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Abstract This paper proposes A Hybrid Wavelet-Auto-Regressive Integrated Moving
Average (W-ARIMA) model to explore the ability of the hybrid model over an ARIMA

model. It combines two methods, a Discrete Wavelet Transform (DWT) and ARIMA
model using the Standardized Precipitation Index (SPI) drought data for forecasting

drought modeling development. SPI data from January 1954 to December 2008 used was
divided into two - (80%/20% for training/testing respectively). The results were compared

with the conventional ARIMA model with Mean Square Error (MSE) and Mean Average
Error (MAE) as an error measure. The results of the proposed method achieved the best

forecasting performance.
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1 Introduction

To facilitate the comparison between ARIMA and Wavelet–ARIMA model, four SPI drought
data series are used for forecasting. Drought forecasting over the world is an issue which has
been carried out in different studies undertaken by different researchers by the application of
different models to achieve their perceived goals. Forecasting drought using SPI data is very
important in the management of water resources and planning for all creatures. Referring to
the work of [1], time series forecasting has commonly been used in a broad range of scientific
applications that includes meteorology and hydrology. Drought is described by [2] as one of
natural phenomenon involving climate which is the first natural disaster in the world over which
affects places and inflicting significant damages to both human beings and the environment in
which they live. Drought as a normal feature of climate that occurs due to rainfall that is below
average in a place that leads to the shortage of water, loss in economic activity and unexpected
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reduction in precipitation over time, which is one of the most harmful natural disasters that
affect human beings [3].

In the current and various studies, therefore, time series forecasting has commonly been
used. Time series forecasting as one of the important research areas in analyzing the
hydrological time series [4]. On the other hand, [5] found that time series forecasting is an
act of predicting the future by understanding the past. Time series forecasting has become an
important approach to drought forecasting whose application is widely used [6]. In the view
of [7], forecasting techniques which have been developed with the performance evaluation in
other to forecast future values of a time series are one of the areas in time series analysis. The
principal aim of time series forecasting is to forecast future events based on known past data
or an event.

SPI data series has a wide application for the description of drought in a different period.
It is a non-fact that little efforts have been utilized to analyze the role played by the SPI
used for the drought forecasting [8]. SPI is an expression that the actual rainfall can be
view as a standardized departure from rainfall probability distribution function and has gained
significance in recent time as a potential drought indicator which permits comparisons that cut
across space of time [9].

SPI data series is therefore expected to serve as a data input in the ARIMA model to
be assessed by using only precipitation SPI data which were applied for drought analysis.
ARIMA model is a Box Jenkins methodology named after the original authors, [10] which
seeks to transform any time series data to be stationary after which the data is then applied
for forecasting using the past univariate time series process for the future forecast with
some selection and diagnostic tools. ARIMA model is very popular due to its flexibility
in representing several varieties of time series with the associated Box-Jenkins methodology
[11,12,13].

Also, in a separate analysis, the ARIMA model was combined with a wavelet and thus,
the discrete wavelet transforms (DWT) was used because of its simplicity and shorter time for
computation purposes, which serves as an alternative in forecasting applications. The wavelet-
ARIMA model can achieve a better forecasting accuracy than the traditional ARIMA model
[14-17]. The existing forecasting ARIMA model was improved upon in the forecast of climate
time series by using the wavelet transform [18].

The wavelet transformation has the basic objective of being able to do the analysis of
the time series data involving time and frequency domain by decomposing the original time
series in different frequency bands, because wavelets are tools which are important in time
series forecasting with the use of wavelet functions. The wavelet transforms are mathematical
functions which can be used for the analysis of time series with non-stationarities. This wavelet
technique allows the use of long-time intervals for low-frequency information and short time
intervals for high-frequency information that can reveal aspects of data like trends. Another
merit of wavelet analysis is the flexibility of the choice of the mother wavelet in accordance
with the characteristics of the time series that is investigated. Wavelet transform also has the
advantage of allowing the study of various independent treatments on distinct time scales.
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2 Methodology

Both ARIMA model and Wavelet have been found to be very effective in the areas of drought
forecasting generally and has been so applied in many fields such as drought, flooding, river flow,
and streamflow by applying different data sets like the rainfall which has its own limitations of
being able to capture SPI data series. This study is motivated by the application of SPI data
to obtain the best ARIMA model and to combine it with the wavelet to get a hybrid model for
each of the SPI data series.

