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Abstract 16 

In this review, we synthesize the current knowledge on mercury (Hg) content and sources in foliage and 17 

vegetated ecosystems and the importance of vegetation to global Hg cycling. By means of a global database 18 

of over 35,000 samples across 416 sites, we discuss global Hg concentrations in all major tissues, and 19 

mechanisms of vegetation Hg uptake. Hg in aboveground vegetation largely originates from uptake of 20 

atmospheric gaseous elemental Hg (Hg(0)), whereas Hg in roots originates from a combination of uptake 21 

from soil and foliage-to-root transport. Vegetation Hg uptake from the atmosphere and transfer to soils is 22 

the major Hg source in all biomes. Using model sensitivity analyses with and without global vegetation 23 

present, we show that vegetation Hg uptake modulates atmospheric Hg(0) seasonality in the northern 24 

hemisphere and interhemispheric gradient. We estimate that vegetation uptake the global Hg pool in the 25 

atmosphere by approximately 660 Mg and reduces the Hg deposition to global oceans, which in the absence 26 

of vegetation might receive an additional 960 Mg yr-1. We discuss future research needs to better constrain 27 

vegetation uptake mechanisms and their controlling physiological and environmental variables, improve 28 

model processes and address effects of climate and land use changes. 29 

 30 
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Key points  31 

 32 

⚫ Studies suggest that 60% to 90% of Hg in forest ecosystems originates from vegetation uptake of 33 

atmospheric gaseous elemental Hg(0), providing 1,310 to 1,570 Mg yr-1 of terrestrial Hg deposition. 34 

⚫ Lichen and mosses show higher Hg concentrations than vascular plants. Hg in aboveground biomass is 35 

largely from atmospheric uptake while root Hg is from combined soil and atmospheric uptake. 36 

⚫ Vegetation uptake of atmospheric Hg(0) lowers the global atmospheric Hg burden by 660 Mg and 37 

reduces deposition to global oceans, which without vegetation would receive an additional Hg 38 

deposition of 960 Mg yr-1. 39 

⚫ The seasonality of atmospheric Hg(0) concentrations in the Northern Hemisphere is controlled by 40 

vegetation uptake. Simulations without vegetation show weak seasonal cycles and cannot reproduce 41 

observations. 42 

⚫ Large knowledge gaps exist in understanding physiological and environmental controls of vegetation 43 

Hg uptake and transport within plants, limiting our mechanistic and molecular-level understanding of 44 

vegetation Hg uptake.  45 

⚫ Improved model parametrizations and harmonized observational data of vegetation Hg uptake along 46 

with whole-ecosystem Hg(0) exchange measurements are needed to improve the assessment of 47 

vegetation impacts on global Hg cycling.  48 

  49 
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1. Introduction 50 

The Minamata Convention on Mercury to curb anthropogenic mercury (Hg) emissions was signed in 51 

2013 and aims to reduce Hg risks to humans and the environment worldwide 1. Hg is a globally abundant 52 

pollutant found in all major Earth’s environmental reservoirs (air, soils, waters), with the atmosphere 53 

serving as an efficient distribution vector 2. A recent 2018 Global Mercury Assessment 3 estimated global 54 

anthropogenic Hg emissions to the atmosphere of approximately 2,220 Mg (2000–3000) Mg) in 2015. 55 

Emissions from biomass burning estimated at approximately 220–612 Mg yr-1 4-6 and terrestrial geogenic 56 

(e.g., volcanic emissions and soil degassing) 6 and legacy emissions from soils and vegetation are 57 

approximately 950–1594 Mg yr-1 4,6-8. Legacy emissions are re-volatilization of past atmospheric deposition 58 

from anthropogenic and geogenic sources stored in surface reservoirs (e.g., soils and water), and are now 59 

considered to dominate global Hg emissions to the atmosphere, mostly emitted over oceans (2681–3400 60 

Mg yr-1) 4,6-9 The atmosphere being the major global distribution pathway for Hg, contains three 61 

operationally defined forms: gaseous elemental Hg (Hg(0), > 95% of total Hg); and two oxidized Hg forms 62 

(Hg(II)): reactive gaseous Hg (RGM); and particulate-bound Hg (PBM). Hg emitted to the atmosphere is 63 

transported around the globe where it ultimately deposits and represents the main source to remote aquatic 64 

and terrestrial ecosystems 2,10,11. In these ecosystems, Hg can be methylated and biomagnified through food 65 

webs posing direct risks to human and ecosystem health 10,11.   66 

Over two decades of research has shown that the dominant source of Hg in ecosystems is related to 67 

vegetation assimilation of atmopsheric Hg and subsequent transfer to soils and watersheds when vegetation 68 

tissues are washed off (termed “throughfall”); vegetation shed leaves (termed “litterfall”) 12,13; or when 69 

vegetation senesces (i.e., turnover of biomass). Plant roots take up additional Hg from soils which impacts 70 

soil Hg availability and stabilizes Hg below ground (termed “phytostabilization”) 14 15,16. Recognition of 71 

the critical importance of vegetation for terrestrial Hg cycling goes back to the 1990s when studies showed 72 

litterfall and throughfall Hg deposition in forests to exceed direct open-field wet deposition (i.e., by rain 73 

and snow) several-fold 12,13,17-19. Vegetation ultimately plays a critical role in the cycling of Hg in all major 74 

Earth System compartments: field deposition studies show that plant-derived deposition dominates as a 75 

source in ecoystems with high plant net primary productivity 20; atmospheric observations show that 76 

vegetation uptake of atmospheric Hg(0) modulates both its seasonality and its concentrations in the 77 

boundary layer 21,22; soil and sediment studies show that vegetation shapes Hg loads across landscapes, with 78 

densely vegetated ecosystems and productive watersheds exhibiting highest Hg loads 23-28; and Hg 79 

assimilated by vegetation is subsequently exported from watersheds via streams 29-31 32,33 where it can 80 

dominate as a source of Hg in rivers and ocean sediments 34,35 and is found to bioaccumulate in fish 36-38. 81 

Here, we review the current knowledge of Hg uptake by vegetation and its impact on global Hg cycling. 82 

We compile published Hg concentration data in vegetation tissue from 440 sites in a global database and 83 
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analyze Hg distribution patterns across ecosystem types, plant functional groups and plant tissues. We 84 

discuss pathways of Hg uptake, translocation within vegetetation and the state of knowledge on Hg stable 85 

isotopes and foliage-atmosphere exchange of Hg and its representation in global models. Finally, we assess 86 

the importance of Hg uptake by vegetation on Hg cycling using the global Hg model GEM-MACH-Hg 39-
87 

42 by conducting simulation sensitivity analyses with and without the presence of vegetation. 88 

 89 

2. Global database and Hg in vegetation 90 

We built a comprehensive database collecting peer-reviewed published data on Hg concentrations 91 

measured in vegetation tissues globally. Data stretch from 1976 to 2020 and include 440 different sites, 92 

derive from 230 scientific studies and consist of 2,490 reported data representing over 35,000 individual 93 

plant tissue measurements (Supplemental information). Hg concentrations are separated into different tissue 94 

groups (such as leaves, needles, roots, woody tissues including bole wood, bark, and branches), plant 95 

functional types (including lichens, mosses, and vascular plants such as grassland plants, shrubs and trees), 96 

species, and geographic areas. Currently available vegetation data are unevenly distributed across the world 97 

