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Key points
� Maximal endurance performance is greater in the early daytime.
� Timed exercise differentially alters the muscle transcriptome and (phospho)-proteome.
� Early daytime exercise triggers energy provisioning and tissue regeneration.
� Early night-time exercise activates stress-related and catabolic pathways.
� Scheduled training has limited effects on the muscle and liver circadian clocks.

Abstract Timed physical activity might potentiate the health benefits of training. The underlying
signalling events triggered by exercise at different times of day are, however, poorly understood.
Here, we found that time-dependent variations in maximal treadmill exercise capacity of naïve
mice were associated with energy stores, mostly hepatic glycogen levels. Importantly, running at
different times of day resulted in a vastly different activation of signalling pathways, e.g. related
to stress response, vesicular trafficking, repair and regeneration. Second, voluntary wheel running
at the opposite phase of the dark, feeding period surprisingly revealed a minimal zeitgeber (i.e.
phase-shifting) effect of training on the muscle clock. This integrated study provides important
insights into the circadian regulation of endurance performance and the control of the circadian
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clock by exercise. In future studies, these results could contribute to better understanding circadian
aspects of training design in athletes and the application of chrono-exercise-based interventions in
patients.
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Introduction

Almost all aspects of mammalian physiology undergo
changes relative to the time of day. Many of these
variations are, directly or indirectly, driven by the
circadian clock, an evolutionarily conserved time-keeping
mechanism that is present in virtually all cells of the body
(Buhr & Takahashi, 2013). Adequate timing of physical
activity might have been of particular evolutionary
importance to synchronizemovement with predator–prey
interactions, implying a strong control by the circadian
clock, both at the central level to control behaviour and
in skeletal muscle for adequate functionality (Albrecht &
Eichele, 2003). Inversely, adaptation of clock-controlled
physiological parameters, for example, anticipation and
execution of metabolic pathways important for foraging,
optimally can be influenced by activity patterns to adapt to
changes in the external environment (Hughes & Piggins,
2012). Thus, in addition to potentially being downstream
of clock control, muscle activity has also been proposed as
an upstream zeitgeber to synchronize peripheral clocks,
and the application of chrono-exercise put forward in
various diseases characterized by abnormal circadian
rhythmicity (Gabriel & Zierath, 2019; Gutierrez-Monreal
et al. 2020).
Consistent with the circadian modulation of muscle

physiology, hundreds of transcripts in skeletal muscle
oscillate with a 24-h period in humans and mice
(McCarthy et al. 2007; Perrin et al. 2018). Moreover,
insulin sensitivity, mitochondrial respiration, glucose and
lipid-related metabolites likewise follow similar patterns
in muscle tissue (Loizides-Mangold et al. 2017; Dyar
et al. 2018; Sato et al. 2018). In line with this, daily
variations in resistance and endurance exercise peak
performance have been reported during the normal
active phase in humans (Mirizio et al. 2020) and
rodents (Ezagouri et al. 2019) in most, but not all
(Knaier et al. 2019; Mirizio et al. 2020) trials. The
robustness and timing of such performance peaks seem
highly variable, depending on a multitude of parameters
including chronotype, time from awakening, muscle and
liver glycogen levels, nutritional status, and temperature
(Facer-Childs & Brandstaetter, 2015; Hearris et al. 2018).
It thus is unknown whether and how the intrinsic
muscle clock machinery influences the physiological and

molecular responses of skeletal muscle to exercise and
ultimately physical performance. Inversely, a potential
zeitgeber activity of training also is unclear, i.e. whether
repeated bouts of exercise affect phase and amplitude of
the molecular clock in muscle or other tissues. Training
studies at different times of day suffer from confounding
aspects such as light-mediated inhibition of voluntary
locomotion in animals, or restricted analysis of reporter
gene-based approaches. Therefore, whether the putative
enhanced effects of timed exercise training on health
parameters in both clinical and preclinical contexts
(Yamanaka et al. 2015; Savikj et al. 2019) depend on the
zeitgeber properties of exercise remains to be investigated.
To address open questions about the cross-regulation

of exercise and the circadian clock, we first evaluated
effects of timed exercise at the systemic andmuscle cellular
levels by assessing maximal treadmill exercise capacity
across the 24-h light–dark (LD) cycle. We furthermore
dissected the transcriptome and (phospho-)proteome
responses of working muscles at two distinct phases of
the LD cycle. Second, to investigate the potential zeitgeber
effects of exercise, we used a skeleton photoperiod (SPP)
in combination with restricted wheel-running access
to interrogate the consequences of scheduled daytime
voluntary training on skeletal muscle gene and protein
regulation.

Methods

Animals

Eight-week-old C57BL/6JRj male mice (Janvier Labs, Le
Genest-Saint-Isle, France) were housed in standard cages
under 12:12 light:dark (LD) conditions, with light onset at
06.00 h (zeitgeber time 0; ZT0) or entrained to a skeleton
photoperiod (SPP) as described below and in Fig. 7, unless
otherwise stated. The mice had ad libitum access to a
standard chow diet (Maintenance 3432, KLIBA NAFAG,
Kaiseraugst, Switzerland) and water, unless otherwise
stated. All experiments were performed in agreement with
the principles of the Basel Declaration, with Federal and
Cantonal Laws regulating the care and use of experimental
animals in Switzerland, and the institutional guidelines
of the Biozentrum and the University of Basel. The
protocol with all methods described here was approved by
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the ‘Kantonales Veterinäramt’ of the Kanton Basel-Stadt,
under consideration of the well-being of the animals and
the 3R principle.

Forced high-intensity exercise performance
across the day

Group-housed sedentary mice were acclimated to
the treadmill equipped with a shock grid (Columbus
Instruments, Columbus, OH, USA) on three consecutive
days prior to the experiment. The accommodation period
consisted of: Day 1, placing the mice in the treadmill for
10 min without shock and belt movement followed by
5min at 5mmin−1; Day 2, running at 5, 7 and 10mmin−1

for 5 min each, without shock; Day 3, running at 8, 10 and
12 m min−1 for 5 min each, with shock. After one resting
day, a maximal exercise capacity test was performed by
3 min at 8 m min−1 increasing treadmill speed by 2 m
every 2 min, at a 15° slope, until exhaustion. To provide
additional motivation to avoid the lower portion of the
treadmill and thus the shock grid, we gently scratched
the back of the animal during accommodation and
maximal exercise capacity test. Exhaustion was met if
an animal remained on the electrical grid (providing a
mild electrical stimulus of 0.5 mA, 200 ms pulse, 1 Hz)
for more than 5 s. Tail blood glucose (Accu-Chek, Roche,
Basel, Switzerland) and lactate (Lactate Plus meter, Nova
Biomedical, Waltham,MA, USA) values were determined
immediately prior to treadmill exercise and within 1 min
after physical exhaustion. Mice were either sacrificed
immediately after exhaustion (≤5 min of time delay;
Ex + 0 h) or 3 h after exercise (Ex + 3 h). For the
latter group, mice were returned to their home cages
without access to food. This experiment was repeated
every 4 h for 24 h starting from ZT0 (06.00 h; scheme
in Fig. 1A). A non-exercised group (Sedentary; Sed) of
mice was always sacrificed at a similar ZT (≤30 min of
time delay) as the exercised mice (Ex + 0 h and Ex +
3 h). Note that control Sed mice were placed in new cages,
with new bedding but no food access 60 min prior to
sacrifice. Importantly, all mice had a free access to food
prior to an exercise bout, that is, were not fasted. Lastly,
to take into account changes in basal gene expression
over time, gene expression data obtained from Ex + 0 h
and Ex + 3 h mouse groups running, e.g. at ZT0, were
compared to sedentary controls sacrificed at ZT0 andZT4,
respectively.

Daytime scheduled wheel-running activity

Mice were single-housed in standard cages, within an
environment-controlled cabinet (UniProtect Air Flow
Cabinet, Bioscape, Castrop-Rauxel, Germany), with the
temperature set to 23°C. The mice had access to a wheel

with rods (∅ 11.5 cm, Starr Life Sciences, Oakmont, PA,
USA) under constant 12:12 LD conditions for 3 weeks
prior to exposure to a SPP. The SPP consisted of two
repeated light-pulses (LP): 1 h LP at the beginning of
the resting period and 1 h LP at the end of the resting
period, interrupted by 10 h of darkness (Fig. 7A). After
3 weeks’ acclimatization to the SPP, 3 weeks of inter-
vention followed. During the intervention, one group
of mice (control, CTRL) had ad libitum access to food,
water and free access to running wheels. Another group
of mice (daytime activity, DA) was food-restricted to
the longer dark phase (active phase) and had access to
a wheel only during the shorter dark period (resting
phase) (see Fig. 7). Wheel and food access were controlled
manually, without opening the cage to not disturb the
animals. Importantly, the use of the wheel (light phase:
309 turns vs. dark phase: 17,732 turns) and food intake
(light phase: 0.4 g vs. dark phase: 4.7 g) during the
resting/inactive period was virtually absent in the CTRL
group. Lastly, we only compared daytime and night-time
wheel active animals in our study, trained for a similar
length of time; the comparison of sedentary mice with
mice given free access to a running wheel is well
documented elsewhere (Holloszy, 1967; Allen et al. 2001;
McKie et al. 2019).

