
Decomposition of Geometric Constraint Systems: a

Survey

Christophe Jermann, Gilles Trombettoni, Bertrand Neveu, Pascal Mathis

To cite this version:

Christophe Jermann, Gilles Trombettoni, Bertrand Neveu, Pascal Mathis. Decomposi-
tion of Geometric Constraint Systems: a Survey. International Journal of Computa-
tional Geometry and Applications, World Scientific Publishing, 2006, 16 (5-6), pp.379-414.
<10.1142/S0218195906002105>. <hal-00481267>

HAL Id: hal-00481267

https://hal.archives-ouvertes.fr/hal-00481267

Submitted on 6 May 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HAL-Ecole des Ponts ParisTech

https://core.ac.uk/display/48352811?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal.archives-ouvertes.fr/hal-00481267

March 30, 2006 23:7 WSPC/Guidelines jtnm

International Journal of Computational Geometry & Applications
c© World Scientific Publishing Company

Decomposition of Geometric Constraint Systems: a Survey

Christophe Jermann1 Gilles Trombettoni2 Bertrand Neveu2 Pascal Mathis3

1 LINA - Université de Nantes
2 rue de la Houssinière BP92208, F-44322 Nantes cedex 3, France

Christophe.Jermann@lina.univ-nantes.fr

2 COPRIN team, INRIA Sophia Antipolis
2004 route des Lucioles BP93, F-06902 Sophia Antipolis cedex, France

[neveu, trombe]@sophia.inria.fr

3 LSIIT - Université Louis Pasteur
Pôle API, boulevard Sébastien Brant, F-67400 Illkirsch, France

mathis@dpt-info.u-strasbg.fr

Significant progress has been accomplished during the past decades about geometric
constraint solving, in particular thanks to its applications in industrial fields like CAD
and robotics. In order to tackle problems of industrial size, many solving methods use, as
a preprocessing, decomposition techniques that transform a large geometric constraint
system into a set of smaller ones.

In this paper, we propose a survey of the decomposition techniques for geometric
constraint problemsa. We classify them into four categories according to their modus
operandi, establishing some similarities between methods that are traditionally sepa-
rated. We summarize the advantages and limitations of the different approaches, and
point out key issues for meeting industrial requirements such as generality and reliability.

Keywords: geometric constraints; decomposition techniques; rigidity; DOF analysis; con-
nectivity analysis; DR-planner; maximum matching; PDOF; WCM.

1. Introduction
The decomposition of constraint systems is an avatar of the well-known divide and
conquer paradigm. Applied to geometric constraint systems, it gives birth to general
algorithms that answer to the following questions:

• How to cut a system into several smaller subsystems easier to solve?
• How to solve every subsystem separately?
• How to merge the solutions of subsystems for producing the solutions to

the whole system?

Preliminary example
Let us consider the simple example shown in Fig. 1 made of points A,B,C, D and
lines δ1, δ2, δ3. This dimensioned sketch (left side) can be cut into two parts (right

aThe French CNRS has supported the working groups ”AS contraintes géometriques” and ”Math-
STIC geometric solvers”.

1

March 30, 2006 23:7 WSPC/Guidelines jtnm

2 Jermann, Trombettoni, Neveu, Mathis

side): the subsystem (1) and the subsystem (2).

Fig. 1. Left: A simple dimensioned sketch. Right: A decomposition into two subsystems.

In the literature, several ways to produce such a decomposition have been de-
scribed. Some algorithms identify subsystem (1) as an interesting (i.e., solvable)
subsystem; other methods find points of weakness in the constraint system like
(C, δ1); other techniques identify first the subsystem (2) as solvable provided that
the complementary subsystem is solvable as well.

This example also shows an interesting phenomenon. The subsystem (2) is not
rigid and a metric information coming from the subsystem (1) has to be added,
namely the distance between C ′ and δ′1 (dotted in Fig. 1). This implies an order:
the subsystem (1) has to be solved first to determine the value of this distance.

Usually, a geometric subsystem is translated into a system of algebraic equations
that is handled by standard numerical or symbolic solving methods. Other solving
methods work at the geometric level by applying well-known construction steps, like
ruler&compass ones. When subsystems are well-constrained up to displacements,
the algorithms need to pin some elements (e.g., the point D and the direction of
the line δ3 in the subsystem (1)) in order to make them solvable.

Once the subsystems have been solved, the subsolutions are assembled. In our
example, this is done using geometric transformations that make coincide point C ′

with point C, and line δ′1 with line δ1.

Objectives and contribution
Other surveys provide different, and sometimes more detailed, views over the field.
In Ref.1, Hoffmann et al. propose desirable properties for decomposition methods
and analyze in details different graph-based methods w.r.t. these properties. In
Ref.2, Hoffmann and Joan-Arinyo present a less detailed survey, however provid-
ing an important list of references to decomposition and solving algorithms and
systems. In Ref.3, Sitharam presents graph-based approaches, detailing how her
system Frontier implements such a method, discussing the issues (constriction
misclassification, solution browsing, dealing with over-constriction) of the approach
and proposing new techniques to handle them.

However, solving and decomposition phases are often mingled in the description
of geometric constraint solvers. The comparison between methods is also difficult be-
cause different terminologies are used. This paper aims at a didactic, synthetic and
homogeneous presentation of the existing decomposition algorithms. General defi-

March 30, 2006 23:7 WSPC/Guidelines jtnm

Decomposition of Geometric Constraint Systems: a Survey 3

nitions introduce the required concepts in Section 2. Based on only a few common
data structures, in particular graphs, our presentation highlights the underlying
operating principles, i.e., the ideas behind the techniques.

Thus, instead of a linear catalog of methods, we propose a classification of the
methods in four categories and illustrate them with examples (Sections 3 to 6). The
homogeneous presentation highlights advantages and drawbacks of the methods,
and allows us to compare them (Section 7). Section 8 provides guidelines to meet
industrial requirements. Finally, Section 9 presents a promising numerical method,
called the witness configuration method, that handles several pathological cases.

2. Definitions
This section defines the basic notions and properties necessary to comprehend de-
composition methods.

2.1. Constraint systems

A constraint system describes a set of properties (the constraints) that must be
satisfied by a set of variables. The description respects syntactic rules and the
variables have to take their values in specific sets. Constraint systems have thus
two sides: syntactic and semantic.

Definition 1. Given a language with a semantics, a constraint system is a triple
S = (C,X, A), where C is a set of constraints (terms of the language), X is a set
of variables and A is a set of parameters.

In geometric constraint systems, the variables are also called geometric entities.
We distinguish the variables from the parameters. The variables are the unknowns
to be determined while the parameters are provided, for instance, by a simulation
or the user. Consider the system below:8>>>>><>>>>>:

c1 : dis(A, δ1) = 0 c7 : ang(δ1, δ2) = 50
c2 : dis(A, δ2) = 0 c8 : ang(δ1, δ3) = α
c3 : dis(B, δ1) = 0 c9 : dis(B, D) = 5
c4 : dis(B, δ3) = 0 c10 : dis(C, D) = 6
c5 : dis(C, δ2) = 0 c11 : dis(D, δ3) = d
c6 : dis(C, δ3) = 0

This constraint system is composed of 11 constraints (c1 to c11) and 7 vari-
ables (A to δ3). If the system corresponds to the sketch in Fig. 1, the 2 param-
eters α and d are respectively set to 30 and 3. Its description language implies
several types (e.g., Point, Angle) and typed functional/predicative symbols (e.g.,
dis(Point,Point):Length, ang(Line,Line):Angle). This syntax has two differ-
ent meanings, resulting in two different constraint systems: in 2D, a system called
Geo2; in 3D, a system called Geo3.

The purpose of a constraint system is to encode in an elegant and concise manner
a set of specific assignments for its variables, the so-called solutions.

Definition 2. Let S = (C,X, A) be a constraint system and let θA be a valuation
of the parameters in A. A solution to S is a valuation θX of the variables in X such
that every predicate in C is true. The set of solutions to S is denoted by Sol(S).

March 30, 2006 23:7 WSPC/Guidelines jtnm

4 Jermann, Trombettoni, Neveu, Mathis

The values of the parameters are generally fixed before a system is solved. In
our example, α and d could be fixed using the dimensioned sketch in Fig. 1.

The notion of subsystem is paramount in decomposition methods since they are
all based on the identification of solvable subparts.

Definition 3. Let S = (C,X, A) be a constraint system. A subsystem S′ of S is a
constraint system S′ = (C ′, X ′, A′), where C ′ ⊆ C, and X ′ and A′ are respectively
the variables and the parameters related to C ′.

Being a subsystem is a syntactic property that does not depend on the in-
terpretation of the constraint system. A straightforward property states that
Sol(S′) ⊇ Sol(S)|X′ .

2.2. Representation of geometric constraint systems

The presented methods operate with different representations of geometric entities
and systems.

Representation of geometric constraints and entities
Several methods use a (full) geometric description of entities. They manage geo-
metric entities, such as lines, points, planes and circles, that must satisfy geometric
constraints such as distances, angles, etc.

Other algorithms work at the equational level. Geometric constraint systems
are represented by systems of equations over the reals using a modeling of the
geometric entities and constraints. For instance, a 2D point can be modeled by its
Cartesian coordinates (x, y), and a 2D line by its polar coordinates (d, a). A point-
point distance can be modeled by the classical equation (x1−x2)2 +(y1−y2)2 = d2

and a line-line angle simply by a2 − a1 = α.
Finally, some methods abstract the entities by their number of degrees of freedom

(DOFs). For instance, these methods do not distinguish points and lines in 2D
because both have 2 DOFs. They are often more general but less reliable.

The number of DOFs of a geometric entity is the number of independent coor-
dinates used to represent it. It is equal to 2 for points and lines in 2D. The number
of DOFs of a geometric constraint is the number of independent equations needed
to represent it. For instance, angle or distance constraints have 1 DOF in 2D and
in 3D. A parallelism between two planes has 2 DOFs in 3D. In the following, we
denote by dof(i) the number of DOFs of an entity or a constraint i.

Representation of systems of geometric constraints
Only a few decomposition methods manipulate directly the constraint system by
using rewriting rules. Most of them use a graph-based abstraction of the system.

Definition 4. Let S = (C, X,A) be a constraint system. Its constraint graph,
denoted by GS = (V, E), is an undirected graph where V = X (every variable in S
is a vertex in GS) and E = C (every constraint in S is an edge in GS).

Figure 2–left shows a constraint graph representing Geo2. The entities (points
and lines) are the vertexes, the constraints (distances and angles) are the edges.

March 30, 2006 23:7 WSPC/Guidelines jtnm

Decomposition of Geometric Constraint Systems: a Survey 5

Fig. 2. Constraint graph representing Geo2.

When the constraints are not binary (e.g., angles between triple of points), this
graph includes hyper-edges. Instead of a hypergraph, one commonly uses a bipartite
constraint graph where both the constraints and the variables are vertexes; an edge
connects each constraint to each entity it constrains (see Fig. 2–right).

The methods working at the equational level operate with an equation graph
the vertexes of which are equations and entities coordinates (also called variables).
The equation graph of Geo2 is depicted in Fig. 3. This graph can be seen as an
expanded version of the bipartite constraint graph in Fig. 2–right.

Fig. 3. Equation graph representing Geo2.

