steps:

(S1): Construction of the following kernel:

K(x, y) := α(x, y)q(x, y) (2.5)

α(x, y) :=

{
min

{
1; π(y)q(y,x)π(x)q(x,y)

}
if π(x)q(x, y) > 0

1 otherwise,
(2.6)

with x, y ∈ RN . The proof that the kernel K(·, ·) satis�es (2.4) can be
found in [24, 3].
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(S2): Sampling from K(·, ·).

The MHA is summarized in Algorithm MH: in input it receives the initial value
x1 and N, q, in output it produces a simulation x1:N of X1:N .

Algorithm 1 MH

begin
for n = 2 to N do

1) Generate a vector y from a proposal density q(xn−1, ·).
2) Compute the acceptance ratio α := α(xn−1, y) (2.6).
3) Draw a uniform number u ∼ U([0; 1]).
if α > u then

4) Set xn := y.
else
5) Set xn := xn−1.

end

end
return x1:N := (x1, ..., xN ).

end

In short, the MHA approximates the unknown target density with a pre�xed
proposal density. For every n, the value of Xn is accepted if α is higher than
a uniform threshold, otherwise it is rejected: for this reason, the function α is
also named acceptance-rejection probability.

2.1.2 Kalman Filter

The Kalman �lter (KF) was discovered by the mathematician Rudolf Emil
Kalman during the Apollo program and published in [66, 65]. This algorithm
addresses the problem of simulating a linear Markov process using a set of linear
observations.

The KF relies on the following assumptions:

(A1): The Markov processes X1:N and Y1:N are governed by the following linear
system:

Xn = ΨXn−1 +Wn (2.7)

Yn = HXn + Vn, n = 1, ..., N, (2.8)

with Ψ, H ∈ RN × RN . Both X1:N and Y1:N are Markov processes.

(A2): W1:N and V1:N are Normal processes (18):

Q = E[WnW
T
n ] (2.9)

R = E[VnV
T
n ], (2.10)

W1:N ∼ N(0, Q), V1:N ∼ N(0, R).

The covariance matrices are time-independent.
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(A3): Vn and Wn are uncorrelated.

The goal of the KF is to derive an estimator X̂n of Xn which minimizes the
error covariance matrix :

en := Xn − X̂n. (2.11)

Pn := E[ene
T
n ] (2.12)

n = 2, ..., N.

Given in input the value x1 of X1, the KF involves the following steps: the
prediction and the update.

• Prediction. A prior estimate X̂
′

n is obtained using the value Xn−1 in (2.7):

X̂
′

n = ΨX̂
′

n−1 + Ŵn. (2.13)

We calculate the error of the prior estimate e
′

i:

e
′

n = Xn − X̂
′

n, (2.14)

the prior estimate P
′

i of P (2.11−2.12):

P
′

n = E[e
′

n(e
′

n)T ], (2.15)

and the prior estimate of the observations ẑ
′

n:

Ẑ
′

n = HX̂
′

n, (2.16)

for every n = 1, ..., N .

• Update. The KF constructs the �nal estimate X̂n taking the the form:

X̂n = X̂
′

n +Kn

(
Zn − Ẑ

′

n

)
. (2.17)

The matrix Kn ∈ RN × RN , named Kalman gain, is chosen in order to
minimize Pn (2.11−2.12).
Theorem (40) provides the expression of Kn and Pn (the proof can be
found in [105].).

Theorem 40 (Matrix Covariance Expression). Let H be the transaction
matrix of X1:N (2.7), P

′

n the matrix given in (2.15), R the covariance
matrix of V1:n (2.8). Then, for every n = 1, ..., N , the matrix Kn ∈
RN × RN minimizing Pn (2.11−2.12) is:

Kn = P
′

nH
T (HP

′

nH +R)−1, (2.18)

and the corresponding value of Pn is

Pn = (I −KnH)P
′

n, (2.19)

where I indicates the N -dimensional identical matrix.

In short, by exploiting the linearity of the state variable and of the observations,
the KF provides a linear and exact estimate of the state variable.
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2.1.3 Sequential Importance Sampling

Sequential important sampling (SIS) methods were introduced in [51, 71]
and successively detailed in [88, 50, 99]. Di�erently from the MHA and the KF,
a SIS method does not rely on too strong assumptions about X1:N and Y1:N .

We de�ne a new family of N density functions qn(·), called importance densi-
ties, selected in order to decrease the variance of MC estimators (MC estimators
will be treated in Section 2.2), and a set of variables wn(·), named importance
weights, as

wn(xn) :=
π(xn|x1:n−1, y1:n)

q(xn|x1:n−1, y1:n)
. (2.20)

Using (2.20), the density π(xn|x1:n−1, y1:n) can be rewritten as

π(xn|x1:n−1, y1:n) = wn(xn)q(xn|x1:n−1, y1:n). (2.21)

A SIS scheme addresses the problem of evaluating Formula (2.21) by performing
the following steps for every n = 1, ..., N :

(S1): sampling x(m)
n from q(xn|x1:n−1, y1:n);

(S2): evaluation of w(m)
n := Wn(x

(m)
n );

(S3): resampling of x(m)
n according to the normalized weights W (m)

n :

W (m)
n =

w
(m)
n∑M

m=1 w
(m)
n

. (2.22)

The last point is justi�ed as follows. The steps (S1)−(S2) generate a set of
not equally distributed particles x(m)

n with weights w(m)
n . As discussed in [35,

95, 78], after a few iterations most importance weights w(m)
n become null: the

consequence is that the variance of the importance weights, given by [77, 76]

N̂n =
1∑M

m=1W
(m)
n

, (2.23)

increases (this phenomenon is known as sample impoverishment). In order to
overcome this issue, we resample the particles x

(m)
n from the following discrete

random variable X̂n (1.2):

X̂n =

(
x
(1)
n · · · x

(M)
n

W
(1)
n · · · W

(M)
n .

