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Abstract— Cardiological problems are one of the leading 
causes of human fatality. Electrocardiogram is a major 
noninvasive tool for monitoring heart conditions. The human 
vision is not suitable to identify the minute changes in 
Electrocardiogram wave amplitude and time intervals; hence 
an automatic diagnostic tool is necessary for precise 
abnormality detection.  This paper presents a classification 
method to classify seven heartbeat conditions-normal and six 
classes of abnormalities. The algorithm implements a time 
domain approach to obtain the statistical features from the 
Electrocardiogram beats extracted from the arrhythmia 
database.  This objective of this work is to find the suitability of 
time domain features to arrhythmia classification with 
machine learning. The statistical features are extracted from 
raw ECG signal, the time derivative, time integral and 5-point 
first derivative stencil of the ECG data. The cardiac 
abnormality classification is implemented with Support Vector 
Machine. The attained classification   accuracy is upto 93% for 
chosen input feature pairs for binary Support Vector Machine. 

Keywords—Cardiac activity monitoring, time-domain 
analysis, feature extraction, support vector machine 

I. INTRODUCTION  
Cardiac activity monitoring is one of the major areas in 

physiological condition monitoring for the detection of heart 
disease sudden cardiac arrest (SCD), leading to the loss of 
human life.  Cardiac arrhythmias occur most often in people 
with an underlying cardiovascular disease like coronary 
artery disease, cardiomyopathy and hypertension. They occur 
most often due to improper electrical impulse formation or  
impulse conduction or in some cases, due to both [1-4]. The 
electrical activity changes during the course of a cardiac 
cycle is recorded by the electrocardiogram (ECG) signal and 
can be used to detect cardiac arrhythmias[2,5]. A significant 
part of the biomedical researchers are dedicated to develop 
signal processing techniques for ECG analysis to contribute 
towards early diagnosis [1, 2]. Various morphological                                                    
features of the normal ECG for a healthy adult with a heart 
rate of 60 beats per minute (bpm) is shown in Fig. 1[6-8]. 
Continuous monitoring of ECG generates a huge volume of 
data which poses difficulty in the manual analysis by 
cardiologists in a short time, hence the need of automatic 
classification of ECG beats.  

 
Fig. 1. Typical features of a normal ECG signal, with a cardiac  

  frequency  of  60 bpm 

Cardiac monitoring using an ECG signal can be carried 
out in time domain, in  frequency domain or in Time-
Frequency domain. Amongst the time domain analysis 
simplest to  implement, and the statistical features are 
computed. In frequency domain analysis, the characteristic 
defect frequencies are found out using Fast Fourier transform 
(FFT), Hilbert transform (HT). This frequency is indicative 
of different arrhythmia. Time-frequency analysis provides 
both time and frequency information of ECG signals and .   
can be implemented using Short Time Fourier Transform 
(STFT), wavelet transform (WT) and Wigner-Ville 
distribution [9, 10].  This work focuses only  on the time 
domain analysis of  ECG for arrhythmia classification .  

II. METHODOLOGY 

A. Acquisition of  ECG Data 
In this work, the physionet arrhythmia database from 

MIT/BIH is chosen to identify cardiac abnormalities. The 
database contains two channel ECG for a duration of 30 
minutes. In total, records of 47 patient across different age 
groups and both male and female are present.  Continuous 
ECG signals subjected to band pass-filtering at 0.1–100Hz 
and digitization at 360 Hz is incorporated. Each record   is 
verified by independent experts. In this work, modified limb 
lead II signal is considered in all records and labels are used 
to recognize beats in ECG data in support of visual 
monitoring [11, 12]. The study of normal ECG of a healthy 
individual is the primary need of this work [13].  

 

 

 

 

 

 

 

 

 

 

 
 

 

 

Fig. 2.  Block diagram of the proposed classification System 

ECG signal 

Feature Profile

Training Dataset Test Dataset 

Classification 

ECG Pre processing 

1st derivative 5 point Stencil 2nd derivative 

Compute ECG time domain features 

Analysis of features

978-1-7281-4142-8/$31.00 ©2020 IEEE

20
20

 I
nt

er
na

tio
na

l C
on

fe
re

nc
e 

on
 E

m
er

gi
ng

 T
re

nd
s 

in
 I

nf
or

m
at

io
n 

T
ec

hn
ol

og
y 

an
d 

E
ng

in
ee

ri
ng

 (
ic

-E
T

IT
E

) 
97

8-
1-

72
81

-4
14

2-
8/

20
/$

31
.0

0 
©

20
20

 I
E

E
E

 1
0.

