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Abstract. In the first part of the paper, we study the Cauchy problem for the advection-
diffusion equation ∂tv + div(vb) = ∆v associated with a merely integrable, divergence-free
vector field b defined on the torus. We first introduce two notions of solutions (distributional
and parabolic), recalling the corresponding available results of existence and uniqueness. Then,
we establish a regularity criterion, which in turn provides uniqueness for distributional solutions.
This is motivated by the recent results in [31] where the authors showed non-uniqueness of
distributional solutions to the advection-diffusion equation despite the parabolic one is unique.
In the second part of the paper, we precisely describe the vanishing viscosity scheme for the
transport/continuity equation drifted by b, i.e. ∂tu+ div(ub) = 0. Under Sobolev assumptions
on b, we give two independent proofs of the convergence of such scheme to the Lagrangian
solution of the transport equation. The first proof slightly generalizes the original one of [21].
The other one is quantitative and yields rates of convergence. This offers a completely general
selection criterion for the transport equation (even beyond the distributional regime) which
compensates the wild non-uniqueness phenomenon for solutions with low integrability arising
from convex integration schemes, as shown in recent works [10, 31, 32, 33], and rules out the
possibility of anomalous dissipation.
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1. Introduction

The goal of this paper is twofold. First of all, we are interested in the so-called advection-
diffusion equation

∂tv + div(vb) = ∆v

under general, low regularity assumptions on the (divergence-free) vector field b. Furthermore,
we want to exploit the advection-diffusion equation to set up the vanishing viscosity scheme for
the linear transport/continuity equation

∂tu+ div(ub) = 0

under Sobolev regularity assumptions on b, in a framework of low integrability for the solution
which does not guarantee uniqueness. More precisely, we construct a family (vε)ε of solutions
to

∂tvε + div(vεb) = ε∆vε

and establish the rigourous convergence vε → uL as ε ↓ 0, where uL is the Lagrangian solution of
the transport equation, that is the solution transported by the flow of b. Such a result fits into
a well understood physical mechanism (the zero diffusivity/viscosity limit) and has also its own,
mathematical interest: similar schemes have been proposed over the years for different equations
(e.g. for hyperbolic conservation laws [4, 24]). Since the Lagrangian solution preserves all the
Lq-norms (if finite at the initial time), this also rules out the possibility of anomalous dissipation
in the vanishing viscosity limit.

1.1. Part I. The advection-diffusion equation. Given a vector field b : [0, T ] × T
d → R

d

on the d-dimensional torus Td := R
d/Zd, we study the initial value problem for the advection-

diffusion equation associated with b, i.e.
{

∂tv + div(vb) = ∆v

v|t=0 = v0,
(ADE)

where v0 : T
d → R is a given initial datum. Due to the presence of the Laplacian, (ADE) is

a second-order parabolic partial differential equation. If the vector field b is smooth, classical
existence and uniqueness results are available and can be found in standard PDEs textbooks
(see e.g. [23]). The problem (ADE) has been also studied outside the smooth framework in
many classical references (besides quoting again [23], we mention the monograph [27]).
Nevertheless, our approach is closer to the one developed in the more recent book [29], which
is intimately related to a fluid dynamics context. Typically, existence results are obtained by a
simple approximation argument: under global bounds on the vector field, one easily establishes
energy estimates for the solutions of suitable approximate problems. Such estimates allow to
apply standard weak compactness results and the linearity of the equation ensures that the weak
limit is a solution to (ADE).

At a closer look, however, an interesting feature of (ADE) arises: it is possible to give several,
a priori different, notions of “weak” solutions. This opens a wide spectrum of possibilities and
taming this complicated scenario, understanding the relationships among different notions of
solutions, is one of the aims of the present work.

Distributional solutions. We first deal with divergence-free vector fields b, satisfying a general
L1
tL

p
x integrability condition in space-time, for some 1 ≤ p ≤ ∞. Correspondingly, we assume

that the initial datum v ∈ Lq(Td), for some 1 ≤ q ≤ ∞, with 1/p + 1/q ≤ 1. This allows to
introduce distributional solutions to (ADE), i.e. functions v ∈ L∞

t Lq
x solving the equation in

the sense of distributions. Notice that a mild regularity in time of solutions is always granted
for evolutionary PDEs, which allows to give a meaning to the initial condition in the Cauchy
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problem (ADE). It is then easily seen that distributional solutions always exist; yet, such a
notion seems too vague and uniqueness is, in general, false.

Parabolic solutions. The general lack of uniqueness for distributional solutions motivates the
introduction of another notion of solution. Hopefully, such alternative notion will share the
same existence results as the distributional ones, offering at the same time some uniqueness
results. It turns out that such a notion can be found for fields having enough integrability in
the space variable, b ∈ L1

tL
2
x. If this is the case, exploiting the divergence-free constraint one

can show the basic available energy estimate for smooth solutions

1

2

∫

Td

|v(t, x)|2 dx+

∫ t

0

∫

Td

|∇v(τ, x)|2 dτ dx =
1

2

∫

Td

|v0(x)|2 dx,

for every t ∈ [0, T ]. The energy estimate entices one to look for solutions possessing L2 gradient,
i.e. solutions that are H1 in the space variable. We therefore say that a distributional solution
v ∈ L∞

t Lq
x to (ADE) is parabolic if it holds v ∈ L2

tH
1
x. The energy estimate suggests that

we could look for solutions possessing L2 gradient, i.e. solutions that are H1 in the space
variable: we say that a distributional solution v ∈ L∞

t Lq
x to (ADE) is parabolic if it holds

v ∈ L2
tH

1
x. Crucially, parabolic solutions carry the exact regularity needed to establish their

uniqueness (under a suitable integrability assumption of the field b w.r.t. the time variable as
well). This uniqueness result is proven via a well-known technique, i.e. resorting to commutators’
estimates. The L2

tH
1
x regularity of the solution allows to obtain a better control on the error

one commits when considering smooth approximations of the solution. Such error (which is
commonly known as commutator) always goes to 0 in the sense of distributions; however, in
order to prove uniqueness, a better control is needed. In particular, in [28] it is shown that the
commutator for parabolic solutions converges strongly to 0 in L1

t,x. This is made possible by the
fact that, asymptotically, the commutator is related to the quantity b · ∇v and bounds for this
product can be established (for parabolic solutions v ∈ L2

tH
1
x) if b ∈ L2

tL
2
x.

A new regularity result for distributional solutions. Besides existence and uniqueness results for
distributional and for parabolic solutions, a legitimate question concerns the mutual relationship
between these two notions; according to our definitions, parabolic solutions cannot always be
defined, but if they can, then they are always distributional. The converse implication is, in
general, not true: in [31] it is shown that there exist infinitely many distributional solutions
v ∈ L∞

t L2
x to (ADE) with a vector field b ∈ L∞

t L2
x, while the parabolic one is unique. This

motivates our search for a condition that guarantees parabolic regularity of a distributional
solution. Our first main result shows that, in the regime 1/p + 1/q ≤ 1/2 (and under a L2

integrability assumption of b w.r.t. time), every distributional solution is parabolic (hence, a
fortiori, unique). The precise statement is the following:

Regularity Theorem. Let p, q ∈ [1,∞) such that 1/p+1/q ≤ 1/2. If b ∈ L2
tL

p
x is a divergence-free

vector field and u ∈ L∞
t Lq

x is a distributional solution to (ADE), then u ∈ L2
tH

1
x.

Such a regularity result is, to our knowledge, new and it is obtained using a refined commutator
estimate: we show that, in the current regime, the convergence to zero of the commutators
takes place in L2

tH
−1
x and this is enough to obtain our regularity result (see Lemma 3.8 for the

precise commutator estimate). We remark, en passant, that the L2 integrability seems critical
in our argument. Recent, groundbreaking works (which will be discussed more thoroughly
later on in this introduction) have shown that, at lower integrability, a severe phenomenon of
non-uniqueness may arise. In particular, using convex integration techniques, in [32, 33, 31]
the authors constructed divergence-free vector fields b ∈ C0

t L
p
x, with 1 ≤ p < γ(d) < 2, such

that (ADE) admits infinitely many solutions in the class C0
t H

1
x. Here γ(d) = 2d/d+ 2 denotes

a dimensional constant, which is indeed strictly smaller than the critical exponent 2. The
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situation in the intermediate regime γ(d) ≤ p < 2 is still open and it is the object of one
question we formulate. See also [7], where nonuniqueness of weak solutions (not necessarily in
the Leray class) of the Navier-Stokes equations is shown via convex integration with a beautiful
argument exploiting time-intermittency, and [9], in which it is shown that the integrability of
weak solutions plays an essential role for weak-strong uniqueness results for the Navier-Stokes
equations.

Finally, we observe that also the integrability in time could play a non trivial role (in a similar
spirit to e.g. [10]): it seems conceivable that non-uniqueness of parabolic solutions arises when
b ∈ L2

tL
p
x (instead of b ∈ C0

t L
p
x) for a larger class of exponents p.

We refer the reader to Figure 1 and Figure 2 for a visual summary of the results concerning
advection-diffusion equations.

A comparison with LeBris-Lions’ theory of renormalized solutions. Yet another approach to
(ADE) builds on the notion of renormalized solution. In a nutshell, such a concept allows one to
define the transport term vb in a completely general framework (i.e. for any choice of exponents
p, q) and this is achieved by prescribing that the equation in (ADE) holds not for u but for
a (non-linear) function of u (together with some additional assumptions on the regularity of
u). We have opted not to pursue this direction here and we refer the reader to the monograph
[29] where one can find, besides the theory of bounded parabolic solutions, an extensive and
comprehensive study of renormalized solutions (see in particular, [29, Chapter 2, Remark 16]
for an interesting comparison between distributional and renormalized solutions).

1

p
+ 1

q
≤ 1: the product vb is well defined and distributional solutions exist (Prop. 3.2)

min{p, q} ≥ 2: existence of parabolic solution (Prop. 3.4)

q ≥ 2: a-priori estimates in L2

tH
1

x (Rmk. 3.5)

1
p

1
q

1

1

1

2

1

2

Figure 1. Visual depiction of the existence results for distributional and parabolic solutions
for vector fields b ∈ L1

tL
p
x and initial datum v0 ∈ Lq.
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1

2

1

2

1

2

1

p
+ 1

q
≤ 1

1

p
+ 1

q
≤ 1

2
, α ≥ 2: every distributional solution is parabolic (Thm. 3.9)

min{α, p, q} ≥ 2: parabolic solutions are unique (Thm. 3.7)

1
p

1
q

1
α

Figure 2. Visual depiction of the uniqueness and regularity results for distributional and para-
bolic solutions for fields b ∈ Lα

t L
p
x and initial datum v0 ∈ Lq. Distributional solutions v ∈ L∞

t Lq
x

are well defined in the black wedge. In the blue cube parabolic solutions are unique and in the
red wedge every distributional solution is parabolic.