Body temperature and locomotor activity recordings

General locomotor activity and core body temperature
data were acquired with the E-Mitter Telemetry System
(Starr Life Sciences) from single-caged animals placed
in an environment-controlled cabinet (UniProtect Air
Flow Cabinet, Bioscape). Briefly, small transponders (G2
E-Mitter, Starr Life Sciences) were implanted into the
abdominal cavity of mice under isoflurane anaesthesia
(2% isoflurane + O2). Mice were treated with meloxicam
(1 mg kg−1) pre- and post-operatively and allowed to
recover for 3 weeks. The abovementioned parameters
together with the wheel-running activity were recorded
with a PC-based acquisition system connected to ER4000
Receivers (VitalView, Starr Life Sciences).

Muscle tissue preparation and blood collection

Mice from the different experiments were sacrificed by
short exposure to CO2 and immediate exsanguination.
Blood was collected in tubes containing lithium heparin
(Microvette 500 LH, Sarstedt, Munich, Germany)
centrifuged at 2000 g for 5 min at RT and stored at
−80°C. The glycolytic quadriceps and gastrocnemius
muscles, as well as liver samples, were quickly snap frozen
in liquid nitrogen and stored at −80°C until further
analysis.

© 2021 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.
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Quantitative real-time PCR

Total RNA from muscle tissues was extracted using
a hybrid method combining TRI-Reagent (T9424,
Sigma-Aldrich, St Louis, MO, USA) and RNeasy Mini Kit
(74104, Qiagen, Hilden, Germany). RNA quantity and
purity were measured with a NanoDrop OneC (Thermo
Fisher Scientific, Waltham, MA, USA). High-Capacity
cDNA Reverse Transcript Kit (4368814, Thermo Fisher
Scientific, Waltham, MA, USA) was used for cDNA
synthesis with 1 μg of total RNA. Quantitative real-time
PCR was performed with Fast SYBR Green Master Mix
(4385612, Thermo Fisher Scientific, Waltham, MA,
USA) in a RT-PCR System (StepOnePlus, Thermo Fisher
Scientific, Waltham, MA, USA). PCR reactions were done
in duplicate with the addition of negative controls (i.e. no
reverse transcription and no template controls). Relative
expression levels were determined using the comparative
��CT method to normalize target gene mRNA to hypo-
xanthine guanine phosphoribosyltransferase (Hprt).
Primer sequences are summarized in Supplementary
Table 10. Rhythmicity and differential rhythmicity
were assessed using the methods RAIN (Thaben &
Westermark, 2014) and DODR (Thaben & Westermark,
2016), respectively.

Blood parameters analysis

Quantification of plasma triglyceride was done with the
Cobas c111 analyser (Roche, Basel, Switzerland). Plasma
free fatty acids were analysed using the Free Fatty Acid
Quantification Assay Kit (ab65341, Abcam, Cambridge,
UK) following manufacturer’s recommendations. Muscle
and liver glycogen levels were measured with a Glycogen
Assay Kit (Abcam, ab65620).

RNA sequencing and data analysis

RNA quality was determined on the Bioanalyzer
instrument (Agilent Technologies, Santa Clara, CA,
USA) using the RNA 6000 Nano Chip (Agilent, cat.
no. 5067-1511) and quantified by spectrophotometry
using the NanoDrop ND-1000 Instrument (NanoDrop
Technologies, Wilmington, DE, USA). Library pre-
paration was performed with 1 μg total RNA using
the TruSeq Stranded mRNA Library Prep Kit High
Throughput (cat. no. RS-122-2103, Illumina, San
Diego, CA, USA). Libraries were quality-checked
on the Fragment Analyzer (Advanced Analytical,
Ames, IA, USA) using the Standard Sensitivity NGS
Fragment Analysis Kit (cat. no. DNF-473, Advanced
Analytical) revealing excellent quality of libraries (average
concentration was 152 ± 9 nmol l−1 and average library
size was 374± 4 base pairs). Samples were pooled to equal
molarity. Each pool was quantified by PicoGreen Fluoro-

metric measurement in order to be adjusted to 1.8 pM
and used for clustering on the NextSeq 500 instrument
(Illumina). Samples were sequenced single reads of 76
bases using the NextSeq 500 High Output Kit 75-cycles
(Illumina, cat. no. FC-404-1005), and primary data
analysis was performed with the Illumina RTA version
2.4.11 and Basecalling Version bcl2fastq-2.20.0.422.
To quantify mRNA expression levels, kallisto version

0.46.0 (Bray et al. 2016) was used. To build the index
for kallisto, the GRCm38.p6 (mm10) genome assembly
and the ncbiRefSeqCurated transcript annotation of the
UCSC genome browser were used (Karolchik et al. 2014;
Pruitt et al. 2014). MicroRNAs (miRbase Version 19;
Kozomara & Griffiths-Jones, 2011; translated to RefSeq
IDs through BioMart; Durinck et al. 2009) were excluded.
Only one transcript was retained if several had both
identical start and end coordinates, slightly flattening the
annotation, and preference was given to transcripts with
IDs starting with ‘NM_’. Transcripts mapping to more
than one chromosome or to random or chrUn contigs
were discarded. tximport version 1.14.0 (Soneson et al.
2015) was used to transform expression levels to flattened
gene level pseudo-counts, using the ‘lengthScaledTPM’
option. For this, RefSeq IDs were mapped to Entrez gene
IDs using the org.Mm.eg.db database of R/Bioconductor
version 3.10 (Gentleman et al. 2004). DESeq2 version
1.26.0 (Love et al. 2014) was used for statistical analysis
of gene level differential expression. Here, log2 fold
changes were estimated by the DESeq2 shrinkage
estimator.

Proteomics and data analysis

Phosphopeptide enrichment and liquid
chromatography–tandem mass spectrometry analysis.
Tissue was lysed in 8 M Urea, 0.1 M ammonium
bicarbonate, phosphatase inhibitors (Sigma-Aldrich,
P5726 and P0044) by sonication (Bioruptor, 10 cycles,
30 s on/off, Diagenode, Liège, Belgium) and proteins
were digested as described previously (Ahrne et al.
2016). Shortly, proteins were reduced with 5 mM
tris(2-carboxyethyl)phosphine (TCEP) for 60 min
at 37°C and alkylated with 10 mM chloroacetamide
for 30 min at 37°C. After diluting samples with
100 mM ammonium bicarbonate buffer to a final
urea concentration of 1.6 M, proteins were digested
by incubation with sequencing-grade modified trypsin
(1/50, w/w; Promega, Madison, WI, USA) for 12 h at
37°C. After acidification using 5% trifluoroacetic acid
(TFA), peptides were desalted using C18 reverse-phase
spin columns (Macrospin, Harvard Apparatus, Holliston,
MA, USA) according to the manufacturer’s instructions,
dried under vacuum and stored at −20°C until further
use.

© 2021 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.
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Peptide samples were enriched for phosphorylated
peptides using Fe(III)-IMAC cartridges on an AssayMAP
Bravo (Agilent Technologies, Basel, Switzerland) platform
as recently described (Post et al. 2017). Unmodified
peptides (‘flowthrough’) were subsequently used for
tandem mass tag (TMT) analysis.

Phospho-enriched peptides were resuspended
in 0.1% aqueous formic acid and subjected to
liquid chromatography–tandem mass spectrometry
(LC–MS/MS) analysis using a Q Exactive HF Mass
Spectrometer or an Orbitrap Fusion Lumos Mass
Spectrometer fitted with an EASY-nLC 1000 or an
EASY-nLC 1200, respectively (both Thermo Fisher
Scientific) and a custom-made column heater set to 60°C.
Peptides were resolved using a reversed phase (RP)-HPLC
column (75 μm × 30 cm or 75 μm × 36 cm) packed
in-house with C18 resin (ReproSil-Pur C18-AQ, 1.9 μm
resin; DrMaischGmbH,Ammerbuch, Germany) at a flow
rate of 0.2 μl min−1. The following gradient was used for
peptide separation: Q ExactiveHF from 5%B to 8%B over
5 min to 20% B over 45 min to 25% B over 15 min to 30%
B over 10 min to 35% B over 7 min to 42% B over 5 min to
50% B over 3 min to 95% B over 2 min followed by 18 min
at 95% B, Orbitrap Fusion Lumos from 5% B to 8% B over
5 min to 20% B over 45 min to 25% B over 15 min to 30%
B over 10 min to 35% B over 7 min to 42% B over 5 min
to 50% B over 3min to 95% B over 2 min followed by
18 min at 95% B. Buffer A was 0.1% formic acid in water
and buffer B was 80% acetonitrile–0.1% formic acid in
water.