11
09

/ic
-E

T
IT

E
47

90
3.

20
20

.I
C

E
T

IT
E

37
7

Authorized licensed use limited to: National Aerospace Laboratories. Downloaded on July 15,2021 at 05:29:10 UTC from IEEE Xplore.  Restrictions apply. 



2020 International Conference on Emerging Trends in Information Technology and Engineering (ic-ETITE) 
 

2 
 

Fig. 2 indicates the overall flow of the proposed work. In this 
work, both normal and abnormal ECG beats are considered 
in accordance with Association for the Advancement of 
Medical Instrumentation (AAMI) standard [14]. Table I 
shows seven classes of ECG beats with record number and 
time information. The ECG data pre- processing includes 
beat segmentation, removal of baseline wander, noise 
reduction and alignment of zero line [15]. Various steps in 
ECG pre- processing are as follows. 1. The error introduced 
during the acquisition of ECG signal is overcome by 
normalising the samples. 2. A 2nd order band stop filter is 
employed to eliminate power line interference. 3. The noise 
present in ECG is filtered using Band pass filtering.  4. The 
PQ segment is considered as reference zero line for inter 
wave interval calculation. Necessary DC shift is added to 
align the PQ segment with the zero time axis by subtracting 
the 10th level approximation signal from the processed   ECG   
beat  using  Daubechies  wavelet (db6) since it is similar to 
the normal single ECG beat [11, 16]. 5. The ECG beat is 
smoothened using 5 point moving average filter to remove 
the glitches present in the ECG beat. The ECG beat 
segmentation is done with the open source tool– cygwin. 
ECG beats are pre processed using MATLAB 2019A. The 
time domain features are computed from these beats. 

B. ECG Signal Preconditioning  
The ECG signal has peaks, valleys, and slopes which are the 
indicators of the abnormal functioning of the heart. 

Enhancement of  these features done by either 
differentiating or integrating the ECG signal, to obtain a 
better understanding of the abnormality. Differentiation 
enhances the QRS complex and differentiated ECG will 
have spectral components with amplitude increasing linearly 
with frequency. The time derivative of first-order (deriv1) 
indicates the slope of the ECG waveform and time 
derivative of second-order (deriv2) indicates the curvature 
of the ECG at various points.  Integration of  ECG yields the 
spectral components with amplitude decreasing 
proportionally with frequency.  In this work, raw ECG 
signal (the signal directly acquired by the sensor), deriv1- 
two point central difference, deriv2- three point central 
difference, time integral (inte) and differentiation using 5-
point stencil (5ptstencil) of the raw ECG signal are 
considered as per the equations (1) to (4).  
Time  Derivative  of  first  order  

            dx(n)=x(n)-x(n-1)    n=0,1,2…N-1                        (1) 

Time  Derivative  of  second  order 

            d2 x(n)=x(n+1)+x(n-1)-2x(n)    n=0,1…N-1          (2) 

Time integral 

           ix(n)=x(n)+x(n-1)    n=0,1,2…N-1                      (3) 

Five-point stencil 

The first derivative of the function f of a real variable at a 
point x is approximated using a five-point stencil 

