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Rédution de variane en homogénéisation stohastique:l'exemple des variables antithétiquesRésumé : Dans e travail, nous mettons en oeuvre une tehnique de rédution de varianedans le adre de l'homogénéisation stohastique. Plus préisément, nous montrons qu'ilest possible de réduire la variane de la matrie homogénéisée alulée numériquement, enutilisant la tehnique des variables antithétiques. Nous avons volontairement hoisi de nousplaer dans un adre de travail simple, a�n d'identi�er les prinipales di�ultés. Nousdémontrons, à la fois théoriquement et numériquement, l'e�aité de l'approhe, dans desas simples.Mots-lés : homogénéisation stohastique, rédution de variane, variables antithétiques



Variane redution in stohasti homogenization 31 IntrodutionSeveral settings in homogenization require the solution of orretor problems posed on theentire spae Rd. In pratie, trunations of these problems over bounded domains are on-sidered and the homogenized oe�ients are obtained in the limit of large domains. Thequestion arises to aelerate suh omputations. In the deterministi ase, aeleration teh-niques reminisent from signal �ltering have been introdued in [5℄. The work has sine thenbeen signi�antly improved in [12℄. In [5℄, it was shown that aeleration tehniques e�ientfor deterministi problems do not neessarily perform well in the stohasti framework. Inthe latter ase, the main di�ulty is related to the intrinsi noise present in the simulation.The hallenge is onsequently not that muh to improve the rate of onvergene, whih isintrinsially that of the entral limit theorem, but rather to redue the variane, therebyimproving the prefator of the onvergene given by the entral limit theorem. Althoughvery well investigated in other appliation �elds suh as �nanial mathematis, varianeredution tehniques seem to have not been applied to the ontext of stohasti homoge-nization. The purpose of the present ontribution is to present a �rst attempt in reduingthe variane in stohasti homogenization. For this purpose, we onsider a simple situation,and a simple variane redution tehnique. The probability theoreti arguments we willmake use of are elementary. The equation under onsideration is a simple ellipti equationin divergene form, with a salar oe�ient. The oe�ient is assumed to onsist of inde-pendent, identially distributed random variables set on a simple mesh (see (2) below). Thetehnique used for variane redution is that of antitheti variables. Our setting is aademiin nature, somewhat far from physially relevant ases, and elementary. Many more di�ultsituations ould be addressed: other types of stationary ergodi oe�ients, matrix ratherthan salar oe�ients, other types of equations, other tehniques for variane redution,. . . The present ontribution is a proof of onept: variane redution an be ahieved instohasti homogenization. Future works [3, 4, 11℄ will provide more details on the numerisand the theory, and also address some of the many possible extensions mentioned above.2 Stohasti homogenization theoryAlthough we wish to keep the mathematial formalism as limited as possible in our expo-sition, we need to introdue the basi setting of stohasti homogenization (see [16℄ for asimilar presentation and related issues). Throughout this artile, (Ω,F , P) is a probabilityspae and we denote by E(X) =
∫
Ω

X(ω)dP(ω) the expetation value of any random variable
X ∈ L1(Ω, dP). We next �x d ∈ N∗ (the ambient physial dimension), and assume that thegroup (Zd, +) ats on Ω. We denote by (τk)k∈Zd this ation, and assume that it preserves themeasure P, that is, for all k ∈ Z

d and all A ∈ F , P(τkA) = P(A). We assume that the ation
τ is ergodi, that is, if A ∈ F is suh that τkA = A for any k ∈ Zd, then P(A) = 0 or 1. Inaddition, we de�ne the following notion of stationarity (see [7℄): any F ∈ L1

loc

(
Rd, L1(Ω)

)is said to be stationary if, for all k ∈ Zd,
F (x + k, ω) = F (x, τkω), (1)RR n° 7207



4 R. Costaoue, C. Le Bris, F. Legollalmost everywhere in x and almost surely. In this setting, the ergodi theorem [15, 17℄ anbe stated as follows: Let F ∈ L∞
(
Rd, L1(Ω)

) be a stationary random variable in the abovesense. For k = (k1, k2, . . . kd) ∈ Z
d, we set |k|∞ = sup

1≤i≤d
|ki|. Then

1

(2N + 1)d

∑

|k|∞≤N

F (x, τkω) −→
N→∞

E (F (x, ·)) in L∞(Rd), almost surely.This implies that (denoting by Q the unit ube in Rd)
F
(x

ε
, ω
)