2.3. Constriction

When studying a constraint system, the dimension of its solution space is important:
whether the set of solutions is empty, finite or infinite changes the appropriate way
to solve the problem. The notion of constriction captures this property.

Definition 5. (Constriction) A constraint system S is well-constrained if Sol(S)
is finite, over-constrained if Sol(S) = ∅ and under-constrained if Sol(S) is infinite.

Geometric constraint systems are generally under-constrained, like Geo2 and
Geo3, but their solutions are often identical modulo a geometric transformation
(e.g., translation, rotation). Systems with such solutions are called invariant.

Definition 6. (Invariance) Let S = (C, X, A) be a constraint system, ΘX be the
set of all possible valuations of X. Let ϕ be a bijection from ΘX onto itself. S is
invariant by ϕ iff s ∈ Sol(S) ⇔ ϕ(s) ∈ Sol(S). Given a group G of bijections from
ΘX onto itself, S is G-invariant iff it is invariant by every ϕ ∈ G.

We denote I = {id} the trivial group reduced to the identity bijection. We
denote D (D2 in 2D, D3 in 3D) the group of direct isometries. Geo2 is D2-invariant
and Geo3 is D3-invariant. The interesting constraint systems considered in CAD are
often I-under-constrained while being D-invariant. Hence, it is worth considering
constriction modulo invariance groups.

March 30, 2006 23:7 WSPC/Guidelines jtnm

6 Jermann, Trombettoni, Neveu, Mathis

Definition 7. (Constriction modulo a group or G-constriction) Given a
constraint system S and a group G of bijections from ΘX onto itself, S is well-
constrained modulo G (or G-well-constrained) iff the orbit set Sol(S)/G is finite. It
is G-over-constrained iff Sol(S)/G is empty, and G-under-constrained iff Sol(S)/G
is infinite.

For example, Geo2 is D2-well-constrained while Geo3 is D3-under-constrained
since the quadrangle ABCD can be folded continuously along line δ3 in 3D. Systems
of equations yielding a 0-dimensional solution space (i.e., having a finite number of
solutions) are I-well-constrained. D-constriction is often referred to as rigidity.

The usual way to express (and to find) the solution set of an under-constrained
system is to give a finite set of particular solutions {f1, . . . , fk} and an invariance
group G. For instance, Geo2 yields (generally) 2 particular solutions modulo D2,
say f1 and f2, and Sol(Geo2) = {ϕ(f1)|ϕ ∈ D2} ∪ {ϕ(f2)|ϕ ∈ D2}.

2.4. Approximate characterizations of constriction

A crucial step in a decomposition method is to determine whether a candidate
component is well-constrained (sometimes modulo a group G) or not. The con-
striction depends on the number of solutions. However, computing all the solutions
is intractable, and would render the decomposition useless. Hence, approximate
characterizations that can be checked in polynomial time are frequently used.

Pattern-based characterization
Several methods use a repertoire of known well-constrained systems. Then, checking
whether a component is well-constrained amounts to matching it to a system in the
repertoire. These systems are in the form of either predefined patterns or construc-
tion rules. Pattern1 = (C = {dis(P, L) = k}, X = {Line L, Point P}, A =
{Length k}) and Pattern2 = (C = {dis(P1, P3) = l, dis(P2, P3) = k}, X =
{Point P3}, A = {Point P1, Point P2, Length l, Length k}) are two such pat-
terns. The first one matches D-well-constrained components in 2D and 3D. The
second one matches I-well-constrained components in 2D only.

The patterns can also be implemented by geometric rules. For instance,
Pattern2 corresponds to two applications of the geometric rule ”if point P and
length m are known, and dis(P,Q) = m, then point Q is on a determined circle
C”, and one application of the rule ”if point P is on two known independent loci
L1 and L2, then P is determined”. The rule version follows a logical approach
and makes more explicit the construction associated to the corresponding pattern,
yielding self-explanatory decompositions.

Pattern/rule-based characterizations use all the information available in a con-
straint system, i.e., its syntax and its semantics. That is why they often work
directly on the system and not on an abstraction of it. This generally makes them
correct, that is, a pattern-matched component is usually really well-constrained.
Unfortunately, pattern-based characterizations are necessarily incomplete because
no finite repertoire of patterns can cover every well-constrained component in the
general case, as stated by the following proposition.

March 30, 2006 23:7 WSPC/Guidelines jtnm

Decomposition of Geometric Constraint Systems: a Survey 7

Proposition 1. In 2D and 3D, there exist irreducible D-well-constrained systems
of arbitrary size.

In Ref.4, page 27, such systems are composed of constraints with 1 DOF (e.g.,
distances) and entities with 3 DOFs (resp. 6 DOFs). They are generated by simple
construction steps similar to Henneberg constructions.5

DOF-based approximations
A well-known characterization of constriction is based on the DOF abstraction
of the geometric constraints and entities. It is often called structural rigidity be-
cause, for several decomposition methods using this characterization, the system is
abstracted by a constraint graph in which vertexes (i.e., entities) and edges (i.e.,
constraints) are labeled by their respective DOFs.6

Definition 8. (Structural G-constriction) Let S = (C, X,A) be a constraint
system. Let G be an invariance group of dimension D.

The system S is structurally G-over-constrained iff there exists a subsystem
S′ = (C ′, X ′, A′) of S such that

∑
x∈X′ dof(x)−∑

c∈C′ dof(c) < D.
The system S is structurally G-well-constrained iff it is not structurally G-over-

constrained and
∑

x∈X dof(x)−∑
c∈C dof(c) = D.

The system S is structurally G-under-constrained iff it is not structurally G-
over-constrained and

∑
x∈X dof(x)−∑

c∈C dof(c) > D.

Hence, I-constriction can be checked using D = 0. D2-constriction (resp. D3-
constriction) can be checked using D = 3 (resp. D = 6) which is the number of
independent displacements in 2D (resp. 3D).

This characterization derives from Laman’s theorem which characterizes the
rigidity of bar frameworks, i.e., geometric constraint systems composed of points
constrained by (generic) distances, systems much studied in the Rigidity Theory.7

Theorem 1. (Laman, 1970) A constraint system in the 2D plane composed of n
points linked by m generic distances is rigid if and only if 2 × n −m = 3 and for
any subsystem composed of n′ points and m′ distances, 2× n′ −m′ ≥ 3.

This theorem yielded several polynomial time algorithms.8,9,10 More compli-
cated combinatorial properties have been proposed to take into account constraints
such as directions of pairs of points in 2D.11 Unfortunately, except for 2D bar frame-
works and similar systems, the structural rigidity does not imply the (geometric)
rigidity. It is only an approximate characterization of it. A famous counter-example
is reported in Fig. 4, where segments represent point-point distances in 3D. This
system is structurally D3-well-constrained but actually D3-over-constrainedb.

Another combinatorial characterization of rigidity for 3D bar frameworks, called
module-rigidity, has been conjectured by Sitharam and Zhou.12 It can deal with

bThis system is over-constrained in the generic case, if the two bananas have arbitrary heights. In
the singular case in which the two bananas have the same height, the system is under-constrained
since the two ”bananas” can fold continuously along the line passing through their extremities...

March 30, 2006 23:7 WSPC/Guidelines jtnm

8 Jermann, Trombettoni, Neveu, Mathis

Fig. 4. The double-banana famous counter-example.

systems such as the double-banana. Module-rigidity is achievable by a polynomial
algorithm and has been implemented in the Frontier solver.13

Another strong limitation of the structural characterization of rigidity (D-
constriction) is that it does not handle correctly projective and other boolean con-
straints such as incidences and parallelisms. However, these constraints are widely
used in CAD systems. Jermann et al. introduced the notion of degree of rigidity
which replaces, in the structural constriction, the dimension D of the invariance
group G by a value depending on these constraints.14

Graph-based approximations
Another well-known approximate characterization of rigidity also derives from the
Rigidity Theory community.7 It relies on a connectivity analysis applied to the
constraint graph of a system.

For general 2D geometric constraint systems, a necessary condition for rigidity
derives from a corollary of Theorem 2.5 in Ref. 15 which states that the constraint
graph must be “at most” triconnected, that is, it must contain no 4-connected
subgraph. However, this condition is not sufficient. For instance, the complete graph
composed of 4 points linked by 6 distances in 2D is triconnected but it is D2-over-
constrained.

Similar necessary conditions have been proposed for 3D systems with points,
lines and planes.15 D3-well-constrained geometric systems composed of points and
planes must be “at most” 5-connected. D3-well-constrained geometric systems com-
posed of points, lines and planes must be “at most” 7-connected.

2.5. Decomposition

Decomposition methods transform a constraint system into a set of small solvable
subsystems. To obtain the solutions of the constraint system, the (sub)solutions of
its subsystems are computed and then assembled.

Definition 9. A decomposition of a constraint system S is a triple
({S1, . . . , Sn}, ≺,]) where:

• Each Si is a G-well-constrained constraint system called a component.
• ≺ is a partial order for the solving of the Sis.
•] is a solution assembling operator such that if fi is a solution of Si,
](f1, . . . , fn) is either an empty assignment (the fis are incompatible) or
a solution of S.

March 30, 2006 23:7 WSPC/Guidelines jtnm

Decomposition of Geometric Constraint Systems: a Survey 9

The components of a decomposition are in general subsystems of the original
systemc.

The partial order expresses dependences between the components: Sj depends
on Si (noted Si ≺ Sj) if Sj becomes G-well-constrained only once a solution of Si is
given. These dependences may derive from variables shared by components: among
the components sharing a given variable, one will compute its value and the other
ones will use this value as a parameter for their own solving (see example below).

The assembling operator depends on the group G under which the components
are well-constrained. If G = I (i.e., no invariance), then the assembling amounts to
simply concatenating the solutions of the components into a solution of the original
problem. When G = D2 or D3, then it amounts to computing direct isometries
which make coincide the variables shared by components. The assembling operator
is applied in an order related to the partial order ≺.

For example, Geo2 can be decomposed as follows:

• Components:
- S1 = ({dis(B, δ1) = 0, dis(B, δ3) = 0, dis(C, δ3) = 0, ang(δ1, δ3) =
60, dis(B,D) = 5, dis(C,D) = 5, dis(D, δ3) = 3}, {B, C, D, δ1, δ3}, ∅)
- S2 = ({dis(A, δ′1) = 0, dis(A, δ2) = 0, ang(δ′1, δ2) = 40, dis(C ′, δ2) =
0, dis(C ′, δ′1) = dis(C, δ1)}, {A,C ′, δ′1, δ2}, {C, δ1})

• Partial order: S1 ≺ S2

• Assembling operator: displacement to make C coincide with C ′, and δ1

with δ′1

This decomposition contains 2 components S1 and S2 corresponding to those
depicted in Fig. 1. S1 is a D2-well-constrained component containing 7 constraints
to determine 5 variables, the points B, C and D and the lines δ1 and δ3. S2 solves 4
variables, the points A and C ′ and the lines δ′1 and δ3, using 5 constraints. The con-
straint dis(C ′, δ′1) = dis(C, δ1) corresponds to the metric information transferred
from S1 to S2. This constraint renders S2 D2-well-constrained and ensures that
assembling the solutions of S1 and S2 is always possible. Because of this constraint,
C and δ1 are parameters of S2, implying the dependence S1 ≺ S2.