(e.g., Figure 1a for foliage and litterfall samples) with most data originating from Europe (46.6%), followed 98 

by North America (23.0%), Asia (17.2%) and South America (13.1%). Data are largely lacking from Africa, 99 

southern and northern Asia, Australia, Eastern Europe and many Polar Regions. Similar patterns of data 100 

coverage are also observed in other tissues (Figure S1). Most vegetation data stem from deciduous trees 101 

(77.9%) and coniferous trees (9.1%), while other vegetation types show much lower sample numbers, 102 

including evergreen broadleaved trees (4.8%), grasslands (4.3%), and wetlands (3.9%) (Figure 1b). Foliar 103 

data, which include leaves, needles, and litterfall (i.e., recently senesced and fallen foliage) represent about 104 

78% of all available data (Figure 1c). Much fewer data are available from woody tissues, branches, bark 105 

and grassland plants which combined account for less than 9.8% of the data (Figure 1c).  106 

Spatially, foliage and litterfall Hg concentrations were highest in South America, followed by Europe 107 

and Asia, and lowest in North America, with similar spatial patterns observed for other tissues (Figure 1a, 108 

S2b and S2c). However, because of large differences in investigated forest types, non-random sampling 109 

procedures and some studies including regional (natural or anthropogenic) Hg contamination hotspots (Box 110 

1), we consider spatial comparisons likely to be biased and refrain from using this global database for 111 

detailed analyses of global spatial distribution patterns. Across unpolluted areas, median Hg concentrations 112 

derived from our database across functional groups and vegetation tissues significantly varied in the 113 

following order (Figure 1c, median and interquartile ranges [IQR]): lichen (78 μg kg-1, [10–180 μg kg-1]) > 114 

moss (51 μg kg-1 [2–165 μg kg-1]) > litterfall (43 μg kg-1 [4–83 μg kg-1]) > foliage (20 μg kg-1 [2–62μg kg-
115 

1]) > bark (11 μg kg-1 [1–36 μg kg-1]) > branch (12 μg kg-1 [0.2–37 μg kg-1]) > root (7 μg kg-1 [2–70 μg kg-
116 
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1] > grass (5 μg kg-1 [1–31 μg kg-1]) > wood (2 μg kg-1 [0.1–6.8 μg kg-1]). A similar order of Hg 117 

concentrations was observed for vegetation grown in polluted areas (Figure S2a and Box 1). Below, we 118 

discuss detailed pathways and mechanism of Hg uptake and transport behavior within vegetation that 119 

explain these observed concentration patterns. 120 

 121 

2.1. Mercury in vascular plants and mechanism of Hg uptake 122 

Pathways of Hg uptake in vascular plants include stomatal and cuticular uptake in foliage 43-45 (Figure 123 

2), surface adsorption of atmospheric Hg to foliage46 and bark 43,47, and soil uptake of Hg through roots. 124 

45,48-51. 125 

There is strong evidence that in aboveground tissues most Hg originates from assimilation of 126 

atmospheric uptake (Figure 2) 52. Many lines of evidence, including from flux measurements and stable Hg 127 

isotope analyses (Section 4), show that approximately 90% of Hg in leaves and needles is derived from 128 

atmospheric uptake of gaseous Hg(0) and that translocation of Hg from soils to aboveground tissues is 129 

limited 53-64. One study estimated that 11% of Hg in a canopy originated from soils via xylem transport 65, 130 

and another study showed less than 5% of soil solution root Hg uptake was translocated to shoots 45,59,66. 131 

Most leaf Hg (90−96%) is integrated into internal tissues 51 and a minor part adsorbed to outer leaf surfaces 132 

64. Inside leaves, Hg is shown to be incorporated in epidermal and stomatal cell walls as well in parenchyma 133 

cell nuclei 67. This Hg integrated inside leaves consists of divalent Hg(II), so there must be an oxidation 134 

step after leaf uptake of Hg(0), although it is currently unknown where and when the oxidation step occurs. 135 

Studies propose both stomatal and non-stomatal uptake pathways in leaves, although several studies point 136 

towards a dominance of stomatal uptake 51,52,56,64,68. Evidence of stomatal uptake of gaseous Hg(0) is based 137 

on isotopically labeled Hg(0) exposures 64,67,69, natural abundant Hg stable isotopes 60,61, sequential leaf 138 

extractions 51,70 and foliage-atmosphere exchange studies 46,71. Yet, observed Hg(0) uptake at night also 139 

suggests presence of non-stomatal, cuticular Hg(0) uptake 72-74. Hg(0) uptake is likely controlled by 140 

enzymatic processes (such as catalase activity), which also has been linked to Hg oxidation in leaves 70. A 141 

recent study identified sulfur nanoparticulate (β-HgS) and dithiolate complexes (Hg(SR)2) in leaves 142 

exposed to high atmospheric Hg concentrations 75. Consistent with this, Hg-binding thiol ligands, 143 

interpreted as cysteine residues, were identified in ex situ experiments with added Hg 76,77. 144 

It is well known, and supported by our database analysis (Figure 1c), that Hg concentrations in vascular 145 

plants are highest in leaves and needles. Because Hg is taken up from the atmosphere, Hg concentrations 146 

in leaves and needles are highly sensitive to variations in atmospheric Hg concentrations. Growth chamber 147 

and laboratory studies have shown that atmospheric Hg(0) exposures linearly and positively correlate with 148 

Hg concentrations in shoots, leaves and needles 14,52,54-56,78,79. Field observations also show significant 149 

positive correlations between Hg(0) concentrations in the atmosphere and foliage 75,80. Using our global 150 
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database, we observed a significant positive linear correlation between leaf and needle Hg concentrations 151 

and atmospheric Hg concentrations across unpolluted sites (n = 34, r2 = 0.32, p < 0.01), a correlation that 152 

became even stronger (n = 77, r2 = 0.66, p < 0.01) when polluted sites were included. 153 

Many other factors have also been associated with variability in Hg accumulation in foliage, including 154 

underlying geology 81, solar radiation (in particular UV) 82, temperature 83, atmospheric turbulence 84, leaf 155 

age 60,85, specific leaf area (SLA) 51,56, number of stomata 51 and leaf physiological parameters such as 156 

stomatal conductance 46,71, rate of net photosynthesis 86, waxy cuticles 87, catalase activity 88 and ascorbic 157 

acid 89. Many of these processes may be linked to stomatal control of Hg uptake (such as stomatal 158 

conductance, number of stomata, catalase activity) while others may be linked to non-stomatal uptake 159 

pathways (such as waxy cuticles and specific leaf area). Hg concentrations in foliage have been consistently 160 

shown to increase with leaf age, both over a growing season 51,90 and over multiple years in coniferous 161 

needles 91-93. Many studies report higher concentrations in evergreen coniferous tissues than in broadleaf 162 

trees due to their multi-year lifetime 50,94,95. When comparing foliage of the same age, however, coniferous 163 

needles have been shown to exhibit lower Hg concentrations than broadleaf or deciduous trees, which is 164 

attributed to a lower metabolic activity of needles 90 and consistent with reduced deposition in needles using 165 

dynamic flux bag measurements 56,58,60,83,85,96. Although in our database we cannot account for leaf age, we 166 

indeed find significantly higher Hg concentrations in deciduous leaves compared to coniferous needles. 167 