����� � ���� 	 
�� 	 ���� 	 �� � ���� 	 �� 	 ��� � 
��

�  

                         (4) 
n is the sample number(index). x(n) is the ECG 
sample[10,17] and h is the  sampling interval(0.003sec).  
 The time domain features of ECG segment are 
defined in table II. Similar features are extracted from the 
each of the deriv1, deriv2, inte and 5ptstencil signal in 
accordance with the table II. Machine learning based cardiac 
abnormality identification involves in feature extraction 
from the  ECG beat. The features considered in this work for   
time-domain analysis are mean (CM1,μ), variance CM2, �2) 
Root Mean Square (RMS), Kurtosis (CM3, Kt), Skewness 
(CM4,Sn), normalized central moments (c5 to c8), energy in 
time domain (E-Ti), maximum power spectral density 
(PSDmax), Frequency at maximum power (frmxpr), Log 
Energy, Shannon Entropy  and Energy density. Mean is 
average of all samples. Variance is the square of standard 
deviation and is meaningful in differentiating arrhythmias. 
The power contained in the ECG signal is measure by root 
mean square (RMS).  Skewness indicates the relative energy 
above and below the mean level. Kurtosis indicates the 
impulsive nature of the ECG signal  and   effectively 
amplifies the isolated peaks in the ECG by negotiating 
between tactless lower moments and  extra- sensitive higher 
moments [10,17,18]. Kurtosis increases sharply at the early 
stages of abnormal beat to identify arrhythmias. Normalized 
central moments of higher order-c5 to c8 identify the 
abnormality more effectively. These features are given as 

TABLE I.   ARRHYTHMIA CLASSES 

ECG class Clas
s No 

Record Time ECG plot of 1025 
samples 

Normal Beat 
(NL) 1 115 0.939 to 

3.783sec 

Atrial 
premature  
beat(AP) 

2 223 435.514 to 
438.358sec 

Fusion  of  
ventricular  

and  Normal 
beat(fVN) 

3 223 309.886 to 
312.731sec 

Junctional 
Escape   

beat(NE) 
4 222 47.883 to 

550.728sec 

Nodal 
premature  
beat(NP) 

5 234 844.475 to 
847.319sec 

Right Bundle 
Branch Block 

Beat(RB) 
6 232 3.186 to 

6.031sec 

Fusion of 
paced and  

normal 
beat(fPN) 

7 217 161.731 to 
164.575sec 

V
V

V
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inputs to the automatic classifier inputs. Machine learning 
approaches such as support vector machine (SVM) and k-
nearest neighbours can be used for ECG beat classification 
[4, 19]. This work is limited to ECG feature extraction in 
time-domain.    

C.   ECG Feature selection and Classification 
 The objective of the feature selection is to improve 
the arrhythmia classification process.  It involves selecting 
the subset of input features to obtain the highest accuracy in 
classification. The features extracted from raw ECG and the 
variants of ECG are considered as SVM inputs. The binary 
SVM is a classifier model and   performs classification by           
constructing hyper planes in a multidimensional space that 
separates cases of different class labels [20, 21]. In this work 
the multiple class SVM (MSVM)  implemented with Radial 
Basis Function(RBF) kernel, one versus one encoding 
scheme, a 10 fold cross-validation and simplex optimization 
routine[22].  

III.  RESULTS AND DISCUSSIONS 
The feature extraction and classification in time domain are 
applied to the ECG beats to understand the cardiac 
abnormalities. ECG beats of different arrhythmia classes are 
obtained from the open-source MIT-BIH arrhythmia 
database. The Figs. 3A, 3B shows typical raw ECG, deriv1, 
deriv2, inte and 5pt stencil signals. The figures 4A, 4B, 5A, 
5B shows similar graphs of the abnormal AP, fVN 
respectively. Fourteen time domain features are obtained 
from each of these signals. The mean± standard deviation 

   
Fig. 3A., 3B. Normal beat and variants 

 
Fig. 4A., 4B.  Atrial premature beat and variants 

 
Fig. 5A., 5B. fVN beat,its  variants 

values of the typical deriv2 signal are given in the tables III. 
The plots of mean of ECG features of various classes are 
shown in figures 7A-10 to identify their suitability for 
classification. The non overlapping mean points give the 
indication that the different classes are classifiable for the 
values of typical features of  raw ECG, deriv1, deriv2, inte, 
5ptstencil signals are shown in figures 11-13. Since the ECG 
abnormalities are mainly due to the change in wave shape 
and inter wave time intervals on a micro-scale, features of 
different classes of arrhythmias are partially or completely 
overlapping. The non overlapping spreads of mean± 
standard deviation of the features is ideal to obtain the 
highest classification accuracy from the SVM classifier. The 
partial overlapping gives an accuracy which is less than 
ideal. The complete overlapping features are not suitable 
(NoSu) for classification. In general, the feature values of 
normal ECG beat are higher than those of arrhythmia 
classes. It is evident that all features are not suitable for 
classification. The table IV summarises the feature sets 
suitable for classification. The  features are not suitable for 
classification. The frequency at maximum power, CM4, 
CM8 of  raw ECG gives exact ideal  