∗−⇀
ε→0

E

(∫

Q

F (x, ·)dx

) in L∞(Rd), almost surely.Besides tehnialities, the purpose of the above setting is simply to formalize that, eventhough realizations may vary, the funtion F at point x ∈ Rd and the funtion F at point
x + k, k ∈ Zd, share the same law. In the homogenization ontext we now turn to, thismeans that the loal, mirosopi environment (enoded in the oe�ient a, see (3) below)is everywhere the same on average. From this, homogenized, marosopi properties willfollow.We now �x an open, regular, bounded subset D of Rd, an L2 funtion f on D, and arandom funtion a assumed stationary in the sense (1) de�ned above. We also assume a isbounded, positive and almost surely bounded away from zero. For simpliity, we take a arandom pieewise onstant funtion of the form:

a(x, ω) =
∑

k∈Zd

1Q+k(x)ak(ω), (2)where Q is the unit ube of Rd and (ak(ω))k∈Zd denotes a family of i.i.d. random vari-ables. The standard results of stohasti homogenization [2, 14℄ apply to the boundaryvalue problem 



−div(a(x

ε
, ω
)
∇uε

)
= f in D,

uε = 0 on ∂D.
(3)These results state that, in the limit ε −→ 0, the homogenized problem obtained from (3)reads: {

−div (A⋆∇u⋆) = f in D,

u⋆ = 0 on ∂D.
(4)The homogenized matrix A⋆ is de�ned as

[A⋆]ij = E

(∫

Q

(ei + ∇wei
(y, ·))T

a (y, ·)
(
ej + ∇wej

(y, ·)
)

dy

)
, (5)

INRIA



Variane redution in stohasti homogenization 5where, for any p ∈ Rd, wp is the solution (unique up to the addition of a (random) onstant)in {w ∈ L2
loc(R

d, L2(Ω)), ∇w ∈ L2
unif(R

d, L2(Ω))
} to





−div [a (y, ω) (p + ∇wp(y, ω))] = 0 a.s. on Rd,

∇wp is stationary in the sense of (1),
E

(∫

Q

∇wp(y, ·) dy

)
= 0,

(6)where we have used the notation L2
unif for the uniform L2 spae, that is the spae of funtionsfor whih, say, the L2 norm on a ball of unit size is bounded above independently from theenter of the ball.The solution uε to (3) is known to onverge to the solution u⋆ to (4) in various appropriatesenses. The tensor and funtion A⋆ and u⋆ are deterministi quantities, although theyoriginate from a series of random problems. This is a onsequene of the ergodi settingdesribed above, whih allows random mirosopi quantities to average out in deterministimarosopi quantities. Note however that the omputation of A⋆ requires the omputationof the so-alled orretor funtions wp, whih are random.The above result generalizes that of the lassial periodi setting (see e.g. [2, 9℄) where,instead of being stationary ergodi, the funtion a in (3) is periodi. Then, although thehomogenized problem an be expressed similarly, the ruial di�erene is that (at least inthis simple linear ase) the orretor problem an, in the periodi ase, be redued to theequation −div [a(y) (p + ∇wp(y))] = 0 set on the periodi ell Q = [0, 1]d, and not on theentire spae Rd as in (6). Correspondingly, the terms of the homogenized tensor in (5) aresimple deterministi integrals on Q. In the random ase, equation (6) is intrinsially seton the entire spae and the numerial approximation of the solution wp to the orretorproblem (6) is the main omputational hallenge. Problem (6) is in pratie trunated on abounded domain QN = [−N, N ]d and usually supplied with periodi boundary onditions:

{
−div (a(·, ω)

(
p + ∇wN

p (·, ω)
))

= 0 on QN ,

wN
p is QN -periodi. (7)Correspondingly, we set:

[A⋆
N ]ij (ω) =

1

|QN |

∫

QN

(
ei + ∇wN

ei
(y, ω)

)T
a(y, ω)

(
ej + ∇wN

ej
(y, ω)

)
dy. (8)In the limit of large domains QN , the homogenized tensor (5) is reovered. In addition,the rate of onvergene with whih the trunated values approah the exat homogenizedvalue A⋆ an be assessed theoretially. We refer to [8, 18℄ for the proof of all the abovestatements. As will be seen below, the variane of the random variables involved plays arole in the approximation proedure. Reduing this variane is the problem we now onsider.

RR n° 7207



6 R. Costaoue, C. Le Bris, F. Legoll3 Variane redution3.1 Classial Monte Carlo methodAs mentioned above, the large size (large N) limit of the oe�ient (8) obtained using thesolution of the trunated orretor problem (7) gives the value of the homogenized oe�ient(5). Formally, this is a onvergene of the type A⋆
N (ω) −→ A⋆ as N −→ +∞ almost surelyin Ω. The pratial approah to this problem is the Monte-Carlo approah. We now brie�yinvestigate the role of the variane in the problem.To start with, we brie�y onsider the one-dimensional setting. Although this setting isvery partiular (and sometimes misleading beause oversimpli�ed), it also allows to alreadyunderstand the basi features of the problem and the bottom line of the approah, with theeonomy of many unneessary tehnialities.In the one-dimensional setting, the de�nition (2) reads

a(x, ω) =
∑

k∈Z

1[k,k+1[(x)ak(ω) (9)with (ak(ω))k∈Z
a family of i.i.d. random variables. It is easily seen that the trunatedorretor problem (7) an be expliitly solved and leads to the value

a⋆
N (ω) =

(
1

2N

N−1∑

k=−N

1

ak(ω)