The outermost bark, characterized by a high porosity and relative chemical inertness, lacks metabolic 168 

processes and hence likely absorbs airborne Hg via non-physiological adsorption processes 43,47. Across the 169 

bark, Hg concentrations markedly decrease from outermost to the innermost layers (including the phloem) 170 

97 indicating little transport through the bark. Molecular mechanisms involved in Hg transport within plant 171 

are unknown. Potential pathways for Hg in bole wood include root uptake and translocation through the 172 

xylem, foliage uptake and translocation by phloem transport, and transfer from the bark (Figure 2). 173 

However, Hg uptake to bole wood, which is the tissue showing by far lowest Hg concentrations (Figure 1c 174 

and S2a), is considered dominated by translocation of foliage Hg to tree rings through phloem transport, 175 

while transport seems negligible through translocation from roots and bark 43-45. Recently, a number of 176 

studies have tested the use of tree ring Hg to track historic, local, regional, and global Hg exposures with 177 

promising results 43,44,97-104,105. 178 

Below ground, it is known that plant roots and plant-produced excretions (chelators) can induce pH 179 

variations and redox reactions in soils, which subsequently can lead to cation exchange of divalent Hg and 180 

solubilization of Hg from nearly insoluble soil Hg precipitates 106,107. As a nonessential element, Hg likely 181 

penetrates into root cells as a hitchhiker using transporters for other elements 108,109. Absorbed Hg is largely 182 

restricted to the cell walls of the outer layers of the root cortical cylinder and to the central cylinder and 183 

parenchyma cell nuclei 67. The movement of Hg from the root inwards into the xylem can be diminished 184 
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by Hg accumulation in root cells and transport of Hg-phytochelatin complexes into vacuoles can restrict 185 

phloem mobility 109,110. Low Hg translocation from soils to aboveground tissues (see below) has been 186 

attributed to effective Hg retention in roots 111. However, no specific transport molecules involved in Hg 187 

uptake by roots and translocation in roots are known. Root Hg concentrations have been shown to linearly 188 

correlate with soil Hg concentrations 14,78,112 and show low sensitivity to air Hg concentrations 14, leading 189 

to the notion that Hg in roots is derived primarily from soil uptake. However, exceptions to this notion have 190 

been reported in quaking aspen 79 and wheat14,56 under high atmospheric Hg exposures. Recent stable Hg 191 

isotope studies have shown contrasting results on Hg origins in roots. While one study on rice plants grown 192 

in contaminated soils showed root Hg with the same isotopic signature as the surrounding soil 113, a recent 193 

forest study suggested substantial foliage-to-root Hg transport whereby atmospheric Hg(0) uptake via 194 

foliage accounted for 44−83% of Hg in tree roots 114. In the latter study, large roots showed higher 195 

proportions of atmospheric Hg(0) and lower soil Hg uptake compared to small roots 114, possibly related to 196 

lower surface areas and reduced absorptive potential of large roots 111,115. The notion that root Hg may 197 

derive in part or wholly from atmospheric uptake merits further detailed investigations as it would 198 

substantially increase estimates of plant Hg uptake from the atmosphere due to high turnover rates of roots, 199 

which may equal that of leaf litterfall 111. 200 

 201 

2.2. Mercury in non-vascular vegetation 202 

 Lichens and mosses generally show much higher Hg concentrations compared to vascular plants (Figure 203 

1c and S2a). Lichens and mosses are cryptogamic organisms without root systems and without thick waxy 204 

cuticles, have high specific surface areas and slow growth, and are dependent on atmospheric deposition 205 

for water and nutrient supply. Generally, lichens show higher Hg concentrations than mosses in our dataset 206 

(Figure S2c). Reason for these patterns include that mosses and lichens have different morpho-207 

physiological properties and interception capabilities for airborne particles 116, and that lichens often 208 

accumulate higher contents of atmosphile elements (derived from atmospheric sources), while mosses have 209 

shown higher contents of lithophile elements such as dust 117-119. A lack of thick waxy cuticles in lichens 210 

and mosses allows cations to diffuse readily through cell walls 120. Metals accumulate in mosses and lichens 211 

through intracellular and extracellular processes. In the extracellular process, metals are intercepted and 212 

ad/absorbed by exchange sites outside of cell walls and plasma membrane surface. In the intracellular 213 

process, Hg is subsequently trapped as particles on the cell surface layer or translocated inside the cell 121-
214 

124. In addition to surface deposition of RGM and PBM, Hg(0) assimilation may contribute to trapping and 215 

sequestering of Hg in moss and lichen tissue, although the specific methods of uptake, binding, and 216 

accumulation from the atmosphere are unknown. Although Hg(0) shows low solubility in water and is 217 

easily re-emitted to the atmosphere, it has been shown that both lichens and mosses can rapidly ad/absorb 218 

Zhou, J. et al., Nature Reviews Earth & environment, 2, 269-284, 2021 (accepted manuscript) doi:10.1038/s43017-021-00146-y



 9 / 44 

 

Hg(0) from the atmosphere with increased uptake when exposure is high 125. Once taken up, laboratory 219 

experiments indicate that Hg(0) is oxidized to Hg(Ⅱ) and subsequently immobilized in moss and lichens 220 

for 4–5 weeks 52,116,126. Stable isotopes have been used to identify Hg source in mosses 61,124,127,128 and shown 221 

atmospheric Hg(0) to account for 76% and 86% in ground and tree mosses, with the remaining 24% and 222 

14% originating from Hg(Ⅱ) contribution 114. 223 

Hg bioaccumulation in mosses and lichens is controlled by numerous biotic and abiotic factors, 224 

including: (1) species, whereby different moss and lichen species show large differences in Hg 225 

concentrations under the same exposures 125,129,130, 131; (2) substrate and local soil, 122,132,133; (3) growth rate 226 

and surface area, 116,134,135’ (4) exposure to pollution source 52; (5) temporal variation 135; and (6) chemical 227 

composition of wet and dry deposition 136,137. Furthermore, Hg concentrations in mosses and lichens can 228 

maintain a state of dynamic equilibrium with atmospheric Hg concentrations 138,139. Although passive 229 

biomonitoring would be cost-effective and benefit from abundant distribution, structural simplicity, rapid 230 

growth rate and ease of sampling 120,124,140, the potential use of lichens and mosses as passive biomonitors 231 

for atmospheric Hg has shown limited success, Nickel et al. found weak correlations between atmospheric 232 

Hg deposition and Hg accumulation in moss and soils across large south-to-north gradients in Norway 141. 233 

Harmens et al. previously showed lack of correlations between modelled atmospheric Hg deposition and 234 

moss concentrations across a large network of sites in Europe and report that moss collected in Norway 235 

showed no distinct north-to-south patterns in spite of expected gradients in atmospheric Hg pollution 142. 236 

Therefore, and consistent with previous reviews 116,120, we conclude that Hg concentrations in lichens and 237 

mosses are impacted by many environmental variables, which complicates its use as a biomonitor for 238 

atmospheric Hg concentrations and deposition. Finally, where lichens and mosses represent a significant 239 

component of plant communities, such as in the Arctic tundra, their high tissue concentrations are 240 

responsible for high atmospheric deposition loads via uptake of atmospheric Hg 61. In these ecosystems, 241 

cryptogams containing high in levels of Hg are important forage substrates for caribou resulting in potential 242 

exposure to Hg 143. 243 

 244 

3. Vegetation-atmosphere exchange  245 

Direct measurements of foliage-atmosphere Hg exchange fluxes have been used to assess sinks (i.e., 246 

uptake) and sources (i.e., emissions) of atmospheric Hg in vegetation 144 and to study uptake mechanisms 247 