2.6. Decomposition methods

Geometric constraint solvers often work in two phases: decomposition and solv-
ing. This paper only focuses on the decomposition phase. The reader will find in
the literature details about the solving methods: local numerical methods,16,17,18

continuation,19 interval analysis,20,21,22 symbolic computation,23,24 ruler and
compass.25,26

We propose to classify the existing decomposition methods into four categories
with respect to the way they operate:

• the recursive division methods work iteratively. At each iteration, current

cHowever, some algorithms modify the original system by incorporating a metric information
(extracted from some subsystems and reported in others). The corresponding components are
thus not subsystems of the original problem.

March 30, 2006 23:7 WSPC/Guidelines jtnm

10 Jermann, Trombettoni, Neveu, Mathis

components are split along assembly points, producing several subcompo-
nents where additional constraints are introduced to maintain the consis-
tency of the assembly points.

• the recursive assembly methods also work iteratively. At each iteration,
they identify a component and condense it into a new set of variables and
constraints in the constraint system.

• the single-pass methods produce all the components simultaneously. Most
of these methods are based on the maximum matching theory.

• the propagation of degrees of freedom (PDOF) methods iteratively identify
components in reverse order of their solving.

This classification is not traditional and allows us to establish methodological sim-
ilarities between existing approaches.

In addition to an algorithmic description illustrated by examples, we provide
the following information for each category of methodsd:

• Confluence: a method is confluent if any choice during the running process
leads to the same decomposition.

• Completeness: a method is complete if it always returns a decomposition
when there exists one. In case a method is incomplete, we explicit restric-
tions under which it becomes complete.

• Complexity: the time complexity that generally depends on the size of the
constraint system.

• Correctness: a method is correct if the obtained components are really
G-well-constrained. In case a method is incorrect, we identify restrictions
under which it is correct.

3. Recursive Division Approaches
Recursive division methods, also called division analysis, work by iteratively split-
ting the constraint system into components, themselves subject to further splitting.
In 1991, Owen introduced the first approach of this kind.27 This method handles 2D
constraint systems with points and lines linked by distance and angle constraints.
It uses the constraint graph presented in Sec. 2.2 and the biconnection and tricon-
nection conditions introduced in Sec. 2.4.

The constraint graph GS is decomposed at its articulation pairs, i.e., pairs of
vertexes whose removal splits the graph into disconnected components. Given an
articulation pair (v1, v2), GS is split into several subgraphs (G1, ..., Gn) by dupli-
cating v1 and v2 in each subgraph. An edge, called a virtual bond, is introduced
between v1 and v2 in each subgraph Gi except if there is already an edge between
v1 and v2 in Gi or if Gi is biconnected, i.e., there exist 2 distinct paths between
any pair of vertexes in Gi. Virtual bonds represent constraints that fix the relative
positions of the variables shared by subgraphs (see Fig. 1). An interesting prop-
erty states that if S is D2-well-constrained, then one of the subgraphs (say G1)

dA set of properties of decomposition methods has been proposed in Ref.1, with an emphasize
toward graph properties. In this paper, we prefer using more traditional algorithmic notions.

March 30, 2006 23:7 WSPC/Guidelines jtnm

Decomposition of Geometric Constraint Systems: a Survey 11

is D2-well-constrained and the others are D2-under-constrained (see Ref. 28 for a
proof). Hence, a virtual bond is not needed in G1. When constraints are already
present between articulation pairs, they are simply duplicated in all the subgraphs,
avoiding the use of virtual bonds.

This process is recursively repeated on each subgraph until no more splitting
is possible. In the end, every remaining subgraph is either an edge, a triangle or
a triconnected subgraph; they form the set of components in the decomposition.
The partial order between the components is induced by the virtual bonds: first
components without virtual bonds, then the others. The assembly operator has to
be applied everytime a virtual bond must be determined. It consists in computing
a displacement to make coincide shared objects. Figure 5 shows the application of
Owen’s method to Geo2.

Fig. 5. Decomposition of Geo2 by Owen’s method.

This method has been extended to tackle D2-under-constrained systems us-
ing a completion mechanism which adds constraints in order to obtain D2-well-
constriction.29,30 Fudos and Hoffmann described a similar division method that is
hybridized with a recursive assembly technique.29 It is proved in Ref. 31 that their
technique has the same power as Owen’s method and obtains the same decomposi-
tion on D2-well-constrained systems. Gao and Zhang have extended the approach
to 3D constraint systems made of points, planes and lines by ensuring 5-connection
or 7-connection of the graph (see Sec. 2.4).15

Properties
These methods suffer from strong limitations, mostly because they use graph-based
approximations (connectivity) of D-constriction, rendering them correct only when
these characterizations match D-constriction (see Sec. 2.4). This also introduces an-
other cause of incorrectness: the identified assembly pairs do not always constitute
valid junctions. For instance, an articulation pair made of 2 parallel lines cannot
be used to assemble components. Indeed, an infinite number of displacements can
make coincide these lines, producing an infinite number of assembled solutions. Fi-
nally, this makes them incomplete in general. For instance, there exist triconnected
constraint graphs that can be decomposed further. This means that the method
cannot decompose all decomposable geometric constraint systems. Fig. 13–left will

March 30, 2006 23:7 WSPC/Guidelines jtnm

12 Jermann, Trombettoni, Neveu, Mathis

show an example.
These methods run in polynomial time because they use polynomial time proce-

dures to check k-connectivity.32 For instance, Owen’s method runs in O(n2) when
the system has n constraints. They are also confluent since a choice of a given
articulation pair does not eliminate another possible pair. Thus, in the end, the
resulting decomposition is a unique set of components in the constraint graph.

4. Recursive Assembly Approaches
Unlike recursive division methods, recursive assembly methods adopt a bottom-up
scheme. They iteratively aggregate D-well-constrained (i.e., rigid) components into
bigger ones. These methods are often referred to as recursive rigidification, reduction
analysis or decomposition-recombination methods (DR-planners). If the constraint
system contains both well-constrained and under-constrained subparts, recursive
assembly methods return a maximal set of maximal well-constrained components.

4.1. Overview

Recursive assembly methods are all based on the same scheme:

(1) Identification phase: Find a rigid subsystem, called cluster. This phase is
itself divided into two steps:

(a) Merge step: Merge several variables linked by constraints into a new rigid
cluster K.

(b) Extension step: Perform as many single extensions as possible. A single ex-
tension adds a subset of variables and constraints to K such that K remains
D-well-constrained.

(2) Contraction phase: This phase is itself divided into two steps:

(a) Registration step: Place K in the current decomposition and update the
partial order.

(b) Replacement step: Replace K in the system by a representative, i.e., a
set of new variables and constraints.

These two phases are repeated until no more cluster is found. The result of
the method is a decomposition where each merge or single extension represents a
component. Merge components are D-well-constrained while components obtained
by extension are I-well-constrained. Indeed, merge steps identify a new subsystem to
be solved in a new local reference system, while extensions position entities relatively
to an existing local reference system. The partial order between components is
induced by the aggregation of the cluster representatives (to be solved before)
into a larger subsystem (to be solved later). The assembling operator amounts to
concatenating all the components solved within the same local reference system (a
merge step + all its extensions), and then assembling by displacements the clusters
whose representatives are included in other clusters.

A significant advantage is that the solving phase can be interleaved with the
identification phase: once a merge step or a single extension is performed, the cor-
responding component can be solved immediately.

March 30, 2006 23:7 WSPC/Guidelines jtnm

Decomposition of Geometric Constraint Systems: a Survey 13

Example

Fig. 6. Decomposition of Geo2 by a recursive assembly method

Fig. 6 shows how a recursive assembly can decompose Geo2. A merge step finds
Aδ1 as a first rigid cluster. The cluster is extended to δ2 with constraints C2 and
C7. The cluster Aδ1δ2 cannot be extended anymore (no neighbor entity can be
added to the cluster keeping it rigid) so that the identification phase ends. The
contraction phase replaces this cluster by a single variable L1 which represents the
local reference system in which A, δ1 and δ2 will be determined. A second merge
step identifies a rigid cluster Bδ3. The cluster is extended to D, C, and finally to
the cluster L1, yielding the cluster L2. This last extension amounts to positioning
the local reference system of L1 in the one of L2.

Identification phase
Recursive assembly methods differ in the characterization of constriction (modulo D
for merge step, modulo I for extensions steps) they employ (see Sec. 2.4). Some use
DOF-based characterizations and are called structural recursive assembly methods.
They are described in Sec. 4.2. Others use patterns or rules and are called semantic
recursive assembly methods. They are described in Sec. 4.3.

Contraction phase
The registration phase adds the components K = {S1, ..., Sn} returned by the
identification phase (S1 is the result of the merge step; Si – i ∈ {2...n} – corresponds
to a single extension relative to Si−1) into the decomposition and updates the partial
order. If Si includes the representative of a previously identified component S′, then
Si depends on S′, i.e., S′ ≺ Si.

The replacement phase removes from S all the constraints and variables of K
and replaces them by a representative. It is either a single variable related to the
whole cluster K. Or it is a subset of the variables of S1...Sn shared by constraints
in the rest of the system, like the virtual bonds in Owen’s method.

4.2. Structural methods

Hoffmann et al. in Ref. 33 introduced a flow-based algorithm to check structural
rigidity in polynomial time. The merge step identifies a minimale dense (i.e., struc-

eIt has been proved in Ref. 34 that finding a minimum dense subsystem is an NP-hard problem.
That is why Hoffmann et al. proposed to search minimal (with respect to set inclusion) dense

March 30, 2006 23:7 WSPC/Guidelines jtnm

14 Jermann, Trombettoni, Neveu, Mathis

turally well- or over-rigid) subsystem by computing a maximum flow in a network
derived from the bipartite constraint graph. The source S is linked to each con-
straint, and each variable is linked to the sink T . The capacities correspond to the
DOFs of the constraints (arcs from the source to constraints) and to the DOFs of
the variables (arcs from variables to the sink).

Fig. 7. Network representing Geo2; the arc S → C1 is augmented by D to identify a rigid subsystem

A maximum flow in this network represents an optimal distribution of the con-
straints’ DOFs onto the variables’ DOFs. To identify rigid (or over-rigid) subsys-
tems, the method adds an additional D capacity to one constraint at a time, thus
fixing a local reference system onto the variables linked to the overloaded constraint.

Once a minimal cluster has been identified, the method performs an extension
step which tries to include neighbor variables one by one.

This identification phase is used in two main methods by the same authors: the
condensing algorithm (CA) and the frontier algorithm (FA).1,35 The two algorithms
differ only in their contracting operator. CA contracts a cluster by removing all its
variables and constraints from the constraint graph. Then it introduces a new vertex
which represents the local reference system of the cluster. Every constraint which
was incident to a variable inside the cluster is directly transferred to this new vertex.
Fig. 6 illustrates how CA decomposes Geo2.

FAf contracts a cluster by removing all its internal variables, replacing them by
a single vertex K. Variables are internal if they are not linked to any other variable
outside the cluster. Otherwise, they are in the frontier of the cluster. The DOF
of K is equal to the DOF of the subsystem it replaces. The constraints linking an
internal variable i to a frontier variable f are transferred between K and f . The
constraints linking frontier variables remain unchanged.

In these two variants, the partial order is induced by the integration of com-

subsystems only.
fThe FA algorithm was called MFA in the first descriptions.