)
(2.24)

A SIS algorithm is summarized in Algorithm SIS: in input it receivesN,M, qn, x1,
in output it produces M independent paths x(m)

1:N , m = 1, ...,M .
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Algorithm 2 SIS

begin
for n = 2 to N do

//Generation of the particles.
for m = 1 to M do

1) Generate x(m)
n from the density q(x1:n|x1:n−1, y1:n).

2) Compute the normalized weights W (m)
n (2.22).

end
//Resampling from a discrete random variable.
3) Calculate N̂n (2.23).
if N̂n > NT then

4) Set a real variable cdf = 0.
5) Set j = 1 and k = 1.
6) Draw a uniform number u ∼ [0; 1].
while cdf < u and j ≤M do

7) Calculate cdf = cdf +W
(j)
n .

8) Set x(j)n := x
(k)
n and W (j)

n := W
(k)
n .

9) Set j = j + 1

end
10) Set k = k + 1.

end

end

return X̂n := (x
(m)
n ,W

(m)
n )Mm=1.

end

As pointed out before, the crucial point of a SIS algorithm is the resam-
pling from a discrete variable: this is implemented only if the variance of the
importance weights is too high, i.e. if N̂n is higher than a threshold NT .

The procedure works as follows: for every n = 1, ..., N , �rstly we determine
the outcome x(k)n of Xn for which the cdf (6) is higher than a uniform threshold
u, then we replace all the values x(j)n and W

(j)
n , 1 ≤ j ≤ k, respectively with

x
(k)
n and W (k)

n , and, �nally, we start from k + 1; we repeat the previous steps
until k = M .

In conclusion, a SIS method is identi�ed by the choice of the importance
density and of the initial value.

2.1.4 Bootstrap Filter

The Bootstrap �lter (BF) has been introduced by Gordon [45, 46] and suc-
cessively developed by di�erent authors [4, 22, 31, 32]. The BF is a SIS method
which addresses the problem of simulating a nonlinear Markov process. For
more details about the BF we refer to [20, 27].

The BF is based on the following assumptions.

(A1): The Markov processes X1:N and the observations Y1:N are governed by



2.1. BAYESIAN SAMPLING TECHNIQUES 33

the following nonlinear system:

Xn = F (Xn−1) +Wn (2.25)

Yn = G(Xn) + Vn, n = 1, ..., N, (2.26)

with F,G : RN → RN two integrable functions.

(A2): W1:N and V1:N are Normal processes (18) with null mean and time-
independent covariance matrices (1.19), i.e. W1:N ∼ N(0, Q) and V1:N ∼
N(0, R), where

Q = E[WnW
T
n ] (2.27)

R = E[VnV
T
n ], (2.28)

W1:N ∼ N(0, Q), V1:N ∼ N(0, R).

for every n = 1, ..., N ;

(A3): Vn and Wn are uncorrelated.

In the BF, we select the transition densities π(xn|xn−1) as importance densities:

qn(xn|x1:n−1, y1:n) := π(xn|xn−1), n = 1, ..., N, (2.29)

which is, for every n, the density of the Normal process N (F (Xn−1), Q) (2.25).
The importance weights wn(xn) (2.20) are given by

wn(xn) :=
π(xn|xn−1, y1:n)

q(xn|xn−1, y1:n)
(2.30)

=
π(yn|xn)∫

RN π(yn|xn)π(xn) dxn
. (2.31)

For (2.26), π(yn|xn) is the density of the Normal process N (G(Xn), R).
Formula (2.31) follows from the choice of qn and from the following theorem,

which provides a factorization for π(xn|xn−1, yn).

Theorem 41 (Expression of π(xn|xn−1, yn)). The density π(xn|xn−1, yn) can
be expressed as

π(xn|xn−1, yn) =
π(yn|xn)π(xn|xn−1)∫
RN π(yn|xn)π(xn) dxn

, (2.32)

for every n = 1, ..., N .

Proof. We apply the Bayes theorem (1.34) to π(xn|xn−1, yn):

π(xn|xn−1, yn) =
π(yn|xn, xn−1)π(xn|xn−1)

π(yn|xn−1)
, n = 1, ..., N,

which can be simpli�ed, using (2.25−2.26), as

π(xn|xn−1, yn) =
π(yn|xn)π(xn|xn−1)

π(yn)
. (2.33)
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Since Y1:M is a Markov process, the marginal density π(yn) can be expressed,
using the CKL (25), as

π(yn) =

∫
RN

π(yn|xn)π(xn) dxn.

Substituting this expression into (2.33), the assertion follows.

The BF algorithm involves the following steps:

(S1): sampling x(m)
n from π(xn|xn−1);

(S2): evaluation of the denominator in (2.31) using the MCst approach (1.76):

π̂n =
1

M

M∑
m=1

π(yn|xn);

(S3): calculation of w(m)
n := wn(x

(m)
n )

w(m)
n :=

π(yn|x(m)
n )∑M

m=1 π(yn|x(m)
n )

; (2.34)

(S3): resampling of x(m)
n according to w(m)

n .

We observe that no normalization is required as in a general SIS (2.22) because
the weights w(m)

n are already normalized.
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The BF is described in Algorithm BF (for more detailes see [75]): in input it
receives N,M, x1, F,G,Q,R, in output it produces M independent paths x(m)

1:N ,
m = 1, ...,M .