(e.g., stomatal versus non-stomatal pathways). There are three suggested pathways of foliage-atmosphere 248 

Hg exchanges: (1) Hg(0) can exchange bi-directionally at the interface of foliage and the atmosphere 249 

46,56,60,83-85,96,145-147; (2) foliage can assimilate divalent Hg(II) wet and particle deposition (PBM and RGM) 250 

followed by partial or full re-emissions to the atmosphere as Hg(0) after photochemical reduction 58,63,147; 251 

and (3) transpiration transport of Hg from soils to foliage whereby Hg(0) is subsequently emitted, either 252 
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directly or after photochemical reduction 65,82,89,148,149. Several studies, however, have shown that soil Hg 253 

concentrations generally do not influence leaf-atmosphere exchange fluxes 53,56,145,150,151, in support of 254 

limited root-to-atmosphere transport of Hg (e.g., via transpiration). 255 

Most foliage flux studies show net uptake of Hg(0), providing evidence of foliar sinks for atmospheric 256 

Hg(0) 144. Measurements using dynamic flux bags on foliage in the field show bidirectional exchange of 257 

Hg(0). For example, foliage served as net sinks in broadleaved and coniferous forests and in a wetland 258 

60,83,96,147, while other measurements (e.g., in a saltmarsh and a subtropical coniferous forest) showed 259 

vegetation as net Hg(0) sources to the atmosphere 85,146. Some variability among studies may be explained 260 

by differences in solar radiation where radiation favors photochemical re-emissions, which also becomes 261 

apparent by observed diurnal flux variability that shows net emissions during peak solar radiation at midday 262 

60,85. Variability in flux directions over foliage may also be attributable to methodological challenges as 263 

these fluxes are small and difficult to measure152. Exposures to elevated Hg(0) concentrations generally 264 

increase net deposition to leaves 46,56,84 and it has been proposed that foliage-atmosphere fluxes are 265 

dependent on atmospheric compensation points 144,153. Most compensation points are reported to be near or 266 

lower than ambient atmospheric Hg concentrations so that under non-contaminated conditions, net Hg 267 

deposition to foliage should dominate 83,147. Canopies also shield soil surfaces from incident solar radiation, 268 

which strongly reduces underlying soil Hg(0) emission 144,154-156. A review of available terrestrial surface-269 

atmosphere Hg(0) flux studies reveals that based on the current measurements available, global assimilation 270 

by vegetation cannot be determined accurately given that global flux uncertainty over canopies ranges from 271 

a net deposition of 513 Mg to a net emission of 1,353 Mg yr−1 144. 272 

Studies of land-atmosphere Hg fluxes at the ecosystem-level allow us to quantifying dry gaseous 273 

component of Hg deposition over land. Whole-ecosystem Hg(0) exchange flux studies are largely based on 274 

micrometeorological tower techniques and commonly report net Hg(0) deposition during peak vegetation 275 

season10,73,74,83,157-162, in support of net Hg assimilation by vegetation. While time-extended measurements 276 

are rare, a few annual time series exist and show net annual deposition of gaseous Hg(0) between 2 to 29 277 

μg m−2 yr−1 over forest, grassland and tundra ecosystems 20,158,163,164. Studies over wetlands, in contrast, 278 

report net Hg(0) emissions (9.4-18.4 μg m−2 yr−1) 72,165, as do forests impacted by regional pollution (58 and 279 

2.6 μg m−2 yr−1) 166. The dominance of net Hg(0) deposition measured during peak vegetation in upland, 280 

non-polluted ecosystems also contrasts with studies of agricultural and bare soil surfaces where net Hg(0) 281 

emissions dominated (55.3 ng m−2 hr−1 over bare soil, corn, and snow-covered fields in Canada 167, and 5.5-282 

10.8 ng m−2 hr−1 over bare soil, wheat and corn in agricultural fields in China 168). 283 

 284 

 285 

 286 
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4. Hg stable isotopes in vegetation  287 

Hg stable isotopes provide a fingerprint of the sources and transformation processes in environmental 288 

samples 2,169,170. The seven stable isotopes of Hg undergo mass dependent fractionation (MDF, 202Hg) and 289 

mass independent fractionation of odd-mass (odd-MIF, 199Hg and 201Hg) and even-mass numbered 290 

(even-MIF, 200Hg and 204Hg) isotopes. Even-MIF is thought to be exclusively produced in the upper 291 

atmosphere providing a conservative tracer for atmospheric Hg species deposited to the Earth surface 127. 292 

Atmospheric Hg(0) and Hg(II) in rainfall are characterized by distinct isotope even-MIF signatures (Figure 293 

3a). Specifically, 200Hg of Hg(II) in rainfall exhibits positive anomalies of 0.2 ‰ (0.13‰ to 0.24‰, IQR, 294 

n = 115) and the corresponding pool of atmospheric Hg(0) slightly negative 200Hg values of -0.05‰ (-295 

0.07‰ to -0.03‰, IQR, n = 117) 10,20,171-178. 200Hg measured in foliage of -0.02 ‰ (-0.05‰ to 0.00‰, 296 

IQR, n = 120) is similar to the 200Hg of atmospheric Hg(0)10,174,178-182, and a mass balance calculation based 297 

on 200Hg reveals that 88% (79% to 100%, IQR) of Hg in vegetation originates from the uptake of 298 

atmospheric Hg(0). Foliar uptake of Hg(0) discriminates heavier Hg isotopes (straight arrow Figure 3a), 299 

resulting in negative 202Hg values typically observed in foliage 10,61,174,178-183. 202Hg in foliage is depleted 300 

by -1% to -3% relative to atmospheric Hg(0) 10,61,127,161,174,178, depending on plant species61 and proximity to 301 

anthropogenic Hg emission sources178. Two studies estimated the fractionation factor of foliar uptake based 302 

on 202Hg depletion of atmospheric Hg0 and reported factors of -2.6 ‰ 127 and -4.2 ‰ 20, respectively. As a 303 

result of plant uptake of lighter Hg(0), corresponding enrichments of heavier Hg(0) isotopes in the residual 304 

atmospheric Hg(0) pool of the boundary layer has been observed above a high-altitude peat bog in Europe 305 

127, an Arctic tundra 20 and deciduous and evergreen forests in South-East Asia 74 as indicated by higher 306 

202Hg values (empty circles in Figure 3a). Vegetation activity, with foliar uptake resulting in higher 307 

residual 202Hg values, along with anthropogenic emission have been identified as two main drivers for 308 

spatial and temporal variation of atmospheric Hg(0) isotope compositions in the northern Hemisphere 184. 309 

A global Hg isotope box model based on 202Hg and 200Hg constraints 185 also supports the findings that 310 

terrestrial dry Hg(0) deposition is a critical global flux, supporting a vegetation control on seasonal variation 311 

of atmospheric Hg(0) concentrations 22. 312 

Re-emissions of Hg(0) from foliage from an evergreen forest was associated with odd-MIF suggesting 313 

that Hg incorporated in the leaf structure is photo-chemically reduced resulting in a bi-directional flux of 314 