March 30, 2006 23:7 WSPC/Guidelines jtnm

Decomposition of Geometric Constraint Systems: a Survey 15

ponents’ representatives into other components, yielding a cluster tree. When the
representative of a cluster is solved in a subsequent component, a displacement is
performed for assembling the components’ solutions.

An extension of FA has been proposed for helping the user in case a system
is over-constrained by only one equation. This algorithm provides the set of the
constraints from which one can be removed to render the system well-constrained.36

The method has been reproduced using a maximum matching algorithm, with
a contraction step similar to CA.37 Also, Gao et al. in Ref. 38 have obtained an
algorithm similar to FA by implementing the merge step with a weighted maximum
matching algorithm like the one designed by Latham et al. (see Sec. 5).

Properties
Structural methods run in polynomial time, often quadratic since computing a
maximum flow/matching can be done in O(n2). They are complete and correct
with respect to the structural rigidity, but not with respect to the geometric rigidity
(see Sec. 2.4). They are not confluent since the decomposition depends on the
identification order of the clusters.

4.3. Semantic methods

We distinguish semantic methods according to the way they handle the identifica-
tion phase: either using patterns to be identified in the system, or using rules to be
triggered on a base of facts.

Pattern-based methods
Sunde (Ref. 39) introduced a method to deal with 2D problems composed of points
linked by distances and angles. Initially, each segment (point-point distance con-
straint, CD in short) and each pair of segments constrained in angle (CA in short)
is considered a rigid subsystem. The method uses a few patterns to aggregate sub-
systems into bigger ones. For instance, two CAs sharing a segment, or three CDs
pairwise sharing a point, can be aggregated. The method succeeds when it returns
a single CD. Each pattern use corresponds to a component of the decomposition.
The partial order is derived from the application order of the rules. Verroust et
al. in Ref. 40 introduced additional patterns and proved that there exist reducible
constraint systems that cannot be decomposed with this method. Joan-Arinyo et
al. in Ref. 41 have also extended the method by considering point-lines constraints
(CHs).

Fudos et al. in Refs. 42,43 generalized the approach by abstracting constraints
and entities by their DOFs. In this method, each constraint is also initially consid-
ered a rigid subsystem, called a cluster. The main rule used by this method is ”3
clusters pairwise sharing a variable can be aggregated”. This rule also appears in
Sunde’s method. The main difference is that CDs and CAs are not distinguished.
We obtain a gain in generality but a loss in correctness. For instance, this method
could assemble 3 lines linked by 3 angle constraints, which does not correspond
to a D2-well-constrained subsystem. Applied to D2-well-constrained systems, this
method was proved in Ref. 31 to have the same capabilities as Owen’s method (see

March 30, 2006 23:7 WSPC/Guidelines jtnm

16 Jermann, Trombettoni, Neveu, Mathis

Sec. 3). It was also combined with an equational decomposition method (see Sec. 5)
in order to handle mixed algebraic-geometric constraint systems.44,41

Kramer in Ref. 45 proposed a similar approach to solve kinematics problems in
2D and 3D. It uses an extensive repertoire of construction steps that position one
mechanical piece relatively to already known ones through both a DOF case-based
reasoning (where translational DOFs from rotational ones are distinguished) and
applications of the Grübler formula,46 a property used in the theory of mechanisms
and close to the structural rigidity. This method, like Fudos et al.’s one, mixes a
structural approach and a semantic one.

Gao et al. have proposed a method using loci determination which is oriented
toward 2D problems, and presented as a generalization of Sunde’s approach.47

Fig. 8. Decomposition of Geo2 computed by Sunde-like methods

Example: Figure 8 illustrates the use of Sunde’s method on Geo2. The different
graphs represent the iterations of the algorithm. Initially, each constraint is consid-
ered to induce a rigid subsystem. Then, a rule identifies 3 subsystems (1, 2 and 7,
in bold in the first graph) pairwise sharing a variable (A, δ1 and δ2). The contrac-
tion results in the second step of the figure: the three subsystems are aggregated
into a single one numbered I. The following iterations use the same pattern until
all the system is aggregated into a single component. Note that once a subsystem
has been identified, it becomes part of a subsequent aggregation. The partial order
comes from the aggregation process: 1 ≺ I, 2 ≺ I, 7 ≺ I, 3 ≺ II, 4 ≺ II, ..., I ≺ V ,
IV ≺ V and 5 ≺ V .

Properties: Pattern-based methods are polynomial time in the size s of the biggest
pattern, since a pattern has to be compared at worst with all the subsystems of
size s. They are complete with respect to their repertoire of patterns (see Sec. 2.4).
They are in general correct when the patterns are not DOF-based and can thus
identify singular cases. Patterns can be applied in different orders, making these
methods not confluent.

Knowledge-based methods
Knowledge-based methods derive from the artificial intelligence community. Sem-
inal works were performed in the educational domain,48,49 and then extended to

March 30, 2006 23:7 WSPC/Guidelines jtnm

Decomposition of Geometric Constraint Systems: a Survey 17

CAD.50 The key idea consists in formalizing the geometric reasoning by a multi-
typed language and a set of axioms.51 This formalization is implemented by a
rule-based solver with a forward-chaining inference system. These methods often
lead to robust solvers able to give explanations in case of failure.

Mathis et al. in Ref. 28 introduced a knowledge-based method, taking D2-
invariance into account, composed of:

• Agents which are mainly rule-based solvers devoted to subsystems discovery and
solving. Each agent execution produces a component of the decomposition.

• A mechanism that injects a metric information (constraint) deduced from the
solved subsystems into the remaining system (replacement step).

B
A

’
2

δ

’
1δ

C’

A

B’

3δ’

3δ

B

D
C

2
δ

1δ

3δ

D

B

C

A

Fig. 9. Left: Decomposition of Geo2 using multigroup invariance. Right: A constraint system
decomposable by multigroup approaches only.

This framework has been extended to take other invariance groups into account,
like the similarity group,52 and even several invariances simultaneously.53 For in-
stance, Geo2 could be decomposed into a similarity invariant subsystem S1 and a
rigid (displacement invariant) subsystem S2 as illustrated in Fig. 9–left. S1 is solved
modulo the similarities, i.e., it respects the angle constraints but can still be scaled
and displaced. S2 is solved modulo the displacements, i.e., in a local reference sys-
tem. The assembling operator computes the similarity (displacement + scaling) to
be applied to the solutions of S1 such that points B and C coincide in S1 and S2.
Using the multigroup invariance allows us to decompose systems that cannot be
decomposed by traditional methods, as shown in Fig. 9–right.

Properties: Knowledge-based methods are very similar to pattern-based ones,
except they adopt an axiomatic approach for the decomposition phase. They run
in polynomial time in general, with an exponent in the size of the biggest rule.
However, some of these methods create intermediary variables, possibly leading
to infinite inference chains. Knowledge-based methods are complete with respect
to their repertoire of rules (see Sec. 2.4). Like pattern-based methods, knowledge-
based ones are generally correct but not confluent. Finally, existing knowledge-based
methods are limited to 2D systems.

March 30, 2006 23:7 WSPC/Guidelines jtnm

18 Jermann, Trombettoni, Neveu, Mathis

5. Single-pass Approaches
Single-pass methods compute a decomposition in a single iteration: all the compo-
nents are produced simultaneously. They work at the equational level and are thus
not restricted to geometric constraints. Applying a maximum matching to the equa-
tion graph, they identify structurally I-well-constrained components (see Sec. 2.4).
In case the whole system is structurally I-well-constrained, the decomposition into
irreducible components is unique. Otherwise one obtains a coarse canonical decom-
position into three subparts: an over-, a well- and an under-constrained subparts.

5.1. Principle

Serrano proposed the first matching-based solver for systems of nonlinear equations
appearing in general design problems.54 Since then, the method has been general-
ized and follows these steps:

(1) Computation of a maximum matching of the equation graph.
(2) Computation of a Dulmage & Mendelsohn (D&M) coarse decomposition which

divides the equation graph into three canonical parts: I-well-constrained, I-over-
constrained and I-under-constrained.

(3) The I-over- and I-under-constrained parts are either ignored or transferred into
the I-well-constrained one by a specific treatment.

(4) Computation of a fine decomposition of the I-well-constrained part. The com-
ponents and the partial order between them are then determined.

Computation of a maximum matching
The decomposition is based on a maximum matching of the equation graph.

Definition 10. A matching of a graph is a subset of its edges, such that no
two edges in the matching share a vertex. A vertex is saturated if it belongs to an
edge of the matching. A perfect matching saturates all the vertexes. A matching is
maximum iff no other matching of the same graph contains more edges.

Intuitively, an edge (c, v) in the matching means that the equation c computes
the variable v. Well-known polynomial algorithms compute a maximum matching
in a bipartite graph.55 The obtained matching yields an implicit orientation to the
equation graph: each edge in the matching is oriented in both directions, while
edges outside the matching are oriented from the variables to the equations. An
example is shown on Fig. 10g.

A decomposition of a maximum matching into strongly connected components
(i.e., cycles) is obtained by a linear depth first search algorithm by Tarjan.56

Definition 11. A directed graph is strongly connected iff for any two vertexes
x and y in G, there exists a directed path from x to y and from y to x. The strongly
connected components (scc) of G are its maximal strongly connected subgraphs.

gThe point D and the direction a3 of the line δ3 are fixed by the unary constraints f1, f2, f3 to
render the whole system I-well-constrained.

March 30, 2006 23:7 WSPC/Guidelines jtnm

Decomposition of Geometric Constraint Systems: a Survey 19

Fig. 10. D&M and scc decompositions of Geo2. Edges in the matching are bold-faced. The com-
ponents are represented by dashed hyper-edges.

Arcs between the sccs yield the partial order of the decomposition. In our ex-
ample, this yields: S11 ≺ S9, S11 ≺ S7, S11 ≺ S4, ..., S2 ≺ S5, S2 ≺ S3, S2 ≺ S1.

Before a subsystem is solved, the variables outside the corresponding scc are
replaced by the values that have been computed in previous subsystems. For ex-
ample, for solving the last subsystem S1, the variables a1, d1, a2 and d2 must be
replaced by their values computed in subsystems S2, S3, S5 and S6. The geometric
interpretation of this computation is that the point A is placed at the intersection
of lines δ1 and δ2 which must be determined first.

When the whole system lies in the well-constrained part, i.e., it admits a perfect
matching, it can be decomposed into sccs as described above. The following theorem
ensures that this decomposition is independent from the matching used.57

Theorem 2. (König, 1916) Every perfect matching of a bipartite graph leads to a
unique decomposition into strongly connected components (i.e., irreducible I-well-
constrained subsystems).

Dulmage and Mendelsohn (D&M) decomposition
If the obtained maximum matching is not perfect, some equations and/or some
variables are not saturated. Unsaturated variables are not determined, i.e., they
induce a structurally under-constrained subsystem. Unsaturated equations are not
taken into account and induce a structurally over-constrained subsystem. Dulmage
and Mendelsohn have proposed a decomposition approach which applies to large
sparse systems of linear or non linear equations.58 Figure 11 shows an example.

Theorem 3. (Dulmage and Mendelsohn, 1958) Let G be an equation graph. Any
maximum matching of G gives a canonic partition of the vertexes in G into three
disjoint subsets: the under-constrained part UG, the over-constrained part OG and
the well-constrained part WG.