The main objective of this study is to combine wavelet with the ARIMA model for the
drought forecasting using the SPI data series and to compare the traditional ARIMA model
with the hybrid model (W-ARIMA model).

ARIMA which is a benchmark model based on the PACF and ACF of the time series was
combined with the wavelet to obtain the Wavelet-ARIMA model which improved the ARIMA
model which gave a better performance. To obtain this the SPI drought data was decomposed
into DL−1 (L is the number of levels) of components which were used as inputs to the ARIMA
model which made the errors obtained to be lower than that of the ARIMA model.

2.1 Standardized Precipitation Index (SPI)

As stated earlier, the data used here is the SPI data comprising SPI3, SPI6, SPI9, and SPI12
data series. SPI was developed in 1993 by [18] and his group and has been used in over 60
nations and applied as a drought indicator [19]. SPI was primarily developed and used as
a tool for defining and monitoring drought. It permits the analyst to gauge the intensity of
drought at a period. Being a tool for drought prediction, SPI is therefore, a tool for drought
monitoring by the world meteorological organization [20, 21], for operational instruments [22];
[23] used for drought climatology in Europe [24]. [25] used SPI for the study of temporal and
spatial variability of drought in Portugal. Equally, [26] determines the agreement among other
indicators using regional SPI for analysis of coherent drought patterns in Europe.

SPI is simple and uses only rainfall as input parameter: it is normalized and can be used to
compare the drought severity for areas that have different climates, it uses different time scales
and can be used in assessing different types of drought, it has a historical context, it is only
based on precipitation, it provides early warning of the drought and it is less complex.

However, its disadvantages are: it has no temperature and it is based on preliminary data
which can change. SPI is very important for the more effective assessment of drought, and
the World Meteorological Organization [27] recommended the adoption of SPI to monitor the
severity of drought events. In quantifying the deficit of precipitation, SPI has played a great
role [28] view computation of SPI at different time scales from 1 to 48 months or more which can
depend on the application in which short-term SPI can be used to detect agricultural drought
and long-term SPI can be used for water supply management.

SPI is an index obtained from a long record of precipitation in each location which takes
at least 30 years period. According to [29], SPI has been used to identify the meteorological
drought or precipitation deficit. The SPI value has a range from −2 to +2 [30]. This is further
explained in Table 1.
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Table 1: The Different SPI Indexes

Stage SPI Index

Normal (0.99) to (−0.99)

Drought Watch (−1.0) to (−1.49)

Drought Warning (−1.5) to (−1.99)

Drought Emergency (−2.0) to (<−2,0)

(Source: Mc Kee et al. [17])

2.2 Auto-Regressive Integrated Moving Average (ARIMA) Model

One of the most widely used time series models is the ARIMA model where its popularity is due
to its statistical properties as well as the Box-Jenkins methodology in the building process [31].
With the ARIMA model, complex patterns in the data can also be used to generate forecasts
[32]. In responding to the time series as a linear combination of its past values, the ARIMA
model could predict a value or values [33].

Based on the approach of Box and Jenkins, ARIMA models for the SPI time series were
developed in three steps: model identification, parameter estimation, and diagnostic checking.
The details on the development of ARIMA models for the SPI time series can be found in the
works of [34]. ARIMA time series, which is made stationary due to the differencing process,
is referred to as the ARIMA model. ARIMA model is made up of three parameters namely p
(order of autoregressive model), d (order of differencing) and q (order of moving average model).
ARIMA models are one of the most important forecasting models that have been successfully
applied in modeling and forecasting.

Non-seasonal ARIMA models are shown in equation (1).

X1
t = C + φ1X

1
t−1 + ...+ φpX

1
t−p + θ1et−1 + ...+ θqet−q + εt (1)

where X1
t “differenced series” (It may have been differenced more than one time).