   
Fig. 7A,7B Mean CM4,CM5  Fig. 8A,8B Mean CM7, CM8      

               
Fig.  9A, 9B Mean E-Ti, PSDmax     Fig. 10  Mean CM8 
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TABLE II. TIME DOMAIN FEATURES OF ECG 
Feature Time-domain Representation 

Mean μ � 
� � �������
���

 

Variance �� � � ����� � ��������� �  

Root Mean 
Square ��� � �� ����� � ��������� �  

Skewness �� � 
�� ����� � �������������  

Kurtosis � � 
�� ����� � ��!���������!  

c5 "� � 
�� ����� � ��#���������#  

c6 "$ � 
�� ����� � ��%���������%  

c7 "& � 
�� ����� � ��'���������'  

c8 "� � 
�� ����� � ��(���������( ) 
E-Ti *�+,-. � � ��������

���
 

PSDmax */012�3� � 
4�*506�3�7 � */06
8��
6��

�3�9 
Log Energy :;-* � :� <�=>?�@�A

�
@��

B 

Shannon 
Entropy 
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classification. PSDmax for deriv1 and CM3 for deriv2, 
5ptstencil and CM3- CM8 for 5ptstencil results in Further, 
the feature pairs are given to MSVM for accurate 
classification. The data is segregated randomly into training 
and testing categories and a ratio of 80% training data and 
20% testing data is chosen as the input of MSVM. The 
MSVM tuning time and accuracy of the SVM classifier are 
the performance metrics of classification. The tuning time of 
MSVM is varied between 15.9msec to 18.8msec and do not  
 

 
Fig. 11 Plots of  Frmax, CM6, CM3, CM4, CM8 of Raw ECG 

 
Fig. 12 Plots of  PSDmax of deriv1, inte; E-Ti of deriv2, inte 

 
Fig. 13 Plots of CM5-into, 5ptstencil; CM6-inte, 5ptstencil 
contribute much to the arrhythmia classification. The total 
summary of classification accuracy obtained for any two 
input features for raw ECG and its variants are indicated in 
the tables VA to VB. These tables indicate that the 

accuracies are  grouped into three categories - poor, 
moderate and good. Accuracy less than 80% indicates the 
poor, moderate and good. Accuracy less than 80% indicates  
the poor classification and the corresponding input 
featuresare not  suitable for classification. The accuracy 
between 80% and 90% is regarded as moderate 
classification and above 90% is considered as good.  Table 
VI indicates the complete summary of the classification 
accuracies input feature pairs for ECG and its variants.  
About eleven feature pairs of Raw ECG yields an accuracy 
greater than 90% with a maximum accuracy of 93.1% for 
CM5- Log energy combination. The deriv1 and 5pt stencil 
gives an accuracy of 93.33% for the input feature pairs 
CM7-CM8 and CM5-CM8 respectively. The results indicate 
that raw ECG, the  first derivative of ECG and  5point 
stencil of  ECG are suitable for classification as the 
derivative enhances the peak and valley points of the 
abnormality classes. The integral ECG signal   results in 
86.67 % accuracy.   
 The MSVM classification plots of selected input 
features for raw ECG and its variants are shown in Fig. 
14A-14F. The results can be further enhanced by choosing 
various training and testing input data ratios and through 
multiple iterations of the algorithm for a fixed training and 
testing input data ratio.   

IV. CONCLUSION 
 Monitoring cardiac activities through ECG is the 
most effective way to analyze the physiology of an 
individual.  This paper presents the time domain analysis 

TABLE IV. SUMMARY OF SUITABILITY OF  INPUT      FEATURE  PAIRS  FOR SVM 
Class 

D1 E_Ti PSD-max Fr-
Pmax 

Variance 
(CM2) 

Skewness 
(CM3) 

Kurtosis
(CM4) 

Normalized Central Moments 
C5 C6 C7 C8 

ECG-
Raw NoSu NoSu (H) NL_RB,NE, 

fVN,NP(M) NL_RB(M) (H) NL_RB, 
fVN(M) 

NL_APB. 
fVN, RB, 
fPN(M) 

NL_APB, 
fVN, RB, 
fPN(M) 

(H) 