Algorithm 3 BF

begin
for n = 2 to N do

//Generation of the particles.
for m = 1 to M do

1) Generate x(m)
n ∼ N(F (Xn−1), Q) (2.25).

2) Compute the normalized weights w(m)
n (2.34).

3) Calculate N̂n (2.23).

end
//Sampling from a discrete random variable.
if N̂n > NT then

4) Set a real variable cdf = 0.
5) Set j = 1 and k = 1.
6) Draw a uniform number u ∼ [0; 1].
while cdf < u and j ≤M do

7) Calculate cdf = cdf + w
(j)
n .

8) Set x(j)n := x
(k)
n and w(j)

n := w
(k)
n .

9) Set j = j + 1

end
10) Set k = k + 1.

end

end

return X̂n := (x
(m)
n , w

(m)
n )Mm=1.

end

In short, the BF Algorithm is derived from the SIS Algorithm with impor-
tance densities (2.29) and importance weights (2.34).

2.2 Bayesian MC approach

As discussed in Section 1.4, MCst estimators have a low precision and, in
the case of a continuous barrier option, are biased. In order to solve them, in
this section we propose a MC approach, named Bayesian MC (BMC) approach.

Firstly we �rstly describe the BMC approach from a general point of view
(for more detailes we refer to [13, 38, 17, 37]) and successively we use it to price
a barrier option.

Given a state variable X1:N , n = 1, ..., N and an integrable function f :
RnI → R, a BMC procedure estimates the following conditional expected value:
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Ψn :=

∫
f(x1:n)π(x1:n|y1:n) dx1:n, n = 1, ..., N. (2.35)

Now we formulate the BMC for discrete and continuous barrier options under
the BSM.

In the case of a discrete barrier option, the BMC can be summarized as
follows:

(P1): The state variable is represented by Sn, n = 1, ..., N , resulting from (1.60).

(P2): The functions f in (2.1) is the option payo� Ψd
T (1.74) with n = N .

Using (1.18) and the Markov property of Sn, Expression (2.35) becomes:

Ψd
N =

∫
RN

Ψd
T

(
N∏
n=1

π(sn|sn−1, y1:n)

)
ds1:N . (2.36)

A BMC procedure for discrete barrier options works as follows: �rstly, a set of
M independent paths s(m)

1:N of S1:N , m = 1, ...,M , are generated using a Bayesian
sampling technique (Section 2.1), then we compute the MCst estimator of (2.36)
over the paths s(m)

1:N :

ΘM
N =

e−rT

M

M∑
m=1

f(s
(m)
1:N ). (2.37)

In order to extend the BMC approach to the case of continuous barrier options,
we preliminarily introduce the notion of exit probability.

De�nition 42. Let s, t ∈ [0;T ] and x, y ∈ [0; +∞] respectively the values of St
at s and z, and It the value of the barrier interval at t ∈ [0;T ] (1.70). The exit
probability is the function p(·) : R2 → [0; 1], de�ned as

p(x, y) := P(∃t ∈ [s; z] : St /∈ It|Ss = x, Sz = y), (2.38)

for every s, z ∈ [0;T ].

The exit probability is theprobability that the underlying hits the barriers
once at least. Theorem (43) provides the formulas of p(x, y) in the case of a
single barrier [1, 11] and double barriers [86] under the BSM.

Theorem 43. The exit probability p(x, y) (2.38) of a single barrier option, i.e.
Lt = 0 and Ut = Bt ∈]0; +∞[ or Lt = Bt ∈]0; +∞[ and Ut = +∞ for every
t ∈ [0;T ], is equal to:

p(x, y) =

{
1 if x /∈ Ix or y /∈ Iy
exp

(
−2

(ln x−lnBy)(ln y−lnBy)
(z−s)σ2

)
otherwise,

(2.39)

for every s, z ∈ [0;T ], with s < z.
In the case of a double barrier option, i.e. Lt, Ut ∈]0; +∞[ and Lt 6= Ut for

every t ∈ [0;T ], with x ∈]Lx;Ux[, the exit probability p(x, y) (2.38) is equal to:

p(x, y) = 1,
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if y /∈]L;U [, and by

p(x, y) =

+∞∑
m=1

[R(αm− γ, δ)] +Rn(−αm+ β, δ)] +

+

+∞∑
m=1

[R(αm, δ)] +R(−αm, δ)], (2.40)

where

δ = ln
y

x
, α = 2 ln

Uz
Lz
, β = 2 ln

Uz
x
γ = 2 ln

x

Lz
, R(z, x) = exp

(
− z(z − 2x)

2(t− s)σ2

)
,

if y ∈]Ly;Uy[, for every s, z ∈ [0;T ], with s < z.

Formulas (2.39−2.40) are derived from the laws of the maximum and mini-
mum of a Brownian motion (for more details see [67]).

Now we introduce the following weights g(x, y):

g(x, y) = 1]s;z[(y)p(x, y).

If the barriers have been crossed, i.e. g(Sn−1, Sn) = 0, we are informed if the the
barriers have been crossed. If the barriers have not been crossed, we measure
the probability of the underlying not to hit the barriers.

The starting point of the BMC approach for continuous barrier options is
the following theorem, which provides a new expression of Ψc

0 [44].

Theorem 44. The price of a continuous barrier option Ψc
0 can be rewritten as

ΨN
0 = h(sN )

(
N∏
n=1

g(sn−1, sn)

)
(2.41)

Ψc
0 = e−rT

∫
ΨN

0 π(s1:N ) ds1:N , (2.42)

with N ∈ N.