The Q Exactive HF mass spectrometer was operated in
DDA mode with a total cycle time of approximately 1 s.
EachMS1 scanwas followedbyhigh-collision dissociation
(HCD) of the 10 most abundant precursor ions with
dynamic exclusion set to 45 s. For MS1, 3 × 106 ions
were accumulated in the Orbitrap over a maximum time
of 100ms and scanned at a resolution of 120,000 full width
at half-maximum (FWHM; at 200 m/z). MS2 scans were
acquired at a target setting of 1 × 105 ions, maximum
accumulation time of 100 ms and a resolution of 30,000
FWHM (at 200 m/z). Singly charged ions and ions with
unassigned charge state were excluded from triggering
MS2 events. The normalized collision energy was set
to 28%, the mass isolation window was set to 1.4 m/z
and one microscan was acquired for each spectrum. The
Orbitrap Fusion Lumos mass spectrometer was operated
in DDA mode with a cycle time of 3 s between master
scans. Each master scan was acquired in the Orbitrap at
a resolution of 120,000 FWHM (at 200 m/z) and a scan
range from 375 to 1600m/z followed by MS2 scans of the
most intense precursors in the Orbitrap at a resolution
of 30,000 FWHM (at 200 m/z) with isolation width of
the quadrupole set to 1.4 m/z. Maximum ion injection
time was set to 50 ms (MS1) and 54 ms (MS2) with an
AGC target set to 1 × 106 and 5 × 104, respectively.

Only peptides with charge state 2–5 were included in the
analysis.Monoisotopic precursor selection (MIPS) was set
to Peptide, and the intensity threshold was set to 2.5 ×
104. Peptides were fragmented by HCD with collision
energy set to 30%, and one microscan was acquired for
each spectrum. The dynamic exclusion duration was set
to 30 s.
The acquired raw-files were imported into Progenesis

QI software (v2.0, Nonlinear Dynamics Ltd, Newcastle
upon Tyne, UK), which was used to extract peptide
precursor ion intensities across all samples applying
the default parameters. The generated mgf-file was
searched using MASCOT against a murine database
(consisting of 34,026 forward and reverse protein
sequences downloaded from Uniprot on 20,190,129)
and 392 commonly observed contaminants using the
following search criteria: full tryptic specificity was
required (cleavage after lysine or arginine residues,
unless followed by proline); three missed cleavages were
allowed; carbamidomethylation (C) was set as fixed
modification; oxidation (M) and phosphorylation (STY)
were applied as variable modifications; mass tolerance
of 10 ppm (precursor) and 0.02 Da (fragments). The
database search results were filtered using the ion score
to set the false discovery rate (FDR) to 1% on the
peptide and protein level, respectively, based on the
number of reverse protein sequence hits in the datasets.
Exported peptide intensities were normalized based on
the protein regulations observed in the corresponding
TMT experiments in order to account for changes in
protein abundance. Only peptides corresponding to
proteins which were regulated significantly with a P value
≤5% in the TMT analysis were normalized. Quantitative
analysis results from label-free quantification were
processed using the SafeQuant R package v.2.3.2 (Ahrne
et al. 2016; https://github.com/eahrne/SafeQuant/)
to obtain peptide relative abundances. This analysis
included global data normalization by equalizing the
total peak/reporter areas across all LC-MS runs, data
imputation using the knn algorithm, summation of
peak areas per peptide and LC-MS/MS run, followed
by calculation of peptide abundance ratios. Only iso-
form specific peptide ion signals were considered for
quantification. The summarized peptide expression values
were used for statistical testing of between-condition
differentially abundant peptides. Here, empirical
Bayes-moderated t-tests were applied, as implemented in
the R/Bioconductor limma package (http://bioconductor.
org/packages/release/bioc/html/limma.html).

TMT labelling and LC-MS/MS analysis. Tryptic peptides
were labelled with isobaric tandemmass tags (TMT10plex
or TMTpro 16plex, Thermo Fisher Scientific). Peptides
were resuspended in labelling buffer (2 M urea, 0.2 M

© 2021 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.
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Hepes, pH 8.3) by sonication and TMT reagents were
added to the individual peptide samples followed by a 1 h
incubation at 25°C shaking at 500 rpm. To quench the
labelling reaction, aqueous 1.5 M hydroxylamine solution
was added and samples were incubated for another 5 min
at 25°C shaking at 500 rpm followed by pooling of all
samples. The pH of the sample pool was increased to 11.9
by adding 1 M phosphate buffer (pH 12) with incubation
for 20 min at 25°C shaking at 500 rpm to remove TMT
labels linked to peptide hydroxyl groups. Subsequently,
the reaction was stopped by adding 2M hydrochloric acid
until a pH <2 was reached. Finally, peptide samples were
further acidified using 5% TFA, desalted using Sep-Pak
Vac 1cc (50 mg) C18 cartridges (Waters, Milford, MA,
USA) according to the manufacturer’s instructions and
dried under vacuum. For TMTpro 16plex analysis, four
peptide samples were prepared from C2C12 cells, TMT
labelled and included in the analysis to boost protein
coverage.
TMT-labelled peptides were fractionated by high-pH

reversed phase separation using a XBridge Peptide BEH
C18 column (3.5 μm, 130 Å, 1 mm × 150 mm, Waters)
on an Agilent 1260 Infinity HPLC system. Peptides were
loaded on column in buffer A (20 mM ammonium
formate inwater, pH 10) and eluted using a two-step linear
gradient from 2% to 10% in 5 min and then to 50% buffer
B (20 mM ammonium formate in 90% acetonitrile, pH
10) over 55 min at a flow rate of 42 μl min−1. Elution
of peptides was monitored with a UV detector (215 nm,
254 nm) and a total of 36 fractions were collected, pooled
into 12 fractions using a post-concatenation strategy as
previously described (Wang et al. 2011) and dried under
vacuum.
Dried peptides were resuspended in 0.1% aqueous

formic acid and subjected to LC-MS/MS analysis using a
Q Exactive HF Mass Spectrometer or an Orbitrap Fusion
Lumos Mass Spectrometer fitted with an EASY-nLC 1000
or an EASY-nLC 1200, respectively (both Thermo Fisher
Scientific) and a custom-made column heater set to 60°C.
Peptides were resolved using a RP-HPLC column (75 μm
× 30 cm or 75μm× 36 cm, respectively) packed in-house
with C18 resin (ReproSil-Pur C18–AQ, 1.9 μm resin;
Dr Maisch GmbH) at a flow rate of 0.2 μl min−1. The
following gradient was used for peptide separation: Q
Exactive HF from 5% B to 15% B over 10 min to 30% B
over 60 min to 45% B over 20 min to 95% B over 2 min
followed by 18min at 95%B,Orbitrap Fusion Lumos from
5% B to 15% B over 9 min to 30% B over 90 min to 45%
B over 21 min to 95% B over 2 min followed by 18 min at
95% B. Buffer A was 0.1% formic acid in water and buffer
B was 80% acetonitrile, 0.1% formic acid in water.
The Q Exactive HF mass spectrometer was operated

in DDA mode with a total cycle time of approximately
1 s. Each MS1 scan was followed by HCD of the 10 most
abundant precursor ions with dynamic exclusion set to

30 s. For MS1, 3e6 ions were accumulated in the Orbitrap
over a maximum time of 100 ms and scanned at a
resolution of 120,000 FWHM (at 200 m/z). MS2 scans
were acquired at a target setting of 1e5 ions, maximum
accumulation time of 100 ms and a resolution of 30 000
FWHM (at 200 m/z). Singly charged ions and ions with
unassigned charge state were excluded from triggering
MS2 events. The normalized collision energy was set
to 30%, the mass isolation window was set to 1.1 m/z
and one microscan was acquired for each spectrum. The
Orbitrap Fusion Lumos mass spectrometer was operated
in DDA mode with a cycle time of 3 s between master
scans. Each master scan was acquired in the Orbitrap at
a resolution of 120,000 FWHM (at 200 m/z) and a scan
range from 375 to 1600m/z followed by MS2 scans of the
most intense precursors in the Orbitrap at a resolution
of 30,000 FWHM (at 200 m/z) with isolation width of
the quadrupole set to 1.1 m/z. Maximum ion injection
time was set to 50 ms (MS1) and 54 ms (MS2) with
an AGC target set to 1e6 and 1e5, respectively. MIPS
was set to Peptide, and the intensity threshold was set
to 5e4. Peptides were fragmented by HCD with collision
energy set to 38%, and one microscan was acquired for
each spectrum. The dynamic exclusion duration was set
to 45 s.
The acquired raw-files were analysed using

SpectroMine software (Biognosis AG, Schlieren,
Switzerland). Spectra were searched against a murine
database consisting of 17,013 protein sequences (down-
loaded from Uniprot on 20,190,307) and 392 commonly
observed contaminants. Standard Pulsar search settings
for TMT10plex (‘TMT10plex Quantification’) and
TMTpro 16plex (‘TMTpro Quantification’) were used and
resulting identifications and corresponding quantitative
values were exported on the PSM level using the ‘Export
Report’ function. Acquired reporter ion intensities in the
experiments were employed for automated quantification
and statistical analysis using our in-house-developed
SafeQuant R script v2.3.2 (Ahrne et al. 2016). This
analysis included adjustment of reporter ion intensities,
global data normalization by equalizing the total
reporter ion intensity across all channels, summation
of reporter ion intensities per protein and channel,
calculation of protein abundance ratios and testing for
differential abundance using empirical Bayes-moderated
t-statistics.