1.2. Part II. Vanishing viscosity scheme and rates of convergence. The second part
of the paper deals instead with a different, though closely related, problem. The focus now
becomes the linear transport equation associated with a Sobolev vector field b, i.e.

{

∂tu+ div(ub) = 0

u|t=0 = u0,
(TE)

for a given initial datum u0 : R
d → R. It is by now well known that (TE) is deeply connected with

the ordinary differential equation associated to b and more precisely with the regular Lagrangian
flow of b (see Definition 4.3 below). This concept has proven to be the right generalization of
the classical notion of flow in connection with such problems (see e.g. [3, 5]). On the torus, if

b ∈ L1
tW

1,p
x , existence and uniqueness of the regular Lagrangian flow X of b hold [21]: in turn,

a straightforward computation allows to check that the transport of the initial datum along the
characteristics selected by the regular Lagrangian flow always defines a solution to (TE). More
precisely, the function uL(t, x) := u0(X

−1(t, ·)(x)) is a distributional solution to (TE), whenever
u0 ∈ Lq for some q ≥ 1 with 1/p + 1/q ≤ 1. We will refer to uL as the Lagrangian solution.
Remarkably, uL turns out to be the unique distributional solution within the aforementioned
range of integrability.

The need for a selection criterion for (TE). A few years ago, in a series of innovative contribu-
tions, Modena and Székelyhidi constructed a plethora of counterexamples, showing ill-posedness
of the problem (TE). More precisely, in [32, 33] the authors have produced divergence-free,

Sobolev vector fields b ∈ CtW
1,p
x such that (TE) admits infinitely many distributional solu-

tions u ∈ CtL
q
x, with 1/p + 1/q > 1 + σ(d) and ub ∈ L1. Here σ(d) is a dimensional constant,

which has been refined in [31] to σ(d) := 1/d. Yet the situation in the intermediate regime
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1 < 1/p + 1/q ≤ 1 + σ(d) is an open problem (see, however, [10]). Remarkably, in the works
just mentioned, the authors build distributional solutions that do not enjoy typical properties of
smooth solutions, such as the conservation of the Lp norms. It is therefore natural to ask whether
such solutions can be obtained as limit of (physically or numerically) significant approximation
procedures, as for instance the vanishing viscosity method.

The second part of the present paper is devoted to establishing the following theorem, together
with some related results.

Selection Theorem (Vanishing viscosity for linear transport). Let b ∈ L1
tW

1,1
x be a divergence-

free vector field on the torus T
d and let u0 ∈ L1 be a given initial datum. Let (vε0)ε ⊂ L∞

x be
any sequence of functions such that vε0 → u0 strongly in L1

x. Consider the vanishing viscosity
solutions, i.e. the sequence (vε)ε>0 ⊆ L∞((0, T );L∞(Td)) ∩ L2((0, T );H1(Td)) of parabolic
solutions to

{

∂tvε + b · ∇vε = ε∆vε in (0, T )× T
d

vε|t=0 = vε0 in T
d.

(VV)

Then (vε)ε>0 converges in C([0, T ];L1(Td)) to the Lagrangian solution uL to (TE).

We highlight the applicability range of our result, which is completely general: dealing with
the (extreme) case of a W 1,1 field and an L1 solution (in space), we prove that the vanishing
viscosity scheme always acts as a selection principle (even in an integrability regime where the
product ub cannot be defined distributionally) and that the family (vε)ε always selects, in the
limit, the Lagrangian solution uL. Observe that, for the Lagrangian solution, all its Lq-norms
are conserved (recall that we assume the vector field to be divergence-free). In particular, for
u0 ∈ L2, our result rules out the possibility of anomalous dissipation in the vanishing viscosity
limit, that is, it implies that

ε

∫ T

0
‖∇vε‖2L2 dt → 0 as ε → 0.

As in the case of the advection-diffusion equation (ADE), distributional solutions of (TE) ex-
ist even if we require only integrability assumptions on b. However, in contrast to the case of
(ADE), for vector fields outside the Sobolev class there is a wide literature of counterexam-
ples to the uniqueness for (TE), see for example [1, 2, 21, 20]. There are many contexts in
PDEs (conservation laws, fluid dynamics, etc...) in which the notion of distributional solution
is too general to ensure uniqueness and therefore selection criteria are needed to characterize
particularly meaningful solutions. The selection problem for the transport equation has already
been posed in [11] (see also [19]) where the authors considered as a (non) selection criterion the
smooth approximation of the vector field. In particular, it is shown that a smooth approximation
may produce different (Lagrangian) solutions in the limit. Moreover, results of Lagrangianity
for weak solutions of the 2D Euler equations obtained via vanishing viscosity have been es-
tablished in [16, 17], see also [13] for the Lagrangianity of solutions obtained via vortex-blob
approximations.

We present two proofs of the Selection Theorem. The first one is more Eulerian in spirit
and is a slightly expanded version of the one contained in DiPerna-Lions’ original contribution
[21], which is based on a duality argument. We offer a comprehensive, detailed proof which
ultimately reveals the complete generality of the vanishing viscosity scheme, which is able to
bypass the distributional regime. In particular, we cover also the case p = 1 which was left
somehow implicit in [21]. The second proof we provide, instead, has a more Lagrangian nature
and is based on the use of stochastic flows ([8, 12]). At the price of a technical, additional
integrability assumption (which is not needed in the Eulerian proof), this alternative proof of
the Selection Theorem yields quantitative rates of convergence of vε to uL and also quantitative
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(in the viscosity) stability estimates for solutions of the advection-diffusion equation. Such rates
are compared with the ones obtained in the recent works [6] and [34].
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2. Preliminaries and notations

We begin by fixing the notation and recalling some basic facts we will need in the following.

2.1. Notation. Throughout the paper, d ≥ 1 will be a fixed integer. We will denote by T
d :=

R
d/Zd the d-dimensional flat torus and by L d the Lebesgue measure on it. We identify the

d-dimensional flat torus with the cube [0, 1)d and we denote with d the geodesic distance on T
d,

which is given by

d(x, y) = min{|x− y − k| : k ∈ Z
d such that |k| ≤ 2}.

We will use the letters p, q to denote real numbers in [1,+∞] and p′ will be the (Hölder)
conjugate to p. We will adopt the customary notation for Lebesgue spaces Lp(Td) and for
Sobolev spaces W k,p(Td); in particular, Hk(Td) := W k,2(Td). We will denote with ‖ · ‖Lp

(respectively ‖ · ‖Wk,p ,‖ · ‖Hk) the norms of the aforementioned functional spaces, omitting the
domain dependence when not necessary. Every definition below can be adapted in a standard
way to the case of spaces involving time, like e.g. L1([0, T ];Lp(Td)).

Equi-integrability. We recall the definition of equi-integrability for a family of functions in L1:

Definition 2.1 (Equi-integrability). A family {ϕi}i∈I ⊂ L1(Td) is equi-integrable if for every
ε > 0 there exists δ > 0 such that for every Borel set E ⊂ T

d with L d(E) ≤ δ it holds
∫

E
|ϕi|dx ≤ ε for every i ∈ I.

The following well-known results offer useful criteria to check the equi-integrability of a family
of functions in L1:

Theorem 2.2 (Dunford-Pettis, de la Vallée-Poussin). Let {ϕi}i∈I ⊂ L1(Td) be a bounded family.
Then the following are equivalent:

(i) {ϕi}i∈I is equi-integrable;
(ii) {ϕi}i∈I is weakly sequentially pre-compact in L1(Td);
(iii) there exists a non-negative, increasing, convex function Ψ: [0,+∞) → [0,+∞) such that

lim
t→+∞

Ψ(t)

t
= +∞ and sup

i∈I

∫

Td

Ψ(|ϕi|)dx < +∞.

We finish this subsection with the following useful lemma.

Lemma 2.3. Let {ϕi}i∈I ⊂ L1(Td) be a bounded family. Then, {ϕi}i∈I is equi-integrable if and
only if for any r ∈ [1,∞] and ε > 0 there exist {g1i }i∈I ⊂ L1(Td), {g2i } ⊂ Lr(Td), and a constant
Cε > 0 such that

fi = g1i + g2i , sup
i∈I

‖g1i ‖L1 ≤ ε, sup
i∈I

‖g2i ‖Lr ≤ Cε.
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Proof. Let {ϕi}i∈I ⊂ L1(Td) be an equi-integrable sequence such that supi∈I ‖ϕi‖L1 ≤ C. Let
ε > 0 be fixed and let δ > 0 as in Definition 2.1. Then, we define the set

Ai
δ :=

{

x ∈ T
d : |ϕi(x)| >

C

δ

}

,

and by Chebishev inequality we know that

sup
i∈I

L
d(Ai

δ) ≤
δ

C
‖ϕi‖L1 ≤ δ.

So, by the equi-integrability

sup
i∈I

∫

Ai
δ

|ϕi|dx ≤ ε,

and it is now clear that, by defining g1i = ϕiχAi
δ
and g2i = ϕi(1− χAi

δ
), we have that

sup
i∈I

‖gi‖L1 ≤ ε, sup
i∈I

‖g2i ‖Lr ≤ Cε,

since T
d has finite measure.

We now prove the opposite implication. Let r ∈ [1,∞] and ε > 0 be fixed, we consider a
decomposition such that

‖g1i ‖L1 ≤ ε/2, ‖g2i ‖Lr ≤ Cε.

Let us check that we can take δ =
(

ε
2Cε

)r/(r−1)
in the definition of equi-integrability. Indeed, if

A ⊂ T
d is such that L d(A) ≤ δ, we have that
∫

A
|ϕi|dx ≤

∫

A
|g1i |dx+

∫

A
|g2i |dx ≤ ‖g1i ‖L1 + ‖g2i ‖LrL

d(A)(r−1)/r ≤ ε/2 + ε/2 = ε. �

Some Harmonic Analysis tools. We will need to work with weak Lebesgue spaces, denoted by
Mp(Td): for the sake of completeness, we recall here their definition and some useful lemmata.