Hg(0) across stomata 161. Similarly, small depletions in odd-MIF 199Hg of approximately -0.1 ‰ measured 315 

in surface soils have been attributed to small losses by photochemical reduction in foliage and litterfall 316 

127,174. Overall, odd-MIF values show small but consistent re-emission signatures on foliar Hg (Figure S3) 317 

providing a promising perspective for quantitative assessments of deposition and losses at the ecosystem 318 

scale in the future. 319 
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Deposition of atmospheric Hg(0) by means of litterfall constitutes the major source of Hg in plants, 320 

organic and mineral soils, and watershed runoff (Figure 3b). Average source contributions of atmospheric 321 

Hg(0) deposition to soils was 57% to 94% in North America 174,182, 70% to Arctic tundra soils in Alaska in 322 

the USA 10, 79% to a high-altitude peatland in the Pyrenees in France, 90% to boreal forest soils in Sweden 323 

181 and 26% in surface soils of Tibetan wetlands in China 186. Global-scale mass balance estimations, based 324 

on 200Hg patterns, reveal contributions of atmospheric Hg(0) derived Hg of 62% (53% to 89%, IQR) in 325 

organic soils 10,174,181-183,187,188 and 84 % (70% to 92%, IQR) in mineral soils (albeit when neglecting 326 

geogenic Hg sources) 10,174,180-183,187,188. Similarly, in runoff of terrestrial ecosystems, 76% (60% to 92%, 327 

IQR) of Hg is derived from deposition of atmospheric Hg(0) 183,189. The major role and isotope fractionation 328 

of foliar uptake of atmospheric Hg(0) results in a characteristic terrestrial fingerprint, which is propagated 329 

to and found to be dominant in freshwater and coastal sediments and biota 38,127,190-194. 330 

 331 

5. Global importance of vegetation Hg uptake 332 

Empirical evidence and model results strongly suggest that the dominant pathway of atmospheric Hg 333 

deposition in terrestrial ecosystems is dry Hg(0) deposition via vegetation uptake and subsequent transfer 334 

to soils 10,41,182,195-198 and atmospheric Hg(0) taken up by vegetation is the primary driver for Hg storage in 335 

surface soils 25,186. In turn, plant Hg(0) uptake controls seasonal variations and global distribution of 336 

atmospheric mercury concentrations 22. Climate-change induced alterations in vegetation and human-337 

induced land use changes have significant impacts on global Hg cycling 2,186. Here, we review studies on 338 

the global impacts of vegetation Hg assimilation on environmental and ecosystem processes based on 339 

published empirical studies and modeling results. 340 

5.1. Empirical studies on global vegetation Hg uptake 341 

Global estimates of Hg uptake by vegetation are available based on field-based litterfall and throughfall 342 

measurements. Studies show forests as strong sinks for atmospheric Hg(0) 18,24,25,80,199, driven by litterfall 343 

which exceeds all other pathways of Hg inputs. Global Hg litterfall fluxes are estimated between 1,180 ± 344 

710 Mg Hg yr−1 and 1,232 Mg yr−1 based on data assimilation across more than 90 forest sites 195-198. 345 

Litterfall deposition has been proposed to decrease along with primary productivity from tropical to 346 

temperate to boreal regions with approximately 70% of global litterfall deposition estimated to occur in 347 

tropical and subtropical regions 198. One study 200 estimated annual mean Hg(0) dry deposition in terrestrial 348 

ecosystem could be enhanced by up to 20% in the northern mid-latitudes by 2050 due to increases in plant 349 

productivity associated with CO2 fertilization. Litterfall deposition constitutes the dominant deposition to 350 

terrestrial environments with vegetation assimilating approximately 1/4 of the total global atmospheric Hg 351 

pool (approximately 4,400–5,300 Mg) each year. Throughfall Hg deposition may be of similar magnitude 352 
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as litterfall deposition and , although much more uncertain, may globally account for 1,340 Mg year–1 80,186, 353 

or 90%, 75% and 143% of respective litterfall Hg deposition in China, Europe, and North America, 354 

respectively. 355 

We note, however, that the sum of litterfall plus throughfall deposition represents a lower-bound 356 

estimate of total vegetation Hg uptake because it doesn’t account for Hg deposition via woody tissues, non-357 

vascular lichen and mosses, and whole plant senescence (e.g., tree blowdown), nor does it account for direct 358 

soil uptake 2. For example, studies report that Hg in tree woods is equal to several-fold the Hg mass 359 

contained in canopies 201-204 and woody tissues (tree turnover) may account for 60% of litterfall deposition 360 

205, in spite of slower turnover rates of wood. Analysis along a forest succession suggest that combined 361 

woody biomass, moss and throughfall deposition exceed litterfall, thus using litterfall deposition only would 362 

strongly underestimate Hg accumulation in forest soils 186. If significant amounts of root Hg is indeed also 363 

derived from atmospheric uptake 114, root turnover will further increase atmospheric dry deposition (section 364 

2.1.). 365 

After plant-bound Hg is transferred to soils and forests floors, the fate and mobility of Hg in soils and 366 

watersheds depends on litter decomposition and biogeochemical cycling of organic matter 94,206-210. While 367 

a review of the fate and cycling of Hg in litter and soils is beyond the scope of this review, a comprehensive 368 

understanding of the environmental fate and mobility of plant-deposited Hg is lacking. During litter 369 

decomposition, mass and concentrations of Hg increase due to relatively stronger losses of carbon compared 370 

to Hg and due to continued absorption of Hg from precipitation and throughfall during initial stages of litter 371 

decomposition 206,209,211. Stable Hg isotope studies suggest that microbial reduction and photo-reduction 372 

also play a role in Hg losses from litter and soils181,210, possibly leading to large re-evasion losses over long 373 

time periods. Still, large amounts of plant-derived Hg are likely retained in soils leading to high pool sizes 374 

of Hg across soils worldwide 2,186,212. 375 

 376 

5.2. Model approaches of vegetation Hg uptake 377 

Several studies examined advances and limitations of methods of terrestrial-atmosphere Hg exchange 378 

processes in global models 152,196,213,214. Dry deposition of Hg is driven by advection and diffusion in air 379 

followed by heterogeneous uptake by surfaces 215, generally parameterized in models using an inferential 380 

approach (i.e., product of ambient Hg concentration and modeled dry deposition velocity) 8,39,216-219. Dry 381 

deposition velocities over various surface types are estimated through a resistance analogy that includes 382 

aerodynamic, soil, stomatal and cuticle resistances 220-223. Parameters for oxidized Hg(II) species deposition 383 

are selected based on similarity of solubility and reactivity of Hg with other well-studied atmospheric 384 

compounds 224. A wide range of Hg(0) dry deposition schemes have been implemented in models; early 385 

studies assumed small and constant deposition velocities over vegetated surfaces or neglected Hg(0) 386 
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deposition all together, and resistance-based Hg(0) deposition schemes are commonly employed now 225. 387 