The “predictors” on the RHS include both lagged values of Xt and lagged errors. This is
referred to as the ARIMA (p, d, q) model in which
p = order of the autoregressive part
d = degree of first differencing involved
q = order of moving average part
φ, θ are polynomials of order such as φp, θq.

The ARIMA model in equation (1) can be written as

(1 − ϕ1B − ϕ2B
2 − ...− ϕpB

p)(1 − B)dXt = (1 − θ1B − θ2B
2 − ...− θqB

q)et (2)

First-term referred to AR (p), second term referred to d = differencing, RHS part referred to
MA(q)shown in equation (2). Selecting the appropriate values for p, d, and q can be difficult,
hence, relevant software can be used.
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2.3 Seasonal ARIMA Models

ARIMA models can model a wide range of seasonal data and it is formed by including additional
seasonal terms in the ARIMA models like, ARIMA (p, d, q) (P,D,Q)s which implies (Non-
seasonal part of the model) (Seasonal part of the model) and s is the number of periods per
season. The seasonal part of the model is made up of terms that are very similar to the non-
seasonal components of the model, however, they involve backshifts of the seasonal period.
For instance, an ARIMA (1, 1, 1) (1, 1, 1)4 model without a constant term is for quarterly data
shown in equation (3).

(1 − ϕ1B)(1 − Φ1B
4)(1 − B)(1 −B4)Xt = (1 + θ1B)(1 + Θ1B

4)et. (3)

From the LHS, the first term is Non-seasonal AR(1); the second term represents Seasonal
AR(1); the third term represents Non-seasonal difference; the fourth term represents Seasonal
difference. Hence, from the RHS, the first term represents Non -seasonal MA(1); the second
term represents Seasonal MA(1). It should be noted that the additional seasonal terms are
simply multiplied by the non-seasonal terms.

Differencing is applied to time series data to make it stationary (which is a time series
property whereby it does not depend on the time at which the data is observed). In differencing
the data, the differences between consecutive observations are computed in equation (4).

Yt = (1 − B)dXt. (4)

Differencing the data eliminates the changes in the level of a time series data which eliminates
the trends, seasonality and consequently stabilizes the mean of the series. Sometimes, it may
be necessary to have a first or second differencing of the data to obtain a stationary time series.
The first order (d = 1) and the second order (d = 2) differencing of time series are given in
equation (5) and equation (6), respectively.

For d = 1
Yt = (1 − B)Xt = Xt −Xt−1. (5)

For d =2
Yt = (1 − B)2Xt = (1 − 2B − B2)Xt (6)

= Xt − 2Xt−1 +Xt−2

Another method of differencing the data is by utilizing seasonal differencing involving the
computation of the difference between an observation and the corresponding observation of the
previous year given in equation (7).

Yt = (1 − Bs)DXt, (7)

where s is the number of seasons and D is seasonal difference. For D = 1 and s = 4

Yt = (1 − B4)Xt = Xt −Xt−4.

The differenced data is then used for the estimation of an ARIMA model.
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2.4 Wavelet Analysis

A wavelet is a mathematical function which is used in digital signal processing and image
compression. Wavelet analysis is becoming a well-known tool because of its ability to show
information within the signal in both the time and scale (i.e. frequency) domains [35]. Wavelet
is a mathematical procedure that involves the transformation of the original signal (most
especially in the time domain) into a different domain in processing and in the analysis [36].

Wang and Ding [37], in his study of hybrid wavelet and adaptive neuro-fuzzy inference
system for drought forecasting stated that wavelet analysis is one of the most powerful
tools to study time series. In another study, [38], described wavelet analysis as a multi-
decomposition analysis that provides information for time and frequency domains and gives
useful decompositions of the original time series for the wavelet–transformed data in order to
improve the power of a forecasting model. A wavelet is a tool in time series forecasting whose
importance has been applied by many researchers. One of the basic objectives of wavelet
transforms is to analyze the time series data. Wavelet transform can be categorized into a
continuous wavelet transform (CWT) and discrete wavelet transform (DWT). The former is
not always used in forecasting because of its complex computational ability and the time needed
for it [39]. In place of it, DWT is widely used in applications of forecasting to simplify numeric
solutions. Therefore, it requires less time for computation which is simple to apply. DWT is
given by equation (8)