)−1 (10)of the approximation for the homogenized tensor (here, a salar oe�ient of ourse). In thelimit of large N , it almost surely onverges to the value of the exat homogenized oe�ient
a⋆ = E

(
1

a0

)−1

. (11)This exat value is readily obtained expliitly solving (5)-(6). The simplest possible ar-gument onsists now in onsidering (a⋆
N(ω))

−1
=

1

2N

N−1∑

k=−N

1

ak(ω)
and remark that therate of onvergene of this quantity to (a⋆)

−1 is evidently given by the entral limit theo-rem, where the variane of the random variable (ak(ω))−1 plays a ruial role. Althoughorret, this argument exploits too muh the very peuliar nature of the one-dimensionalsetting (we have taken the inverse of the oe�ient and reasted it as a sum, a fat thatis not possible otherwise than in one dimension). An argument with slightly more gen-erality onsists in onsidering a⋆
N (ω) itself � and not its inverse�, and, using elementaryalulus, showing that it also onverges to a⋆ with a rate of onvergene where the vari-ane of a0(ω) again plays the ruial role. Indeed, one may for instane remark that

INRIA



Variane redution in stohasti homogenization 7
E

(∣∣∣∣
(

1
2N

∑N−1
k=−N

1
ak

)−1

− E

(
1
a0

)−1
∣∣∣∣
2
) may be bounded from above (using a simple al-most sure upper bound of ak(ω)) by E

(∣∣∣
(

1
2N

∑N−1
k=−N

1
ak

)
− E

(
1
a0

)∣∣∣
2
) up to an irrelevantmultipliative onstant and that the latter quantity, one easily omputed, is of the form

1

2N
Var( 1

a0

). Again, the variane of the random oe�ient plays a role.In dimensions higher than one, the situation is onsiderably more intriate and the rateof onvergene with whih the oe�ient arising from the trunated omputation onvergesto its limit is not so simple to evaluate. This is the purpose, under appropriate onditions(alled mixing onditions and whih are indeed met in our present setting), of the work [8℄.The numerial pratie is as follows. A set of M independent realizations of the randomoe�ient a are onsidered. The orresponding trunated problems (7) are solved, and anempirial mean of the trunated oe�ients (8) is inferred. This empirial mean only agreeswith the theoretial value of the trunated oe�ient within a margin of error whih is givenby the entral limit theorem (in terms of M). The variane of the oe�ients therefore againplays a role, as a prefator. For a su�iently large trunation size N , this trunated valueis admitted to be the exat value of the oe�ients. The error made is ontroled by theestimations of the theoretial work [8℄. Of ourse, the overall omputation desribed aboveis expensive, beause eah realization requires a new solution to the d-dimensional boundaryvalue problem (7) of presumably large a size sine N is taken large. There is therefore a hugeinterest in reduing the ost of the omputation, or, otherwise stated, in reahing a betterauray at a given omputational ost. Sine the variane of the trunated homogenizedtensor is an important ingredient, reduing the variane beomes a hallenging and sensitiveissue.More expliitly, let (am(x, ω))1≤m≤M denote M independent and identially distributedunderlying random �elds. We de�ne a family (A⋆,m
N

)
1≤m≤M

of i.i.d. homogenized matriesby, for any 1 ≤ i, j ≤ d,
[
A⋆,m

N

]
ij

(ω) =
1

|QN |

∫

QN

(
ei + ∇wN,m

ei
(·, ω)

)T
am(·, ω)

(
ej + ∇wN,m

ej
(·, ω)

)
,where wN,m

ej
is the solution of the orretor problem assoiated to am. Then we de�ne foreah omponent of A⋆

N the empirial mean and variane
µM

(
[A⋆

N ]ij

)
=

1

M

M∑

m=1

[
A⋆,m

N

]
ij

,

σM

(
[A⋆

N ]ij

)
=

1

M − 1

M∑

m=1

([
A⋆,m

N

]
ij
− µM

(
[A⋆

N ]ij

))2

.