Definition 2.4. Let u : Td → R be a measurable function. For any 1 ≤ p < ∞ we define

|||u|||pMp = sup
λ>0

{

λp
L

d
(

{x ∈ T
d : |u(x)| > λ}

)}

,

and we define the weak Lebesgue space Mp(Td) as the set of the functions u : Td → R with
|||u|||Mp < ∞. By convention, for p = ∞ we set M∞(Td) = L∞(Td).

Note that ||| · |||Mp is not subadditive, hence it is not a norm. As a consequence, Mp(Td) is
not a Banach space. Moreover, since for every λ > 0

λp
L

d
(

{x ∈ T
d : |u(x)| > λ}

)

=

∫

|u|>λ
λpdx ≤

∫

|u|>λ
|u(x)|pdx ≤ ‖u‖pLp ,

we have the inclusion Lp(Td) ⊂ Mp(Td) and in particular |||u|||Mp ≤ ‖u‖Lp . The following
lemma shows that we can interpolate the spaces M1 and Mp, with p > 1, obtaining a bound on
the L1 norm.

Lemma 2.5. Let u : T
d → [0,∞) be a non-negative measurable function. Then for every

p ∈ (1,∞) we have the interpolation estimate

‖u‖L1 ≤ p

p− 1
|||u|||M1

[

1 + log

( |||u|||Mp

|||u|||M1

)]

,

while for p = ∞ we have

‖u‖L1 ≤ |||u|||M1

[

1 + log

( ‖u‖L∞

|||u|||M1

)]

.
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We recall the definition of the Hardy-Littlewood maximal function.

Definition 2.6. Let f ∈ L1(Td), we define Mf the maximal function of f as

Mf(x) = sup
r>0

1

L d(Br)

∫

Br(x)
|f(y)|dy for every x ∈ T

d.

The following estimates hold.

Lemma 2.7. For every 1 < p ≤ ∞ we have the strong estimate

‖Mf‖Lp ≤ Cd,p‖f‖Lp ,

while for p = 1 only the weak estimate

|||Mf |||M1 ≤ Cd‖f‖L1

holds.

Finally, we recall the following estimate on the different quotients of a W 1,1 function.

Lemma 2.8. Let f ∈ W 1,1(Td). Then there exists a negligible set N ⊂ T
d such that

|f(x)− f(y)| ≤ C(d)d(x, y) (MDf(x) +MDf(y)) ,

for every x, y ∈ T
d \ N , where Du is the distributional derivative of u.

3. On the advection-diffusion equation: Lp theory

In this section, we are interested in the Cauchy problem for the advection-diffusion equation,
namely

{

∂tu+ div(bu) = ∆u in (0, T )× T
d

u|t=0 = u0 in T
d

(3.1)

where the data of the problem are T > 0, the vector field b and the initial datum u0. More
precisely, we want first to present some different notions of solutions (distributional and para-
bolic) and then discuss existence, uniqueness and mutual relationship under general integrability
assumptions on b and u0. For the sake of completeness, we decided to include a self-contained
proof of every result, citing the respective references whenever appropriate.

3.1. Distributional solutions. We start by giving the following definition.

Definition 3.1 (Distributional solution). Let b ∈ L1((0, T );Lp(Td)) be a divergence-free vector
field and u0 ∈ Lq(Td) for p, q such that 1/p + 1/q ≤ 1. A function u ∈ L∞((0, T );Lq(Td)) is a
distributional solution to (3.1) if for any ϕ ∈ C∞

c ([0, T )× T
d) the following equality holds:

∫ T

0

∫

Td

u(∂tϕ+ b · ∇ϕ+∆ϕ)dxdt+

∫

Td

u0ϕ(0, ·)dx = 0.

Notice that in the definition of distributional solutions the assumption that p, q satisfy 1/p +
1/q ≤ 1 is the minimum requirement we need in order to have ub ∈ L1 so that the definition
makes sense. The proof of existence of distributional solutions is well-known and immediately
follows from a classical a priori estimate.

Proposition 3.2. Let b ∈ L1((0, T );Lp(Td)) be a divergence-free vector field and u0 ∈ Lq(Td)
for p, q such that 1/p+ 1/q ≤ 1. Then there exists a distributional solution u ∈ L∞((0, T );Lq(Td))
to (3.1).
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Proof. Let (ρδ)δ be a standard family of mollifiers and let us define b
δ = b ∗ ρδ, uδ0 = u0 ∗ ρδ.

Then, we consider the approximating problem
{

∂tu
δ + div(bδuδ) = ∆uδ

uδ(0, ·) = uδ0.
(3.2)

Being b
δ and uδ0 smooth, there exists a unique smooth solution uδ to (3.2) (see [23]). It is readily

checked that the sequence uδ is equi-bounded in L∞((0, T );Lq(Td)). Indeed, we can multiply
the equation in (3.2) by β′(uδ), where β : R → R is a smooth, convex function: by an easy
application of the chain rule and integrating in space, we get

d

dt

∫

Td

β(uδ(t, x)) dx = −
∫

Td

β′′(uδ(t, x))|∇β(uδ(t, x))|2 dx ≤ 0.

In particular, fixing t > 0 and integrating in time on (0, t) we obtain
∫

Td

β(uδ(t, x)) dx ≤
∫

Td

β(uδ0(x)) dx. (3.3)

By considering a sequence of smooth, convex functions, uniformly convergent to β(s) = |s|q, for
1 < q < ∞, we obtain the following uniform bounds on the Lq-norm of the solutions uδ:

‖uδ(t, ·)‖Lq(Td) ≤ ‖uδ0‖Lq(Td) ≤ ‖u0‖Lq(Td). (3.4)

For q > 1 by standard compactness arguments, we can extract a sub-sequence which converges
weakly-star to a function u ∈ L∞((0, T );Lq(Td)) and it is immediate to deduce that u is a
distributional solution of (3.1) because of the linearity of the equation. For q = ∞, the estimate
(3.4) still holds for every δ > 0: we send q → ∞ in (3.4) and then we can conclude as in
the previous case. For the case q = 1, the compactness in L∞((0, T );L1(Td)) can be obtained
as a consequence of equi-integrability of the family (uδ)δ which follows from (3.3) and (iii) in
Theorem 2.2: we do not present here the full details of this equi-integrability argument and we
refer the reader to the proof of Theorem 4.5 where the same idea is exploited and described in
full details in a slightly more complicated case. �

3.2. Parabolic solutions. A special sub-class of distributional solutions is given by the so-
called parabolic solutions, whose peculiar property is the Sobolev regularity in the space variable.
As we are going to see, this notion of solution is natural for vector fields possessing enough
integrability in the space variable.

Definition 3.3. Let b ∈ L1((0, T );L2(Td)) a divergence-free vector field and u0 ∈ L2(Td). A
function u ∈ L∞((0, T );L2(Td)) is a parabolic solution to (3.1) if it is a distributional solution
to (3.1) and furthermore u ∈ L2((0, T );H1(Td)).

We will sometimes refer to the space L2((0, T );H1(Td)) as the parabolic class.

3.2.1. Existence. We now prove that, under the assumptions above, there exists at least one
solution in the parabolic class:

Proposition 3.4. Let b ∈ L1((0, T );L2(Td)) be a divergence-free vector field and u0 ∈ L2(Td).
Then there exists at least one parabolic solution.

Proof. The proof follows the same idea of the one of Proposition 3.2. We consider the ap-
proximating problems (3.2) and their unique smooth solutions uδ. Choosing β(s) = s2/2 and
integrating in time on (0, t), we get the following energy balance

1

2

∫

Td

|uδ(t, x)|2dx+

∫ t

0

∫

Td

|∇uδ(s, x)|2dxds = 1

2

∫

Td

|uδ0(x)|2dx. (3.5)

Standard weak compactness arguments yield the conclusion. �
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Remark 3.5. In the proofs of Proposition 3.2 and Proposition 3.4, we have constructed solutions
as limit of solutions (uδ)δ associated with a regularization (bδ)δ of the vector field and (uδ0)δ of
the initial datum. This strategy will be used once more later in the paper and we explicitly remark
here that the family (uδ)δ satisfies two a-priori estimates:

(E1) supt∈(0,T ) ‖uδ‖Lq ≤ C‖u0‖Lq if u0 ∈ Lq(Td);

(E2)
∫ T
0 ‖∇uδ(t, ·)‖L2 dt ≤ C‖u0‖L2 if u0 ∈ L2(Td).

These bounds follow integrating by parts and exploiting the divergence-free assumption on the
vector field, in particular they are independent of the integrability of b. However, we need the
assumption b ∈ L1((0, T );L2(Td)) in Proposition 3.4 to give a distributional meaning to the
product ub.

3.2.2. Uniqueness of solutions in the parabolic class. The uniqueness of solutions in the parabolic
class is a consequence of the following lemma, which is a straightforward modification of [28,
Lemma 5.1].

Lemma 3.6 (Commutator estimates I). Consider a vector field b ∈ L2([0, T ];Lp(Td)) and a
function w ∈ L∞([0, T ];Lq(Td)), where p, q are positive real numbers with 1/p+1/q ≤ 1. Let (ρδ)δ
be a family of smooth convoutions kernels. Define the commutator of w and b as follows:

rδ := b · ∇(w ∗ ρδ)− (b · ∇w) ∗ ρδ. (3.6)

If ∇w ∈ L2([0, T ];Lq(Td)), then rδ converges to 0 in L1([0, T ]× T
d).

Proof. Observe that, for a.e. t ∈ [0, T ] and a.e. x ∈ T
d, we can explicitly write the commutator

in the following form:

rδ(t, x) = [b · ∇(w ∗ ρδ)](t, x)− [(b · ∇w) ∗ ρδ](t, x)

= b(t, x) · ∇
∫

Td

w(t, x− y)ρδ(y)dy −
∫

Td

b(t, x− y) · ∇w(t, x− y)ρδ(y)dy

=

∫

Td

ρδ(y) (b(t, x)− b(t, x− y)) · ∇w(t, x− y)dy

=

∫

Td

ρ(z) (b(t, x)− b(t, x− δz)) · ∇w(t, x− δz)dz.