Deriv1 NoSu 

NL-NE(H) 
NL-fPN(H) 

NL-
fVN,NP(M) 
NL-RB(M) 

(H) NL-RB(M) 
NL-NE(M) 

NL-
PB,RB(M), 
NL-fPN(M) 

NoSu 
NL-

fPN(M) 
 

NL-
fVN,NP(M) 

NL-
APB,RB(M) 
NL-fPN(M) 

NL-fVN, 
NP(M) 

Deriv2 NL-RB(M) NoSu (H) NL-RB(M) NL-fPN(H) 
NL-

APB,fPN(
M) 

NL-
fPN(M) NL-fPN(M) NL-fPN(M) NoSu 

Integra
l 

NL-fVN(M) 
NL-NE(M) 
NL-RB(M) 
NL-fPN(M) 

NL-RB, 
fVN(M) (H) 

NL-
NE,fVN(M) 
NL-NP(M) 
NL-RB(M) 
NL-fVN(L) 

NL-
RB,fPN(M) 

 

NL-
fVN,RB(

M) 
NL-

fPN(M) 

NL-
RB,fPN(

M) 

NL-
fVN,RB(M) 
NL-fPN(M) 

NL-
RB,fPN(M) NL-RB(M) 

 
5pt 

Stencil 
 

NL- 
APB,fVN,N
E,NP,fPN(

M) 

NoSu (H) NoSu 

NL-
APB,fVN,N
E,NP,fPN(H

) 
NL-RB(M) 

NP-
fPN(H) 

NP-
NE,NL,A

PB(M) 
 

fPN-
RB,NL,A
PB,fVN,N
E,NP(H) 

NP-fPN(H) 
NE-NP(H) 

NL-
NP,fPN(M) 

fPN- 
NL,APB,fV
N,NE,NP,R

B(H) 
NP-NE(M) 

fPN-
NP,fVN(H) 
NP-NE(H) 

fPN-
RB,NE,APB,N

L(M) 

TABLE VI: SUMMARY OF SVM OUTPUT ACCURACY 

      ECG 
Accuracy 

Raw 
ECG 

Deriv1 Deriv2 Integral 5pt 
stencil 

>90 11 5 - - 5 
80<A<90 48 18 11 10 19 

<80 32 68 80 81 67 
Max 

Accuracy 93.1 93.33 86.67 83.3 93.33 

Input 
feature pair 

CM5- 
Log 

energy 

CM7-
CM8 

Fr-mxpr-
CM3 

Log 
energy-
Shannon 
entropy 

CM5-
CM8 
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technique for the condition monitoring of the heart. Normal 
and six classes of arrhythmia are considered for 
classification. This work uses the open source arrhythmia 
database by MIT-BIH and incorporates the segmentation of 
ECG beats for arrhythmia classification. The derivative and 
integral of the raw ECG beats are considered to improve the 
morphology of ECG beats and similar statistical features are 
extracted from each signal.  
  As a result of feature extraction, an assessment of 
the suitability of time domain features for arrhythmia 
classification is considered.  The feature extraction stage 
follows the classification by a multiclass support vector 
machine to classify the arrhythmia classes with raw ECG 
beats and derivatives and integral of ECG beats.  Raw ECG, 
First order Derivative and 5pt stencil give up to 99.33% 
accuracy for   selected input feature pairs for MSVM. Better 
classification accuracy is achieved in derivatives of ECG 
than the integral form of the  ECG. Higher accuracy can be 
obtained with multiple iterations of MSVM and   using 
larger feature dataset serving as input data for classifier.  
Automatic detection and classification of cardiac physiology 
with signal processing techniques has become a major 
aspect of clinical monitoring.    