(12)Sine the matries A⋆,m
N are i.i.d., the strong law of large numbers applies:
µM

(
[A⋆

N ]ij

)
(ω) −→

M→+∞
E

(
[A⋆

N ]ij

) almost surely.RR n° 7207



8 R. Costaoue, C. Le Bris, F. LegollThe entral limit theorem then yields
√

M
(
µM

(
[A⋆

N ]ij

)
− E

(
[A⋆

N ]ij

))
L−→

M→+∞

√
Var([A⋆

N ]ij

)
N (0, 1), (13)where the onvergene holds in law, and N (0, 1) denotes the standard gaussian law. Intro-duing its 95 perent quantile, it is standard to onsider that the exat mean E

(
[A⋆

N ]ij

)is equal to µM

(
[A⋆

N ]ij

) within a margin of error 1.96

√
Var([A⋆

N ]ij

)

√
M

. The exat variane
Var([A⋆

N ]ij

) being unknown in pratie, it is ustomary to replae it by the empirial vari-ane given in (12) above. It is therefore onsidered that the expetation E

(
[A⋆

N ]ij

) lies inthe interval

µM

(
[A⋆

N ]ij

)
− 1.96

√
σM

(
[A⋆

N ]ij

)

√
M

, µM

(
[A⋆

N ]ij

)
+ 1.96

√
σM

(
[A⋆

N ]ij

)

√
M


 . (14)The value µM

(
[A⋆

N ]ij

) is thus, for both M and N su�iently large, adopted as the approx-imation of the exat value [A⋆]ij .Of ourse, a tensorial argument ould be applied here, not onsidering separately eahentry of the matrix but treating the matrix as a whole. The approah developed above,omponent by omponent, is su�ient for the simple ases onsidered in the present work.3.2 Antitheti variable for stohasti homogenizationWe know from the previous setion that onstruting empirial means approximating E (A⋆
N )with a smaller variane at the same omputational ost is of high interest. We now desribea possible approah to ahieve this goal.In generality, �x M = 2M. Suppose that we have M i.i.d. opies (am(x, ω))1≤m≤M of

a(x, ω). Construt next M i.i.d. antitheti random �elds
bm(x, ω) = T (am(x, ω)) , 1 ≤ m ≤ M,from the (am(x, ω))1≤m≤M. The map T transforms the random �eld am into another, so-alled antitheti, �eld bm. Expliit examples of suh T are given in the sequel (see (20)and Setion 4 below). The transformation is performed in suh a way that, for eah m, bmshould have the same law as am, namely the law of the oe�ient a. Somewhat vaguelystated, if the oe�ient a was obtained in a oin tossing game (using a fair oin), then bmwould be head eah time am is tail and vie versa. We refer the reader to Figure 1 below forINRIA



Variane redution in stohasti homogenization 9expliit illustrative examples of suh a onstrution. Then, for eah 1 ≤ m ≤ M, we solvetwo orretor problems. One is assoiated to the original am, the other one is assoiated tothe antitheti �eld bm. Using its solution vN,m
p , we de�ne the antitheti homogenized matrix

B⋆,m
N , whose elements read, for 1 ≤ i, j ≤ d,

[
B⋆,m

N

]
ij

(ω) =
1

|QN |

∫

QN

(
ei + ∇vN,m

ei
(·, ω)

)T
bm(·, ω)

(
ej + ∇vN,m

ej
(·, ω)

)
.And �nally we set, for any 1 ≤ m ≤ M,

Ã⋆,m
N (ω) :=

1

2

(
A⋆,m

N (ω) + B⋆,m
N (ω)

)
. (15)Sine am and bm are identially distributed, so are A⋆,m

N and B⋆,m
N . Thus, Ã⋆,m

N is unbiased(that is, E

(
Ã⋆,m

N

)
= E

(
A⋆,m

N

)). In addition, it satis�es:
Ã⋆,m

N −→
N→+∞

A⋆ almost surely,beause b is ergodi.Let us de�ne new estimators
µM

([
Ã⋆

N

]

ij

)
=

1

M

M∑

m=1

[
Ã⋆,m

N

]

ij
,

σM

([
Ã⋆

N

]

ij

)
=

1

M− 1

M∑

m=1

([
Ã⋆,m

N

]

ij
− µM

([
Ã⋆

N

]

ij

))2

,

(16)whih require 2M resolutions of orretor problems, i.e. as many as the lassial estimators(12), sine we hoose M = 2M. In addition, note that we have built a new random variablewhose variane is
Var([Ã⋆

N

]

ij

)
=

1

2
Var([A⋆

N ]ij

)
+

1

2
Cov([A⋆

N ]ij , [B⋆
N ]ij

)
. (17)Applying the entral limit theorem to Ã⋆

N , we obtain
√
M
(

µM

([
Ã⋆

N

]

ij

)
− E

(
[A⋆

N ]ij

))
L−→

M→+∞

√

Var([Ã⋆
N

]

ij

)
N (0, 1). (18)Similarly to (14), we dedue a on�dene interval from this onvergene. The exat mean

E

([
Ã⋆

N

]

ij

) is equal to µM

([
Ã⋆

N

]

ij

) within a margin of error 1.96

√
Var([Ã⋆

N

]

ij

)

√
M

. Itresults from (17) that, if
Cov([A⋆

N ]ij , [B⋆
N ]ij

)
≤ 0, (19)RR n° 7207



10 R. Costaoue, C. Le Bris, F. Legollthen the width of this interval has been diminished by the new approah, and, orrespond-ingly, the quality of approximation at given omputational ost has inreased.To understand slightly more in details at the theoretial level why the approah is likelyto perform well, we again onsider the one-dimensional setting (9) for whih we reall theexpliit expressions (10) and (11) for the trunated and the exat homogenized oe�ients,respetively.Suppose as a �rst illustration that a0 is a Bernoulli distributed random variable a0 ∼
B(1/2):