Pathway enrichment analysis

Pathway enrichment analysis was performed using
g:Profiler (Reimand et al. 2016). Note that our input lists
contained all transcripts or (phospho-)proteins of a given
mouse group at a given time point meeting our statistical
thresholds.

© 2021 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.
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Statistics

The n-number used per genotype for each experiment
is indicated in the figure legend. Data are presented as
means ± SD and statistically analysed with GraphPad
Prism 8 (GraphPad Software Inc., La Jolla, CA, USA).
A two-tailed, unpaired Student’s t-test was performed to
evaluate statistical difference between two groups. For
multiple comparisons, data were analysed using one-way
and two-way ANOVAs followed by Sidak’s multiple
comparisons test. Corresponding symbols to highlight
statistical significance are as followed: ∗P ≤ 0.05, ∗∗P ≤
0.01, ∗∗∗P ≤ 0.001. A statistical report is available online
with this manuscript. All raw data are available upon
demand.

Results

Time-of-day-dependent variations in mouse treadmill
exercise performance

Differences in low- and moderate-intensity treadmill
exercise performance were previously reported within the
active phase of wild-type mice (Ezagouri et al. 2019). It is,
however, unclear whether mice show broader variations
in maximal exercise performance between the light (i.e.
resting/inactive) and the dark (i.e. feeding/active) peri-
ods. To investigate how the time of day affects exercise
capacity, we challenged different groups of untrained
C57BL/6J mice to an acute bout of high-intensity exercise
every 4 h across the whole 24-h LD cycle and sacrificed
them immediately (Ex + 0 h) or 3 h (Ex + 3 h)
after exhaustion was reached (experimental design and
protocol, Fig. 1A). We found a significant variation of
maximal treadmill running capacity, with a peak and
trough of performance at zeitgeber time 0 (ZT0, light-on;
hereafter, early daytime) and ZT12 (light-off; hereafter,
early night-time), respectively (Fig. 1B and 2A and B).
Importantly, all mice reached exhaustion and displayed an
elevation of blood lactate, yet without significant relation
to the time of day (Figs 1C and 2C). Conversely, we
observed that blood glucose levels significantly dropped
at ZT12 and ZT16 upon exercise (Figs 1D and 2D). Lastly,
higher serum corticosterone levels were observed in all
exercised groups regardless of time (Fig. 2E).

To further evaluate the metabolic outcome of maximal
treadmill exercise across the day, we measured circulating
energy substrates, muscle and liver glycogen levels
immediately after exercise (Ex + 0 h). We observed that
plasma triglyceride (TG) levels were mainly unchanged at
exhaustion (Fig. 1E), which is consistent with circulating
TG not being the primary source of energy during
moderate to high-intensity exercise in untrained animals
(Hargreaves & Spriet, 2018). Conversely, plasma free fatty
acids (FFA) and glycerol levels, a lipolytic marker, were

affected by treadmill exercise in a time-dependentmanner
(Fig. 1F and G). Lastly, muscle glycogen stores were
consistently reduced by exercise, except for ZT0, the time
at which mice show their greatest performance (Fig. 1H).
In contrast, hepatic glycogen stores, an essential source
of glucose during exercise (Richter & Hargreaves, 2013),
were significantly impacted by exercise across the LD cycle
except for ZT4 (Fig. 1I).
Altogether, these data demonstrate that mice are better

at performing amaximal running test in the early daytime.
Furthermore, we show that when basal hepatic glycogen
stores are low (i.e. in the early dark phase), mice are unable
to sustain a prolonged workout and to maintain homeo-
static blood glucose levels.

Exercise around the clock induces broad and
time-dependent gene responses in skeletal muscle

Using semiquantitative polymerase chain reaction
(qPCR), we next evaluated the expression of genes
that are part of the immediate, early response of skeletal
muscle to exercise across the day (see Methods and
Fig. 2F for details of fold-change determination and
statistical analysis; for each transcript, normalized data
are provided as bar graphs, while raw data are provided
as daily line graphs). We found that nuclear receptor
subfamily 4 group A member 3 (Nr4a3) and activating
transcription factor 3 (Atf3), both exercise-responsive
genes (Fernandez-Verdejo et al. 2017; Pillon et al.
2020), were induced immediately after exercise and
remained elevated 3 h post-exercise (Figs 3A and 4A).
Conversely, while the expression of the peroxisome
proliferator-activated receptor γ coactivator 1α 4
(Ppargc-1α4) isoform induced by resistance exercise
(Ruas et al. 2012) was up-regulated 3 h post-exercise
(Fig. 4A), the Ppargc-1α1 isoform particularly involved in
oxidative muscle remodelling (Lin et al. 2002) was mainly
induced directly after exercise (Fig. 4A). Moreover,
interleukin-6 (Il-6), a myokine implicated in muscle
glycolysis and adipose fat lipolysis (Pedersen & Febbraio,
2008), was increased immediately post-exercise, especially
in the late part of the day and at night (i.e. from ZT8 to
20) (Fig. 3A). Finally, vascular endothelial growth factor
A (Vegfa), an important regulator of muscle regeneration,
exercise adaptation and angiogenesis (Delavar et al. 2014),
was only induced when exercise was performed during
the daytime (Fig. 3A).
We likewise measured genes involved in the

regulation of lipid and glucose metabolism: some were
induced at the day–night transition (e.g. peroxisome
proliferator-activated receptor β/δ (Pparβ/δ); Fig. 3B),
induced at night (e.g. the liver-specific isoform
carnitine palmitoyltransferase-1α (Cpt1α) and pyruvate
dehydrogenase kinase 4 (Pdk4); Fig. 3B), broadly induced

© 2021 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.
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Figure 1. Time-of-day-dependent variations in mouse treadmill exercise performance and physiological
responses to exercise
A, treadmill protocol and experimental scheme. Mice were divided into two groups, sedentary (Sed) and exercise
(Ex). The latter group was further divided into two groups: sacrificed immediately (+ 0 h) or 3 h after exhaustion
(+ 3 h). B, maximal distance reached at exhaustion. C–G, blood lactate (C), glucose (D), plasma triglyceride (TG)
(E), free fatty acid (FAA) (F), and glycerol (G) levels. H and I, muscle (H) and liver (I) glycogen levels. Light and dark
periods are depicted by white and grey background, respectively. Data are shown as the means ± SD (n = 3).
∗P < 0.05, ∗∗P < 0.01, ∗∗∗P < 0.001, one-way ANOVA (B) and unpaired Student’s t-test (C–I).

© 2021 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.
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(e.g. hexokinase 2 (Hk2); Fig. 3B), or unchanged by
exercise (e.g. the muscle-specific isoform (Cpt1β);
Fig. 4A).

Finally, we assessed the expression of core circadian
clock genes. We observed changes in the expression of
brain and muscle arnt-like (Bmal)1, circadian locomotor
output cycles kaput (Clock), cryptochrome (Cry)1, Cry2,
period (Per)1, Per2, Per3, circadian associated repressor
of transcription (Ciart), retinoic acid receptor-related
receptor α (Rorα), Rorγ , nuclear receptor subfamily 1
group Dmember 1 (Nr1d1, Rev-Erbα), Nr1d2 (Rev-Erbβ)
and albumin D box-binding protein (Dbp), while only
Rorβ transcript levels remained unaffected (Figs 3C
and 4B). The transcription of most of these clock genes
was positively affected by exercise, with some exhibiting
a bimodal regulation, e.g. a repression following an
induction for Per1, Per2 or Ciart at specific ZTs (Fig. 3C).
Overall, these data demonstrate that the regulation of
prototypical exercise response andmetabolic genes is only
in part influenced by the time of day, which, for example,
seems completely irrelevant for Ppargc-1α. Moreover,
acute endurance exercise bouts extensively affect the
expression of core clock genes in the immediate response
after fatigue is reached.