We thus have that
∫∫

[0,T ]×Td

|rδ(t, x)|dtdx =

∫∫

[0,T ]×Td

∣

∣

∣

∣

∫

Td

ρ(z) (b(t, x)− b(t, x− δz)) · ∇w(t, x− δz)dz

∣

∣

∣

∣

dtdx

≤
∫

Td

ρ(z)

∫ T

0

∫

Td

|b(t, x)− b(t, x− δz)||∇w(t, x− δz)|dxdtdz.
(3.7)

Since (t, x) 7→ b(t, x)− b(t, x− δz) converges to 0 in measure (for every fixed z), the conclusion
follows by the Dominated Convergence Theorem. �

Having at our disposal the previous lemma, we can now show the uniqueness of solutions in
the parabolic class, arguing as in [28].

Theorem 3.7 (Uniqueness of parabolic solutions). Consider a divergence-free vector field b ∈
L2([0, T ];L2(Td)). Then there exists at most one parabolic solution to (3.1).

Proof. The uniqueness is a rather straightforward consequence of the strong convergence of
commutators established in Lemma 3.6. More precisely, since the problem is linear, it suffices
to show that, if u is a parabolic solution to (3.1) with u0 = 0, then u = 0. Consider again a
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standard family of mollifiers (ρδ)δ and set uδ := u ∗ ρδ. Then, a direct computation shows that
uδ solves the following equation

{

∂tu
δ + div(buδ) = ∆uδ + rδ

uδ(0, ·) = 0
(3.8)

where rδ is the commutator between u and b, defined as in (3.6). Consider now a smooth
function β ∈ C2(R), with the following properties: β(s) ≥ 0, |β′(s)| ≤ C for some C > 0 and
β′′(s) ≥ 0 for any s ∈ R with β(s) = 0 if, and only if, s = 0 (e.g. one could easily verify that the
function which satisfies β′(s) = arctan(s) with β(0) = 0 is an admissible choice). Multiplying
the equation by β′(uδ) and integrating on [0, t]× T

d we obtain
∫

Td

β(uδ)dx+

∫ t

0

∫

Td

β′′(uδ)|∇uδ|2dxds =
∫ t

0

∫

Td

β′(uδ)rδdxds.

We now let δ → 0: using the uniform bound on β′ and Lemma 3.6 we deduce that the right-hand
side converges to 0 and thus

∫

Rd

β(u(t, x))dx = −
∫ t

0

∫

Rd

β′′(u)|∇u|2dxds ≤ 0.

Since t ∈ [0, T ] is arbitrary, the conclusion u = 0 easily follows. �

If the vector field is less integrable than L2(Td), then a severe phenomenon of non-uniqueness
may arise. In particular, in [31] counter-examples are constructed via convex integration tech-
niques: it is shown that there exist infinitely many solutions to (3.1) in the class C([0, T ];H1(Td))
with a divergence-free vector field b ∈ C([0, T ];Lp(Td)) with 1 ≤ p < 2d/d+ 2, for which it addi-
tionally holds ub ∈ L1((0, T )× T

d). This, however, leaves open the following questions.

(Q1) What happens in the case 2d/d+ 2 ≤ p < 2?
(Q2) If uniqueness holds for p as in (Q1), is it possible to show non-uniqueness of solutions in

the larger class L2((0, T );H1(Td)) for vector fields which are merely L2 in time (instead
than continuous)?

(Q3) For a vector field b ∈ Lr((0, T );L2(Td)) with 1 ≤ r < 2, are parabolic solutions unique?

A strategy to tackle (Q2) could be to exploit “time-intermettency” as in [7, 10], which allows to
increase the space integrability at the expense of the time integrability.

3.3. The regularity result. At this point, a natural question is under which conditions a
distributional solution is a parabolic solution. In order to address this question, we will need the
following version of the commutator lemma which, to the best of our knowledge, is not present
in the literature:

Lemma 3.8 (Commutator estimates II). Consider a vector field b ∈ L2([0, T ];Lp(Td)) and a
function w ∈ L∞([0, T ];Lq(Td)), where p, q are positive real numbers with 1/p + 1/q ≤ 1/2. Let
(ρδ)δ be a family of smooth convoutions kernels and define rδ as in (3.6). Then rδ converges to
0 in L2([0, T ];H−1(Td)).

Proof. We write the commutator as

rδ = [b · ∇(w ∗ ρδ)]− [(b · ∇w) ∗ ρδ] = div[b(w ∗ ρδ)]− [div(bw) ∗ ρδ] = div[b(w ∗ ρδ)− (bw) ∗ ρδ],

in the sense of distributions on [0, T ]× T
d. We can thus write

rδ(t, x) = divx

(
∫

Td

[b(t, x)− b(t, x− y)]w(t, x− y)ρδ(y)dy

)



ON THE ADVECTION-DIFFUSION EQUATION WITH ROUGH COEFFICIENTS 13

and we can estimate

‖rδ‖L2(H−1) = sup
‖ϕ‖

L2H1≤1

∣

∣

∣

∣

∣

∫∫

[0,T ]×Td

rδ(t, x)ϕ(t, x)dtdx

∣

∣

∣

∣

∣

= sup
‖ϕ‖

L2H1≤1

∣

∣

∣

∣

∣

∫∫

[0,T ]×Td

(
∫

Td

[b(t, x)− b(t, x− y)]w(t, x− y)ρδ(y)dy

)

∇ϕ(t, x)dtdx

∣

∣

∣

∣

∣

≤ sup
‖ϕ‖

L2H1≤1

∫

Td

ρ(z)

∫ T

0

∫

Td

|b(t, x)− b(t, x− δz)||w(t, x− δz)||∇ϕ(t, x)|dxdtdz.

Notice now that, as in the proof of Lemma 3.6, the map (t, x) 7→ b(t, x)−b(t, x−δz) converges to
0 in measure (for every fixed z). Hölder inequality on the product space [0, T ]×T

d with exponents
(p, q, 2) (in space) and (2,∞, 2) (in time) allows to apply Lebesgue Dominated Convergence
Theorem and we can therefore conclude that rδ → 0 in L2(H−1). �

We can now present a regularity result which guarantees that a distributional solution in the
class L∞((0, T );Lq(Td)) is actually in L2((0, T );H1(Td)) whenever 1/p + 1/q ≤ 1/2.

Theorem 3.9. Let p, q ≥ 1 such that 1/p + 1/q ≤ 1/2. If b ∈ L2([0, T ];Lp(Td)) is a divergence-
free vector field and u ∈ L∞((0, T );Lq(Td)) is a distributional solution to (3.1), then u ∈
L2((0, T );H1(Td)) and satisfies

1

2

∫

Td

|u|2dx+

∫ T

0

∫

Td

|∇u|2dxdt = 1

2

∫

Td

|u0|2dx. (3.9)

Proof. To commence, we observe that 1/p+ 1/q ≤ 1/2 clearly implies that both p, q ≥ 2 and, since
we are on the torus, any u ∈ L∞((0, T );Lq(Td)) lies also in L∞((0, T );L2(Td)). We thus need to
prove ∇u ∈ L2((0, T );L2(Td)) and this will be achieved exhibiting an approximating sequence
(uδ)δ enjoying uniform bounds on ∇uδ: in turn, this estimate will be obtained as a consequence
of Lemma 3.8.

Let (ρδ)δ be a standard family of mollifiers. As in the proof of Theorem 3.7, the function
uδ := u∗ρδ solves (3.8). Let us now prove an estimate on theH1-norm of uδ which is independent
of δ: multiply the equation (3.8) by uδ and integrate by parts to obtain

1

2

∫

Td

|uδ|2dx+

∫ T

0

∫

Td

|∇uδ|2dxdt = 1

2

∫

Td

|uδ0|2dx+

∫ T

0

∫

Td

rδuδdxdt. (3.10)

On the one hand, by standard properties of convolutions, we can estimate the first term in the
right-hand side of (3.10) as

∫

Td

|uδ0|2dx = ‖uδ0‖2L2 ≤ Cd‖uδ0‖2Lq ≤ Cd‖u0‖2Lq (3.11)
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On the other hand, for the second term in the right-hand side of (3.10) we can apply Young’s
inequality to obtain
∫ T

0

∫

Td

rδ(t, x)uδ(t, x)dxdt ≤ ‖rδ‖L2H−1‖uδ‖L2H1

≤ C(T )‖rδ‖2L2H−1 +
1

4(1 + T )
‖uδ‖2L2H1

= C(T )‖rδ‖2L2H−1 +
1

4(1 + T )

(

‖uδ‖2L2L2 + ‖∇uδ‖2L2L2

)

≤ C(T )‖rδ‖2L2H−1 +
1

4(1 + T )

(

T‖uδ‖2L∞L2 + ‖∇uδ‖2L2L2

)

≤ C(T )‖rδ‖2L2H−1 +
1

4

(

‖uδ‖2L∞L2 + ‖∇uδ‖2L2L2

)

.

(3.12)

Since rδ goes to 0 in L2(H−1), the term ‖rδ‖L2H−1 is equi-bounded. Combining (3.11), (3.12)
and plugging them into (3.10) we can conclude

‖uδ‖2L∞L2 + ‖∇uδ‖2L2L2 ≤ C(d, ‖u0‖Lq),

for some constant C which does not depend on δ: this shows that the distributional solution
u is parabolic and thus unique thanks to Theorem 3.7. Finally, (3.9) immediately follows from
(3.10) sending δ → 0. �

The assumption on the time-integrability of the vector field in the above theorem suggests
the following question.

(Q4) Let u ∈ L∞((0, T );Lq(Td)) be a distributional solution associated to a divergence-free
vector field b ∈ Lr((0, T );Lp(Td)) with 1 ≤ r < 2, and assume that 1/p + 1/q ≤ 1/2. Is u
a parabolic solution?

Combining Theorem 3.9 and Theorem 3.7, we obtain the following corollary.

Corollary 3.10. Let p, q ≥ 1 such that 1/p+ 1/q ≤ 1/2. If b ∈ L2([0, T ];Lp(Td)) is a divergence-
free vector field, then there exists at most one distributional solution u ∈ L∞((0, T );Lq(Td)).