ψm, n (t) =
1√
sm
0

ψ

(

t− nτ0s
m
0

sm
0

)

(8)

ψ (t) is the mother wavelet, m and n are integers that control the scale and time respectively.
The most common selections for the parameters are s0 = 2 and τ0 = 1. Mallet’s theory
has the original discrete time series x (t) that can be decomposed into as0 series of linearity
independent approximation and detail signals by using the inverse DWT which is given by [40]
as equation (9),

x(t) = T +

M
∑

m=1

2M−m−1

∑

t=0

Wm,n2−(m/2)ψ
(

2−mt− n
)

, (9)

where Wm, n = 2−(m/2)
N−1
∑

m=1

ψ (2−mt− n)x (t) is the wavelet coefficient for the discrete wavelet

at scale s = 2m and τ = 2mn.
In the analysis, DWT is mostly preferred in the forecasting problems due to its simplicity

and ability to compute within a short period of time. Many researchers have undertaken studies
in the field of water resources and hydrology using wavelet transforms which are based on data
pre-processing. As a pre-processing tool, wavelet transforms provide a useful decomposition of
the original time series, so that the pre-processed data can improve the ability of a forecasting
model by capturing the information based on different resolution levels [41]. Wavelet transform
(WT) analysis has become an ideal tool for the study of a measured non-stationary times series
through the hydrological process. The DWT requires less time for computation and simple to
implement. DWT scales and positions are usually based on powers of two (dyadic scales and
positions). This is achieved by modifying the wavelet representation. [42] stated that the DWT
operates two sets of functions: high-pass and low-pass filters. DWT is the best-known tool for
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data analysis whose contribution to model hydrological resources can be seen in the last few
years [43].

The main aim of this study is to compare traditional drought forecasting (ARIMA model)
with a data pre-processed using wavelet transforms and the proposed drought forecasting model
which is based on the wavelet transforms and ARIMA, known as Wavelet-ARIMA (W-ARIMA)
model with SPI data series. The W-ARIMA model is obtained by the combination of two
methods of DWT and ARIMA models. In W-ARIMA, the original drought SPI data series
were decomposed into several sub time series components which serve as input to ARIMA
in other to improve the accuracy of the model. To obtain several decomposition levels, the
following formula by [44] is applied in equation (10).

L = int[log(N)] (10)

where L is the decomposition level and N is the number of the SPI data series. In this
formula, the original SPI drought data series is decomposed into ten level components (A, D1,
D2, . . . , DL

−1
) which stands for different frequency components of the original data. Each

of these components plays a unique role in the original SPI data and has different effects on
the original SPI drought. Instead of using D component separately, as an input model, the
researchers employ added suitable D component which is more useful and capable of increasing
the forecast performances of the hybrid models.

Figure 1: Framework of W-ARIMA Model

The structure in Figure 1 explains the development of W-ARIMA model in which each
wavelet is used to forecast the ARIMA model. This begins with the input of the SPI data
series to DWT by summing all the values for A, D1, D2, . . . , DL−1 in each of the data series
to obtain SPIs for Wavelet-ARIMA model, which is then being input to the original data to
obtain the MSE and MAE for both training and testing phases of the analysis.

2.5 Forecast Evaluation Methods

The criteria in judging the best model are how relatively small the models are in both the
training and testing of the data series. This is needed in order to be able to quantify the
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amount by which the estimator differs from the true (original) value. That is the reason why
the measures with the smallest values are usually selected as the best model.

Evaluation of the performance of each model was based on the Mean Square Error (MSE)
and Mean Absolute Error (MAE) for both training and testing which is used for this study. All
these performance evaluations are widely used in obtaining the results of time series forecasting
[44]. These forecast evaluation methods are shown in equations (11) and (12) respectively.

MSE =
1

n

m
∑

i=1

(Xt − X̂t)
2 (11)

MAE =
1

n

m
∑

i=1

∣

∣

∣
Xt − X̂t

∣

∣

∣
(12)

where X̂t is the predicted value, Xt is the actual value at time t and n is the number of
predictions.