Daytime vs. night-time treadmill exercise elicits
distinct gene signatures in skeletal muscle

In light of our qPCR results, we further explored the
transcriptional signatures of working muscles at distinct
phases of the LD cycle. We performed RNA-sequencing
(RNA-seq) gene expression profiling of muscles harvested
at times when treadmill exercise performance differed the
most, namely ZT0 (i.e. light onset) and ZT12 (i.e. light
offset).
The overall extent of the transcriptional response

shifted from the immediate time point (Ex + 0) at the
early daytime exercise to the late time point (Ex + 3)
at the early night-time exercise (Figs 5A and B and 6).
Surprisingly, only about 25%of the differentially expressed
genes (DEGs; FDR ≤ 0.05) were shared between ZT0 and
ZT12, regardless of the time of sacrifice (i.e. Ex + 0 h vs.
Ex + 3 h). Examples representing this ‘core program’ are
the MAF transcription factorsMaff andMafk, implicated
in cellular stress response and detoxification (Katsuoka
et al. 2005), and metallothionein 1/2 (Mt1/2), involved in
oxidative stress protection and regulation of hypertrophy
via the Akt pathway (Di Foggia et al. 2014) (Fig. 5C and
D, and Supplementary Table 1). The expression of most
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Figure 2. Time-of-day-dependent fluctuations in exercise performance and exercise-induced cortico-
sterone release
A, maximal time reached at exhaustion. B, maximal speed reached at exhaustion. C and D, delta blood lactate (C)
and delta glucose levels (D) (resting values subtracted from values at exhaustion). E, serum corticosterone levels in
Sed and at exhaustion. Light and dark periods are depicted by white and grey background, respectively. Data are
shown as the mean ± SD (n = 3). ∗∗P < 0.01, ∗∗∗P < 0.001, one-way ANOVA (D). F, mock dataset to illustrate
the analysis of the gene expression data depicted in Figs 3 and 4. Fold-change (FC) values are plotted according
to time at which exercise was started. FC estimation was performed according to the time of sacrifice (i.e. as
indicated by the arrows: gene expression data of mice exercised from ZT0 and sacrificed directly at exhaustion are
expressed relative to Sed ZT0 plotted at ZT0; and the gene expression of mice exercised at ZT0 and sacrificed 3 h
after exhaustion are expressed relative to Sed ZT4, but plotted at ZT0).
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Figure 3. Exercise around the clock induces broad and time-dependent gene responses in skeletal
muscle
Gene expression in sedentary (Sed) and exercised mice at (Ex + 0 h) and 3 h (Ex + 3 h) after exhaustion. A,
exercise-related genes. B, metabolic genes. C, clock genes. Expression values were determined by qPCR and
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normalized to Hprt. Light and dark periods are depicted by white and grey background, respectively. Data in
bar graphs are shown as the mean fold-change ± SD (n = 3) relative to the expression in Sed set to 1 (see Methods
for details on normalization). Data in line graph are shown as the mean fold-change ± SD (n = 3) relative to the
expression in the Sed ZT0 group set to 1. ∗P < 0.05, ∗∗P < 0.01, ∗∗∗P < 0.001, unpaired Student’s t-test (bar
graphs) and one-way ANOVA (line graphs). Group significance in line graphs is indicated on the right side of the
group line.

genes, however, differs qualitatively or at least temporally
between the two ZTs. For instance, in line with the qPCR
data, Per1 and Ciart transcripts were significantly induced
immediately after exercise when performed at ZT0, but
not at ZT12 (Fig. 5C).

Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathway enrichment analysis using g:Profiler (Reimand
et al. 2016) revealed that exercise at both ZTs activated
mitophagy, inflammation and apoptotic pathways (Fig. 5E
and F, and Supplementary Table 1). Conversely, exercise
at early daytime is linked with a robust immediate
increase in genes linked to protein processing, lysosome
and phagosome, associated with a down-regulation of
oxidative phosphorylation (Fig. 5G), followed by a further
increase in protein processing and ribosome-related
genes 3 h later. In contrast, early night-time exercise
triggers a broad immediate induction in genes related
to mitogen-activated protein kinase (MAPK) and other
stress, muscle wasting pathways (i.e. Hippo and FoxO),
with an ensuing activation of catabolic signals linked to
AMP-activated protein kinase (AMPK), lysosome and
proteasome 3 h later. At this time point, some of the genes
related to the stress signalling pathways thatwere activated
earlier are mostly down-regulated (Fig. 5H).

Taken together, the time of day markedly affects the
transcriptional response to an acute bout of endurance
exercise. Moreover, broadly speaking, daytime exercise
positively regulates transcriptional processes associated
with protein synthesis and stability, while night-time
exercise triggers responses associated with energy stress.

Proteome and secretome changes associated with
daytime vs. night-time treadmill exercise

To investigate whether the exercise-induced trans-
criptional changes were accompanied by significant
modifications at the protein level, we performed mass
spectrometric analyses of muscles from mouse groups
exercised at ZT0 and ZT12, and identified a total of
about 5300 proteins using SpectroMine, specifying a
false discovery rate of 1% at the peptide and protein
level.

Similar to the transcriptomic data, only a relatively
small overlap between the two ZTs regarding the levels
of differentially affected proteins was observed at either
time point (Figs 6A and 7A–D). The control of specific
programs was underlined by the small overlap in

KEGG terms between ZT0 and ZT12 (Fig. 7E–H),
indicating differential regulation of protein expression and
pathway activation between time points. For example,
the up-regulation of soluble N-ethylmaleimide-sensitive
factor attachment protein receptors (SNARE) interactions
in vesicular transport at exhaustion followingZT0 exercise
indicates the increase in a class of membrane-associated
proteins, which, besides their involvement in neuro-
transmitter release (Dunant & Israel, 2000; Kasai et al.
2012), regulate GLUT4-containing vesicle trafficking
(Cheatham, 2000). In line with this, vesicle-associated
membrane protein 3 and 8 (VAMP3, 8), syntaxin 6
and 8 (STX6, 8), synaptobrevin homolog YKT6 (YKT6)
and synaptosomal-associated protein 23 (SNAP23), which
are all key mediators of GLUT4 translocation to the
cell surface, were elevated at this time point (Bryant
& Gould, 2011; Zong et al. 2011; Morris et al. 2020)
(Supplementary Table 2). Moreover, the Rho family
GTPase RAC1, an essential regulator of glucose transport
in contracting muscles (Sylow et al. 2017), its upstream
regulator protein tyrosine phosphatase α (PTPα; PTPRA)
(Sun et al. 2012), together with the GTPase Ras-related
protein (RALA), a known mediator of insulin-dependent
glucose uptake (Takenaka et al. 2015), were all consistently
elevated (Supplementary Table 2). Finally, we observed
increased expression of the Rho GTPases RHOA, B,
and C, in favour of enhanced GLUT4 intracellular
trafficking (Duong & Chun, 2019) (Supplementary Table
2). Collectively, these changes imply an activation of
glucose uptake into skeletal muscle that seems more
specific to the adaptation in early daytime exercise.
Moreover, early daytime treadmill exercise robustly
initiated the ‘complement system’ (Fig. 7E). Complement
activation triggers tissue regeneration in response to
muscle injury and inflammation (Zhang et al. 2017).
Accordingly, complement C3a, C4b, C8a, C8b, C9, CFD,
and CFB proteins, were all up-regulated (Supplementary
Table 2). In contrast, the levels of proteins linked to
ribosome function were only elevated in early night-time
exercise at 0 h, followed by a subsequent decrease at 3 h,
associated with a strong induction in proteins involved in
nicotinamide and nitrogen metabolism (Fig. 7F and H).
Hence, proteostasis could be more affected at this time
point compared to early daytime running.
Skeletal muscle tissue is an endocrine organ, releasing

small molecules, so-called myokines, in response to
exercise (Delezie & Handschin, 2018). We thus used pre-
dictive tools to identify putatively secreted proteins that

© 2021 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.
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Figure 4. Scheduled treadmill induces broad and time-dependent transcriptional responses in skeletal
muscle
Gene expression in sedentary mice (Sed) and exercised mice at (Ex + 0 h) and 3 h (Ex + 3 h) after exhaustion.
A, exercise-related genes. B, metabolic genes. C, clock genes. Expression values were determined by qPCR and
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normalized to Hprt. Light and dark periods are depicted by white and grey background, respectively. Data in bar
graphs are shown as the mean fold-change ± SD (n = 3) relative to the expression in Sed set to 1 (see Methods
for details on normalization). Data in line graph are shown as the mean fold-change ± SD (n = 3) relative to the
expression in the Sed ZT0 group set to 1. ∗P < 0.05, ∗∗P < 0.01, ∗∗∗P < 0.001, unpaired Student’s t-test (bar
graphs) and one-way ANOVA (line graphs). Group significance in line graphs is indicated on the right side of the
group line.

could influence muscle performance and metabolism at
distinct phases of the LD cycle. Of the top 100 proteins
exclusively induced in the immediate response to daytime
exercise (Ex+ 0 h), we retrieved 25 candidates as potential
secreted proteins using SignalP 5.0, and 12 additional
candidates using SecretomeP 2.0 (Bendtsen et al. 2004;
Nielsen, 2017) (Supplementary Table 3). For instance,
the major urinary proteins (MUP) 3, 17 and 18 were all
up-regulated at ZT0 and could potentially be associated
with the regulation of systemic blood glucose, as well
as liver and skeletal muscle metabolism (Zhou et al.
2009). We, moreover, identified fibrillin-1 (FBN1, also
called asprosin), a glucogenic protein hormone that is
secreted by adipose cells and recruited at the surface of
hepatocytes to increase plasma glucose level (Romere et al.
2016). Night-time exercise resulted in a smaller number of
potentially secreted proteins using the same analysis tools
(Supplementary Table 3). The seven predicted proteins
included the SPARC-like protein 1 (SPARCL1), a member
of the SPARC family of proteins that also includes
SPARC/osteonectin, an exercise-regulated myokine with
a potential effect on myogenic differentiation (Lee & Jun,
2019).

Overall, these proteomic results highlight the robust
activation of time-dependent cellular responses;
enhancing glucose metabolism in the early daytime
(supported by the predicted secretome) and, conversely,
alterations in protein homeostasis when exercise is
performed in the early night.