At this point, it is natural to wonder whether in the regime 1/2 < 1/p + 1/q ≤ 1 there exist
distributional solutions that are not parabolic and, therefore, whether uniqueness of parabolic
solutions holds but uniqueness of distributional solutions does not. A partial answer to this,
in dimension d > 2, can be obtained using [31, Theorem 1.4], which gives non uniqueness of
distributional solutions in the regime 1/p + 1/q = 1 and p < d (notice that in those examples
the vector field and the solution are bounded in time). A particular case of interest (somewhat
reminiscent of the case of the Navier-Stokes equations in [7]) is when p = q = 2: with such a
choice, one obtains an example where there exist infinitely many distributional solutions, despite
the parabolic one is unique in view of Theorem 3.7.

However, the convex integration schemes of [31] are not able to cover the case d = 2. We
therefore formulate the following question.

(Q5) Does it exist a divergence-free vector field b ∈ L2((0, T );L2(T2)) and a distributional
solution u ∈ L∞((0, T );L2(T2)) which is not parabolic, i.e. u /∈ L2((0, T );H1(T2))?
What if the vector field b ∈ L2(T2) is autonomous?

As a last point, we observe that the situation in the intermediate regime 1/2 < 1/p + 1/q < 1 is
completely open:

(Q6) Let 1/2 < 1/p + 1/q < 1. Does it exist a divergence-free vector field b ∈ L2((0, T );Lp(Td))
and a distributional solution u ∈ L∞((0, T );Lq(Td)) which is not parabolic, i.e. u /∈
L2((0, T );H1(Td))?
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It is worth noticing that a partial answer to (Q6) is given in [28, pag. 70]: when 1 ≤ q < 2
we cannot expect ∇u ∈ L2

tL
2
x since this does not hold for the heat equation.

4. The vanishing viscosity scheme I: setup and Eulerian proof

Starting from this section onwards, we slightly change the focus of our investigation and we
move towards the transport equation side. Our overarching goal is indeed the study of the
well-posedeness of the transport equation in the regime of Sobolev vector fields: we plan to
tackle such question by setting up a vanishing viscosity scheme and establishing its convergence
towards a unique limit, also ruling out the possibility of anomalous dissipation in this setting.
In order to achieve such a result, we need first to collect and formulate in our notations some
(mostly known) results on the advection-diffusion equation drifted by Sobolev vector fields. This
is indeed the content of the next paragraph.

4.1. On the advection-diffusion equation drifted by a Sobolev vector field. We recall
the following proposition.

Proposition 4.1 ([28, Proposition 5.3]). Let b ∈ L1((0, T );W 1,1(Td)) be a divergence-free vector
field and let v0 ∈ L∞(Td) be given. Then the problem

{

∂tv + div(bv) = ∆v in (0, T )× T
d

v|t=0 = v0 in T
d

(4.1)

admits a unique parabolic solution v ∈ L∞((0, T );L2(Td))∩L2((0, T ), H1(Td)). Furthermore, it
holds v ∈ L∞((0, T );L∞(Td)) and

‖v‖L∞((0,T );Ls(Td)) ≤ ‖v0‖Ls(Td) (4.2)

for any real number s ∈ [1,+∞].

Remark 4.2 (Equation with a forcing term). For future use, we explicitly observe that the
same conclusions of Proposition 4.1 apply as well to the equation with a forcing term. More
precisely, if χ ∈ C∞((0, T )× T

d) is a smooth function and v0 ∈ L∞(Td), then the problem
{

∂tv + b · ∇v = ∆v + χ in (0, T )× T
d

v|t=0 = v0 in T
d

has a unique parabolic solution. Observe also that via the transformation v(t, x) 7→ v(T − t,−x)
we deduce well-posedness results also for the backward equation

{

−∂tv − b · ∇v = ∆v + χ in (0, T )× T
d

v|t=T = vT in T
d.

(4.3)

For future use, notice that if vT = 0 then the problem (4.3) admits a unique solution in
L∞((0, T );L∞(Td)) and that it holds

‖v‖L∞((0,T );L∞(Td)) ≤ C(‖χ‖C0(Td)) < +∞.

4.2. The transport equation. In the following, we will consider the initial value problem for
the tranport/continuity equation

{

∂tu+ div(bu) = 0 in (0, T )× T
d

u|t=0 = u0 in T
d

(4.4)

where T > 0, b : [0, T ] × T
d → R

d is a given divergence-free vector field and u0 : T
d → R is the

initial datum. As already done in Section 4, we will work in Sobolev classes for the velocity field
and the equation (4.4) will be understood in the sense of distributions. We explicitly observe
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that, since we are working on the torus, the integrability of b is sufficient to prevent the blow
up of its trajectories and thus we can work with the regular Lagrangian flow of b:

Definition 4.3 (Regular Lagrangian flow). Let b ∈ L1((0, T );L1(Td)) be a divergence-free
vector field. A map X : (0, T ) × (0, T ) × T

d → T
d is a regular Lagrangian flow of b if the

following conditions hold:

• for a.e. x ∈ T
d and for any t ∈ [0, T ] the map s ∈ [0, T ] 7→ X(t, s, x) = Xt,s(x) ∈ T

d is
an absolutely continuous solution of

{

∂sXt,s(x) = b(s,Xt,s(x)) s ∈ [0, T ],

Xt,t(x) = x.

• For any t ∈ [0, T ] and s ∈ [0, T ] the map x ∈ T
d 7→ Xt,s(x) ∈ T

d is measure-preserving.

Existence and uniqueness of the regular Lagrangian flow of a Sobolev, divergence-free vector
field b are ensured by [21] and therefore we can give the following definition:

Definition 4.4. Let b ∈ L1((0, T );W 1,1(Td)) be a divergence-free vector field and letX : (0, T )×
(0, T )× T

d → T
d be its regular Lagrangian flow. If u0 ∈ L1(Td), then the map

uL(t, x) := u0(Xt,0(x))

is called Lagrangian solution to (4.4).

Observe that, under the assumption that b is divergence-free, if u0b ∈ L1(Td) then the
Lagrangian solution is also a distributional solution to (4.4).

4.3. Setup of the vanishing viscosity scheme. We consider the problem
{

∂tu+ b · ∇u = 0 in (0, T )× T
d

u|t=0 = u0 in T
d

(4.5)

with a Sobolev, divergence-free vector field b and an initial datum u0 ∈ L1(Td). For each ε > 0
we introduce the parabolic problem

{

∂tvε + b · ∇vε = ε∆vε in (0, T )× T
d

vε|t=0 = vε0 in T
d

(4.6)

being vε0 a suitable bounded approximation of the initial datum u0. In view of Proposition
4.1, the problem (4.6) is well-posed within parabolic solutions, namely the family (vε)ε>0 is
well-defined. Our goal is to establish (weak) compactness bounds on the family (vε)ε>0 and
characterize its limit points: we show that a “selection principle” holds: the sequence (vε)ε
always converges as ε → 0 to the Lagrangian solution to (4.5).

The precise statement of the main result of this section is a refinement of [21, Theorem IV.1]
and reads as follows:

Theorem 4.5. Let b ∈ L1((0, T );W 1,1(Td)) be a divergence-free vector field and let u0 ∈ L1(Td)
be a given initial datum. Let (vε0)ε ⊂ L∞(Td) be any sequence of functions such that vε0 → u0
strongly in L1(Td). Then the sequence (vε)ε>0 ⊆ L∞((0, T );L∞(Td)) ∩ L2((0, T );H1(Td)) of
solutions to (4.6) converges in C([0, T ];L1(Td)) to the (unique) Lagrangian solution to (4.4).

Proof. We split the proof in several steps.
Step 1. Parabolic well-posedness and compactness (equi-integrability). We begin

with the study of the problem (4.6). From Proposition 4.1, we deduce that for every fixed ε > 0
there exists a unique function vε ∈ L∞((0, T );L∞(Td))∩L2((0, T );H1(Td)) solving (4.6), which
moreover satisfies

‖vε‖L∞((0,T );Ls(Td)) ≤ ‖vε0‖Ls(Td),
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for any s ∈ [1,+∞]. Since u0 ∈ L1, the family (vε)ε is in general not equi-bounded neither in
L∞((0, T );L∞(Td)) nor in L2((0, T );H1(Rd)). However, since vε0 → u0 strongly in L1(Rd), we
get for s = 1

‖vε‖L∞((0,T );L1(Td)) ≤ ‖vε0‖L1(Td) ≤ C < +∞ (4.7)

for some constant C > 0 independent of ε. This is, however, still not sufficient to obtain weak
compactness in L1, as we need to show the equi-integrability of the family (vε)ε>0. To do so,
we argue in the following way: since vε0 → u0 strongly in L1(Td), by Theorem 2.2, there exists
a convex, increasing function Ψ: [0,+∞] → [0,+∞] such that Ψ(0) = 0 and

lim
s→∞

Ψ(s)

s
= ∞ and sup

ε>0

∫

Rd

Ψ(|vε0(x)|) dx =: C < ∞. (4.8)

Without loss of generality, we can assume that Ψ is smooth. By an easy approximation argument
(as already done several times before), we can multiply the equation (4.6) by Ψ′(|vε|) and we
obtain

d

dt

∫

Td

Ψ(|vε(τ, x)|) dx+ ε

∫

Td

Ψ′′(|vε(τ, x)|)|∇(|vε|)|2 dx = 0.

The convexity of Ψ and an integration in time on (0, t) give
∫

Td

Ψ(|vε(t, x)|) dx ≤ C,

where C is the same constant as in (4.8). Since t is arbitrary,

sup
t∈(0,T )

∫

Td

Ψ(|vε(t, x)|) dx ≤ C. (4.9)

Since the constant C is independent of ε, we can resort to Point (iii) of Theorem 2.2 and
we infer that the family (vε)ε>0 is weakly-precompact in L∞((0, T );L1(Td)). Therefore, there
exists a function uV ∈ L∞((0, T );L1(Td)) such that vε ⇀ uV in L∞((0, T );L1(Td)) (up to a
non-relabelled subsequence).

Step 2. Identification of the limit via duality I. We now want to exploit a duality
argument. Let χ ∈ C∞((0, T )× T

d) be arbitrary. By Remark 4.2, for every ε > 0, there exists
a unique function ϑε ∈ L∞((0, T );L∞(Td)) ∩ L2((0, T );H1(Td)) solving

{

−∂tϑε − b · ∇ϑε = ε∆ϑε + χ in (0, T )× T
d

ϑε|t=T = 0 in T
d.