Zhang et al. (2009) 223 reviewed dry deposition velocities of Hg species and derived dry deposition 388 

parameters for Hg(0) (implemented in the GEM-MACH-Hg model). Models parameterize terrestrial Hg(0) 389 

emissions as a function of environmental conditions (i.e., temperature, solar irradiance, leaf area index) and 390 

soil Hg content, and often include a fraction of recently deposited Hg to soils, vegetation and snow as 391 

prompt re-emissions 226-234. A few bidirectional air-surface Hg exchange schemes have been developed and 392 

implemented in regional models 213,226,235,236. One study formulated Hg exchange fluxes over canopy as 393 

concentration gradients across air-foliage/soil by defining dynamic compensation points based on 394 

partitioning coefficients 235. This was subsequently revised 236 by updating surface resistances 222,223,237 and 395 

implementing photochemical reduction of Hg in foliage 238. Wright and Zhang (2015) 213 reviewed Hg(0) 396 

compensation points over a variety of canopies and environmental conditions in North America (range, 397 

0.5–33 ng m-3) and developed a bidirectional air-surface exchange model based on dry deposition scheme 398 

222,223 and empirical compensation points. 399 

Simulated Hg exchange fluxes in canopy and underlying soils are highly sensitive to resistance 400 

parameters, some of which are poorly constrained 64,239. Based on direct micrometeorological measurements 401 

of Hg(0) fluxes, a recent study 240 recommended that current models should increase stomatal resistances 402 

to reduce overestimation of stomatal uptake of Hg(0) (e.g., by a factor of 5-7) and simultaneously increase 403 

ground and cuticular uptake to mimic nighttime and wintertime Hg(0) deposition (by factors of 3–4 and 2–404 

4, respectively). Current bidirectional Hg exchange schemes depend on numerous ill-constrained 405 

parameters and over-simplified chemistry 213,235,236 and mechanistic bidirectional air-foliage Hg partitioning 406 

schemes are needed which incorporate biome-specific biomass data, plant physiology, redox chemistry and 407 

environmental variables (temperature, light, moisture, atmospheric turbulence) 152,214. 408 

 409 

5.3. Model understanding of the global Hg cycle and vegetation Hg uptake 410 

We performed two global model simulations using the GEM-MACH-Hg model 41,42,225,227,241,242 to assess 411 

the impacts of vegetation Hg uptake on contemporary atmospheric Hg cycling (year 2015); one with and a 412 

second without the presence of vegetation (see details of modeling approach in Text S2 of SI). The 413 

simulation without vegetation cover was configured by replacing all biome types to desert, while keeping 414 

primary (geogenic and anthropogenic) and secondary (recycling of historic deposition) Hg emissions 415 

unchanged. Our model simulations allowed examination of the significance of vegetation Hg uptake to the 416 

residence time of Hg in the atmosphere, levels and spatiotemporal distribution of Hg in air, and Hg 417 

deposition to the Earth’s ecosystems. Figure 4 (also Table S1) illustrates the contemporary global Hg cycle 418 

and annual Hg exchange fluxes from the GEM-MACH-Hg simulation with vegetation, along with previous 419 

model estimates from the literature. Global oceans are considered a net sink for atmospheric Hg, with annual 420 
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net deposition (deposition minus emission) reported in the literature ranging from 400 to 1,700 Mg yr-1 4,6,7 421 

and GEM-MACH-Hg model estimate of 1,300 Mg yr-1. Terrestrial deposition in the GEM-MACH-Hg 422 

simulation is estimated at 2,800 Mg yr-1 (literature range of 2,200 to 3,600 Mg yr-1) 4,6,7. Atmospheric Hg 423 

deposition is divided into wet deposition (via rain and snow) and dry deposition (gravitational settling of 424 

particulates and gaseous uptake) 223. Using the GEM-MACH-Hg model simulation, we estimate global 425 

terrestrial wet depositon to be in the range of 730–1,070 Mg yr-1, which accounts for only 26-38% of total 426 

terrestrial deposition. Dry Hg deposition in the range of 1,730–2,070 Mg yr-1 is estimated to dominate across 427 

terrestrial enviroments, with direct vegetation uptake accounting for the largest portion (1,310–1,570 Mg 428 

yr-1) consistent with current litterfall-based estimates 198. Our model simulations also estimate that gaseous 429 

assimilation of Hg(0) accounts for 90% of total dry deposition to vegetation, replicating the evidence from 430 

experimental data, stable Hg isotope analyses and field flux studies. 431 

Comparison of GEM-MACH-Hg simulations with and without vegetation show that Hg uptake by 432 

vegetation reduces the residence time of atmospheric Hg(0) from 10 to 8 months (thus, reduces global 433 

atmospheric Hg(0) concentrations; Figure 5a and 5b), and lessens the global atmospheric Hg(0) burden 434 

from 5,120 to 4,460 Mg. Vegetation Hg uptake reduces the inter-hemispheric gradient (northern versus 435 

southern hemisphere) of Hg(0) from 1.8:1.1 ng m-3 to 1.5:1.0 ng m-3 (Figure 6a). The vegetation Hg sink 436 

notably reduces air concentrations of Hg(0) over forested regions, e.g. by 25% over eastern North America 437 

and by 35% over boreal forests in Europe (Figure 5a and 5b). Uptake of Hg transported out of the source 438 

regions by local and regional vegetation lowers the long-range transport and deposition of Hg in remote 439 

regions such as the Arctic and global oceans (Figure 5c and 5d). Simulated (with and without vegetation 440 

cover) and measured average seasonal cycles of surface air Hg(0) concentrations in northern and southern 441 

hemispheres are presented in Figures 6b and 6c, and at individual observation sites (including different 442 

biomes, coastal, urban and polar locations) are shown in Figures S4–S8. Seasonal atmospheric Hg(0) 443 

concentrations are characterized by winter to early spring maxima and late summer to fall minima, 444 

especially over vegetated surfaces in the northern hemisphere (Figures 6b and S4–S7). In contrast, southern 445 

hemispheric locations lack systematic seasonal cycles (Figures 6c and S8). Our model analyses suggest that 446 

northern hemispheric seasonal Hg(0) cycles over land are controlled by (in order of importance); (i) 447 

vegetation uptake (maximum in summer and fall); (ii) terrestrial soil and vegetation emissions (maximum 448 

in summer); (iii) cryosphere re-emissions (peak in spring and minimum in fall); and (iv) wildfire emissions 449 

(spring to summer). Continued deposition of Hg(0) to the biosphere into fall results in hemispheric-scale 450 

depletion of ambient Hg(0) concentrations in late summer to fall months. In the absence of Hg uptake by 451 

vegetation, atmospheric Hg(0) concentrations increase and pronounced seasonal variations are lost (yellow 452 

lines, Figure 6b and S4–S7). In the southern hemisphere, more variable and unclear seasonal cycles of Hg(0) 453 

are reported (Figures 6c and S8). These model results are consistent with a previous global analysis of 454 
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atmospheric data that concluded that seasonality in Hg(0) was strongly related to leaf area cover and that 455 

summertime minima at remote sites in the Northern Hemisphere were best explained by seasonal vegetation 456 

uptake 21. 457 

Global Hg deposition is largest in areas of high atmospheric Hg concentrations associated with 458 

anthropogenic emission regions (e.g., South-East Asia) and areas of high biomass production (e.g. Amazon 459 

region and Congo basin) (Figure 5c). GEM-MACH-Hg estimates of annual (median) dry deposition Hg 460 

fluxes to major global biomes are as follows (see comparison with litterfall-inferred values in Table S2) 198: 461 

tropical moist broadleaf forests: 27.3 μg m−2 yr−1; tropical dry broadleaf forests: 24.6 μg m−2 yr−1; temperate 462 

broadleaf/mixed forests: 18.3 μg m−2 yr−1; tropical grasslands 16.4 μg m−2 yr−1, temperate conifers: 14.3 μg 463 

m−2 yr−1; temperate grasslands: 9.2 μg m−2 yr−1; boreal forests: 8.3 μg m−2 yr−1 and Arctic tundra: 4.2 μg m−2 464 

yr−1. Underestimation of model deposition to vegetation in tropical forests might be linked to the adsorption 465 

of wet deposition on foliage 58,147 , as partitioning of Hg wet deposition between foliage and ground is 466 

currently not represented in models. 467 

As summarized above, GEM-MACH-Hg estimates global annual total Hg deposition of approximately 468 