3 Results and Discussions

3.1 Used Data

This study uses rainfall precipitation data from 15 stations in Peninsular Malaysia obtained
from the Malaysia Department of Irrigation and Drainage and this corresponds to standardized
precipitation index (SPIs) i.e. SPI3, SPI6, SPI9, and SPI12. The time series of each of the SPI
values were computed. The reason for considering the total precipitation for running periods
of 3, 6, 9 and 12 months is due to the classification of drought to be a short-term for SPI3,
medium-term for SPI6 and SPI9 and long-term for SPI12. To develop the model, the data set
which is made up of 624 months was obtained from January 1954 to December 2008. The SPI
data was divided into two parts, which made up of training 80% (1954-1998) and testing 20%
(1998-2008) for analysis.

3.2 The ARIMA Model

The selection of parameters for the ARIMA models is based on the PACF and ACF of the time
series. as soon as significant lags were obtained from PACF and ACF, ARIMA models with
different combinations were then developed and the model with the lowest MSE and MAE as
contained in Tables 1 and 2 were selected. Figure 2 and Figure 3 show the PACF and ACF
plots.

Table 2 is made up of all the detail ARIMA model results using forecasting accuracy of MSE
and MAE as the performance evaluation criterion which explains the detail results involving
all the SPI data series. The results illustrated that SPI3 is a non-seasonal data while the rest
three are seasonal data. Table 2 also illustrates the detailed result of each SPI data series.

Table 3 indicates the summary of selected best ARIMA model results extracted from Table 2,
which are compared with the results of the W-ARIMA model in Table 4.

Figure 2 indicates all the 624 data sets for each of the SPI data used for the study.
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Table 2: ARIMA Forecasting Accuracy Results for All the SPI Data

Training Testing

Data Model MSE MAE MSE MAE

SPI3 ARIMA (4, 0, 2) 0.432542193 0.5162857 0.316868681 0.4443989

SPI6 SARIMA (3, 0, 5) (2, 1, 2)6
SARIMA (3, 0, 5) (1, 1, 2)6
SARIMA (3, 0, 5) (1, 1, 0)6
SARIMA (3, 0, 5) (1, 1, 3)6

0.089463502
0.089491799
0.144074068
0.087018215

0.2340574
0.2341256
0.2956569
0.2302998

0.438179921
0.427208647
0.25434774
0.472565367

0.4989562
0.4917703
0.3643462
0.5199601

SPI9 SARIMA (2, 0, 4) (2, 1, 2)9
SARIMA (2, 0, 4) (1, 1, 2)9
SARIMA (2, 0, 4) (1, 1, 1)9
SARIMA (2, 0, 4) (2, 1, 3)9

0.137031456
0.137512738
0.137562804
0.1366151

0.2881627
0.2896313
0.2898799
0.2880344

0.152586094
0.154443812
0.153798642
0.151674496

0.2958195
0.2974688
0.2972146
0.2955406

SPI12 SARIMA (2, 0, 5) (2, 1,1)12
SARIMA (2, 0, 5) (1, 1, 1)12
SARIMA (2, 0, 5) (1, 1, 0)12
SARIMA (2, 0, 5) (2, 0, 0)12

0.093724883
0.103938665
0.208200747
0.103499769

0.2367253
0.2498215
0.3515895
0.2518865

0.085844453
0.094129615
0.185092862
0.096818928

0.2095234
0.2189612
0.3171596
0.2384239
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Table 3: The Summary of the Selected Best ARIMA Models

TRAINING TESTING

Data MSE MAE MSE MAE

SPI3 0.4325422 0.5162857 0.3168685 0.4443989

SPI6 0.0866057 0.2302998 0.2543477 0.3643462

SPI9 0.1366151 0.2880344 0.1516745 0.2955406

SPI12 0.1034997 0.2518865 0.0858444 0.2095234

Figure 2: Time Series Plots of the SPI Datasets

1. Model identification: - this involves the selection of a model parameter (p, d, q) from the
PACF and ACF plots.

Figure 3 indicates all the plots of PACF and ACF where models are identified for
seasonality and SPI3 exhibits non-seasonality, other SPI data like SPI6, SPI9 and SPI12
are seasonal, hence, seasonal ARIMA model was carried out in the analysis. The orders of
p, d, q is required to determine the best model based on PACF and ACF observed values
and after careful observation of the plots of graphs. SPI3 which exhibits non-seasonal
from the plot shows a possible ARIMA (p, d, q) model with p = 4 and q = 2, the finally
selected model after evaluation, was ARIMA (4, 0, 2) which was chosen. The residual
ACF and PACF which has the best model are shown in Figure 3. the ACF and PACF
both lie within confidence limits.