(4.10)

The family (ϑε)ε>0 is uniformly bounded in L∞((0, T );L∞(Td)) so, up to a subsequence, the
family (ϑε)ε>0 converges in C([0, T ];w∗ − L∞(Td)) to a function ϑ ∈ C([0, T ];w∗ − L∞(Td))
solving the backward, inhomogenous transport equation

{

−∂tϑ− b · ∇ϑ = χ in (0, T )× T
d

ϑ|t=T = 0 in T
d.

(4.11)

By [21], the problem (4.11) is well-posed in L∞((0, T );L∞(Td)) and thus ϑ coincides with the
unique solution to (4.11) which lies in C([0, T ];L∞(Td)). In addition, this implies that the whole
sequence (ϑε)ε>0 converges to ϑ (in other words, the passage to a subsequence is not needed).
For future use, observe that it also holds that

ϑε(0, ·) ⇀ ϑ(0, ·) in L∞(Td) (4.12)

and via a straightforward computation one also obtains the Duhamel representation formula

ϑ(t,X0,t(x)) =

∫ T

t
χ(s,X0,s(x)) ds, ∀x ∈ T

d, t ∈ [0, T ]. (4.13)
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Step 3. Identification of the limit via duality II. We now consider the regularized
versions of problem (4.6) and (4.10). Let ρ be a non-negative, radially symmetric convolution
kernel and set for ε, δ > 0

vδε := vε ∗ ρδ, ϑδ
ε := ϑε ∗ ρδ.

The smooth functions vε,δ and ϑε,δ solve respectively the problems
{

∂tv
δ
ε + b · ∇vδε = rε,δv + ε∆vδε in (0, T )× T

d

vδε |t=0 = vε,δ0 in T
d

(4.14)

and
{

−∂tϑ
δ
ε − b · ∇ϑδ

ε = rε,δϑ + ε∆ϑδ
ε + χδ in (0, T )× T

d

ϑδ
ε|t=T = 0, in T

d
(4.15)

where

χδ := χ ∗ ρδ

and the commutators are defined as

rε,δv := b · ∇vδε − (b · ∇vε) ∗ ρδ and rε,δϑ := b · ∇ϑδ
ε − (b · ∇ϑε) ∗ ρδ.

Multiplying (4.14) times ϑδ
ε, applying Fubini’s Theorem and integrating by parts in time and

space we obtain

0 =

∫∫

(0,T )×Td

[

(∂tv
δ
ε)ϑ

δ
ε + b · (∇vδε)ϑ

δ
ε − rε,δv ϑδ

ε − ε(∆vε)ϑ
δ
ε

]

dtdx

=

∫∫

(0,T )×Td

vδε

[

−∂tϑ
δ
ε − b · ∇ϑδ

ε − ε∆ϑδ
ε

]

dt dx−
∫

Td

vε,δ(0, x)ϑδ
ε(0, x) dx

−
∫∫

(0,T )×Td

rε,δv ϑδ
ε dtdx

(4.15)
=

∫∫

(0,T )×Td

vδε(r
ε,δ
ϑ + χδ) dt dx−

∫

Td

vε,δ(0, x)ϑδ
ε(0, x) dx−

∫∫

(0,T )×Td

rε,δv ϑδ
ε dtdx

=

∫∫

(0,T )×Td

vδεχ
δ dtdx+

∫∫

(0,T )×Td

(vδεr
ε,δ
ϑ − rε,δv ϑδ

ε) dtdx−
∫

Td

vε,δ(0, x)ϑδ
ε(0, x) dx

=: (I) + (II) + (III).

Keeping ε > 0 fixed, we now send δ → 0. The two commutators can be written in the form

rε,δv (t, x) =

∫

Td

vε(t, x+ δy)

[

b(t, x+ δy)− b(t, x)

δ

]

· ∇ρ(y) dy

and

rε,δϑ (t, x) =

∫

Td

ϑε(t, x+ δy)

[

b(t, x+ δy)− b(t, x)

δ

]

· ∇ρ(y) dy.

Since vε, ϑε ∈ L∞((0, T );L∞(Td)), arguing as in the proof of Proposition 4.1, we can conclude

that both rε,δv and rε,δϑ converge to 0 strongly in L1((0, T ) × T
d) as δ → 0. This observation,

combined with the uniform L∞ bounds on vδε and ϑδ
ε, shows that (II) → 0 as δ → 0.

For the term (I), instead, we can use the strong convergence of vδε → vε and the uniform
convergence of χδ → χ. Finally, for (III), by standard results about convolutions

vε,δ(0, ·) → vε0

strongly in L1(Td) as δ → 0; furthermore, we have

ϑδ
ε(0, ·) → ϑε(0, ·)
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weakly∗ in L∞(Td) as δ → 0. Such convergence follows from a standard argument in the
framework of evolutionary PDEs (see e.g. [18, Lemma 3.7]) which establishes the weak continuity
in time of the solutions to advection-diffusion or transport equations.

Thus, for any ε > 0, it holds
∫∫

(0,T )×Td

vε(t, x)χ(t, x) dtdx =

∫

Td

vε0(x)ϑε(0, x) dx.

We now send ε → 0, getting
∫∫

(0,T )×Td

uV(t, x)χ(t, x) dtdx =

∫

Td

u0(x)ϑ(0, x) dx. (4.16)

In the last passage, we have used:

• vε ⇀ uV weakly in L∞((0, T );L1(Td));
• vε0 → u0 strongly in L1(Td);
• ϑε(0, ·) ⇀ ϑ(0, ·) weakly∗ in L∞(Td) by (4.12).

Step 4. Duality of the Lagrangian solution. A direct computation shows that the
Lagrangian solution uL satisfies

∫∫

(0,T )×Td

uL(t, x)χ(t, x) dtdx =

∫∫

(0,T )×Td

u0(Xt,0(x))χ(t, x) dtdx

=

∫ T

0

∫

Td

u0(y)χ(t,X0,t(y)) dt dy

=

∫

Td

u0(y)

∫ T

0
χ(t,X0,t(y)) dt dy

(4.13)
=

∫

Td

u0(x)ϑ(0, x) dx.

(4.17)

Hence, comparing (4.16) and (4.17), we obtain
∫∫

(0,T )×Td

(uV(t, x)− uL(t, x))χ(t, x) dtdx = 0.

Being χ ∈ C∞((0, T ) × T
d) arbitrary, we have thus obtained uV = uL a.e. and this concludes

the proof.
Step 5. Upgrade to strong convergence. The convergence of (vε)ε>0 to the Lagrangian

solution is strong in C([0, T ];L1(Td)). This follows from [12, Lemma 3.3]: indeed, the regularity
assumption (H1’) of [12, Lemma 3.3] includes the case b ∈ L1((0, T );W 1,1(Td)), and the growth
assumption (H2) is trivially satisfied as already remarked in Section 2. �

Remark 4.6. If u0 ∈ L2(Td), the same argument as in the proof of Theorem 4.5 gives that
(vε)ε converges in C([0, T ];L2(Td)) to the Lagrangian solution of (4.4). In particular, from the
identity

1

2
‖vε(t, ·)‖2L2 + ε

∫ t

0
‖∇vε(s, ·)‖2L2ds =

1

2
‖vε(0, ·)‖2L2

valid for every ε > 0 we deduce that

ε

∫ t

0
‖∇vε(s, ·)‖2L2ds → 0 as ε → 0

for every t > 0. This means that no anomalous dissipation is possible for the vanishing viscosity
limit in the case b ∈ L1((0, T );W 1,1(Td)) and u ∈ L∞((0, T );L2(Td)), even though the solution
lacks the integrability required for the DiPerna-Lions’ theory to apply.
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In a similar spirit, if u0 ∈ Lq(Td), we obtain that

‖u(t, ·)‖Lq(Td) = ‖u0‖Lq(Td),

and more generally all Casimirs of the solution obtained as vanishing viscosity limit are con-
served, that is for every f and for every t > 0 it holds

∫

Td

f(u(t, x)) dx =

∫

Td

f(u0(x)) dx.

On the other hand, vector fields in the class L1((0, T );Cα(Td)), with d ≥ 2 and α ∈ [0, 1),
may exhibit anomalous dissipation as shown in [22].

5. The vanishing viscosity scheme II: Stochastic flows and Lagrangian proof

5.1. Preliminaries on stochastic flows. We introduce the stochastic Lagrangian formulation
of the system (4.6). Let (Ω, (Ft)t≥0,P) be a given filtered probability space, and let Wt be a
T
d-valued Brownian motion adapted to the backward filtration, i.e. for any fixed t ∈ [0, T ] and

any s ∈ [0, t], the Brownian motion Ws is such that Wt = 0. We have the following definition.

Definition 5.1 (Stochastic flows). Let ε > 0 and let b ∈ L1((0, T );L1(Td)) be a divergence-free
vector field. A map X

ε : (0, T )× (0, T )× T
d × Ω → T

d is a stochastic flow of b if

• for any t ∈ [0, T ], for any x ∈ T
d and for a.e. ω ∈ Ω, the map s ∈ [0, t] 7→ X

ε(t, s, x, ω) =
X

ε
t,s(x, ω) ∈ T

d is a continuous solution to
{

dXε
t,s(x, ω) = b(s,Xε

t,s(x, ω))ds+
√
2ε dWs(ω), s ∈ [0, t),

X
ε
t,t = x,

(5.1)

• for any t ∈ [0, T ] and s ∈ [0, t] and a.e. ω ∈ Ω the map x ∈ T
d 7→ X

ε
t,s(x, ω) ∈ T

d is
measure preserving.

The celebrated Feynman-Kac formula, see [25], gives an explicit representation of the solution
vε of (4.6) in terms of the stochastic flow of b, that is

vε(t, x) = E[vε0(X
ε
t,0(x))],

where we have used the standard notation E[f ] to denote the average with respect to P, that is

E[f ] :=

∫

Ω
f(ω)dP(ω).

We remark that by considering a divergence-free vector field b ∈ L1((0, T );W 1,1(Td)) we have
strong existence and pathwise uniqueness for (5.1): this means that we can construct a solution
X

ε to (5.1) on any given filtered probability space equipped with any given adapted Brownian
motion, see [8]. We remark that, since we are working on the torus, the boundedness assumption
in [8] can be dropped.

5.2. The Lagrangian proof. In this subsection, we aim at giving another proof (exploiting
Lagrangian tecnhiques) of the convergence of the vanishing viscosity scheme. In order to do
that, we first establish some stability estimates between the stochastic and the deterministic
flows.