The main consequences of Theorem (1.73) are that we can rede�ne the price
Ψc

0 as (2.41) and every MCst estimator of (2.41)is unbiased.
Now we are able to develop the BMC approach for continuous barrier op-

tions, which is characterized by the following points:

(P1): Yn = 0 for every n = 1, ..., N .

(P2): The state variable is represented by Sn, n = 1, ..., N , obtained by applying
(1.60).

(P3): The functions f in (2.1) is ΨN
0 (2.41).

Bayesian problem (2.35) takes the form (see [96]):

ΨN = e−rT
∫
R
h(sN )g(sN−1, sN )π(sN |sN−1) dsN · · ·

· · ·
∫
R
g(s0, s1)π(s1|s0) ds1. (2.43)
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For every n = 1, ..., n, one proceeds as follows: �rstly we draw s(m)
n ∼ π(sn|sn−1),

m = 1, ...,M , secondly we introduce the following variables h(m)
n , m = 1, ...,M :

h(m)
n =


h(s

(m)
N )g(s

(m)
N−1, s

(m)
N ) if n = N

g(s
(m)
n−1, s

(m)
n ) otherwise,

(2.44)

thirdly every integral is evaluated using a MCst estimator (1.76) over s(m)
n and,

�nally, we construct an estimator ΘM
N as the product of the MCst estimates

found at the previous step:

ΘM
N =

e−rT

MN

N∏
n=1

(
M∑
m=1

g(m)
n

)
. (2.45)

Theorem (45) states that ΘM
n (2.37−2.45) is unbiased and has a higher precision

than the MCst ∆M
n (1.76).

Theorem 45. The estimator ΘM
N de�ned in (2.37−2.45) is unbiased and has

a lower variance than the MCst ∆M
n (1.76). In symbols:

µn = E[ΘM
n ] (2.46)

V[ΘM
n ] ≤ V[∆M

n ], (2.47)

for every n = 1, ..., N .

Proof. Equation (2.46) follows from the application of the LTE (1.32−1.33) to
µn:

µn = E[Ωn]

Ωn = E[f(X1:n)|Y1:n]

n = 1, ..., N.

Now we prove (2.47). For every n = 1, ..., N , the variance V[∆M
n ] of ∆M

n can be
expressed, using (15), as:

V[∆M
n ] = V[Ωsn] + E[∆s

n]

Ωsn = E[∆M
n |Y1:n] (2.48)

∆n = V[∆M
n |Y1:n]

The positiveness of f implies that:

V[∆M
n ] ≥ V[Ωsn]. (2.49)

The variable Ωsn 2.48 can be rearranged as:

Ωsi =
1

M

M∑
m=1

E[f(x
(m)
1:i ] = (2.50)

= E[f(x
(1)
1:i ]. (2.51)

Equation (2.50) derives from the linearity of the conditional expected value.
Equation (2.51) is a consequence of the property of i.i.d of the particles.

Finally, the assertion follows from (2.49−2.51) and the de�nition of ΘM
i .

In short, the main features of a BMC method are: the choice of the obser-
vations and the Bayesian sampling technique (Section 2.1).
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2.3 Bayesian MC methods

This section is devoted to some BMC methods to price a barrier option under
the BSM.

Subsection 2.2.1 examines the conditional MC technique. Subsection 2.2.2
describes the exponential twisting method. Subsection 2.2.3 explores the weight-
ing functions approach.

2.3.1 Conditional MC methods

The conditional MC method (CMCM), introduced by [58, 19] and succes-
sively proposed in [84, 89], is a BMC method to price a discrete barrier option
(1.75)

We preliminarily provide some basic de�nitions. The �rst instant in which
the barriers are crossed is denoted with τ , we de�ne the following variables:

Ψ(x) =
1√
2π
e−

x2

2

d1 :=
ln(s/k) + (r + 0.5σ2)(T − t)

σ
√
T − t

d2 := d1 − σ
√
T − t,

BSM(s, k, r, T, t) :=

{
sΨ(d1)− kΨ(d2) if Call
ke−r(T−t)Ψ(−d2)− sΨ(−d1) if Put,

(2.52)

As shown in [15], the functions h and BSM are related by

BSM(S0,K, r, T, 0) = E[h(ST )|S1:τ ]. (2.53)

Formula (2.53) is the so unknown Black-Scholes formula [15]. Using (2.53),
Bayesian problem (2.36) becomes:

Ψd
T = E [BSM(Sτ ,K, r, T, τ)] , (2.54)

A CMCM estimator of Ψd
T is given by

Ψ̂d
T =

e−rτ

M

M∑
m=1

BSM(S(m)
τ ,K, r, T, τ), s(m)

τ ∼ π(Sτ ). (2.55)

In short, the CMC is the MCst estimator of Formula (2.54).