The phosphorylome of daytime vs. night-time
working muscles

Many proteins are regulated by phosphorylation
independently of their expression (Huttlin et al. 2010),
in particular upon exercise (Hoffman et al. 2015).
To identify signalling pathways that are modulated
by exercise at different times of day, we performed
a comprehensive phosphoproteomics analysis, in
which approximately 7000 sequence ions carrying
post-translational modifications in response to exercise
mapping to about 1600 unique proteins were identified
(Figs 6 and 7I–L).

A larger enrichment of concurrent phosphorylation
and dephosphorylation of proteins in stress-related and
catabolic pathways was detected in night-time exercise,
both at Ex + 0 h and Ex + 3 h (Fig. 7M–P). While
the α2-subunit of AMPK, the predominant form in

the muscle (Garcia & Shaw, 2017), was consistently
dephosphorylated on Ser377 by exercise regardless of
ZT, only exercise at night induced further changes in the
phosphorylation status of both α1 and α2 AMPK sub-
units. Night-time exercise rapidly phosphorylated α1/α2
at Ser496/491, and we found increased phosphorylation
of the critical regulator of autophagy ULK1 on Ser637,
which is dependent on AMPK (Mack et al. 2012). The
mechanistic target of rapamycin (mTOR) protein was
similarly phosphorylated on Ser1162/1261 upon exercise
at both ZTs, yet both TSC1 and TSC2 proteins, important
integrators of different signalling pathways to control
mTOR signalling, were predominantly regulated by
night-time exercise (Supplementary Table 4). Emblematic
of the activation of the ‘mTOR pathway’, there were
robust post-translational changes of, for example,
lipin1 (LPIN1), eukaryotic translation initiation factor
4 (EIF4) B, EIF4E binding protein and ribosomal
protein S6 (RPS6). Similarly, key components of the
‘HIF-1 signalling’ pathway, e.g. the glycolytic enzymes
enolase 1 (ENO1), phosphofructokinase (PFK) L-M,
and aldolase A (ALDOA), displayed unique and/or
distinct phosphorylation profiles at night (Fig. 7M, and
Supplementary Table 4). In line with the decrease in
muscle glycogen content upon exercise at ZT12, the
muscle-specific isoform of glycogen phosphorylase
(PYGM), a key enzyme in the first step of glycogenolysis,
was specifically phosphorylated on Ser2 and on Ser15;
the latter residue is particularly known to enhance
phosphorylase activity and the degradation of glycogen
(Johnson, 1992). In contrast, these two sites were not
phosphorylated in response to early daytime exercise,
consistent with muscle glycogen sparing (Fig. 1H).
Moreover, daytime exercise exclusively enhanced
phosphorylation on Ser3/616 residues of the TBC1
domain family member 4 (TBC1D4 or AS160), a
strong regulator of GLUT4 trafficking in skeletal muscle
(Sakamoto & Holman, 2008; Cartee, 2015). Finally,
besides the increased abundance of asprosin in daytime
contractingmuscles, we observed active post-translational
modifications on Ser2566 and Ser2711 (Supplementary
Table 4), which could warrant secretory processing
to boost hepatic glucose production. We furthermore
detected post-translational modifications of hormone
receptors that play a key role in energy metabolism,
e.g. the phosphorylation of the glucocorticoid
receptor (Nr3c1) on T152 and S275 residues only at
night-time (Supplementary Table 4), even though plasma

© 2021 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.
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corticosterone levels were similarly elevated by exercise at
ZT0 and ZT12 (Fig. 2E).
Broad changes in the phosphorylation of proteins

associated with modulation of muscle contractile
properties (i.e. titin; myosin heavy chain 3, 4 and
9; sarcoplasmic reticulum calcium-ATPase 1 and 2)
were similarly observed independent of the time of day
(Fig. 7K and L). However, the ‘vascular smooth muscle

contraction’ KEGG pathways were exclusively enriched
upon daytime exercise, particularly at exhaustion (Ex
+ 0 h), indicating a higher engagement of calcium and
cAMP signalling pathways. In line, phosphorylation of the
calcium voltage-gated channel subunit α 1 S (CACNA1S)
protein, a regulator of contractile force in response to
stress, fear and exercise, the so-called ‘fight-or-flight’
response (Emrick et al. 2010; Catterall, 2015),
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Figure 5. Daytime vs. night-time treadmill exercise elicit distinct transcriptomic signatures
A and B, Venn diagrams displaying the number of DEGs immediately (A; Ex + 0 h) and 3 h (B; Ex + 3 h) after early
daytime (ZT0) or early night-time (ZT12) exercise, and resulting overlap. C and D, volcano plots displaying DEGs
(with top 10 indicated) as described above. E–H, KEGG analysis (top 5 terms per category) of up-regulated (E and
F) and down-regulated (G and H) genes by exercise as above. KEGG pathway categories: 1, metabolism; 2, genetic
information processing; 3, environmental information processing; 4, cellular processes; 5, organismal systems.
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was specific to residue Ser5 and Ser1617/1640 and
T700 (Supplementary Table 4). These sites are not yet
characterized but could indicate an up-regulation of
calcium channel activity, leading to increased force
production. In support of this, expression of the calcium
release-activated calcium channel protein 1 (ORAI1),
a crucial calcium regulator limiting muscle fatigue
(Wei-Lapierre et al. 2013), was exclusively up-regulated
in daytime exercised muscles (Supplementary Table 2).

Taken together, the phosphoproteomics data mirror
the transcriptomics and proteomics inasmuch as clear
distinctions between different time points were observed,
mainly in regard to stress and catabolism. It thus is clear
that besides a robust core exercise programme, the time
of day has a major impact on gene expression, protein
levels and post-translational modifications triggered by
acute physical activity.

Mice with restricted wheel access spontaneously run
during daytime under a skeleton photoperiod

While the studies have so far pertained to the
consequences of the time of day on the acute exercise
response, we next assessed how training at different
times of day affects the clock. Due to the masking (i.e.
suppressive) effect of light on physical activity and
other nocturnal behaviour of mice, voluntary use of
the running wheel under normal conditions exclusively
spreads throughout the dark period, with a peak in the
early hours of the night, with intermittent multiple eating
events (Yasumoto et al. 2015). These and other limitations
have precluded a comprehensive analysis of prolonged
training as a potential zeitgeber under physiological
conditions so far. We therefore tested the use of a skeleton
photoperiod (SPP) in combination with time-restricted
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Figure 6. Distinct muscle gene expression signatures after early daytime vs. early night-time treadmill
exercise
Venn diagrams displaying the number of differentially regulated genes, proteins and phosphosites immediately (A;
Ex + 0 h) or 3 h (B; Ex + 3 h) after early daytime (ZT0), early night-time (ZT12) exercise, and the overlap.
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wheel and food access to evaluate whether mice would
spontaneously run in a wheel during their normal resting
phase (see Methods and Fig. 8A). SPPs maintain central
clock oscillation (Oishi et al. 2002), reducing the strong
inhibition of light on physical activity in mice (Delezie
et al. 2016).
Under SPP conditions, DA mice used the wheel from

the first day of daytime-restricted access and maintained
a stable onset and level of activity during the following
days (Fig. 8B and C). DA mice almost exclusively ran
within the first 3 h of daytime wheel access (Fig. 8D).
Even though total activity only represented 50% of the
control group (Fig. 8E), running intensity was comparable
between the two groups during the first 2 h of wheel

access (Fig. 8D and F). Daytime-restricted wheel access
promoted food intake in the first few hours of the
night-time period but significantly decreased the over-
all amount of food consumed (Fig. 8G). As expected,
there was an elevation of daytime core body temperature
paralleling the increase in wheel-running activity of DA
mice (Fig. 8H and I). The temporal organization of
night-time core body temperature values in DA mice,
however, closely resembled those of CTRL, night-time
active mice, likely caused by comparable feeding bout
activities (Fig. 8G). To evaluate whether the animal
handling or the running at an abnormal time point caused
a severe physiological stress, we measured serum cortico-
sterone levels, but did not observe significant changes

Figure 7. Phospho-/proteomic analyses reveal time-dependent differences in muscle response to early
daytime vs. early night-time exercise
A and B, Venn diagrams displaying the number of differentially regulated proteins immediately (A; Ex + 0 h) and
3 h (B; Ex + 3 h) after early daytime (ZT0) or early night-time (ZT12) exercise, and resulting overlap. C and D,
volcano plots showing the differentially regulated proteins (with top 10 indicated) as above. E–H, KEGG analysis of
up-regulated (E and F) and down-regulated (G and H) proteins by exercise as described above. I–L, Venn diagrams
(I and J) and volcano plots (K and L) displaying the differentially phosphorylated proteins in the same groups as
above. M–P, KEGG analysis (top 5 terms per category) for increased (M and N) and decreased (O and P) protein
phosphorylation in Ex + 0 h and Ex + 3 h groups. KEGG pathway categories: 1, metabolism; 2, genetic information
processing; 3, environmental information processing; 4, cellular processes; 5, organismal systems.
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Figure 8. Scheduled daytime wheel-running activity in mice exposed to a skeleton photoperiod
A, experimental scheme. Mice had free access to a wheel for 3 weeks under 12:12 L:D before transfer to a skeleton
photoperiod (SPP). The SPP consists of 1 h light pulse from ZT0 to ZT1 and from ZT11 to ZT12. After 3 weeks
under SPP conditions, mice were separated into two groups: one with free access to wheel and food, the other
with exclusive access to wheel during day and food during night. B, representative double-plotted actograms of
DA mice. The grey background indicates light off, and the arrow indicates the time shift in wheel access. C, daily

© 2021 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.