 
Fig. 14A  Raw ECG CM2-CM7         Fig. 14B Deriv1 CM5-CM8 
        Accuracy= 86.5%                      Accuracy=93.33% 

 
Fig. 14C Deriv2 CM3-Log Energy       Fig. 14D Integral CM4-Log  
     Accuracy=83.33%  energy Accuracy=70% 

  
Fig. 14E   5pt stencil CM3-CM8    Fig. 14F   Raw ECG CM6-CM8  
       Accuracy=86.6%  Accuracy=81.08% 

REFERENCES 
[1] Elias Ebrahimzadeh, Mohammad Pooyan, Ahmad Bijar, “Novel 

Approach to Predict Sudden Cardiac Death (SCD) Using Nonlinear 
and Time-Frequency Analyses from HRV Signals”, PLOS ONE 
February 2014 | Volume 9 | Issue 2 | e81896 pp1-14 

[2] Kumar Narayanan, Sumeet S. Chugh, “The 12-lead electrocardiogram 
and risk of sudden death: current utility and future prospects”, 
European Society of Cardiology, Europace(2015) 17, pp ii7-ii13 

[3] R. Rodriguez, A. Mexicano, J. Bila, S. Cervantes, R. Ponce, “Feature 
extraction of electrocardiogram signals by applying adaptive 
threshold and principal component analysis”, Journal of Applied 
Research and Technology 13(2015) 261-269 

[4] Roshan Joy Martis, U. Rajendra Acharya, K.M. Mandana, A.K. Ray, 
Chandan Chakraborthy, “Application of principal component analysis 
to ECG signals for automated diagnosis of cardiac health”, Expert 
Systems with Applications 39(2012), pp11792-11800. 

[5] Manab Kumar Das, Dipak Kumar Ghosh, Samit Ari, 
“Electrocardiogram Signal Classification using S-transform, Genetic 
Algorithm and Neural Network”, IEEE 1st International Conference 
on Condition Assessment Techniques in Electrical Systems,2013, pp 
353-357 

[6] Jose Antonio Gutierrez-Gnecchi, Rodrigo Morfin_Magana, Daniel 
Lorias, “DSP-based arrhythmia classification using wavelet transform 
and probabilistic neural network”, Biomedical Signal Processing and 
Control 32 (2017) 44-56. 

[7] https://emedicine.medscape.com/article/1894014-overview 
[8] Eduardo Jose da S. Luz, William Robson Schwartz, Guillermo 

Camara-Chavez, David Menotti, “ECG-based heartbeat classification 
for arrhythmia detection: A survey”, Computer Methods and Program 
in Biomedicine 127 pp144-164 (0169-2607/@2015 Elsevier Ireland 
Ltd) 

[9] Cristina STOLOJESCU, ECG Signals Classification using Statistical 
and Time-Frequency Features” Applied Medical Informatics, Vol. 30, 
No1/2011, pp 16-22. 

[10] Lakshmi Pratysusha P, Shanmukha  Priya V, VPS Naidu, “Bearing 
Health Condition Monitoring: Time Domain Analysis”, International 
Journal of Advanced Research in Electrical, Electronics and 
Instrumentation Engineering, Vol 3, Special Issue 5, December 2014 

[11] Inan O. T., Giovangrandi L., Kovacs G. T. “A Robust neural-
network-based classification of premature ventricular contractions 
using wavelet transform and timing interval features”,  IEEE 
Transactions on Biomedical Engineering. 2006;53(12):2507–
2515.doi: 10.1109/TBME. 2006.880879. [PubMed] [Cross Ref]  

[12] “The MIT-BIH arrhythmia Database”. 
http://www.physionet.org/physiobank/database/mitdb 

[13] Dallali, A. Kachouri, M. Samet, “Classification of Cardiac 
Arrhythmia Using WT, HRV, and Fuzzy C-Means Clustering”, Signal 
Processing: An International Journal (SPJI), Volume (5): Issue (3): 
2011 pp101-108 

[14] Eduardo Jose da S. Luz, William Robson Schwartz, Guillermo 
Camara-Chavez, David Menotti, “ECG-based heartbeat classification 
for arrhythmia detection: A survey”, Computer Methods and Program 
in Biomedicine 127 pp144-164 (0169-2607/@2015 Elsevier Ireland 

[15]  Ltd) Brikena Xhaja, Eglantina Kalluci, Ligor Nikolla, “Wavelet 
Transform Applied In Ecg Signal Processing”, European Scientific 
Journal April 2015 edition vol.11, No.12 ISSN: 1857 – 7881 (Print) e 
- ISSN 1857- 7431 pp305-311 

[16] Pawel Tadejko, ZESZYTY NAUKOWE POLITECHNIKI 
BIA�OSTOCKIEJ 2007, Informatyka – Zeszyt 2, pp 155-173 