2.3.2 Exponential twisting

The exponential twisting (ET), introduced in [19, 98] and successively pro-
posed in [41, 90, 84], is a BMC procedure to price a discrete barrier option with
a constant single barrier. In our case the barrier will be indicated with the
symbol B, the barrier interval, if a knock-out, takes the form:

It =

{
]B; +∞[ if S0 > B
]0;B[ if S0 < B,

(2.56)
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if the option is a knock-in, then

It =

{
]B; +∞[ if S0 < B
]0;B[ if S0 > B,

(2.57)

We preliminarily introduce the following variables:

b = ln

(
S0

B

)
; c =

K

S0
a =

1

2
− r

σ2
; d =

2b+ c

Nσ2 + h

t− := a− d; t+ = a+ d,

τ is the �rst instant when the B is hit, and the following functionM(·) : [0;T ]→
]0; +∞] as

M(t) := exp

[
t

(
r − σ2

2

)
h+

1

2
σ2t

]
. (2.58)

Bayesian problem (2.35) is simpli�ed as

Ψd
0 =

∫
RN

Ψd
T

(
N∏
n=1

π(sn|sn−1)

)
ds1:N . (2.59)

The ET approach is described in the following: �rstly, we sample from π(sn|sn−1)
using a SIS scheme (Algorithm SIS), with importance densities:

qn(sn|sn−1) :=


et
−
π(sn|ssn−1

)

M(t−) if t ≤ τ
et

+
π(sn|ssn−1

)

M(t+) otherwise,
(2.60)

and importance weights w(sn) (2.20):

w(sn)

{
M(t−)

exp[t−sn]
if t ≤ τ

M(t+)
exp[t+sn]

otherwise,
(2.61)

successively we evaluate (2.2) using the following MCst estimator (1.76) over
the paths s(m)

1:N :

∆ =
e−rT

M

M∑
m=1

[
h(s

(m)
N )

(
N∏
n=1

1In(s
(m)
1:N )

)]
. (2.62)

The ET scheme is summarized inAlgorithm ET: in input it receives T, S0, r, σ,K,N,M .
In output it produces the value Ψd

0.
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Algorithm 4 ET

begin
for n = 2 to N do

//Generation of the particles.
for m = 1 to M do

1) Generate s(m)
n ∼ q(sn|sn−1) (2.60).

2) Compute w(m)
n := w(s

(m)
n , s

(m)
n−1) (2.61).

2) Evaluate the normalized weights W (m)
n (2.22).

end
//Sampling from a discrete random variable.
3) Set a real variable cdf = 0.
4) Set j = 1 and k = 1.
5) Draw a uniform number u ∼ [0; 1].
while cdf < u and j ≤M do

5) Calculate cdf = cdf +W
(j)
n .

6) Set s(j)n := s
(k)
n .

7) Set j = j + 1

end
8) Set k = k + 1.

end

return ΘM
N (2.62).

end

In short, for every = 1, ..., N , the ET is based on a SIS procedure, with
observations represented by the past value of the underlying. An extension of
ET method is treated in [89], where the authors combine the CMCM and the
ET.

2.3.3 Weighting functions method

The weighting functions (WF) method, developed in [64, 96, 94], is a BMC
method to price a continuous barrier option under the BSM (1.56).

The WF proceeds as follows. Firstly, for every n = 1, ..., N , we simulate a
set of particles x(m)

n using a SIS technique (Algorithm SIS), with importance
densities qn given by the transition densities:

xn := lnSn

qn(xn|xn−1) := π(ln sn| ln sn−1)

n = 1, ..., N, (2.63)

which is the density of a Normal N(µn, σ̃) with

µn := xn−1 + (r − σ2

2
)h, σ̃ := hσ.
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Secondly, we �nd the underlying particles

s(m)
n = exp(x(m)

n ),

and we determine the importance weights wn(sn) (2.20), given by:

wn(sn) = g(sn−1, sn). (2.64)

Finally, we evaluate the estimator ΘM
N (2.45).
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The WF scheme is described in Algorithm WFM: in input it receives
T, S0, r, σ,K,N,M, N̂n, in output it produces the value of ΘM

N .

Algorithm 5 WFM

begin
for n = 2 to N do

//Generation of the particles.
for m = 1 to M do

1) Draw x
(m)
n ∼ N(µn, σ̃).

2) Compute the unnormalized weights w(m)
n (2.64).

3) Normalization W (m)
n (2.22).

end
//Resampling from a discrete random variable.
4) Calculate N̂n (2.23).
if N̂n > NT then

5) Set a real variable cdf = 0.
6) Set j = 1 and k = 1.
7) Draw a uniform number u ∼ [0; 1].
while cdf < u and j ≤M do

8) Calculate cdf = cdf +W
(j)
n .

9) Set x(j)n := x
(k)
n and W (j)

n := W
(k)
n .

10) Set j = j + 1

end
10) Set k = k + 1.

end

11) Set s(m)
n = exp[x

(m)
n ].

end

return ΘM
N .

end

In short, in the WF approach the sampling procedure is a SIS with transition
densities as importance densities and the observations are represented, for every
n, by the past values of the underlying.
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Chapter 3

Bayesian MC methods under

a SVM

This section discusses two new BMC approaches to price a continuous barrier
option under a SVM, whose goal is, as highlighted in the previous chapters, to
construct unbiased estimators with high precision. The �rst one extends the
WF approach (Subsection 2.3.3), the second one is based on the BF technique
(Subsection 2.1.4). In the last part of the chapter we provide some numerical
tests, which con�rm the applied contribute of the algorithms examined in this
chapter.

Section 3.1 presents the MC methods under a SVM. Section 3.2 provides the
numerical tests.

3.1 Bayesian MC methods

As explored in Section 2.2, the goal of a BMC approach is to evaluate the
following conditional expected value [13, 38, 17, 37].

Ψn :=

∫
f(x1:n)π(x1:n|y1:n) dx1:n, n = 1, ..., N.

Theorem (45) claims that every MC estimator of the previous expression is an
unbiased estimator with high precision.

In order to develop a BMC approach to price a continuous barrier option
under a SVM (1.54−1.55), we generalize the notion of exit probability given in
Section 2.2.

De�nition 46. Let s, t ∈ [0;T ], x, y, σ ∈ R with Ss = x, St = y and σs = σ.
The exit probability is the function p(·) : R3 → [0; 1] de�ned as

p(x, y, σ) := P(∃t ∈ [s; z] : St /∈ It|Ss = x, Sz = y, σs = σ). (3.1)

for every s, z ∈ [0;T ].