Lemma 5.2. Let b ∈ L1((0, T );W 1,p(Td)) be a divergence-free vector field, where p ≥ 1. Let
X,Xε be, respectively, the regular Lagrangian flow and the stochastic flow of b. Then,

(i) if p = 1 and b ∈ Lq((0, T ) × T
d) for some q > 1, then for every γ > 0 there exists a

constant Cγ such that for a.e. t ∈ [0, T ] and s ∈ [0, t]
∫

Td

E[d(Xε
t,s(x),Xt,s(x))]dx ≤ C(T, p)

(

4
√
ε+

Cγ

| ln ε| +
1

| ln√ε|γ
[

1 + ln+
(‖b‖Lq√

εγ

)])

. (5.2)
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(ii) If p > 1, there exists a constant C(T, p) such that for a.e. t ∈ [0, T ] and s ∈ [0, t]
∫

Td

E[d(Xε
t,s(x),Xt,s(x))]dx ≤ C(T, p)

(

4
√
ε+

‖∇b‖L1Lp

| ln ε|

)

. (5.3)

Moreover, the estimates (5.2), (5.3) give the L1-convengence of Xε
t,s towards Xt,s as ε → 0.

Proof. We divide the proof in several steps.
Step 1. The case p = 1. For any t ∈ (0, T ), a.e. ω ∈ Ω and a.e. x ∈ T

d, the difference of
the flows Xε −X satisfies the following S.D.E. for s ∈ [0, t]

{

d(Xε
t,s(x, ω)−Xt,s(x)) = (b(s,Xε

t,s(x, ω))− b(s,Xt,s(x))) ds+
√
2εdWs(ω),

X
ε
t,t(x, ω)−Xt,t(x) = 0.

(5.4)

We define the function the function qδ(y) = ln
(

1 + |y|2

δ2

)

and the related functional Qδ
ε as

Qδ
ε(t, s, x, ω) := qδ(X

ε
t,s(x, ω)−Xt,s(x)) = ln

(

1 +
|Xε

t,s(x, ω)−Xt,s(x)|2
δ2

)

, (5.5)

where δ > 0 is a fixed parameter that will be chosen later. An application of Itô’s formula gives
that
∫

Td

E

[

Qδ
ε(t, s, x)

]

dx =

∫ t

s

∫

Td

E
[

∇yqδ(t, τ,X
ε
t,τ (x)−Xt,τ (x)) ·

(

b(τ,Xε
t,τ (x))− b(τ,Xt,τ (x))

)]

dxdτ

+ ε

∫ t

s

∫

Td

E
[

∇2
yqδ(t, τ,X

ε
t,τ (x)−Xt,τ (x))

]

dxdτ,

and from the inequalities
∣

∣

∣

∣

∇ ln

(

1 +
|y|2
δ2

)∣

∣

∣

∣

≤ C

δ + |y| ,
∣

∣

∣

∣

∇2 ln

(

1 +
|y|2
δ2

)∣

∣

∣

∣

≤ C

δ2 + |y|2 ,

we obtain the following bound
∫

Td

E

[

Qδ
ε(t, s, x)

]

dx ≤ ε(t− s)

δ2
+ C

∫ t

s

∫

Td

E

[
∣

∣b(τ,Xε
t,τ (x))− b(τ,Xt,τ (x))

∣

∣

δ +
∣

∣Xε
t,τ (x)−Xt,τ (x)

∣

∣

]

dxdτ. (5.6)

We now use the characterization of the equi-integrability as in Lemma 2.3. We fix r > 1 and let
γ > 0 a parameter that will be chosen later. Then, using Lemma 2.3 we decompose ∇b as

|∇b| = gγ1 + gγ2 ,

with
‖gγ1‖L1 ≤ γ, ‖gγ2‖Lr ≤ Cγ ,

where the constant Cγ is increasing as γ → 0. Finally, we introduce the function

ϕ(t, s, x, ω) := min

{ |b(s,Xε
t,s(x, ω))|+ |b(s,Xt,s(x))|

δ
; gγ1 (s,X

ε
t,s(x, ω)) + gγ1 (s,Xt,s(x))

}

.

Going back to (5.6), using the definition of ϕ, we get that
∫ t

s

∫

Td

E

[
∣

∣b(τ,Xε
t,τ (x))− b(τ,Xt,τ (x))

∣

∣

δ +
∣

∣Xε
t,τ (x)−Xt,τ (x)

∣

∣

]

dxdτ

≤
∫ t

s

∫

Td

E [ϕ(t, τ, x)] dxdτ

+

∫ t

s

∫

Td

E
[

gγ2 (τ,X
ε
t,τ (x)) + gγ2 (τ,Xt,τ (x))

]

dxdτ.
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Since gγ2 ∈ Lr((0, T )× T
d), by Holder inequality we have that

∫ t

s

∫

Td

E
[

gγ2 (τ,X
ε
t,τ (x)) + gγ2 (τ,Xt,τ (x))

]

dxdτ ≤ 2T (r−1)/rCγ . (5.7)

We now want to apply the interpolation inequality of Lemma 2.5 to ϕ: first, by using the measure
preserving property of X and X

ε, we have that

‖ϕ‖Lq ≤ C

δ
‖b‖Lq . (5.8)

Secondly, by Chebishev inequality

|||ϕ|||M1((0,T )×(0,T )×Td×Ω) ≤ C|||gγ1 |||M1((0,T )×Td) ≤ C‖gγ1‖L1((0,T )×Td). (5.9)

We apply Lemma 2.5 to ϕ. The fact that the function z ∈ [0,∞) 7→ z
[

1 + ln+
(

C
z

)]

∈ [0,∞)

is non-decreasing (where ln+(w) := max{0, ln(w)} for every w ≥ 0) and the bounds (5.8) and
(5.9), give

‖ϕ‖L1((0,T )×(0,T )×Td×Ω) ≤ C
q

q − 1
‖gγ1‖L1

[

1 + ln+

(

‖b‖Lq

‖gγ1‖L1

T
1− 1

q

δ

)]

. (5.10)

Substituting (5.7) and (5.10) in (5.6) we finally obtain

∫

Td

E

[

Qδ
ε(t, s, x)

]

dx ≤ εT

δ2
+ 2T (r−1)/rCγ +

Cq

q − 1
γ

[

1 + ln+

(

‖b‖LqT
1− 1

q

δγ

)]

.

Next, by defining

Aδ(t, s) :=
{

(x, ω) ∈ T
d × Ω : d(Xε

t,s(x, ω),Xt,s(x)) >
√
δ
}

, (5.11)

we obtain that

sup
t,s∈(0,T )

(

L
d ⊗ P

)

(Aδ(t, s)) ≤
C

| ln δ|

∫

Td

E

[

ln

(

1 +
(d(Xε

t,s(x),Xt,s(x)))
2

δ2

)]

dx (5.12)

≤ C

| ln δ|

∫

Td

E

[

Qδ
ε(t, s)

]

dx

≤ C(T, q, r)

(

ε

δ2| ln δ| +
Cγ

| ln δ| +
1

| ln δ|γ
[

1 + ln+
(‖b‖Lq

δγ

)])

,

where we have used that d(x, y) ≤ |x− y| for any x, y ∈ T
d. Therefore,

∫

Td

E[d(Xε
t,s(x),Xt,s(x))]dx =

∫

(Td×Ω)\Aδ(t,s)
d(Xε

t,s(x, ω),Xt,s(x))dP(ω)dx

+

∫

Aδ(t,s)
d(Xε

t,s(x, ω),Xt,s(x))dP(ω)dx

≤
√
δ +

(

L
d ⊗ P

)

(Aδ(t, s))

(5.13)

where we have used that L d ⊗ P is a probability measure on T
d × Ω and the distance d on the

torus is bounded. Finally, we choose δ =
√
ε and plugging (5.12) in (5.13), we get that

∫

Td

E[d(Xε
t,s(x),Xt,s(x))]dx ≤ C(T, q, r)

(

4
√
ε+

Cγ

| ln ε| +
1

| ln√ε|γ
[

1 + ln+
(‖b‖Lq√

εγ

)])

,

and this concludes the proof of the estimate (5.2).
Step 2. The case p > 1. The proof easily follows from the arguments of Step 1. Since

∇b(t, ·) ∈ Lp(Td) for a.e. t ∈ (0, T ), we apply Lemma 2.3 pointwise in time choosing r = p,
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gγ1 = 0, γ = 0, gγ2 (t, ·) = |∇b(t, ·)| and Cγ(t) = ‖∇b(t, ·)‖Lp . In particular, note that the bound
in (5.7) changes into

∫ t

s

∫

Td

E
[

gγ2 (τ,X
ε
t,τ (x)) + gγ2 (τ,Xt,τ (x))

]

dxdτ ≤ 2‖Cγ‖L1 = 2‖∇b‖L1Lp ,

and by substituting in (5.2) we get (5.3).
Step 3. Convergence of the flows. We now prove the convergence of Xε

t,s towards Xt,s as
ε → 0. If p > 1 it follows directly by (5.3) by letting ε → 0. Then we analyze the case (i): the
strategy is to choose properly the parameter γ in (5.2) independently from ε. In this regards,
note that the last term on the right hand side of (5.2) is uniformly bounded in γ for ε small and
converges to 0 as γ → 0. Hence, for any given η > 0 there exists γ0 independent from ε such
that for all γ ≤ γ0

C(T, q, r)

| ln√ε| γ

[

1 + ln+
(‖b‖Lq√

εγ

)]

<
η

3
.

Now that the constant γ is fixed, and so is Cγ , we can infer that there exists ε0(M) > 0 such
that for all ε ≤ ε0(γ)

C(T, q)

(

4
√
ε+

Cγ

| ln ε|

)

<
2

3
η,

and this concludes the proof of the convergence of the flows. �

The convergence result for ε → 0 to the Lagrangian solution reads as follows:

Theorem 5.3. Let b ∈ L1((0, T );W 1,1(Td)) ∩ Lq((0, T ) × R
d) be a divergence-free vector field

for some q > 1 and let u0 ∈ L1(Td) be a given initial datum. Let (vε0)ε ⊂ L∞(Td) be any
sequence of functions such that vε0 → u0 strongly in L1(Td). Then the sequence (vε)ε>0 ⊂
L∞((0, T );L∞(Td)) ∩ L2((0, T );H1(Td)) of solutions to (4.6) converges in C([0, T ];L1(Td)) to
the (unique) Lagrangian solution to (4.5).