The existence of non-empty subparts OG or UG in a constraint system generally
represents an error which can be returned to the user or automatically repaired.

5.2. Properties

The D&M and scc decompositions can be computed in polynomial time, basically
quadratic: computing a maximum matching is done in quadratic time (assuming the

March 30, 2006 23:7 WSPC/Guidelines jtnm

20 Jermann, Trombettoni, Neveu, Mathis

a b e

3

f

4

g

5

h

6

i

7

j

8

k

9 10 11 12

d

2

c

1

overconstrainedwell−constrainedunderconstrained
12
11
10

9
8
77
6
5
4
3
2
1

k j i h g f e d c b a

Fig. 11. Left: The three parts found by D&M’s decomposition. The equation graph contains
equations 1...12 and variables a...k. Right: Equivalent matrix representation (the square in the
middle corresponds to the well-constrained part).

number of equations is close to the number of variables, and the arity of equations
is bounded by a constant). Identifying the three parts and the sccs requires only
graph walks performed in linear time.

The method is complete and correct with respect to the structural I-constriction.
D&M’s decomposition and the fine decomposition of the well-constrained part into
sccs are confluent. However, the handling of the over- and under- constrained parts
may induce some changes in the resulting decomposition.

5.3. Difficulties due to the application to geometry

Geometric constraint systems are often D-well-constrained. Thus, corresponding
equation systems are generally I-under-constrained, and the whole equation graph
falls into the under-constrained part. Because König’s canonicity result does not
hold anymore in this case, the scc decomposition then depends on the computed
maximum matching, which leads to two major flaws:

• Some matchings lead to smaller subsystems than others. Fig. 13–right will show
a non optimal decomposition of Geo2.

• Some matchings lead to geometrically incorrect decompositions. For instance,
consider that Geo2 is rendered well-constrained by fixing xB , xC and xD.
This results in a single scc (no decomposition) which is structurally I-well-
constrained while it is I-over-constrained in reality: the prescribed distances
BD and CD cannot be satisfied for every value of their abscissa.

To decompose rigid geometric constraint systems in a correct manner, Hendrick-
son proposed to fix the geometric system in a coordinate system, removing thus the
3 degrees in freedom in excess in 2D (6 in 3D).10 When the geometric system is a
2D bar framework, every edge (representing a point-point distance in the constraint
graph) is pinned in the plane by adding 3 similar edges, and a maximum matching
is computed on the modified system. The system is rigid iff all the combinations
yield a perfect matching. This method is performed incrementally, and only the
first maximum matching has to be computed from scratch. The others are obtained
in linear time by updating the previous one.

Latham and Middleditch proposed to replace the maximum matching computa-
tion by a weighted maximum matching one.59 The constraint graph is weighted by
the degrees of freedom of the variables and the constraints. The advantage is that
it is performed directly on the constraint graph of the geometric system, avoiding

March 30, 2006 23:7 WSPC/Guidelines jtnm

Decomposition of Geometric Constraint Systems: a Survey 21

the need to translate it into an equation system. This method was also able to
add (resp. remove) constraints in an ad-hoc manner in case the system is under-
rigid (resp. over-rigid). This algorithm has been used in several alternatives to the
structural recursive assembly method due to Hoffmann et al. (see Sec. 4.2).37,38

6. Propagation of Degrees of Freedom Approaches (PDOF)
Initially implemented by Sutherland in his graphical tool Sketchpad,60 PDOFh

has been first used in local propagation solvers for handling interactive constraint
systems, such as graphical layout systems or user interfaces.61,62 As we will see,
pattern-based PDOF algorithms overcome the main drawbacks of the maximum
matching approach when tackling structurally I-under-constrained systems.

6.1. Description of a generic PDOF

The PDOF algorithm has first been applied at the equational level, that is, it works
on an equation graph.60,61,62 Several approaches in geometry directly work with the
(geometric) constraint graph.63,64,65,66 In both cases, the principle of PDOF is to
iterate the following steps:

(1) select a free I-well-constrained subsystem S′ from the equation/constraint
graph G,

(2) remove from G vertexes and edges corresponding to S′.

The algorithm stops when the graph is empty or when it contains no more free
well-constrained subsystem. A subsystem is free if its variables appear only in the
equations of the subsystem. Thus, solving a free subsystem cannot violate equations
not in S′, i.e., no future component will depend on S′. Each free subsystem identified
by PDOF is a component of the decomposition. The partial order is obtained by
considering variable dependences: a component Sj depends on a component Si if
Si computes a variable which is involved in an equation of Sj .i The assembling
operator amounts to concatenating the components solutions.

In case the constraint system is under-constrained, when all the equations have
been removed from the equation graph, a set of variables (called input parameters)
remains. Hence, PDOF is also a procedure that determines a set of input parameters
to be fixed for rendering I-well-constrained the system.

We illustrate how PDOF computes a decomposition and then we provide details
about the existing algorithms that are based on the generic algorithm above.

6.2. Example

Fig. 12 shows how PDOF decomposes Geo2 (among other alternatives). It selects
free subsystems in the order M1 (computing point A at the intersection of δ1 and
δ2), M3, M6, M4, M5, M2, M7, M9. It selects first M1 because M1 is free, that is,
variables xA and yA are connected only to C1 and C2 which belong to M1. Once
M1 is selected and removed from the equation graph, M3 and M6 become free and

hPDOF stands for Propagation of Degrees of Freedom.
iNote that a total order can be trivially obtained by reversing the identification order: the first
identified subsystem is solved last.

March 30, 2006 23:7 WSPC/Guidelines jtnm

22 Jermann, Trombettoni, Neveu, Mathis

Fig. 12. Equation graph of Geo2 with subsystems M1...M11 represented by hyper-edges corre-
sponding to patterns in a dictionary (for the sake of clarity, all the subsystems have not been
drawn). Several subsystems, namely the hyper-edges in plain lines, are selected by PDOF to
decompose the system.

can be selected next, and so on. At the end, the remaining variables a3, xD and
yD constitute a set of input parameters. Selected subsystems are solved in reverse
order (i.e., from M9 to M1).

6.3. Algorithms based on the generic PDOF

The basic PDOF algorithm, derived from local propagation, iteratively selects a free
subsystem of size 1. This gives a triangular form to the equation-variable depen-
dence matrix. However, it is often not possible to triangulate a geometric constraint
system with only subsystems of size 1.

OpenPlan: a purely structural PDOF
Like Single-pass methods, OpenPlan works at the equational level with no geometric
information.67 It tries to select a free structurally I-well-constrained subsystem of
minimum size at each step. OpenPlan returns the best (in terms of size of the largest
component) decomposition that can be obtained by a maximum matching applied
to an under-constrained system. However, the problem of finding a free subsystem
of smallest size in a structurally I-under-constraint system is NP-hard. Indeed, it is
the dual of the NP-hard minimum dense problem (searching for a structurally rigid
subsystem of minimum size). 34 That is why a heuristic version of OpenPlan also
uses a maximum matching of the equation graph to find a small, but not necessarily
the smallest, free subsystem.67

Pattern-based PDOFs
As opposed to the standard PDOF, pattern-based PDOFs can identify free I-well-
constrained subsystems of bigger size. Pattern-based PDOFs make a bridge between
the equational and the geometric levels by using a dictionary of subsystem patterns.
These patterns correspond to geometric construction steps. In the example above,
the pattern ”point to be placed at the intersection of two known lines” in the dic-
tionary corresponds to several subsystems in the actual system, such as M1 (point
A intersection of δ1, δ2), M8 (point B) and M10 (point C).

Basic pattern-based PDOFs apply the generic scheme presented above.65,66,63

They iteratively select free subsystems (of arbitrary size) present in the dictionary.

March 30, 2006 23:7 WSPC/Guidelines jtnm

Decomposition of Geometric Constraint Systems: a Survey 23

However, it appears that these algorithms may be unable to compute a sequence of
subsystems corresponding to patterns in the dictionary, even if one such sequence
exists. A simple example can be found in Figure 6 of Ref. 68. To overcome this
drawback, one needs to be able to select subsystems that “overlap”, that is, share
equations and variables. This analysis has led to the design of General PDOF
(GPDOF) that can be viewed as a robust implementation of a pattern-based PDOF.

GPDOF is able to compute a sequence of subsystems corresponding to patterns in
the dictionary, if one such sequence exists. To be able to select subsystems that over-
lap, GPDOF requires that the equation graph be enriched in advance with hyper-edges
corresponding to patterns. For instance, this preliminary enrichment phase produces
the equation graph depicted in Figure 12 enriched with hyper-edges M1...M11. See
Refs.26,69 for more details on this algorithm.

6.4. Properties

Like Single-pass, OpenPlan is complete and correct, with the usual limitations of
structural methods due to an incorrect constriction approximation related to redun-
dancies or singularities. Provided that the system contains no redundant equations,
GPDOF can always compute a sequence of subsystems present in the dictionary if
one such sequence exists, but a strong limitation is of course the non exhausitivity
of the dictionary.

Pattern-based PDOF methods run in polynomial time. The standard PDOF
algorithm runs in O(n×dv×dc2) while GPDOF runs in O(n×dc×dv×r×(g×dc+g2)),
where n is the number of equations, r is the maximum number of hyper-edges per
equation, dc and dv are the maximum degrees of respectively an equation and a
variable in the equation graph, and g is the maximum number of equations and
variables involved in a hyper-edge. Note that r is O(ng), rendering the method
practicable for small patterns only. In an application of GPDOF to constraint-based
3D scene reconstruction, large under-constrained geometric systems are decomposed
in a few seconds and solved in hundredths of seconds.26,69

7. Comparison Between the Four Decomposition Schemes
In this section, we compare the four decomposition schemes we have presented.
These approaches differ not only in their algorithmic aspects, but also in the ab-
straction they use. Taking these differences into account allows us to better explain
their relative strengths and weaknesses.

7.1. Recursive division versus recursive assembly

Recursive division methods use k-connectivity as an approximation of D2-
constriction, which renders them incorrect and incomplete in general (see Sec. 2.4).
Consider the 2D constraint system composed of 12 points (A...L) linked by 21 dis-
tances whose constraint graph is depicted in Fig. 13–left. This graph is triconnected
so that Owen’s method cannot decompose it. However, Hoffmann et al.’s recursive
assembly method can decompose it further: all the small triangles are aggregated
recursively and finally the big triangles ACF and GJL are aggregated using the
three distances AJ , FG and CL.

March 30, 2006 23:7 WSPC/Guidelines jtnm

24 Jermann, Trombettoni, Neveu, Mathis

Fig. 13. Left: A decomposable problem that Owen’s method cannot treat. Right: Coarse decom-
position (in dashed lines) of Geo2 by Maximum-matching.

This poor characterization of rigidity explains why recursive assembly is gener-
ally considered more powerful than recursive division. This difference is thus not
really related to their respective schemes (bottom-up or top-down).

Concerning the schemes, recursive division methods can often better decompose
under-constrained systems because the more under-constrained the problem is, the
more articulation pairs can be found. On the contrary, because merge operators
intrinsically identify well-constrained or over-constrained components, recursive as-
sembly methods are best suited for over-constrained systems.