18 G. Maier and others J Physiol 0.0

wheel-running activity from the first day of restriction of the DA mice. D and E, 24-h activity levels of CTRL and DA
mice (D), and resulting average of day vs. night locomotor activity (E). F, quantified wheel-running activity during
the first 2 h of wheel excess. G, food intake during the active, feeding period and average over the full food access
period. H and I, 24-h core body temperature levels of CTRL and DA mice (H), and resulting day and night values
(I). J, serum corticosterone levels. Light and dark periods are depicted by white and grey background, respectively.
Data are shown as the mean ± SD (n = 24). ∗P < 0.05, ∗∗P < 0.01, ∗∗∗P < 0.001, unpaired Student’s t-test (E, G,
I) and one-way ANOVA (H).

(Fig. 8J). This also demonstrates that daytime training
does not affect the daily rhythm of corticosterone and,
moreover, that voluntary wheel running is not associated
with a stress response in mice, in stark contrast to
treadmill exercise (Fig. 2E). This stress affects the clock
and thereby confounds the analysis of the zeitgeber
activity of exercise (Tahara et al. 2017).

Daytime wheel running profoundly affects skeletal
muscle gene expression but not the core clock

Having established a robust system of voluntary,
stress-free daytime activity uncoupled from feeding
behaviour, we evaluated the impact of day- and night-time
activity on gene expression. To do so, we collected muscle
tissues after 3 weeks of daytime wheel access, when
running performance already plateaued in particular
in DA mice (Fig. 8C), without depriving mice of wheel
access. First, we studied the impact of training on the
daily expression of clock genes, which would reveal
potential zeitgeber activity. We have shown that acute
bouts of treadmill exercise cause the rapid expression
of some of the core clock transcriptional (co-)regulators
(Figs 3C and 4B). Moreover, night-time wheel running
exercise modulates the daily amplitude of core clock
gene expression (Yasumoto et al. 2015). Prolonged
daytime wheel running resulted in a marked effect on the
amplitude, but much less on the phase, of most core clock
genes. For example, the relative amplitude (peak-trough
amplitude divided by mean) of Bmal1, Clock, Cry1-2,
Per1-3, RORα and RORγ was dampened in muscles of the
DA group (Figs 9A and 10A, and Supplementary Table 5).
To elucidate whether daytime training affects the clock

of other peripheral tissues, we also measured clock genes
in the liver, without observing robust changes (Fig. 11A).
Thus, to compare these effects to an established zeitgeber,
we finally determined clock expression in liver andmuscle
of mice undergoing daytime feeding (DF). As established
(Damiola et al. 2000), this zeitgeber paradigm resulted in
a complete reversal of the liver clock (Fig. 11B). Inter-
estingly, however, DF exerted an effect on the skeletal
muscle clock that resembles that of daytime activity, with
a blunting of the amplitude of several genes, and minor
phase shifts in others (Reznick et al. 2013) (Fig. 11C).
Thus, collectively, the skeletal muscle clock seems much
more refractory to external perturbations compared to
the liver clock, even though training resulted in clear

differences in the regulation of selected exercise (e.g.
Ppargc-1α) and metabolic transcripts (e.g. Pparα) in
muscles of DA mice (Figs 9B and C and 10B and C).

Characterization of the muscle transcriptome,
proteome and phosphoproteome responses of
daytime wheel active mice

We next dissected the global changes elicited by day-
compared to night-time activity on the transcriptome,
proteome and phosphoproteome at ZT4 and ZT16, near
the peak of wheel running activity in DA and CTRL
mice, respectively. Daytime training led to the differential
expression of 2094 genes at ZT4, with a similar proportion
of down- and up-regulated transcripts (Fig. 12A). In
comparison, training at night-time was a weaker modifier
of gene expression: we only found 368 transcripts for
which the expression was different between CTRL,
night-time-trained muscles and those obtained from
daytime-trained animals at ZT16 (Fig. 12A). The overlap
between the day- and night-time activity groups describes
known exercise-regulated genes, including members of
the KLF transcription factor gene family (i.e. Klf4, 5
and 15), the MAF transcription factors and Nr4a3.
Incidentally, Atf3, Per2 and Ppargc-1α were among the
top induced genes only in daytime working muscles
(Fig. 12B). The nuclear receptor Pparα, a regulator of
fatty acid oxidation (Muoio et al. 2002), was likewise
specifically induced by daytime wheel running. Lastly, the
KEGG pathways of DA mice reflected some of those that
were activated by acute exercise bouts at early daytime,
indicating a hardwiring of the pathways related to protein
processing and mitophagy in chronic activity (Fig. 12C
and D, Supplemental Table 6).
Up to 3800 proteins were detected in skeletal muscles

of DA and CTRL mice, including 246 for which the
expression was exclusively altered by daytime wheel
running (Fig. 12E and F). The majority of up-regulated
proteins were linked to metabolic functions (Fig. 12G
and H, Supplemental Table 7), including an important
cluster regulating fatty acid metabolism (e.g. ATP-citrate
synthase (ACLY), mitochondrial trifunctional enzyme
subunit (HADH)α, FASN and PDK4) and the citrate
cycle (e.g. isocitrate dehydrogenase (IDH)2, succinate
dehydrogenase (SDH)b) (Fig. 12F), most of which are
direct targets of PPARα (Boergesen et al. 2012; Gan et al.
2018). In line with the transcriptomic data, exclusive
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Figure 9. Daytime wheel running profoundly affects skeletal muscle gene expression but not the core
clockwork
Gene expression in control (CTRL) and daytime activity (DA) mice. A, clock genes. B, exercise-related genes. C,
metabolic genes. Expression values were determined by qPCR and normalized to Hprt. Light and dark periods
are depicted by white and grey background, respectively. Data are shown as the mean fold-change ± SD (n = 4)
relative to the expression in CTRL ZT0 set to 1. ∗P < 0.05, ∗∗P < 0.01, ∗∗∗P < 0.001, one-way ANOVA.
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Figure 10. Distinct muscle gene expression signatures after daytime vs. night-time wheel running
training
Gene expression in control (CTRL) and daytime activity (DA) mice. A, clock genes. B, exercise-related genes. C,
muscle-specific and metabolic genes. Expression values were determined by qPCR and normalized to Hprt. Light
and dark periods are depicted by white and grey background, respectively. Data are shown as themean fold-change
± SD (n = 4) relative to the expression in CTRL ZT0 set to 1. ∗P< 0.05, ∗∗P< 0.01, ∗∗∗P< 0.001, one-way ANOVA.
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Figure 11. Distinct liver clock gene expression signatures after daytime vs. night-time wheel running
training
Gene expression in control (CTRL) and daytime activity (DA) mice. Clock genes in liver of DA mice (A), of daytime
feeding (DF) mice (B), and in skeletal muscle of DF mice (C). Expression values were determined by qPCR and
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normalized to Hprt. Light and dark periods are depicted by white and grey background, respectively. Data are
shown as the mean fold-change ± SD (n = 4) relative to the expression in CTRL ZT0 set to 1. ∗P< 0.05, ∗∗P< 0.01,
∗∗∗P < 0.001, one-way ANOVA.

night-time running-induced proteins are scarcer, and
not attributable to specific pathways by KEGG analysis
(Supplemental Table 7). Moreover, in silico prediction
of the secretome of both groups did not return notable
myokine candidates (Supplementary Table 8). In regard
to post-translational modifications, we observed the
differential phosphorylation of 344 and 135 proteins in
response to daytime and night-time training, respectively,
with an overlap of 62 protein-specific post-translational
modifications, some of which associated with ‘calcium
signalling’ (Fig. 12I). However,most of the proteins shared
betweenZT4 andZT16were differentially phosphorylated
by wheel running exercise. For example, CACNA1s was

phosphorylated on Ser700 in the early daytime and
dephosphorylated on Ser1617 in the early night-time.
Similar results were found for RYR1 and STIM1, with
the identification of previously uncharacterized sites
(Supplementary Table 9). Notably, there was a strong
daytime-dependent post-translational regulation of
PYGM on Ser15 (Fig. 12J; Supplementary Table 9),
potentially promoting the degradation of glycogen
(Johnson, 1992). Accordingly, ‘glycolysis’ was enriched
in the DA group (Fig. 12K and L), and ALDOA, a
key enzyme in the fourth step of glycolysis, was one
of the top phosphorylated enzymes (Supplementary
Table 9).
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Figure 12. Characterization of the muscle transcriptome, proteome and phosphoproteome responses
of daytime wheel active mice
A, Venn diagrams with number of DEGs in DAmice at ZT4 and CTRL mice at ZT16, and resulting overlap. B, volcano
plots displaying the DEGs (top 10 shown) as identified in the same groups as above. C and D, KEGG analysis
(top 5) of up-regulated (C) and down-regulated (D) genes as above. E, Venn diagrams displaying the number of
differentially regulated proteins for night-time, and daytimewheel running and the overlap. F, volcano plot showing
the differentially regulated proteins (top 10 only) by night-time and daytimewheel running.G andH, KEGG analysis
(top 5) for proteins induced (G) or decreased (H) by night-time and daytime wheel running. I, Venn diagram
displaying the number of differentially phosphorylated proteins as described above. J, volcano plot showing the
differentially phosphorylated proteins (top 10 shown). K and L, KEGG analysis (top 5) for phosphorylated (K) and
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environmental information processing; 4, cellular processes; 5, organismal systems.
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Overall, marked differences in gene expression, protein
levels and phosphorylation patterns were observed
in mice undergoing daytime compared to night-time
activity, implying a strong impact of the time of training
on muscle physiology and function in absence of a major
change in the regulation of the skeletal muscle clock.