Theorem (47) provides the expression of the trigger probability under a SV
model (for the proof see [7]).

45
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Theorem 47. The exit probability p(x, y, σ) (2.38) of a single barrier option is
equal to:

p(x, y, σ) =

{
1 if x /∈ Ix or y /∈ Iy
exp

(
−2 (x−Bs)(y−Bz)

(z−s)σ2

)
otherwise,

(3.2)

for every s, z ∈ [0;T ], with s < z.

In the case of a double barrier option, the exit probability p(x, y, σ) (2.38) is
equal to:

p(x, y, σ) = 1,

if y /∈]L;U [, and by

p(x, y, σ) =

+∞∑
m=1

[R(αm− γ, δ)] +Rn(−αm+ β, δ)] +

+

+∞∑
m=1

[R(αm, δ)] +R(−αm, δ)], (3.3)

where

δ = y−x, α = 2(Uz−Lz), β = 2(Uz−x), γ = 2(x−Lz), R(z, x) = exp

(
− z(z − 2x)

2(z − s)σ2

)
,

if y ∈]Ly;Uy[, for every s, z ∈ [0;T ], with s < z.

Now we introduce the following weights g(x, y, σ):

g(x, y, σ) = 1]s;z[(y)p(x, y, σ). (3.4)

The starting point of our BMC is the following theorem, which provides a new
expression of Ψc

0 (for more details see [7]).

Theorem 48. The price Ψc
0 can be rearranged as

ΨN
T = e−rTh(SN )

(
N∏
n=1

g(sn−1, sn, σn−1)

)
(3.5)

Ψc
0 =

∫
ΨN
T π(s1:N ) ds1:N , (3.6)

where sn−1 and sn are respectively the outcomes of Sn−1 and Sn.

The BMC approach for continuous barrier options under a SVM relies on
the following points:

(P1): the state variable is represented by Sn;

(P2): the observations are S1:n−1 and σ1:n;

(P3): The function f in (2.1) is the variable ΨN
T .
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Problem (2.35) becomes for n = N :

ΨN = e−rT
∫
RN

h(sn)

(
N∏
n=1

g(sn−1, sn, σn−1)

)
π(s1:N |σ1:N ) ds1:N . (3.7)

Theorem (45) guarantees that every estimator of (3.7) is unbiased and has a
higher precision than a MCst estimator of (3.6).

Using (1.18−24) and the reduction formulas of the multiple integrals, For-
mula (3.7) can be rewritten as

ΨN = e−rT
∫
R
h(sN )g(sN−1, sN , σN−1)π(sN |sN−1, σN−1) dsN · · ·

· · ·
∫
R
g(s0, S1, σ0)π(s1|s0, σ0) ds1. (3.8)

A BMC algorithm proceeds as follows.

(S1): Using (1.61−1.62), simulate M independent paths s(m)
1:N and σ

(m)
1:N , m =

1, ...,M .

(S2): Every integral in (3.8) is estimated using a MCst approach (1.76).

(S3): The products of the quantities found at (S2) is calculated.

In short, given the following quantities h(m)
n :

h(m)
n =


h(s

(m)
N )g(s

(m)
N−1, s

(m)
N , σ

(m)
N−1) if n = N

g(s
(m)
n−1, s

(m)
n , σ

(m)
n−1) otherwise,

(3.9)

a BMC estimator ΠM
N of Ψc

0 (3.6) is:

ΠM
N =

e−rT

MN

N∏
n=1

(
M∑
m=1

h(m)
n

)
. (3.10)

As pointed out in Chapter 2, a BMC method is identi�ed uniquely by the
observations and the sampling procedure.

Subsection 3.1.1 details the extended WF method (EWF). Subsection 3.1.2
proposes the bootstrap BMC (BBMC).

3.1.1 Extended weighting functions method

As mentioned at the beginning of this chapter, the EWF generalizes the WF
approach examined in Subsection 2.3.3 under a SVM (1.54−1.55).

The WF procedure works as follows. Firstly, for every n = 1, ..., N , we gener-
ateM particles x(m)

n using a SIS technique (Algorithm SIS), with importance
densities qn given by the transition densities:

qn(sn|s1:n−1, σ1:n) := π(sn|sn−1, σn−1) n = 1, ..., N, (3.11)
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and importance weights wn(sn):

wn(sn) = g(sn−1, sn, σn−1). (3.12)

For (1.61−1.62), qn is the density of a Normal N(µn, σ̃n) with

µn := (1 + r)sn−1, σ̃n = h(σn−1αn−1)2.

Finally, we evaluate estimator ΠM
N (3.10).

The EWF procedure is described in Algorithm SVM-WF: in input it re-
ceives T, S0, r, σ0,K,N,M, N̂n and the functions αt, βt, γ, in output it produces
the value of the estimator ΠM

N .

Algorithm 6 SVM-WFM

begin
for n = 2 to N do

//Generation of the particles.
for m = 1 to M do

1) Determine (s
(m)
n , σn) using (1.61−1.62).

2) Compute the importance weights w(m)
n := wn(s

(m)
n ) (3.12).

3) Normalization W (m)
n (2.22).

end
//Resampling from a discrete random variable.
3) Calculate N̂n (2.23).
if N̂n > NT then

4) Set a real variable cdf = 0.
5) Set j = 1 and k = 1.
6) Draw a uniform number u ∼ [0; 1].
while cdf < u and j ≤M do

7) Calculate cdf = cdf +W
(j)
n .