P(a0 = α) = 1/2 and P(a0 = β) = 1/2,for some 0 < α < β. De�ning the antitheti variable
bk(ω) = α + β − ak(ω)and next the antitheti �eld

b(x, ω) =
∑

k∈Z

1[k,k+1[(x) bk(ω) =
∑

k∈Z

1[k,k+1[(x) (α + β − ak(ω)) , (20)it is immediately seen that
1

2

(
1

a⋆
N (ω)

+
1

b⋆
N(ω)

)
= E

(
1

a0

)
.The variane of the inverse of the trunated oe�ient has vanished. This example mightseem oversimpli�ed beause we are indeed making use of two peuliarities of the problem:the set {α, β} of values taken by the oe�ient a has ardinality two, and the expliitexpression (10) allows us to expliitly manipulate the inverse of the homogenized oe�ient.The situation, although oversimpli�ed, is yet a �rst good indiator of the interest of theapproah. As in the previous setion, we an be slightly more general, by onsidering forinstane that the random oe�ient a is now uniformly distributed over a given interval,say a0 ∼ U([α, β]). Then,

1

2

(
1

a⋆
N(ω)

+
1

b⋆
N (ω)

)
=

1

2N

N−1∑

k=−N

1

2

(
1

ak(ω)
+

1

bk(ω)

)
. (21)It is a simple matter to show that, beause the funtion x 7→ 1/x is dereasing, we have

Cov( 1

a0
,

1

b0

)
≤ 0. (22)Consider indeed a dereasing funtion f , and X and Y two independent random variables,identially distributed aording to U([α, β]). Sine x 7→ f(α + β − x) is inreasing, weobserve that

(f(X) − f(Y )) (f(α + β − X) − f(α + β − Y )) ≤ 0, INRIA



Variane redution in stohasti homogenization 11hene
E[f(X) f(α + β − X)] ≤ E[f(X)] E[f(α + β − X)],whih reads Cov[f(X), f(α + β − X)] ≤ 0. Choosing f(x) = 1/x yields (22).Sine

Var(1

2

(
1

a⋆
N

+
1

b⋆
N

))
=

1

4N
Var( 1

a0

)
+

1

4N
Cov( 1

a0
,

1

b0

)
,we onlude that

Var(1

2

(
1

a⋆
N

+
1

b⋆
N

))
≤ Var( 1

a⋆
2N

)
.Therefore, E(1/a0) an be approximated either by (21) or by 1/a⋆
2N , with an equal ost (i.e.an equal number of random variables in both sums), but the former has less variane thanthe latter. It is hene of better quality.As mentioned above, the pratie in dimensions higher than one is to generate a set ofidentially distributed oe�ients for eah trunated orretor problem, and to use (15).The appropriate analogous one-dimensional approah is to onsider M =

M

2
independentopies of a(x, ω) and set

ã⋆,m
N (ω) :=

1

2

(
a⋆,m

N (ω) + b⋆,m
N (ω)

)

=
1

2

(
1

2N

N−1∑

k=−N

1

am

k (ω)

)−1

+
1

2

(
1

2N

N−1∑

k=−N

1

bmk (ω)

)−1with empirial mean
µM (ã⋆

N ) (ω) =
1

M

M∑

m=1

ã⋆,m
N (ω).We approah more generality sine

µM (ã⋆
N ) (ω) −→

M→+∞
E (ã⋆

N ) = E (a⋆
N) almost surely,but E (a⋆

N ) 6= a⋆. It an again be remarked that a⋆
N (ω) is an inreasing funtion of the uni-form variables (ak(ω))k∈Z