6,400 Mg, with about 44% deposited to terrestrial ecosystems (~2,800 Mg y-1) of which between 62–74% 469 

occurs as dry deposition, largely in the form of Hg(0) (87%). Hg(0) accounts for approximately 90% of 470 

foliage Hg uptake and represents the single largest terrestrial removal pathway of atmospheric Hg (1,180–471 

1,410 Mg yr-1). In the absence of vegetation cover, the majority of emitted Hg would be removed from the 472 

atmosphere by wet deposition (over land and oceans), thereby repartitioning the deposition between land 473 

(29%) and ocean (71%) and increasing the Hg deposition to global oceans by approximately 960 Mg yr-1 474 

(Figure 5d). Note that uncertainties in above sensitivity analyses are related to the representation of redox 475 

processes and heterogeneous Hg chemistry in terrestrial components such as vegetation, soils and snow 476 

(reflected in the estimated range of fluxes) as well as legacy Hg cycling in soils (i.e., from past deposition), 477 

which was not examined here. The impacts of vegetation on legacy Hg fluxes are complex and requires 478 

further knowledge of terrestrial Hg accumulation, speciation and lifetime for formulations in three-479 

dimensional atmosphere-land-ocean biogeochemical models 243,244 (see also Text S2 in SI).  480 

 481 

6. Summary and future perspectives 482 

Vegetation uptake of atmospheric Hg represents the most important deposition pathway to terrestrial 483 

surfaces. Studies based on Hg stable isotopes, enriched isotope tracer experiments, laboratory and 484 

ecosystem-level flux measurements, and model simulations consistently review that approximately 90% of 485 

Hg in foliage originates from the uptake of atmospheric Hg(0). At the ecosystem level, 60 to 90 % of Hg 486 

originates from vegetation uptake of atmospheric Hg(0). Leaves exhibit the highest Hg concentrations 487 

among plant tissues in vascular plants. Hg in woody biomass also originates predominantly from leaf uptake 488 
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of atmospheric Hg(0) which subsequently is translocated within plants, so that woody turnover represents 489 

a considerable, yet largely unquantified, source of additional Hg deposition. Roots have been shown to take 490 

up Hg from surrounding soils, and the transfer of Hg from roots to aboveground tissues is minor. Root Hg 491 

dynamics, hence, partly represents internal recycling of Hg within soils. Recent evidence, however, also 492 

indicates foliage-to-root transport, which in effect would further increase plant Hg uptake from the 493 

atmosphere and subsequent deposition. Finally, Hg concentrations in lichen and mosses exceed 494 

concentrations in vascular plants and should be accounted for when quantifying ecosystem Hg deposition. 495 

The modeling estimate of global Hg uptake by terrestrial vegetation of 1,310 to 1,570 Mg yr-1 is within 496 

the uncertainties of the current best estimates based on litterfall data (approximate mean of 1200 Mg yr-1). 497 

Global throughfall (estimated at 1,300 Mg yr-1) to the terrestrial surfaces also include a proportion of the 498 

vegetation Hg uptake. Sensitivity analyses show that vegetation uptake of Hg(0) lowers the global 499 

atmospheric burden of Hg from 5,120 to 4,460 Mg, in effect reducing long-range Hg transport and 500 

deposition of Hg to global oceans by 960 Mg yr-1. Vegetation Hg uptake has a major control on spatial and 501 

temporal variability of atmospheric Hg(0) concentrations globally. Vegetation Hg uptake leads to late 502 

summertime minima in atmospheric Hg(0) concentrations in remote areas of the northern hemisphere and 503 

lowers the interhemispheric Hg(0) gradient. Ultimately, Hg taken up by vegetation and deposited to soils 504 

is transferred to downstream aquatic freshwater ecosystems and coastal seas, representing a major source 505 

of Hg for aquatic organisms. 506 

A number of research areas merit further focus in order to improve our understanding of the processes 507 

controlling Hg uptake by vegetation and its implications to global Hg cycling. In particular, assessment of 508 

the complex questions on how climate and land use changes will affect global Hg cycling are currently 509 

hampered by a series of shortcomings in process understanding, observational constraints and model 510 

representations. Important knowledge gaps exist with respect to the vegetation interfacial Hg exchange 511 

processes; a mechanistic and quantitative knowledge of heterogeneous biochemical processes of plant 512 

tissue and soil Hg uptake, considering physiological and environmental drivers, is needed. In order to allow 513 

better comparison of data, future studies on Hg in vegetation should report detailed descriptions of the 514 

sampling data such as locations within the canopy, time of sampling, and needle age in coniferous trees, 515 

and ideally follow standardized sampling protocols and report environmental exposures (atmosphere and 516 

soils). We call for the integration of Hg data in litterfall and throughfall deposition monitoring networks 517 

across all biomes, with a particular focus given to areas of high net primary production where currently 518 

observational data are scarce. Litterfall and throughfall measurements are not sufficient to estimate whole-519 

ecosystem Hg deposition as they don’t account for the depositon by woody tissues, translocation to roots, 520 

uptake by cryptogamic vegetation and direct sorption of Hg(0) to soils and forest floors. Hence, we 521 

recommend measurements of annual time-series of ecosystem-level Hg(0) deposition across all major 522 
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representative global biomes to constrain their net sinks. Furthermore, significant uncertainties exist in the 523 

model parametrizations of surface uptake processes of Hg species, preventing accurate determination of the 524 

relative roles of wet and dry deposition and elemental and oxidized Hg species in atmosphere-terrestrial Hg 525 

exchange processes. Hg stable isotope measurements may prove vital to quantify deposition species and 526 

process attribution and, thus, improve model parametrizations. Finally, amounts and geospatial distribution 527 

of soil Hg and secondary Hg emissions (legacy soil and wildfire emissions) are profoundly impacted by 528 

foliage Hg uptake and changes in vegetation cover would alter these. Dynamically coupled Hg models of 529 

atmosphere, terrestrial and ocean environments are needed to simulate the effects of both direct and indirect 530 

changes in vegetation; measurement and modeling innovations providing mechanistic knowledge of Hg 531 

processes in terrestrial ecosystems is critical to achieving this goal. 532 
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In our database, we also analyze vegetation tissue Hg concentrations in Hg-enriched areas if studies 555 

reported specific point sources or regional pollution sources nearby or if studies were conducted in and near 556 

urban and industrial, mining, or smelting sites. In addition to anthropogenic Hg contamination, natural Hg 557 

enrichments exist along the global mercuriferous belts found along Earth plate margins leading to large-558 

scale Hg mineralization zones: Circum-Pacific, Mediterranean,  Central Asia and Mid Atlantic Ridges, with 559 

many Hg mines distributed along these zones 245. When exposed to high soil and atmospheric Hg levels, 560 

plant growth may be decreased due to Hg toxicity 246-249. However, most plants grow normally under lightly 561 

to moderately polluted areas, but will show substantial Hg enrichments in their tissues. In comparison with 562 

remote, non-enriched sites, median Hg concentrations of vegetation from Hg-enriched areas in our database 563 

show significantly higher Hg concentrations (p < 0.01) by factors of 1.2–5.7 across all tissues. Specific 564 

tissue responses are dependent on the type of exposure, with soil Hg contamination resulting largely in 565 

elevated root Hg concentrations, while not significantly affecting aboveground tissue concentrations. In 566 

turn, atmospheric Hg contamination significantly elevates Hg levels in aboveground Hg concentrations (p 567 