8) Set s(j)n := s
(k)
n and W (j)

n := W
(k)
n .

9) Set j = j + 1

end
10) Set k = k + 1.

end

end

return ΠM
N .

end

In short, at every time step n = 1, ..., N , the EWF samples s(m)
n ∼ π(sn|sn−1, σn−1),

m = 1, ...,M , and then it uses them to �nd the value of the BMC estimator.

3.1.2 Bootstrap Filter Approach

In this section we illustrate the BBMC method to price a continuous barrier
option under a SVM (1.54−1.55). As suggested by the name, this algorithm,
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developed originally by Kim et al. [69] to estimate the volatility of a SVM,
simulates the independent underlying paths by applying the BF (Algorithm
BF).

The starting point of the BBMC approach is the following theorem, which
reformulates a discrete SVM (1.61−1.62) as proposed by Taylor [104]

Theorem 49 (Taylor, 1994). The discrete model (1.54−1.55) can be rewritten
as

σn = σn−1 + βn−1h+
√
hγn−1Z

σ
n , Zσn ∼ N(0; 1) (3.13)

Rn = σnZ
s
n, Zsn ∼ N(0; 1), (3.14)

where Rn is the asset return of Sn at tn:

Rn =
Sn − Sn−1
Sn−1

. (3.15)

Model (3.13−3.14) satis�es Assumptions (2.1.4) by setting:

Xn := σn, F (x) := x+ βn−1h, Wn :=
√
hγn−1Z

σ
n

Yn := Rn, G(x) := 0, Vn := σnz
s
n,

for every n = 1, ..., N .

Model (3.13−3.14) is obtained by exploiting the de�nition of volatility as
the standard deviation of the asset returns [34].

The BMC is summarized as follows: �rstly, at every time step n = 1, ..., N ,
we simulate (σ(m), r

(m)
n ) by applying the BF technique to (3.13−3.14), and we

compute:
s(m)
n := (1 + r(m)

n )s
(m)
n−1, (3.16)

�nally we evaluate the estimator ΠM
N (3.10) using s(m)

n , n = 1, ..., N .
The BBMC method is described in Algorithm BBMC: in input it receives

T, S0, r, σ0,K,N,M, N̂n and the functions αt, βt, γ, in output it produces the
value of the estimator ΠM

N .
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Algorithm 7 BBMC

begin
for n = 2 to N do

//Generation of the particles.
for m = 1 to M do

1) Compute (σ
(m)
n , r

(m)
n ) using (3.13−3.14).

2) Compute the normalized weights w(m)
n (2.34).

end
//Sampling from a discrete random variable.
3) Calculate N̂n (2.23).
if N̂n > NT then

4) Set a real variable cdf = 0.
5) Set j = 1 and k = 1.
6) Draw a uniform number u ∼ [0; 1].
while cdf < u and j ≤M do

7) Calculate cdf = cdf + w
(j)
n .

8) Set σ(j)
n := σ

(k)
n and r(j)n := r

(k)
n .

9) Set j = j + 1

end
10) Set k = k + 1.

end

end

11) Compute s(m)
n (3.16).

return ΠM
N .

end

In short, for every n = 1, ..., N , the BBMC generates a set of i.i.d. particles
s(m) ∼ π(sn|sn−1, σn), m = 1, ...,M , and it uses them to determine the value of
the BMC estimator. Since for (1.62) the variables σn are generated using σn−1,
one has:

π(sn|sn−1, σn) = π(sn|sn−1, σn−1, σn).

The previous expression means that the BBMC conditions on more random vari-
ables than the EWF, where the importance density is given by π(sn|sn−1, σn−1):
as pointed out in Subsection 1.1.1, this implies that the variance of the BBMC is
lower than the variance of the EWF, and, consequently, has a higher precision.

3.2 Numerical experiments

In this chapter we have developed two BMC methods to solve the issues of
MCst estimators under a SVM: this section provides some numerical experi-
ments in order to test the validity of this approach. More precisely, we have
analyzed the consequences of the distance between the initial underlying value
and the barriers on the bias and precision of MC estimators. In the following
we will report our results. We have priced three euro continuous knock-out puts
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with single constant barrier, with T = 4 years, K = 0.4 e, S0 = 0.4 e, σ0 = 0.3,
r = 0.02 and barrier B given by:

(B1): the barrier of the �rst option is B = 10 e;

(B2): the barrier of the second option is B = 6 e;

(B3): the barrier of the third option is B = 3 e;

using a MCst scheme, the EWF approach and the BBBC method with di�erent
numbers of time steps N = 10, 20, 30, 40, 50, 60, 80, 90 and M = 1000, and we
have compared the results in terms of bias and precision with a number of sam-
ples D = 1000000 in (1.47−1.45−1.46). We have assumed that the underlying
St and the volatility σt follow a SABR model (1.65−1.66) with α = 0.4, β = 0.5,
r = 0.02.

The SABR model takes the form:

dSt = 0.02Stdt+ σtS
0.5
t dW s

t

dσt = 0.4σtdW
σ
t .

The calculation of the bias requires the knowledge of the real price of the option
(1.47) but, as investigated in Chapter 1, no closed formulas exist to price a
barrier option under a SVM: for this reason, in our case we have found only an
approximation of this price by proceeding as follows: �rstly we have estimated
the implied volatility using Hagan formula [49], then we have priced the option,
whose volatility is given by the implied volatility and all the other parameter
are not changed, by applying the Kunimoto-Ikeda formula. The consequence
of replacing the real value with this approximation is that the bias of the EWF
and BBMC estimators is not null.