[17] https://en.wikipedia.org/wiki/Five-point_stencil 
[18] Marta Borowska, “Entropy-Based Algorithms in Analysis of 

Biomedical signals”, Studies in Logic, Grammer and Rhetoric 43(56) 
2015 pp21-32 

[19] C. Cortes, V. Vapnik, “Support vector machines”,  Machine Learning, 
vol. 20, pp.. 273-297,1995 

[20] Shameer Faziludeen, Praveen Sankaran, “ECG Beat Classification 
using Evidential K-Nearest Neighbours”, Procedia Computer Science 
89 (2016) 499-505 

[21]       Z. Wang and X. Xue, “Support Vector Machines Applications”, 
DOI 10.1007/978-3-319-02300-7__2, © Springer International 
Publishing Switzerland 2014 

[22]  Sundari Tribhuvanam, H C Nagaraj, VPS Naidu, “ECG Abnormality 
classification with Single Beat Analysis” , International 2019 
International Conference on Vision Towards Emerging Trends in 
Communication and Networking (ViTECoN),IEEE,2019. 

 
 

 
 

1

1

2

2

2
2

3

3

4

1

1

1
1

1

1 2

2

2

3

2

3

3
4

4

6

Authorized licensed use limited to: National Aerospace Laboratories. Downloaded on July 15,2021 at 05:29:10 UTC from IEEE Xplore.  Restrictions apply. 



2020 International Conference on Emerging Trends in Information Technology and Engineering (ic-ETITE) 
 

6 
 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 

 

 

TABLE VA.     SUMMARY OF   CLASSIFICATION ACCURACY OF RAW ECG 
 

  E
_
Ti 

PSD max fr-
mxpr 

CM1 CM2 CM3 CM4 CM5 CM6 CM7 CM8 log-
energy 

Shannon 
Entropy 

Energy 
density 

E-Ti X 81.6 68.97 74.7 85.1 87.4 86.26 82.8 71.3 83.9 83.9 69 87.36 82.76 

PSD-max X 57.47 55.2 70.1 75.9 82.76 86.2 78.2 79.3 79.3 73.6 83.91 73.56 

 fPmax X 55.2 71.3 90.8 78.16 80.5 83.9 81.6 85.1 73.6 78.16 73.56 
   CM1 X 73.6 88.5 90.8 89.7 92 86.2 92 80.5 78.16 80.46 

    CM2 X 87.4 86.21 89.7 88.5 86.2 85.1 72.4 86.21 68.97 

  NA 14   CM3 X 86.24 90.8 86.2 87.4 83.9 88.5 86.21 88.51 

  Good 11   CM4 X 82.8 78.2 81.6 82.8 80.5 82.76 89.66 
  Moderate 48    CM5 X 85.1 82.8 89.7 93.1 78.16 87.36 
  Poor 32     CM6 X 78.2 75.9 88.5 78.16 77.01 

total 91     CM7 X 87.4 90.8 77.01 86.21 
      CM8 X 83.9 81.61 83.21 

     Log-energy X 75.86 72.41 
      Shanon Entropy X 88.51 
      Energy density  X 

TABLE VB.   SUMMARY OF   CLASSIFICATION ACCURACY OF  5 POINT STENCIL OF ECG 

  E_T
i 

PSD 
max 

fr-
mxpr 

CM1 CM2 CM3 CM4 CM5 CM6 CM7 CM8 log-
energy 

Shannon 
Entropy 

Energy 
density 

E-Ti X 63.33 76.67 43.3 50.0 80.0 73.3 90.0 63.3 86. 7 66. 7 63.33 63.33 53.33 
PSD-max X 63.33 63.3 46. 7 73.3 73.33 73.3 56. 7 76. 7 46. 7 60.0 73.33 73.33 

 fPmax X 56.6 73.3 73.3 63.33 70 60.0 63.3 70.0 80.0 73.3 70.0 
   CM1 X 66. 7 66. 7 83.33 50.0 76. 7 83.3 70.0 56.57 80.0 70.0 