. From this observation, it is possible to show that Cov (a⋆
N , b⋆

N ) ≤
0, and to onlude that the variane of µM (ã⋆

N ) is smaller than that of µ2M (a⋆
N ). Forthis proof on a model by analogy, as well as for proofs that variane redution is indeedahieved for some atual settings in dimensions higher than one (suh as for instane thosefrom [1, 10, 6℄), we refer to [3, 11℄. The above simpli�ed arguments were only meant to havepedagogi value.
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12 R. Costaoue, C. Le Bris, F. Legoll4 Numerial experimentsThe previous setion provides some elementary ingredients for a theoretial analysis of thee�ieny of the approah. The one-dimensional setting is however too partiular. Moreonvining theoretial arguments have to be developed. As announed, this will be thepurpose of future publiations. Meanwhile, it is possible to test the approah on atualtwo-dimensional ases, and this is the purpose of this setion to report on suh tests. Asabove, we only onsider random oe�ients that are pieewise onstant and of the form (2).The test ases we hoose to onsider orrespond to three di�erent laws for a0:� ase (i): a Bernoulli law of parameter 1/2, namely a0 ∼ B(1/2), P (a0 = α) = 1/2 and
P (a0 = β) = 1/2;� ase (ii): a Bernoulli law of parameter 1/3, namely a0 ∼ B(1/3), P (a0 = α) = 1/3 and
P (a0 = β) = 2/3;� ase (iii): a uniform law, namely a0 ∼ U ([α, β]).We take the spei� values α = 3 and β = 20, just to �x the ideas. Similar qualitativeonlusions would be reahed with other generi values. Figure 1 shows a realization of aand its antitheti �eld b in ases (i) and (iii).Our numerial tests have been performed using the �nite elements software FreeFem++developed by F. Heht (Paris VI, see [13℄). The disretization of the orretor problem isperformed using P1 Lagrange �nite elements, and a regular Q-periodi mesh of QN . Thedisretization meshsize is �xed and has value h = 0.2.It is worth mentioning how we pratially proeed to generate an antitheti variable.This may indeed be deliate. We have taken random oe�ients that an all originallybe expressed in terms of a uniformly distributed random variable (with a view, notably,to be onsistent with the way a random variable is pratially generated on a omputer).We then build the antitheti variable preisely using the 'mother' uniform random variable.The tehnique is best explained on ase (ii). Write the variable a0 ∼ B(1/3) as a0 ∼

α + (β − α)1{1/3≤U0≤1} where U0 ∼ U ([0, 1]) denotes a random variable that has uniformlaw on the interval [0, 1]. The antitheti variable is then taken as b0 ∼ α+(β−α)1{0≤U0≤2/3}and the orrespondene is made realization by realization using the atual realization of U0.In ases (i) and (ii), in dimension 2, the exat homogenized tensor is known to beisotropi, A⋆ = a⋆I2 (see [14, Chap. 7, pp. 234-237℄ for a proof). Of ourse, for N �nite, A⋆
Nis a generi matrix, but our numerial experiments onsistently show that, for N su�ientlylarge, the o�-diagonal terms are very small on average ompared to the diagonal terms, inthe three ases we have onsidered. Table 1 summarizes, in ase (iii), the estimated meansand varianes of the omponents of A⋆

N for di�erent values of N . It on�rms that the mainsoures of variane are the diagonal terms. The same onlusion holds in ases (i) and (ii).In our three test ases, we have ompared for di�erent values of N the estimated varianeof [Ã⋆
N

]

11
with that of [A⋆

N ]11. In order to quantitatively assess the e�ieny of the antitheti
INRIA



Variane redution in stohasti homogenization 13

Figure 1: Realization of a(x, ω) given by (2) (left) and the assoiated antitheti �eld b(x, ω)(right). Top �gures: a0 ∼ B(1/2); bottom �gures: a0 ∼ U ([α, β]).RR n° 7207



14 R. Costaoue, C. Le Bris, F. Legoll
N [A⋆

N ]11 [A⋆
N ]22 [A⋆

N ]12
5 10.42 (0.370) 10.39 (0.385) 0.00391 (0.00555)
10 10.39 (0.0724) 10.39 (0.0747) 0.00369 (0.00110)
20 10.37 (0.0292) 10.37 (0.0262) 0.00089 (0.00031)
40 10.39 (0.00471) 10.39 (0.00487) -0.00219 (0.00009)
60 10.38 (0.00201) 10.38 (0.00203) 0.00059 (0.00005)
80 10.38 (0.00101) 10.38 (0.00119) 0.00013 (0.00002)
100 10.38 (0.00077) 10.38 (0.00076) 0.00010 (0.00001)Table 1: For eah entry of A⋆

N , empirial mean µ100

(
[A⋆

N ]ij

) (and empirial variane
σ100

(
[A⋆

N ]ij

), in brakets), in the ase (iii).variables method, we introdue the e�etivity ratio
R ([A⋆

N ]11) =
σ100

(
[A⋆

N ]11
)

2σ50

([
Ã⋆

N

]

11

) .The fator 2 at the denominator aounts for the number of realizations assoiated to thelassial and antitheti Monte-Carlo methods, given that we wish to work at �xed ompu-tational ost. Indeed, after solving M = 2M orretor problems (7), one an either builda on�dene interval of size 1.96
√

σM

(
[A⋆

N ]11
)
/M following (13) and (14), or a on�deneinterval of size 1.96

√
σM

([
Ã⋆

N

]

11

)
/M following (18).Our next table, Table 2, ontains the values of this representative ratio for eah test ase.We have also plotted on Figure 2 the urves of estimated means (12) and (16), with theiron�dene intervals, for the three ases under study here.If we admit that the theory developed in the previous setion applies to the two-dimensional ase, another manner to hek variane redution is to ompute the empirialovariane between [A⋆