7.2. Single-pass versus PDOF

Dulmage&Mendelsohn’s decomposition of single-pass methods is always interesting
as a preliminary step to decompose a geometric constraint system: it identifies
a structurally I-over-constrained part O, an I-well-constrained part W and an I-
under-constrained part U of the system.

Part O cannot be solved: it requires some specific treatment (e.g., manual debug-
ging or automatic relaxation of constraints). Part W admits a unique decomposition
(see Sec. 5.1). Part U requires a further study: if obtained by any maximum match-
ing, the resulting decomposition often contains arbitrarily large subsystems (see
Fig. 13–right). On the opposite, a pattern-based PDOF provides only meaningful
components of bounded size. In addition, the more under-constrained the system,
the easier PDOF will find a free subsystem.

The weakness of a pattern-based PDOF is its incompleteness due to the limited
number of patterns registered in its dictionary. Moreover, redundancies often block
the decomposition process because redundant equations may prevent PDOF from
finding a free subsystem (due to these constraints in excess). Redundant equations
must therefore be detected and removed before PDOF is launched.69

7.3. Equational versus geometric approaches

On one hand, equational methods (single-pass and PDOF approaches) can deal with
constraint systems combining geometrical and non geometrical entities, providing a
greater generality. In addition, they sometimes better decompose a system because
they work with a finer grain: a single geometric entity is represented by several
variables that may be solved in different components of the decomposition. For
instance, in Fig 12, page 22, the variables a1 and d1 modeling line δ1 appear in two
components M2 and M3.

March 30, 2006 23:7 WSPC/Guidelines jtnm

Decomposition of Geometric Constraint Systems: a Survey 25

On the other hand, geometric decompositions (recursive division and recur-
sive assembly approaches) generally use constriction modulo the displacements and
exploit an assembling operator based on displacements. This allows them to use
several times the 3 DOFs in 2D (resp. 6 in 3D) of a rigid geometric system, once
for each identified rigid component. In comparison, equational methods can only
aggregate I-well-constrained components and hence can only use once these DOFs.
That is why geometric decomposition methods often yield finer decompositions.

Combining the advantages of both methods is possible. Each component ob-
tained by a geometric decomposition can sometimes be further decomposed by an
equational technique that reduces the (geometric) components to several (equa-
tional) sub-components. This principle has been followed for obtaining the decom-
posed systems studied by Jermann et al.22

Finally, when facing D-under-constrained systems, equational and geometric
decomposition methods repair them differently. The former fix variables, while the
latter add geometric constraints (e.g., distance constraints). The reason is that equa-
tional methods achieve I-constriction while geometric ones achieve D-constriction.

7.4. Semantic versus structural methods

Semantic methods (i.e., rule-based recursive assembly and pattern-based PDOF)
cannot define all the patterns necessary to tackle every geometric constraint system
(see Sec. 2.4)j. On the other hand, the main advantage of rule-based methods lies
in their proximity to geometry. They generally use geometrically sound operations
that are protected against failure cases. For instance, a guard could detect that a
point cannot be computed at the intersection of two lines because they are parallel.
Also, a fast solving method is often known to solve the subsystems.

In comparison, structural methods (graph-based recursive division/assembly,
and single-pass) are in general complete but ensure correctness only with respect
to an approximation of constriction defined by a structural property (e.g., tricon-
nection or a DOF count).

Structural and semantic methods could complement each other, ensuring the
completeness of the approach while achieving a higher reliability. Two such hybrid
algorithms are based on the same principle: a structural decomposition is updated
while a pattern-based decomposition is performed. Every time the decomposition
process is stuck because no existing pattern is available, a subsystem is picked in
the structural decomposition. In a Maximum-Matching/PDOF hybrid algorithm
introduced in Ref. 68, a leaf (in the partial order) of a maximum matching decom-
position is free and is selected as the next solvable component. In a Maximum-
Matching/bottom-up hybrid algorithm introduced in Ref. 70, a root (in the partial
order) of a maximum matching decomposition is selected.

8. Toward Real-life Requirements
In this section, we establish a list of properties that are desirable to meet real-life
applicative requirements: generality and reliability. Indeed, a decomposition method

jHowever, for some particular classes of applications, for instance mechanical assemblies, such
methods can be made almost complete.45

March 30, 2006 23:7 WSPC/Guidelines jtnm

26 Jermann, Trombettoni, Neveu, Mathis

should be as general as possible in order to tackle the broadest class of systems. It
should also be reliable in the sense it should adapt to the expectations of the user
and be able to overcome situations that often make the decomposition fail (e.g.,
singular or dependent constraint systems).

8.1. Generality

Methods able to handle 2D and 3D problems can address complex CAD applications
where 2D constrained sketches are used in complement to 3D constrained models.
However, it is certainly unnecessary to use a complex 3D method for bar-frameworks
in 2D. Also, ruler& compass techniques suffice for some applications and offer a
higher reliability than more general methods. Hence, determining the required level
of generality for an application is important to select the appropriate method.

Geometric decomposition methods should be able to use several invariance
groups to decompose systems as finely as possible. One of the strengths of recursive
assembly method comes from its combination of D-invariance (merge step) with I-
invariance (extension step). Extension is a cheap augmentation technique resulting
in small I-well-constrained components, while a more expensive merge operation
ensures the completeness of the method.

A general decomposition method should be able to handle under-constrained
and over-constrained problems, at least by identifying as precisely as possible the
parts responsible for the non well-constriction, and ideally offering some automatic
repairing tools. Note that certain decomposition schemes are more suited to han-
dle these cases than others. Recursive division and PDOF are poor against over-
constrained systems but stronger against under-rigid ones. Conversely, recursive
assembly can handle over-constrained parts but requires some adaptations to deal
with under-constrained systems. Finally, single-pass methods are able to character-
ize the well-, under- and over-constrained parts, but the non well-constrained ones
require a specific treatment.

The decomposition returned by a method could be best employed by a user for
debugging purpose (e.g., identification of over-/under-constrained components) if
it corresponds to the view the user has of its system. For this reason, it is gener-
ally desirable to respect a coarse decomposition induced by a high-level user’s ma-
nipulation of entities (e.g., mechanical pieces). Sitharam et al. proposed to adapt
graph-based recursive assembly methods to this requirement.13

The decomposed system should return the solution expected by the user, e.g.,
the solution minimizing some criterion or closest to a given sketch. This problem
is referred to as root identification by Fudos and Hoffmann.29 Geometric constraint
solvers use heuristics to select the desired solution, or use a combinatorial pro-
cess where one branch in the search tree corresponds to one (sub)solution in a
component.71,22

Finally, it happens in several applications like robotics, CAD or structural biol-
ogy that the constraint system contains not only geometric entities and constraints
but also algebraic variables and equations, representing for instance physical laws,
costs or energy. It is hence important to be able to handle these mixed algebraic-
geometric systems.

March 30, 2006 23:7 WSPC/Guidelines jtnm

Decomposition of Geometric Constraint Systems: a Survey 27

Among the methods classified in the proposed four categories, none satisfies all
these requirements simultaneously. We expect that hybrid variants between some
of these algorithms should result in an increasing generality.

8.2. Reliability

Usual algorithmic properties (i.e., correctness, completeness, confluence and com-
plexity) provide a first measure of the reliability of a decomposition method.

The ability of a method to return the decomposition into the smallest compo-
nents is also important. However, this requirement should be balanced with consid-
erations about performance. Indeed, achieving the finest decomposition has been
proved to be NP-Hard in several cases.34

Decomposition methods should be aware of dependences between constraints.
A subset of constraints is dependent if it is either redundant or contradictory, i.e.,
if it contains the hypothesis and the conclusion, or the negation of the conclusion,
of a geometric theorem. Some dependences can be detected structurally, e.g., 4
points linked by 6 distances in 2D. However, many dependences are not structural
but are related to the geometric nature of the entities and constraints, e.g., the
double-banana 3D system (see Fig. 4). Handling dependences requires expensive
automated theorem proving. This justifies the use of heuristics to handle the more
common cases.

Decomposition methods should take into account the singularities. Indeed, many
methods work under a genericity hypothesis and decompose systems into generically
solvable components. However, it may be the case that a solution of a decomposed
system lies into a singular variety, e.g., includes some unspecified collinearity or
coplanarity. In this case, it happens that the generically solvable components are
no more solvable. For instance, the double-banana system (see Fig. 4) is generically
over-constrained but becomes under-constrained if the height of both bananas is the
same. Dealing with singularities requires time-consuming algebraic computations
and is generally incomplete. Also, singularities sometimes introduce dependences
or transform contradictory ones into redundant ones.

Among the decomposition schemes we have listed, none appears to perfectly
deal with these reliability issues. They are generally incomparable with respect
to the size of the decomposition they obtain. Structural methods can detect only
structural dependences, cannot distinguish between redundant and contradictory
cases and does not take any singularity into account. Semantic methods can include
rules and guards that check certain non-structural dependences and singularities.

However, no a priori decomposition method can be made completely reliable
since there exist systems that have both singular and non singular solutions (see
Fig. 14), so that certain error detections could only be performed during the solving
phase. Such systems would be best handled by methods interleaving decomposition
and solving phases (e.g., recursive assembly).

Although not able to cope with this last problem, the WCM presented in the
next section makes a sensible step toward generality and reliability.

March 30, 2006 23:7 WSPC/Guidelines jtnm

28 Jermann, Trombettoni, Neveu, Mathis

Fig. 14. A constraint system which is both well-constrained and under-constrained. An equality
distance is defined between AB and BC, and also between AD and CD; Distance constraints AB
and AD are also defined; A, B and C are incident to the line. One solution (left) for the position
of A and C is generic while the other (right) is singular and yields an infinity of solutions for point
D (it introduces a redundancy).

9. The Witness Configuration Method
We have seen that one cause of failure of decomposition methods is that they are
unable to accurately characterize the rigidity property, i.e., they can identify com-
ponents that are not solvable because they are either over-constrained (no solution)
or under-constrained (infinitely many solutions).

To conclude this survey, we present a recent development in geometric constraint
processing that provides a more general and reliable characterization of solvability:
the witness configuration method (WCM).72,73 We show that this principle can be
integrated in existing decomposition methods or be the base of new ones.

9.1. Principle of the WCM

To determine whether a geometric constraint system S = (C, X,A) is rigid, the
WCM combines the following techniques:

(1) a generalization of the algebraic rigidity check for bar frameworks by infinites-
imal motions computation,74,7

(2) the Numerical Probabilistic Method (NPM) that numerically checks algebraic
properties using a probabilistic argument and random configurations,75

(3) a new method that generates witness configurations instead of random ones.72,73

The probabilistic rigidity check
The principle of the algebraic infinitesimal rigidityk check is to compute the in-
finitesimal motions allowed by the constraints of a geometric system S. A basis of
these infinitesimal motions is defined by the kernel K of the Jacobian matrix J of
the equation system representing S. If K reduces to a basis D of the infinitesimal
displacements, then S is rigid; otherwise it is not rigid: if D contains one vector
independent from K, S is over-rigid; else (i.e., K contains a vector independent
from D) S is under-rigid.74,7 This principle was introduced for bar frameworks but
can be generalized to any geometric entities in any dimension.

kInfinitesimal rigidity is a first-order version of rigidity. It is a stronger property than rigidity, i.e.,
every infinitesimally rigid system is also rigid; the converse is not true.76

March 30, 2006 23:7 WSPC/Guidelines jtnm

Decomposition of Geometric Constraint Systems: a Survey 29

B

C

A

B

C

A

B

C

A

B

C

A

Fig. 15. An under-rigid 2D geometric constraint system

Let us illustrate the principle using the simple example S depicted in Fig. 15,
composed of 3 points linked by 2 distances. In this system, assuming the variable
vector is (xA, yA, xB , yB , xC , yC), a basis K of the infinitesimal motions of S is
(illustrated from left to right in Fig. 15): Ẋ1 = (1, 0, 1, 0, 1, 0) is the infinitesimal
translation in x; Ẋ2 = (0, 1, 0, 1, 0, 1) is the infinitesimal translation in y; Ẋ3 =
(−yA, xA,−yB , xB ,−yC , xC) is the infinitesimal rotation around the origin; Ẋ4 =
(0, 0, 0, 0,−yC , xC) is a last independent infinitesimal motion. (Ẋ1, Ẋ2, Ẋ3) is also a
basis D for the infinitesimal displacements allowed in 2D. Since K does not reduce
to D, S is not rigid. However, K contains D and thus S is not over-rigid. Finally,
since Ẋ4 is independent from D, it is a flex and S is under-rigid.