< 0.01), but did not impact belowground tissues. 568 

The potential use of plant Hg uptake has received interest as an alternative method for traditional 569 

physicochemical methods of remediation of Hg-enriched sites, termed phytoremediation. In summary, there 570 

are three main approaches of Hg phytoremediation: phytostabilization, phytovolatilization and 571 

phytoextraction. Phytostabilization immobilizes Hg in soil through biochemical processes, either via Hg 572 

accumulation in roots or chelating Hg in the root zone. Candidate plants used for phytostabilization have 573 

extensive root systems, are tolerant to Hg toxicity, and are adaptive to site-specific environments 246-249. 574 

Phytovolatilization is unique to Hg due to its relatively high volatility. Phytovolatilization refers to the 575 

uptake of elements by plant roots, translocation through the xylem, and subsequent emission to the 576 

atmosphere 15. There are few studies on phytovolatilization of Hg via vegetation, however, in part due to 577 

its inefficiency (<0.98% remediation) 250, difficulties in monitoring volatilization fluxes, and possibly due 578 

to concern over secondary contamination by emitting Hg to the atmosphere. 579 

Most studies on phytoremediation have focused on phytoextraction whereby Hg is removed from soil 580 

by harvesting vegetation that has taken up Hg from soils. Up to now, no plant has been identified as a Hg 581 

hyperaccumulator, which are plants that are capable of growing under high contamination and take up 582 

metals via roots and bioconcentrate them in their shoots 251. Vegetation known to show a potential to 583 

bioaccumulate Hg have shown to remove less than 0.2% of the Hg in Hg-enriched soils, even when 584 

chemically assisted 252-255. Hence, in contrast to some other toxic trace metals where phytoextraction is 585 

highly efficient (e.g., 32.4–84.5% removal of soil cadmium by Sedum plumbizincicola 256), phytoextraxtion 586 

is considered of low efficiency for Hg. 587 
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 588 

Figure 1. a. Spatial coverage of foliar Hg samples from our database including both background and Hg-589 

enriched areas, with concentration averaged for sites. b. Box plots of Hg concentrations of foliage in 590 

background sites separated by biomes/plant community types. c. Box plots of Hg concentrations for various 591 

vegetation types and functional groups from background sites. Numbers represent number of data points 592 

per group. Corresponding data for Hg-enriched sites are shown in Figure S2a.  593 
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 595 

Figure 2. Schematic diagrams of pathways of plant Hg uptake, including uptake of soil solution Hg by 596 

roots and subsequent transport through root tissues and into xylem; passive uptake of atmospheric Hg to 597 

the bark and transport through bark; and assimilation of atmospheric Hg by foliage via stomatal and 598 

cuticular uptake, along with detailed transport pathway inside leaf tissues and translocation via phloem 599 

transport to woody tissues. 600 

  601 
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 602 

 603 

Figure 3. Mass dependent (202Hg) vs. even mass independent (200Hg) Hg stable isotopes; a. Composition 604 

of vegetation and atmospheric Hg(0) and Hg(II) sources. The straight arrow represents the Hg isotope 605 

fractionation during uptake of Hg(0) by foliage and the dashed arrow represents the fractionation of residual 606 

Hg(0) in the atmosphere. b. source of Hg in vegetation and in terrestrial sinks (organic and mineral soils 607 

and runoff). Figure includes all currently available, peer-reviewed isotope data on vegetation Hg. 608 
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 610 

Figure 4. The global geochemical cycle of Hg with a focus on atmopsheric emissions, transport and 611 

deposition. Hg emissions include natural, anthropogenic and legacy sources. Terrestrial deposition includes 612 

dry and wet deposition, and dry deposition is separated further into vegetation Hg uptake (Hg(0) and Hg(II)) 613 

and deposition to non-vegetation surfaces (soils, snow and water) using GEM-MACH-Hg model 614 

simulations (this study). GEM-MACH-Hg model estimates are in blue and peer-reviewed literature ranges 615 

are in brackets. Origins of literature fluxes are given in Table S1. The units for the emission and deposition 616 

are in Mg Hg yr-1. 617 

  618 
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 619 

Figure 5. a./b. Global annual average surface air Hg(0) concentrations simulated by the GEM-MACH-Hg 620 

model for the year 2015 with vegetation cover present (a) and with vegetation cover absent (b). c./d. 621 

Simulated annual Hg deposition (total wet and dry deposition) for the year 2015 with vegetation cover 622 

present (hatched areas indicate regions of forested vegetation) (c) and with vegetation cover absent (d). 623 

Available observations of Hg(0) concentrations are indicated in circles (a); nearby sites are combined and 624 

replaced with median values. References for observations are as follows: CAPMoN, ECCC: Cole et al. 625 

(2013)257; AMNet: Gay et al. (2013)258; EMEP: Tørseth et al. (2012)259; GMOS: Sprovieri et al. (2016)260; 626 

Mace Head: Custodio at al. (2020)261; Cape Point and Amsterdam Island: Slemr et al. (2020)262 ; Cape 627 

Grim: Slemr et al. (2015)263 ; Gunn Point: Howard et al. (2017)264; Mount Lulin: McLagan et al. (2018)265. 628 
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 630 

 631 

Figure 6. a. Average surface air Hg(0) concentrations along with the global hemispheric gradient simulated 632 

by GEM-MACH-Hg for 2015 with and without vegetation cover present. Blue line represents model 633 

simulation with vegetation present, yellow line represents model simulation without vegetation present, and 634 

red dots represent measurement observations. Model simulated lines represent averaged Hg(0) 635 

concentrations in 0.5⁰ latitude bands including oceanic regions; observations represent sites mostly located 636 

over land and in North America and Europe. b./c. Average measured and simulated (by the GEM-MACH-637 

Hg model at the observation sites) seasonal cycles of surface air Hg(0) concentrations in northern and 638 

southern hemispheres; coastal and urban sites were excluding from averaging in northern hemisphere; 639 

southern hemisphere seasonal cycle is the average of two sites, Cape Point and Amsterdam Island. Blue 640 

and yellow lines represent model simulations with vegetation present and without vegetation present, 641 

respectively, for 2015. Red lines and shaded areas represent median of available measurements between 642 

2009–2018 and 5th–95th percentiles, respectively.  643 

A 

B C 
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