N ]11 and [B⋆
N ]11 (reall (19)). This is the reason why we have alsoplotted on Figure 2 the normalized empirial value of this ovariane,
Cov ([A⋆

N ]11 , [B⋆
N ]11

)
√

Var ([A⋆
N ]11

)
Var ([B⋆

N ]11
) , (23)for test ase (iii) (similar results have been obtained for the two other test ases).The results are self-explanatory: the variane is redued. The redution is not speta-ular, but it is de�nite, and, equally importantly, systemati. Considering that the approahindues no additional omputational ost at all, this is very good. Other more adapted, butalso more deliate to design and implement, variane redution approahes will be tested inthe future [4, 11℄, and one may expet even more signi�ant redutions. INRIA
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N

]

11
(green),in the ases a0 ∼ B(1/2) (top left), a0 ∼ B(1/3) (top right) and a0 ∼ U ([α, β]) (bottomleft). In the latter ase, we also plot the estimator (23) of the normalized ovariane between

[A⋆
N ]11 and [B⋆

N ]11 (bottom right).
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16 R. Costaoue, C. Le Bris, F. Legoll
N a0 ∼ B(1/2) a0 ∼ B(1/3) a0 ∼ U ([α, β])
5 5.34 2.06 6.31
10 3.91 1.56 6.46
20 5.41 2.92 10.2
40 3.07 2.31 6.67
60 4.41 2.47 6.16
80 4.49 1.95 5.68
100 4.28 2.99 7.89Table 2: Representative e�etivity ratios R

(
[A⋆

N ]11
) for test ases (i), (ii) and (iii). Thenumber shown gives the gain in omputational time or, equivalently, at given omputationalost, the square of the gain in the width of the on�dene interval.5 Variane redution for the solution u

⋆We onlude this artile examining the problem of variane redution from a slightly dif-ferent perspetive. We have so far investigated the question of variane redution for thehomogenized tensor A⋆. This is the question typially relevant in Mehanis, where for in-stane determining the homogenized tensor is an important issue beause it allows to de�ne,say, the Young modulus or the Poisson ratio of the homogenized material. In some ontextshowever, the fous is more on the solution of the homogenized problem, rather than on theoe�ients of the homogenized equation. For a given right-hand side f in (3) (or for a setof suh right-hand sides), one wishes to know the behaviour of the solution uε for small ε.Now, reduing the variane on the solution u is not exatly the same question as reduingthe variane on the oe�ients of the equation (beause the map that assoiates the solu-tion to the oe�ients of the equation is a highly nonlinear nonloal map). Note also thata systemati way to investigate the question would of ourse be to study the variane ofthe homogenized operator itself (or of its eigenelements) and this is indeed on our agendato do so in a more extensive artile [4, 11℄. But for the time being, we brie�y mentionhere a possible variane redution approah on the solution u⋆, for a given representativeright-hand side f .In priniple, one may think of several possible ways for omputing the solution u⋆ tothe homogenized problem (4). A �rst approah, whih we denote by (M1), onsists in thefollowing shemati sequene of omputations
(am(x, ω))1≤m≤M

corrector pb−→
(
A⋆,m

N (ω)
)
1≤m≤M

1

M

P

−→ µM (A⋆
N )

(24)−→ u⋆
N,M ,where u⋆

N,M solves the boundary value problem
{

−div (µM (A⋆
N ) (ω)∇u⋆

N,M (x, ω)
)

= f in D,

u⋆
N,M (x, ω) = 0 on ∂D.

(24)
INRIA



Variane redution in stohasti homogenization 17In short, (M1) onsists in �rst approximating A⋆ using the Monte Carlo approah and itsoutome µM (A⋆
N ), and next to solve for u⋆

N,M .A seond approah, (M2), onsists in the sequene
(am(x, ω))1≤m≤M

corrector pb−→
(
A⋆,m

N (ω)
)
1≤m≤M

(25)−→
(
u⋆,m

N (·, ω)
)
1≤m≤M

.Otherwise stated, for eah 1 ≤ m ≤ M , the problem
{

−div (A⋆,m
N ∇u⋆,m

N

)
= f in D,

u⋆,m
N = 0 on ∂D,

(25)is �rst solved, and the empirial mean and variane of the orresponding solutions areonstruted:
µM (u⋆

N) (x, ω) =
1

M

M∑

m=1

u⋆,m
N (x, ω),

σM (u⋆
N ) (x, ω) =

1

M − 1

M∑

m=1

(
u⋆,m

N (x, ω) − µM (u⋆
N ) (x, ω)

)2
.