To avoid resorting to exponential computer algebra methods for computing the
infinitesimal motions, the NPM method can be used.10,75 In this case, the Jaco-
bian matrix J of S = (C,X, A) is evaluated at a randomly chosen configuration
(X, A) = (θX , θA). The kernel of J(θX , θA) can then be computed using a simple
Gaussian elimination in polynomial time. The result of this numerical computation
on a sample configuration extends to the geometric constraint system using a prob-
abilistic argument: if the point (θX , θA) is picked at random in a dense field, then
the algebraic properties at this point are generically those of the algebraic system.77

However, this method (both algebraic and numerical flavor) applies only under
a genericity assumption, e.g., null distances and null angles are not permitted.
Indeed, it does not take into account the values of the parameters in A: computer
algebra neglects the right part of the equation system, and the NPM uses a random
(generic) assignment for the parameters. This strong assumption makes it difficult
to use the method in practice since collinearities, coplanarities and other singular
constraints are frequent in several applications (e.g., CAD).

The witness configuration
To overcome this limitation, Michelucci et al. proposed to use the NPM with a wit-
ness configuration instead of a random one.73 A witness configuration of a system
S = (C, X, A) is a configuration (X, A) = (θw

X , θw
A) that satisfies all the singular

constraints in S, such as point/line/plane incidences. Indeed, these constraints im-
ply that the solutions of S all lie in singular components of the configuration space,
i.e., they may not have the generic properties of S. Hence, if the infinitesimal mo-
tions of S are computed using the NPM at a witness configuration instead of a
random one, then the inferred constriction will hold for its solutions.

Assuming that all the singular constraints are explicitly stated by the user, a
witness configuration can be computed as a solution of a reduced system S′ which
includes only the singular constraints of S. In theory, this problem is as complicated

March 30, 2006 23:7 WSPC/Guidelines jtnm

30 Jermann, Trombettoni, Neveu, Mathis

1 2

3

4

5

1

4

5

2

3

Fig. 16. Three 3D configurations (courtesy by A. Ortuzar, Dassault Systèmes).

as solving the original system S. However, in practice, the reduced system S′ is
highly under-constrained and can generally be solved easily. For instance, it could
be composed of only point-line incidences which can be satisfied by picking any
points on lines themselves randomly positioned.

Let us illustrate the complete process on the simple system S introduced
in Fig. 15. Suppose that dist(A,C) = 0 (singular point-point distance) while
dist(A,B) = k, k > 0 (generic point-point distance). To compute a witness config-
uration (xw

A, yw
A, xw

B , yw
B , xw

C , yw
C , kw), we can pick points Aw and Bw at random (or

read them from a sketch if available): Aw = (0, 0), Bw = (3,−1); this determines
the value of kw =

√
10. Then we set Cw to the same coordinates as Aw so that the

coincidence constraint is satisfied: Cw = (0, 0).
Now, the basis of the infinitesimal motions of S contains only 3 vectors: Ẋ1(P) =

(1, 0, 1, 0, 1, 0) (the translation in x), Ẋ2(P) = (0, 1, 0, 1, 0, 1) (the translation in
y) and Ẋ3(P) = (0, 0, 1, 3, 0, 0) (the rotation around A). Indeed, Ẋ4 is equal to
(0, 0, 0, 0, 0, 0) in this witness configuration P and is thus not independent from the
three other motion vectors. Since this basis reduces to an infinitesimal displacement
basis, we conclude that S is rigid at the witness configuration, and so must be all
its solutions. Remark that S remains generically under-rigid.

Properties of the WCM
The WCM has some interesting properties, in particular in comparison to graph-
based characterizations of rigidity:

• the WCM can be used for numerical geometric theorem proving. Indeed, if the
witness configuration has some property (alignment of 3 points for instance),
then this property is a consequence of the singular constraints of the system.

• the WCM can detect not only the structural dependences identified by struc-
tural methods, but also other subtle non structural ones, e.g., the double-
banana configuration (see Fig. 4) and other similar 3D configurations (see
Fig. 16). Michelucci et al. argue that the WCM detects all the dependences
due to geometric theorems, which occurs each time the system contains the
hypotheses and the conclusion (or its negation) of a geometric theorem.

• the WCM can detect bad values of the parameters in the constraints. Indeed, if
a witness configuration exists and still the solver fails, i.e., the reduced system
S′ can be solved but not the complete system S, it is due to bad numerical

March 30, 2006 23:7 WSPC/Guidelines jtnm

Decomposition of Geometric Constraint Systems: a Survey 31

values of the parameters of the constraints, e.g., 3 distance constraints that
violate the triangular inequality.

These properties make the WCM a very interesting and useful tool for modeling,
solving and debugging geometric constraint systems.

9.2. Decomposing with the WCM

The basic step in many decomposition methods is to determine whether a part
of the system is well-constrained or not, for the purpose of identifying solvable
components for the decomposition. The WCM can achieve this task with a higher
accuracy than typical structural approaches. Moreover, the WCM can handle more
general systems than most of these approaches. Hence, the method should be able
to extend the capabilities (generality and reliability) of structural methods in the
four categories presented in this survey. At least, Michelucci et al. have proposed a
recursive division method which uses solely the WCM.73

A WCM-based recursive division method
Let us call WCM-RD the recursive division method based on the WCM described in
this section. This method operates as follows:

(1) find a set of maximal rigid subsystems {S1, ..., Sk} using the WCM,
(2) for each Si, select a constraint e in Si and apply WCM-RD to Si \ {e}.

In the first step of this algorithm, the WCM is used to identify each maximal
(w.r.t. set inclusion) rigid subsystem. For this purpose, an anchor A is selected at
random in the system S. An anchor is a small subset of objects which fixes all the
possible displacements when determined. Pairs of non coincident points in 2D, and
triples of non aligned points in 3D are examples of such anchors.

To determine a maximal rigid subsystem with respect to an anchor A, the WCM
computes the motions of each geometric entity o relatively to the anchor A. If the
basis of these motions is empty, then o is fixed relatively to A. Once all objects fixed
relatively to A have been identified, they form (with A) a maximal rigid subsystem.

To find a maximal set of maximal rigid subsystems in S, the process described
above is repeated for all possible anchors in sequence.

In the second step, the WCM-RD method is recursively applied to every maximal
rigid subsystem found at step (1) after having removed a constraint picked at ran-
dom. The removed constraint is used for the assembly of the subsystems its removal
generates. The method is illustrated in Fig. 17.

Properties
This algorithm is correct with respect to the WCM characterization of rigidity.
It runs in polynomial time provided that the witness configuration is obtained in
polynomial time: the number of anchors is polynomial, generally O(n2) in 2D and
O(n3) in 3D, and each constraint is removed at most once. Note that a single
witness configuration is used during the whole process.

March 30, 2006 23:7 WSPC/Guidelines jtnm

32 Jermann, Trombettoni, Neveu, Mathis

B
A

A

B B

A

Fig. 17. First steps of the WCM-RD decomposition applied to a 2D bar framework. Maximal rigid
parts with anchor AB are represented with solid lines. Middle and right: Removing one constraint
creates two maximal rigid parts.

10. Conclusion
Decomposition methods are appealing for the drastic gain in efficiency they offer
(see Ref. 22 for a performance comparison). Moreover, decomposition methods help
the user to debug its constraint systems by identifying under-/over-constrained
components before they are solved and by localizing, inside small subsystems, the
problems occurring at solving time.

Significant progress has been accomplished during the last decade. The rigidity
theory has brought a solid base to the geometric methods. Although the four cate-
gories of approaches have gained in generality and reliability, a major effort needs
still be done to address the most challenging applications like CAD. We foresee that
the design of novel hybrid approaches will allow decisive advances toward practical
requirements. To be specific, we think that a method that resorts as much as pos-
sible to predefined guarded patterns, and uses a general DOF-based constriction
check enhanced by a WCM-based validation in a recursive assembly fashion (al-
lowing to interleave decomposition and recombination phases), would be far better
than any existing method w.r.t. generality and reliability.

Acknowledgments

The authors would like to heartily thank Dominique Michelucci and Pascal Schreck
for their involvement and invaluable advices in preparing this survey. Also thanks
to Marc Gouttefarde for useful comments.

References

1. C.M. Hoffmann, A. Lomonosov, and M. Sitharam. Decomposition of Geometric Con-
straints Part I: performance measures & Part II: new algorithms. J. of Symbolic
Computation, 31(4), 2001.

2. C.M. Hoffmann and R. Joan-Arinyo. A brief on constraint solving. Computer-Aided
Design and Applications, 2005.

3. M. Sitharam. Combinatorial approaches to geometric constraint solving: problems,
progress, directions. In AMS-DIMACS book on CAD and manufacturing. 2005.

4. C. Jermann. Résolution de contraintes géométriques par rigidification récursive et
propagation d’intervalles. Ph.d. thesis, UNSA, NICE, 2002.

5. L. Henneberg. Die graphische Statik der starren Systeme. , Leipzig, 1911.
6. I. Fudos. Constraint Solving for Computer Aided Design. PhD thesis, Purdue Univer-

sity, 1995.

March 30, 2006 23:7 WSPC/Guidelines jtnm

Decomposition of Geometric Constraint Systems: a Survey 33

7. J. Graver, B. Servatius, and H. Servatius. Combinatorial Rigidity. Graduate Studies
in Mathematics. American Mathematical Society, 1993.

8. L. Lovasz and Y. Yemini. On generic rigidity in the plane. SIAM J. Alg. Discrete
Methods, 3:91–98, 1982.

9. H. Crapo. On the generic rigidity of plane frameworks. Technical Report 1278, INRIA,
1990.

10. Bruce Hendrickson. Conditions for unique realizations. SIAM journal of Computing,
21(1):65–84, 1992.

11. W. Whiteley B. Servatius. Constraining Plane Configurations in Computer-Aided
Design: Combinatorics of Directions and Lengths. SIAM J. on Discrete Mathematics,
12(1):136–153, 1999.

12. Y.Zhou M. Sitharam. A tractable, approximate characterization of combinatorial
rigidity in 3D. In ADG’2004, 2004.

13. M. Sitharam. Frontier, an opensource gnu geometric constraint solver : version3
(2003) for general 2d and 3d systems, 2003. http://www.cise.ufl.edu/ sitharam.