Proof. First of all, from Proposition 4.1 we deduce that for every fixed ε > 0 there exists a
unique function vε ∈ L∞((0, T );L∞(Td)) ∩ L2((0, T );H1(Td)) solving (4.6). Moreover, by the
Feynman-Kac formula we know that vε satisfies

vε(t, x) = E[vε0(X
ε
t,0(x))].

On the other hand, the Lagrangian solution to (4.5) is given by

uL(t, x) = u0(Xt,0(x)).

Having both vε and uL a representation formula in terms of the flow, we use the stability of
the flows to prove the convergence in the inviscid limit. We consider a sequence un0 of Lipschitz
approximations of u0, then for any t ∈ (0, T ) we have that

‖vε(t, ·)− uL(t, ·)‖L1 = ‖E[vε0(Xε
t,0)]− u0(Xt,0)‖L1

≤
∫

Td

∫

Ω
|vε0(Xε

t,0(x, ω))− u0(X
ε
t,0(x, ω))|dP(ω)dx

+

∫

Td

∫

Ω
|un0 (Xε

t,0(x, ω))− u0(X
ε
t,0(x, ω))|dP(ω)dx

+

∫

Td

|un0 (Xt,0(x))− u0(Xt,0(x))|dx

+

∫

Td

∫

Ω
|un0 (Xε

t,0(x, ω))− un0 (Xt,0(x))|dP(ω)dx.
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In particular, by using that un0 is Lipschitz and the measure preserving property of the flows,
we get that

‖vε(t, ·)− uL(t, ·)‖L1 ≤ ‖vε0 − u0‖L1 + 2‖un0 − u0‖L1 + Cn‖E[d(Xε
t,0,Xt,0)]‖L1 . (5.14)

We first fix n big enough, independently from t and ε, in order to make the second term in
(5.14) as small as we want. Then the conclusion follows from Lemma 5.2. �

6. Rates of convergence

The goal of this section is to show that Lagrangian techniques are particularly useful in order
to obtain explicit rates of convergence for the vanishing viscosity limit. To find such rates, we
need slightly stronger integrability/regularity assumptions on the data. The first result deals
with bounded initial data.

Proposition 6.1. Let b ∈ L1((0, T );W 1,p(Td)) be a divergence-free vector field with p > 1 and
u0 ∈ L∞(Td) be a given initial datum. Let (vε0)ε ⊂ L∞(Td) be any sequence of functions such
that vε0 → u0 strongly in L1(Td) and consider vε and u be, respectively, the unique solutions
of (4.6) and (4.5) with initial datum vε0 and u0. Then, there exist ε̄ and a continuous function
φu0

: R+ → R
+ with φu0

(0) = 0, such that for any 1 ≤ q < ∞

sup
t∈(0,T )

‖vε(t, ·)− u(t, ·)‖Lq ≤ C(T, p, q, ‖u0‖L∞ , ‖∇b‖L1Lp)

(

δ(ε) +
1

| ln δ(ε)| + φu0
(δ(ε))

)1/q

,

(6.1)
for any ε ≤ ε̄, where

δ(ε) := max{√ε, ‖vε0 − u0‖L1}. (6.2)

Proof. We show the estimate (6.1) in the case q = 1, the general case will follow by a straight-
forward interpolation of the spaces L1(Td) and L∞(Td). Since u0 ∈ L∞(Td) ⊂ L1(Td), using
the continuity of translations in L1 we can infer that there exists a continuous function φu0

as
in the statement of the theorem and h0 > 0 such that

‖u0(·+ h)− u0‖L1 ≤ φu0
(h), for all h ≤ h0.

Then, for any δ ≤ h0, we can compute

‖vε(t, ·)− u(t, ·)‖L1 = ‖E[vε0(Xε
t,0)]− u0(Xt,0)‖L1

≤ ‖E[vε0(Xε
t,0)]− u0(X

ε
t,0)‖L1

+

∫∫

Aδ(t,0)
|u0(Xε

t,0(x, ω))− u0(Xt,0(x))|dP(ω)dx

+

∫∫

(Td×Ω)\Aδ(t,0)
|vε0(Xε

t,0(x, ω))− u0(Xt,0(x))|dP(ω)dx

≤ ‖vε0 − u0‖L1 + 2‖u0‖L∞L
d ⊗ P(Aδ(t, 0)) + φu0

(δ)

≤ ‖vε0 − u0‖L1 + 2C(T, p)‖u0‖L∞

(

ε

δ2| ln δ| +
‖∇b‖L1Lp

| ln δ|

)

+ φu0
(δ),

where the set Aδ is defined as in (5.11) and in the last line we have used the estimate in Lemma
5.2. The proof follows by choosing δ(ε) as in (6.2) and δ(ε̄) = h0. �

It is clear that the rate provided by Proposition 6.1 is not completely explicit for two rea-
sons: on the one hand, the convergence of the initial datum depends upon the choice of the
approximation vε0; on the other hand, the function φu0

is implicitly related to the regularity of
the initial datum. For the former issue, since we deal with bounded initial datum, existence and
uniqueness of solutions of (3.1) and (4.4) are guaranteed by Proposition 4.1 and [21], thus we
do not need the approximating sequence vε0. Concerning the latter issue, the function φu0

can
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be explicitly constructed once the regularity of u0 is known. Motivated by the results in [6], we
provide the following example.

Corollary 6.2. Let u0 ∈ H1(Td). Assume that the hypothesis of Theorem 6.1 hold with vε0 = u0.
Then,

sup
t∈(0,T )

‖vε(t, ·)− u(t, ·)‖L2 ≤ C
√

| ln ε|
, (6.3)

where the constant C > 0 depends on T, p, ‖u0‖L∞ , ‖∇u0‖L2 , ‖∇b‖L1Lp.

Proof. It is enough to compute the function φu0
. We have that

‖u0(·+ h)− u0‖L2 ≤ h‖∇u0‖L2 ,

and then we conclude by applying Proposition 6.1 with δ =
√
ε and φu0

(δ) = δ‖∇u0‖L2 . �

It is interesting to compare the rate given by Corollary 6.2 and the one in [6, Theorem 3.3].
Under the same assumption on the initial datum, Corollary 6.2 provides a rate of convergence
for a more general class of vector fields, namely b ∈ L1((0, T );W 1,p(Td)) with p > 1 instead of
b ∈ L∞((0, T );W 1,p(Td)) with p > 2. On the other hand, we do not improve completely the
rate in [6]: the rate in (6.3) is better if 2 ≤ p ≤ 3, while it is worst for p > 3. We also observe
that a key tool in [6] is a propagation-of-regularity result, which is not needed in our argument.

We finally show how with these techniques it is possible to give a quantitative stability estimate
for advection-diffusion equations. We address this issue motivated by the recent results in [34]:

Lemma 6.3. Let b ∈ L1((0, T );W 1,p(Td)) be a divergence-free vector field, where p > 1. Let
X

ε1
t,s,X

ε2
t,s be the stochastic flows of b associated respectively to ε1, ε2 > 0. Then,

∫

Td

E[d(Xε1
t,s(x),X

ε2
t,s(x))]dx ≤ C(T, p)

(

4
√

|ε1 − ε2|+
‖∇b‖L1Lp

| ln |ε1 − ε2||

)

. (6.4)

Proof. We just sketch the proof since it follows the same computations of Step 2 in Lemma 5.2.
Notice that the S.D.E. solved by the difference X

ε1
t,s −X

ε2
t,s is

{

d(Xε1
t,s(x, ω)−X

ε2
t,s(x, ω)) = (b(s,Xε1

t,s(x, ω))− b(s,Xε2
t,s(x, ω))) ds+ (

√
2ε1 −

√
2ε2)dWs(ω),

X
ε1
t,t(x, ω)−X

ε2
t,t(x, ω) = 0.

Then, by defining the function qδ(y) = ln
(

1 + |y|2

δ2

)

and the related Qδ
ε1,ε2 as

Qδ
ε1,ε2(t, s, x, ω) := qδ(X

ε1
t,s(x, ω)−X

ε2
t,s(x, ω)) = ln

(

1 +
|Xε1

t,s(x, ω)−X
ε2
t,s(x, ω)|2

δ2

)

,

when we apply Itô’s formula the contribution of the stochastic part is different, namely

∫

Td

E

[

Qδ
ε1,ε2(t, s, x)

]

dx ≤ |ε1 − ε2|(t− s)

δ2
+ C

∫ t

s

∫

Td

E

[
∣

∣b(τ,Xε1
t,τ (x))− b(τ,Xε2

t,τ (x))
∣

∣

δ +
∣

∣X
ε1
t,τ (x)−X

ε2
t,τ (x)

∣

∣

]

dxdτ.

The conclusion follows by defining the set Aδ as

Aδ(t, s) :=
{

(x, ω) ∈ T
d × Ω : d(Xε1

t,s(x, ω),X
ε2
t,s(x, ω)) >

√
δ
}

,

and doing the same computations as in Step 2 of Lemma 5.2. �

Then, the estimate on the flows yields the following rate of convergence for the solutions of
(3.1).
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Proposition 6.4. Let b ∈ L1((0, T );W 1,p(Td)) be a divergence-free vector field with p > 1 and
u0 ∈ L∞(Td). Let εn be a sequence such that εn → ε > 0 and let vεn , vε the unique solutions of
(4.6) with initial datum u0 and viscosity εn, ε , respectively. Then, there exist N(u0, T ) and a
continuous function φu0

: R+ → R
+ with φu0

(0) = 0, such that

sup
t∈(0,T )

‖vεn(t, ·)− vε(t, ·)‖L1 ≤ C

(

1

| ln |εn − ε|| + φu0

(

√

|εn − ε|
)

)

, (6.5)

for any n ≥ N(u0, T ), where the constant C depends upon T, p, ‖u0‖L∞ , and ‖∇b‖L1Lp.

Proof. The proof follows by arguing exactly as in the one of Proposition 6.4 and using Lemma
6.3. �

One can compare the rate given by Proposition 6.4 with the ones in [30] and [34]. The rate

in (6.5) depends upon φu0
and cannot be better than O

(

1
| ln |εn−ε||

)

, but provides convergence

in the strong norm C([0, T ];L1(Td)). On the other hand, the rates of [30] and [34] are of order
√

|εn − ε| and |εn − ε|, respectively, but they are given for a logarithmic distance which instead
metrizes weak convergence.
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