Discussion

Physical activity is a crucial behaviour for which strong
evolutionary pressure exists to ensure critical timing
with availability of food and evasion of predators. Thus,
a strong mutual interaction between skeletal muscle,
the circadian timing system and exercise has been
proposed (Gutierrez-Monreal et al. 2020). First, the
daily variations in metabolic and functional properties,
ultimately influenced by the circadian system, will affect
endurance and strength capacities. For example, depletion
of energy stores after the resting phase will influence
muscle metabolism and performance. Second, repeated
aberrations from normal behaviour, e.g. temporal changes
in activity levels, could exert zeitgeber activity tomodulate
and synchronize peripheral clocks according to altered
environmental constraints. However, for both of these
hypotheses, strong influence of time of day on mouse
muscle cellular responses and performance, and the
zeitgeber effects of exercise training, remain poorly
described. Herein, we further evaluated these aspects in
controlled animal studies, e.g. using SPPs as a technical
intervention to reduce confounding factors.

First, collectively, our results strongly suggest that early
daytime voluntary wheel running training has very poor
zeitgeber activity on the skeletal muscle clock, barely
affecting the phase of circadian gene expression inmuscle,
very different from the strong and paradigmatic effect of
daytime feeding on the liver clock (Damiola et al. 2000;
Fig. 12B). In stark contrast, early daytime training leads
to a dramatically altered profile in terms of transcription,
protein levels and phosphoproteomics. In most aspects,
the exercise response was amplified in the daytime activity
group, and in part resembled that following an acute
exercise bout. For example, normal night-time running
wheel activity is linked to only a very moderate trans-
criptional response of Ppargc-1α gene expression. This
gene responds very strongly to an acute exercise bout in
naïve mice, qualitatively and quantitatively comparable
to what we have observed in the daytime running wheel
group, which could be interpreted as a lack of training
adaptation, or habituation, in this group of mice (Perry
et al. 2010). Alternatively, it is conceivable that the
difference in exercise response in daytime compared to
night-time running wheel activity is at least in part related
to the difference in feeding state, since food access in both
groups was restricted to the dark period. In particular,

the difference in proteins related to fatty acid metabolism,
citrate cycle and glucose metabolism indicates that the
metabolic state in these two groups might instruct the
response to a metabolic stimulus such as physical activity.
It will be interesting to further dissect these variables
by the addition of different time-restricted feeding inter-
ventions to the physical activity paradigm in future
studies.
The running capacity of untrained mice at different

times of day, hence the influence of the clock on muscle
function, will have to be interpreted in a similar manner.
Metabolic constraints most likely contribute significantly
to the observed differences in endurance observed in our
present study as well as previously reported (Ezagouri
et al. 2019). For example, we observed a strong correlation
between performance and liver, and to a lesser extent also
skeletal muscle, glycogen. Depletion of glycogen stores is a
major determinant of muscle fatigue in mice and humans,
arguably liver glycogen even more in rodents than the
skeletal muscle counterpart (Richter & Hargreaves, 2013;
Hargreaves & Spriet, 2018). ‘Train low’, exercise under low
glycogen conditions, is an established training paradigm
in humans that, despite lower performance capacity in
the individual endurance training bout, elicits a higher
overall training adaptation (Hawley et al. 2018). Whether
this is also the case in the mice running at ZT12 (lowest
endurance performance, low liver and muscle glycogen
stores) compared to those running at ZT0 (highest end-
urance performance, high liver and muscle glycogen
stores) remains to be shown. Intriguingly, the trans-
criptomics, proteomics and phosphoproteomics analyses
of these two different groups indicated that besides a
robust, similar response of muscle to one acute exercise
bout, very different pathways are activated depending on
the time of day. In the high performing mice running
at ZT0, the immediate activation of pathways related to
inflammation, the complement system and autophagy,
followed by a later increase in ribosomes suggests an
efficient repair and regeneration process. In parallel, a
coordinated regulation of proteins involved in muscle
contraction and energy provisioning, e.g. those involved
in calcium signalling and GLUT4 vesicle transport, is
observed. Finally, the increased expression of MUPs and
asprosin could be interpreted as amuscle-derived signal to
coordinate glycogenolysis and glucose release from liver.
In stark contrast, the early response of skeletal muscle of
the mice running at ZT12 indicates a broad activation
of cellular stress, followed by an engagement of catabolic
processes to match energetic demands in the absence
of high abundance of storage of energy substrates, e.g.
indicated by activation of AMPK and the glucocorticoid
receptor, which could be interpreted as a signal for
muscle protein degradation to fuel liver gluconeogenesis
in this context. Accordingly, FoxO signalling is only
observed in thesemice. Differential control of proteostasis
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is furthermore underlined by the selective modulation of
mTOR and related pathways.
The metabolic constraints that could explain the

differences in performance depending on the time of day
are at least secondarily under the control of the intrinsic
muscle clock, e.g. in regards to energy level. Future
experiments with inducible, skeletal muscle-specific
knockout models for clock components might thus
help to clarify the contribution of this system to muscle
metabolism and functionality if not confounded by other
consequences of such dysregulations (Dyar et al. 2014).
Our data demonstrate clear effects of acute exercise bouts
and of prolonged voluntary daytime activity on several
components of the clock mechanism, indicating that at
least some of the affected genes are regulated by exercise.
It is not clear, however, how some of these proteins will
impart such changes in level or activity on the clock,
whether such perturbations are mitigated by other,
unperturbed clock control mechanisms, and to what
extent such proteins affect other cellular processes besides
clock oscillation. For example, the Period 1–2 genes,
which we found to be robustly induced by exercise at
different times of day, have been described as integrators
of external and internal perturbations at the intersection
of modulating the molecular clock and other cellular
functions (Ripperger & Albrecht, 2012). Based on our
data, these systems can become unlinked in certain
settings and contexts, even though mutual regulation has

been found, e.g. also by AMPK, HIF-1α or mTOR on the
clock (Panda, 2016; Reinke & Asher, 2019).
Our data also indicate that appropriate timing of

exercise bouts might facilitate repair and regeneration,
important to speed up recovery and potentially allow
higher intensity and/or volume. The best time of training,
however, will not be deducible from experiments
performed in nocturnal, in-bred laboratory mouse
strains that do not recapitulate the complexity of the
situation in humans with genetic variations, chronotypes,
difference in eating habits and sleeping patterns, and other
factors. Our comprehensive transcriptome, proteome and
phosphoproteome analyses might provide a starting point
to identify and validate markers for such a stratification
in humans, contributing to personalized training design
(Facer-Childs et al. 2018) (Fig. 13). Lastly, our data
indicate that scheduled training has very little or no
phase-shifting properties in a healthy mouse muscle, but,
if chronically performed at the wrong time of day, might
lead to perturbations of the muscle clock which resemble
those of other peripheral clocks in pathological states
and in ageing, characterized by a general dampening of
oscillation amplitudes (Chellappa et al. 2019; Rijo-Ferreira
& Takahashi, 2019). Our experiments, however, will not
allow any conclusions about a potential therapeutic
effect of timed training (chrono-exercise) on muscle and
other peripheral clocks in pathologies that are linked to
abnormal circadian rhythmicity (Cederroth et al. 2019).

Exercise studies in the mouse

Single bout of treadmill running 
in untrained mice every 4 hours

> 3-w of voluntary wheel running 
training in home cage

ZT0
early daytime

ZT12
early nighttime

Nighttime
vs.

Daytime
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Minor effect 
on muscle core 

clock rhythmicity

Resting phase Active phase
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Core clock gene expression

2x mouse groups

6x mouse groups
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Muscle Gene and Protein data
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wheel running activity level
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Energy provisioning 
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Stress-related and 
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Figure 13. Graphical summary of key findings of exercise studies in the mouse
High energy levels, high performance and tissue regeneration-related pathways were observed when treadmill
exercise was performed at ZT0. In contrast, low energy levels decreased performance, and the activation of
stress-related and catabolic processes was observed when treadmill exercise was performed at ZT12. Moreover,
chronic daytime wheel running has minor effects on muscle core clock gene expression.
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