14. C. Jermann, B. Neveu, and G. Trombettoni. A new structural rigidity for geomet-
ric constraint systems. In Int. Workshop on Automated Deduction in Geometry,
ADG’2002, LNCS 2930, pages 87–106, 2004.

15. G.-F. Zhang X.-S. Gao. Geometric constraint solving based on connectivity of graph.
Technical Report 22, Academia Sinica, Beijing, China, december 2003.

16. A. S. Householder. Principles of Numerical Analysis. McGraw-Hill, New York, NY,
USA, 1953.

17. E. Lahaye. Une méthode de résolution d’une catégorie d’équations transcendantes.
Compte-rendu des Séances de L’Académie des Sciences, 198:1840–1842, 1934.

18. D. Michelucci and H. Lamure. Résolution de contraintes géométriques par homotopie.
In Actes de AFIG 1994, 1994.

19. C. Durand. Symbolic and Numerical Techniques For Constraint Solving. PhD thesis,
Purdue University, 1998.

20. R.E. Moore. Interval Analysis. Prentice-Hall, 1966.
21. C. Jermann, G. Trombettoni, B. Neveu, and M. Rueher. A Constraint Program-

ming Approach for Solving Rigid Geometric Systems. In Constraint Programming,
CP’2000, volume 1894 of LNCS, pages 233–248, 2000.

22. C. Jermann, B. Neveu, and G. Trombettoni. Inter-Block Backtracking: Exploiting the
Structure in Continuous CSPs. In Selected papers of the Int. Works. on Global Optim.
and Constraint Satisfaction, COCOS 2003, LNCS 3478, pages 15–30, 2005.

23. W. Wu. Basic principles of mechanical theorem proving in elementary geometries. J.
Automated Reasoning, 2:221–254, 1986.

24. S.C. Chou. Mechanical Theorem Proving. Reidel Publishing Co., 1988.
25. P. Mathis, P. Schreck, and J.-F. Dufourd. Yams : A multi-agent system for 2d con-

straint solving. In Beat Bruderlin and Dieter Roller, editors, Geometric Constraint
Solving and Applications, pages 211–233. Springer, 1998.

26. M. Wilczkowiak, G. Trombettoni, C. Jermann, P. Sturm, and P. Boyer. Scene model-
ing based on constraint system decomposition techniques. In 9th IEEE International
Conference on Computer Vision, ICCV’03, 2003.

27. J. Owen. Algebraic solution for geometry from dimensional constraints. In Proc. of
Solid Modeling and CAD/CAM Applications, pages 397–407, 1991.

28. J.-F. Dufourd, P. Mathis, and P. Schreck. Geometric construction by assembling
solved subfigures. Artificial Intelligence, 99(1):73–119, 1998.

29. I. Fudos and C.M. Hoffmann. A graph-constructive approach to solving systems of
geometric constraints. ACM Transactions on Graphics, 16(2):179–216, 1997.

30. R. Joan-Arinyo, A. Soto-Riera, S. Vila-Marta, and J. Vilaplana-Pasto. Transforming
an under-constrained geometric constraint problem into a well-constrained one. In
SM’03: Proc. of Solid modeling and applications, 2003.

March 30, 2006 23:7 WSPC/Guidelines jtnm

34 Jermann, Trombettoni, Neveu, Mathis

31. R. Joan-Arinyo, A. Soto-Riera, S. Vila-Marta, and J. Vilaplana-Pasto. Revisiting de-
composition analysis of geometric constraint graphs. Computer Aided Design, 36:123–
140, 2004.

32. J.E. Hopcroft and R.E. Tarjan. Dividing a graph into triconnected components. SIAM
J. Computing, 3:135–158, 1973.

33. C.M. Hoffmann, A. Lomonosov, and M. Sitharam. Finding solvable subsets of con-
straint graphs. In Proc. of Constraint Programming, CP’97, pages 463–477, 1997.

34. A. Lomonosov. Graph and combinatorial algorithms for geometric constraint solving.
PhD thesis, University of Florida, 2004.

35. J.J. Oung, M. Sitharam, B. Moro, and A. Arbree. Frontier: fully enabling geometric
constraints for feature based modeling and assembly. In Proceedings of ACM Solid
Modeling symposium, 2001, 2001.

36. C.M. Hoffmann, M. Sitharam, and B. Yuan. Making constraint solvers more usable:
Overconstraint problem. Computer Aided Design, 36(4):377–399, 2004.

37. S.-M. Hu Y.-T. Li and J.-G. Sun. A Constructive Approach to Solving 3D Geometric
Constraint Systems Using Dependence Analysis. Computer Aided Design, 34(2):97–
108, 2002.

38. X.-S. Gao and G.-F. Zhang. Geometric Constraint Solving via C-tree Decomposition.
In SM’03, pages 45–55, 2003.

39. G. Sunde. Specification of shapes by dimensions and other geometric constraints. In
IFIP WG 5.2 Geometric Modeling, 1986.

40. A. Verroust, F. Schonek, and D. Roller. Rule oriented method for parametrized com-
puter aided design. Computer Aided Design, 24(6):531–540, 1992.

41. R Joan-Arinyo and A Soto. A correct rule-based geometric constraint solver. Com-
puter and Graphics, 5(21):599–609, 1997.

42. W. Bouma, I. Fudos, C.M. Hoffmann, J. Cai, and R. Paige. Geometric constraint
solver. Computer Aided Design, 27(6):487–501, 1995.

43. I. Fudos and C.M. Hoffmann. Correctness proof of a geometric constraint solver.
International Journal of Computational Geometry and Applications, 6:405–420, 1996.

44. C.M. Hoffmann and R. Joan-Arinyo. Symbolic constraints in constructive geometric
constraint solving. Journal of Symbolic Computation, 23:287–299, 1997.

45. G. Kramer. Solving Geometric Constraint Systems. MIT Press, 1992.
46. M. Gruebler. Getriebelehre. Springer, Berlin, 1917.
47. X.S. Gao, K. Jiang, and C.-C. Zhu. Geometric constraint solving with conics and

linkages. Computer Aided Design, 34(6):421–433, 2002.
48. P. Schreck. Implantation d’un système à base de connaissances pour les constructions

géométriques. Revue d’Intelligence Artificielle, 8(3):223–247, 1994.
49. S.C. Chou, X.S Gao, and J. Z. Zhang. A deductive database approach to auto-

mated geometry theorem proving and discovering. Journal of Automated Reasoning,
25(3):219–246, 2000.

50. B. Aldefeld. Variations of geometries based on a geometric-reasoning method.
Computer-Aided Design, 20(3):117–126, 1988.

51. P. Schreck. Robustness in CAD Geometric Construction. In Proc. of the International
Conference on Information Visualisation, IV’2001, pages 111–116. IEEE, 2001.

52. E. Schramm and P. Schreck. Solving geometric constraints invariant modulo the sim-
ilarity group. In Proc. of the 2002 Int. Conference on Computational Science and its
Applications, Part II, pages 356–365. LNCS 2669 (Part III), 2003.

53. P. Schreck and P. Mathis. Geometrical constraint system decomposition: a multi-
group approach. Technical report, Université de Strasbourg, France, 2005.

54. D. Serrano. Constraint Management in Conceptual Design. PhD thesis, MIT, 1987.
55. J.E. Hopcroft and R.M. Karp. An n2.5 algorithm for maximum matching in bipartite

graphs. SIAM J. Computing, 2(4):225–231, 1973.
56. R. E. Tarjan. Depth-first search and linear graph algorithms. SIAM Journal on Com-

March 30, 2006 23:7 WSPC/Guidelines jtnm

Decomposition of Geometric Constraint Systems: a Survey 35

puting, 1(2):146–160, 1972.

57. D. Koenig. Über Graphen und ihre Anwendung auf Determinantentheorie und Men-
genlehre. In Math Ann 77, pages 453–465, 1916.

58. A. Pothen and C.J. Fan. Computing the block triangular form of a sparse matrix.
ACM Trans. on Math. Soft., 16(4):303–324, 1990.

59. R.S. Latham and A.E. Middleditch. Connectivity analysis: A tool for processing ge-
ometric constraints. Computer Aided Design, 28(11):917–928, 1996.

60. I. Sutherland. Sketchpad: A Man-Machine Graphical Communication System. PhD
thesis, Department of Electrical Engineering, MIT, 1963.

61. A. Borning. ThingLab: A Constraint-Oriented Simulation Laboratory. PhD thesis,
Stanford University, 1979.

62. B. Vander Zanden. An incremental algorithm for satisfying hierarchies of multi-way,
dataflow constraints. ACM TOPLAS, 18(1):30–72, 1996.

63. S. Ait Aoudia. Modélisation géométrique par contraintes : quelques méthodes de
résolution. PhD thesis, Ecoles des Mines de Saint Etienne, 1994.

64. C. Hsu and B. Brüderlin. A degree-of-freedom graph approach. In Geometric Model-
ing: Theory And Practice, pages 132–155. , 1997.

65. P. Massan Kuzo. Des contraintes projectives en modélisation tridimensionnelle inter-
active. PhD thesis, Ecole des Mines de Nantes, 1999.

66. E. Eremchenko and A. Ershov. Two new decomposition techniques in geometric con-
straint solving. Research report Preprint number 11, LEDAS Company, 2004.

67. C. Bliek, B. Neveu, and G. Trombettoni. Using Graph Decomposition for Solving
Continuous CSPs. In Proc. of Constraint Programming, CP’98, volume LNCS 1520,
pages 102–116, 1998.

68. G. Trombettoni. A polynomial time local propagation algorithm for general dataflow
constraint problems. In Proc. of Constraint Programming, volume LNCS 1520, pages
432–446, 1998.

69. G. Trombettoni and M. Wilczkowiak. GPDOF: a fast algorithm to decompose under-
constrained geometric constraint systems: Application to 3D model reconstruction.
Int. Journal of Computational Geometry and Applications (IJCGA), 16, 2006.

70. P. Mathis. Constructions géométriques sous contraintes en modélisation à base
topologique. PhD thesis, Université Louis Pasteur, 1997.

71. C. Essert-Villard, P. Schreck, and J.F. Dufourd. Sketch-based pruning of a solution
space within a formal geo. constraint solver. Arti. Intelligence, 124:139–159, 2000.

72. S. Foufou, D. Michelucci, and J.-P. Jurzak. Numerical decomposition of geometric
constraints. In Proc. of Solid and Physical Modeling, SPM, pages 143–151, 2005.

73. D. Michelucci and S. Foufou. The Witness Configuration Method. Computer Aided
Design, 2005.

74. W. Whiteley. Applications of the geometry of rigid structures. In Henry Crapo, editor,
Computer Aided Geometric Reasoning, pages 219–254. INRIA, 1987.

75. H. Lamure and D. Michelucci. Qualitative study of geometric constraints. In Geomet-
ric Constraint Solving and Applications, pages 234–258. Springer, 1998.

76. J. Graver. Counting on Frameworks: Mathematics to Aid the Design of Rigid Struc-
tures. Number 25. Mathematical Association of America, 2002.

77. W.A. Martin. Determining the equivalence of algebraic expressions by hash coding.
J. ACM, 18(4):549–558, 1971.