(26)The empirial mean is then taken as the approximation of our seeked solution u⋆.Of ourse, it is immediately seen that a set of approahes, intermediate between (M1)and (M2), an be designed. This is the set of approahes (M3). For eah 1 ≤ m ≤ M ,we �rst solve the orretor problem, and thus obtain A⋆,m
N (ω). We next set M = PR, andde�ne, for eah 1 ≤ r ≤ R,

µr

P (A⋆
N ) (ω) =

1

P

P∑

p=1

A
⋆,p+(r−1)P
N (ω),whih is an empirial mean omputed with P realizations among the M available realizations.For eah 1 ≤ r ≤ R, we next solve the boundary value problem

{
−div (µr

P (A⋆
N )∇u⋆,r

N

)
= f in D,

u⋆,r
N = 0 on ∂D.The estimators for u⋆ then are

µR,P (u⋆
N) (x, ω) =

1

R

R∑

r=1

u⋆,r
N (x, ω),

σR,P (u⋆
N ) (x, ω) =

1

R − 1

R∑

r=1

(
u⋆,r

N (x, ω) − µR,P (u⋆
N) (x, ω)

)2
.
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18 R. Costaoue, C. Le Bris, F. LegollWe observe that, in dimension one, the solution of (25) satis�es
(
u⋆,m

N

)′
(x, ω) = − 1

a⋆,m
N (ω)

(
F (x) − 1

|D|

∫

D

F

)
,where F (x) is suh that F ′(x) = f(x). Hene, in view of (10) and (11), we have

E

[(
u⋆,m

N

)′]
= − 1

a⋆

(
F (x) − 1

|D|

∫

D

F

)
= E

[
(u⋆)

′]
.As a onsequene, the empirial mean built following approah (M2), namely µM (u⋆

N) (x, ω)de�ned by (26), is an unbiased estimator of u⋆(x), for any �nite N and M , in the one-dimensional ase. The estimators built following approahes (M1) and (M3) do not sharethis property.In the present work, we only onsider approah (M2), leaving the study of the otherapproahes for future works. We apply the exat same tehnique as above, onsideringantitheti variables to redue the variane. The variane under onsideration is howevernow that of the approximation of u⋆.We onsider the test ase (iii) de�ned in the previous setion. We hoose the right-handside f(x, y) = (x−0.5)2+(y−0.5)2 on the domain D = Q = [0, 1]2 (similar results have beenobtained with other right-hand sides). The e�ieny of the antitheti variable tehnique isassessed using the following ratio
R (u⋆

N ) = inf
x∈D

σ100 (u⋆
N )

2σ50 (ũ⋆
N)

. (27)We have also heked that the tehnique does not introdue any bias by monitoring theestimator
sup
x∈D

∣∣∣∣
µ100 (u⋆

N) − µ50 (ũ⋆
N )

µ100 (u⋆
N )

∣∣∣∣ . (28)Numerial results are gathered in Table 3. We observe that the tehnique does not introdueany bias, and that, again, a signi�ant variane redution, at �xed omputational ost, isobtained.

INRIA



Variane redution in stohasti homogenization 19
N Estimator (28) Estimator (27)
5 4.20 ×10−4 10.1
10 3.80 ×10−4 10.9
20 1.56 ×10−3 14.6
40 4.05 ×10−4 11.8
80 5.21 ×10−4 9.10
100 3.24 ×10−4 9.02Table 3: Estimator (28) of the bias, and estimator (27) of the variane redution, in thease a0 ∼ U ([α, β]) (the equation (25) has been solved on a mesh of size h = 0.1).Aknowledgments: The ontent of this artile has been presented by the seond author asa plenary leture at the XXI CEDYA - XI CMA international onferene, September 21-25,2009, Ciudad Real. The authors thank Xavier Blan for several stimulating disussions. Partof this work was initiated while the seond author was visiting the Institute for Mathematisand its Appliations and the Department of Mathematis of the University of Minnesota.The hospitality of these institutions is gratefully aknowledged. The work of the authors ispartially supported by ONR under ontrat Grant 00014-09-1-0470.Referenes[1℄ A. Anantharaman and C. Le Bris, Homogenization of a weakly randomly perturbedperiodi material, C. R. Aad. Si. Série I, 2009, submitted.[2℄ A. Bensoussan, J.-L. Lions, and G. Papaniolaou, Asymptoti analysis for periodistrutures, Studies in Mathematis and its Appliations, 5. North-Holland PublishingCo., Amsterdam-New York, 1978.[3℄ X. Blan, R. Costaoue, C. Le Bris, and F. Legoll, Variane redution in stohastihomogenization using antitheti variables, Markov Proesses and Related Fields, inpreparation.[4℄ X. Blan, R. Costaoue, C. Le Bris, and F. Legoll, Let. Notes Comput. Si. Eng.,Springer, in preparation.[5℄ X. Blan and C. Le Bris, Improving on omputation of homogenized oe�ients in theperiodi and quasi-periodi settings, Netw. Heterog. Media, 2010, in press.[6℄ X. Blan, C. Le Bris, and P.-L. Lions, Une variante de la théorie de l'homogénéisationstohastique des opérateurs elliptiques [A variant of stohasti homogenization theoryfor ellipti operators℄, C. R. Aad. Si. Série I, 343:717�724, 2006.
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