2. Model diagnostic Checking: - the third step is to carry out diagnostic checking which
involves the standardized, ACF and LJ Box test residuals. Since the models have been
fitted to the data, many diagnostic checks were carried out and if the models fit well,
the residuals are expected to be uncorrelated with constant variance. However, in the
development of model, it is usually assumed that the errors are normally distributed and
for this reason, the residuals are expected to be normally distributed.
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Figure 3: The PACF and ACF plots of the SPI Datasets

Standard checking of goodness-of-fit for ARIMA models is computed based on the PACF
and ACF of the residuals as shown in Figure 4 and Figure 5. Since the residuals are normally
distributed, they lie on a straight upward sloping line. In evaluating the proposed model, the
ARIMA involving time series was used to model SPI3, PI6, SPI9 and SPI12 time series.

3.3 Wavelet-ARIMA (W-ARIMA) Model Results

The hybrid of wavelet and ARIMA model is obtained by the combination of two methods:
discrete wavelet transforms (DWT) and ARIMA model. In the W-ARIMA, the original SPI
data series were decomposed into several data series components which were input to ARIMA to
improve the accuracy of the model. For this, the original SPI drought data series is decomposed
into ten level components (A, D1, D2, D3, D4, D5, D6, D7, D8, DL−1)which stands for different
frequency components of the original data up to DL−1. Where L is the number of levels which
is 9

The forecasting ability of the ARIMA model was improved upon by the application of
Wavelet analysis with respect to all the SPI as shown in Table 4. It also improved the forecasting
performance measures.
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Figure 4: The Plots of Standardized, ACF and P-values of Residuals for all SPIs

Table 4 indicates the measures of goodness of fit which were used to evaluate the forecast
performance of all the models.

The implication of these results of the Wavelet-ARIMA model showed that the SPI drought
data fits the model has improved the result of the ARIMA model.

4 Conclusion

In this study, wavelet transforms and ARIMA model were combined to develop a hybrid
model for forecasting the SPI drought data. Firstly, the ARIMA model was used to model
the SPI data series without prepossessing the data. Secondly, the proposed hybrid model
was obtained by combining ARIMA with wavelet transforms and was used to capture the
multi-scale features of the SPI data series used to decompose the data. In the study too,
the new SPI data series obtained with the addition of effective wavelet components which
was employed as an output to the ARIMA model used to forecast the SPI drought. The
performance evaluation of the proposed W-ARIMA model which was based on MSE and MAE
was then compared with the ARIMA model, which indicated a great improvement in SPI
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Table 4: The Results of W-ARIMA Models for All the SPI Data

TRAINING TESTING

MSE MAE MSE MAE

SPI3 0.212966 0.347828 0.451984 0.532811

SPI6 0.142051 0.293843 0.103373 0.258408

SPI9 0.060979 0.181762 0.043217 0.160485

SPI12 0.052434 0.169528 0.042803 0.148414

Figure 5: The DWT plots for the SPI12 Time Series at Different Decomposition Levels (A, D1,
D2, . . .DL−1)

drought modeling and produced a better forecast result than the individual ARIMA model.
The researchers then concluded that the forecasting capability of W-ARIMA was found to be
improved upon when the wavelet transformation technique was used for data preprocessing.
The decomposed periodic components obtained from the DWT technique were found to be very
effective in getting accurate forecasts when it was employed as inputs in the ARIMA model.
The result for the forecasts is an indication that the W-ARIMA model provides an alternative
forecasting model to other models and serves as a potential hope as a new method to be used
in SPI drought forecasting.
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