In our case, the implied volatility is about 0.56, and:

(P1): the price of (B1) is 8.23 e;

(P2): the price of (B2) is 8.07 e;

(P3): the price of (B3) is 7.02 e.

In all the �gures the MCst is indicated with the term Standard, the EWF es-
timator with Sequential, the BBMC estimator with Bootstrap. To simplify the
notations, we omitt the symbol e in both the bias and precision.

Figures (3.1−3.2) show the precision and the bias of the three estimators for
the �rst option.

Firstly, we observe that the three estimators give good results both in terms
of the bias and precision. The explanation is that not many paths are rejected
because the initial underlying value is su�ciently distant from the barrier.

Secondly, we observe that the number of time steps has a signi�cant e�ect
only in the case of the Standard. The reason is that, as described in [96], the
number of survival path in the MCst procedure is inversely proportional to the
number of time steps, while, in the case of both Sequential and Bootstrap, the
resampling procedure on which the two algorithms are based lets us replace the
rejected paths with the survival ones.
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Finally we observe that the Bootstrap provides better performances than
Sequential. The reason is that, as discussed in Section 3.1, at every time step
the Bootstrap is obtained using more information than the Sequential one: in
fact, as discussed in Section 3.1, at every time step in the Bootstrap we condi-
tion on the past underlying values and past and current volatility values, in the
Sequential we condition on the past underlying and volatility values.

Figures (3.3−3.4) show the precision and the bias of the three estimators for
the second option.

Firstly, we �rstly observe that the decrease of the distance between the initial
underlying value and the barrier implies that the three estimators provide worse
performance than to the previous case.

Secondly, we observe that, as in the previous case, thanks to the resampling
procedure, the Sequential and the Bootstrap estimators have a lower bias and
a higher precision than the Standard and the number of time steps impacts the
bias and the precision only of the Standard.

Finally, we observe that the Bootstrap still provides better results than the
Sequential (for the justi�cation see the previous case).

Figures (3.5−3.6) show the precision and the bias of the three estimators for
the third option.

Firstly, we observe that, since the initial underlying value approaches the
barrier, the performance of the three estimators changes respect to the previous
cases.

Finally we observe that, as in the previous cases, the number of time steps has
a low impact only on the Sequential and the Bootstrap and that the Bootstrap
has the lowest bias and the highest precision among the three estimators (for
the justi�cation see the previous points).
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Figure 3.1: Precision of MC estimators for B = 10.
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Figure 3.2: Bias of MC estimators for B = 10.
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Figure 3.3: Precisions of MC estimators for B = 6.
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Figure 3.4: Bias of MC estimators for B = 6.
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Figure 3.5: Precision of MC estimators for B = 3.
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Figure 3.6: Bias of MC estimators for B = 3.



Conclusions

In this thesis we have examined MC methods to price a barrier option. Fol-
lowing the classical martingale approach, the barrier option price is written as
the expectation of the actualized payo� under the RNM. Firstly we have consid-
ered the MCst methods and we have highlighted their main issues: the bias and
the low precision. In order to overcome these ones, we have discussed a class of
MC methods, named BMC methods. A BMC method produces in output the
following option pricing estimator, named BMC estimator : the standard aver-
age of the actualized payo� realizations over a set of underlying paths, simulated
using the conditional density of the underlying given a set of observations.

In the �rst part of the thesis we have described the following BMC techniques
under the hypothesis of the constant volatility: the CMC method, the ET method
and the WF method.

In the last part of the thesis we have discussed our contributes to the option
pricing problem: development of two BMC procedures for continuous barrier
options, the EWF and the BBMC, to derive a MC estimator characterized by a
lower bias and higher precision than a MCst estimator. Both the schemes can
be summarized as follows: �rstly, the underlying paths are generated from a
�xed family of density functions, named importance densities, depending on the
observations, successively they are subject to a resampling procedure if the vari-
ance of the BMC estimator is too high, �nally we evaluate the BMC estimator.
In short, the two schemes di�er for the choice of the observations and, conse-
quently, the form of the importance densities: in the EWF, the observations are
represented, at every time instant, by the past underlying and volatility values,
in the BBMC, the observations are represented, at every time instant, by the
past underlying values and by the past and current volatility values.

The validity of these two methods has been tested by some numerical ex-
periments, where we have studied the impact of the distance between the initial
underlying value and the barriers on the bias and precision of a MC estimator.
More precisely, we have proceeded as follows: �rstly, we have estimated the price
of three continuous knock-out options under a SABR model using the MCst,
the EWF and the BBMC estimators for di�erent time steps, and, successively,
we have compared the results in terms of bias and precision. The choice of the
SABR model lets us determine an approximation of the price, which is necessary
to evaluate the precision of MC estimators. The procedure can be summarized
as follows: �rstly, we have computed the implied volatility by applying the Ha-
gan formula, then we have determined the price of the option, whose volatility
is given by the implied volatility and all the other parameters are not changed,
using the Kunimoto-Ikeda formula. The consequence of replacing the real value
with this approximation is that the bias of the EWF and BBMC estimators is
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not null.
The numerical results can be summarized as follows.

(R1): The three estimators achieve similar levels of bias and precision when the
underlying initial value is far from the barriers.

(R2): The MCst estimator is biased and has a lower precision level than the
EWF and the BBMC when the initial underlying value approaches the
barriers.

(R3): The BBMC provides better results than the EWF.

The justi�cation of (R1)−(R2) is that the probability of crossing the barrier is
inversely proportional to the distance between the initial underlying value and
the barriers. The justi�cation of R3 is that in the BBMC uses a larger set of
observations than the EWF.
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