    CM2 X 73.3 60.0 90.0 50.0 93.3 56. 7 56.67 63.33 53.33 
  NA 14   CM3 X 50.0 76. 7 80.0 86. 7 86. 7 80 76.67 73.33 
  Good 5   CM4 X 80 73.4 80 76. 7 66.67 70.0 66.67 
  Moderate 19    CM5 X 73. 3 83. 3 93. 3 76.67 83.33 80 
 Poor 67     CM6 X 76. 7 76. 7 80 83.33 76.67 

total 91     CM7 X 80 76.67 90 80 
      CM8 X 73.33 66.67 46.67 

     log-energy X 56.57 53.33 

      Shanon Entropy X 70 
  Energy density X 

TABLE  III .  MEAN±STDDEV OF FEATURES OF DERIV2 OF ECG 
 

Cl
ass 
D2 

E_Ti PSD-max Frequ
ency 

at 
Pmax 

Mean Variance Skewne
ss 

Kurtosis Normalized Central Moments Log-
Energy 

Shano
nEntr
opy 

energy 
density 

C1 C2 C3 C4 C5 C6 C7 C8 

N
L 

0.08 
± 

0.07 

9.52E-06 
± 

8.63E-06 

16.73 
± 

5.29 

1.64E-05 
± 

3.02E-05 

0.0003 
± 

0.00024 

-0.25 
± 

1.43

16.35 
± 

12.64

8.14 
± 

145.12

784.49 
± 

1455.14

2838.6 
± 

17369

60475.2 
± 

191639 

-3149 
± 

251.8 

0.514 
± 

0.43

0.0003 
± 

0.0002
A
PB 

0.054 
± 

0.027 

4.74E-06 
± 

2.85E-06 

15.05 
± 

4.3 

-2E-05 
± 

9.5E-05 

0.00018 
± 

9.23E-05 

-0.46 
± 

1.09

12.28 
± 

11.63

-4.48 
± 

140.48

536.78 
± 

1620

2014.5 
± 

19922

47483 
± 

237178 

-3168 
± 

201.4 

0.38 
± 

0.18

0.0002 
± 

9.23E-05
fV
N 

0.037 
± 

0.025 

4.6E-06 
± 

4.11E-06 

14.87 
± 

4.56 

2.41E-05 
± 

0.0001 

0.00012 
± 

8.66E-05 

-0.72 
± 

1.02

12.01 
± 

4.49

-32.78 
± 

42.97

333.2 
± 

227.8

-1403 
± 

1856

11849 
± 

11282 

-3314 
± 

166.83 

0.27 
± 

0.16

0.00012± 
8.66E-05 

N
E 

0.06 
± 

0.04 

6.48E-06 
± 

4.9E-06 

15.14 
± 

4.61 

1.98E-05 
± 

3.08E-05 

0.0002 
± 

0.0001 

-0.35 
± 

0.431

7.8 
± 

2.91

-14 
± 

18.36

163.63 
± 

120.75

-500 
± 

783

4780 
± 

4929 

-3083 
± 

186.9 

0.41 
± 

0.24

0.0002 
± 

0.0001
N
P 

0.035 
± 

0.014 

4.48E-06 
± 

2.37E-05 

17.48 
± 

1.73 

3.45E-05 
± 

0.0001 

0.0001 
± 

4.77E-05 

-0.21 
± 

0.75

8.94 
± 

2.7

-8.2 
± 

27.69

178.15 
± 

119.6

-320.05 
± 

1012.13

4800 
± 

5226 

-3302 
± 

138 

0.266 
± 

0.995

0.0002 
± 

4.77E-05
R
B 

0.115 
± 

0.097 

1.37E-05 
± 

1.27E-05 

14.81 
± 

4.058 

5.1E-07 
± 

4.6E-05 

0.0004 
± 

0.0003 

-0.27 
± 

0.92

10.46 
± 

4.24

-12.92 
± 

38.79

259 
± 

183

-554 
± 

1560

8283 
± 

8021.8 

-3008 
± 

294 

0.705 
± 

0.504

0.0004 
± 

0.0003
fP
N 

0.072 
± 

0.03 

7.83E-06 
± 

3.84E-06 

13.42 
± 

5.06 

3.09E-05 
± 

4.06E-05 

-0.0002 
± 

9.53E-05 

-2.16 
± 

0.88

27.94 
± 

11.0

-178.5 
± 

110.3

1744 
± 

1233

-14152 
± 

12628

132346 
± 

135663 

-3173 
± 

103.4 

0.44 
± 

0.13

0.0002 
± 

9.53E-05
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