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Abstract—In a dense 5G urban-eMBB environment,
the user density and traffic loads follow a spatio-
temporal variability. To meet high traffic demands, the
5G base stations exploit spatial multiplexing by means
of Active Antenna Systems (AAS) and beamforming.
However, pedestrian and vehicular users are highly
mobile, rendering non-dynamic beamforming designs
totally inefficient in terms of meeting the users’ demand
requests. In particular, the latter results in either over-
load or underutilized beams in a cell. Hence, a practical
approach to meet such spatio-temporal heterogeneous
demand is to consider dynamic and adaptive beam
footprint design that takes into account both the actual
users’ position as well as the traffic loads. In this paper,
we first study and evaluate the state-of-the-art fixed-
cell beamforming (based on ITU-R M.2412-0) in a test
environment and highlight its drawbacks. Next, we
propose a adaptive macro-cell beam footprint design
where the beams are dynamically shaped based on the
spatial users distribution and their demand requests.
Numerical simulations demonstrate the high system
performance achieved by the proposed methodology.

Index Terms—Beam steering, Beam footprint design,
Beamforming, Clustering, IMT-2020, Dense urban-
eMBB layout.

I. Introduction
The advancements in beam steerable antennas and

pattern reconfigurable antennas have made it possible to
steer the signal power in the direction of interest [1], [2].
We can obtain such directional beams by altering the
magnitude and phase of individual antenna signals in an
array of multiple antennas [3]. Such beamforming tech-
niques impact the beam radiation pattern and footprint
coverage. Consequently, they can help in mitigating the co-
channel interference, improving the signal-to-interference-
plus-noise ratio (SINR) at the receiver side and increasing
the throughput at the network nodes [4].
International Mobile Telecommunications-2020 (IMT-

2020) systems are the successor of IMT-Advanced mobile
systems and include the advanced abilities of IMT to
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be more efficient, fast, flexible, and reliable. The au-
thors of [5] propose test environments and evaluation
configurations for Indoor Hotspot-eMBB, Dense Urban-
eMBB, and Rural-eMBB of IMT-2020. Accordingly, 3GPP
defines a set of Layer 1 (PHY) and Layer 2 (MAC)
beam management procedures to ensure the alignment
between a beam and the users by beam sweeping, beam
measurement, beam determination and beam reporting.
Such beam-management procedures of 5G NR depend on
measurement-plus-reporting in a closed-loop manner. Any
delay in measurement or reporting may make the beam-
correspondence between gNB and UE very difficult and
the system may have to frequently perform beam-recovery
or beam-switching leading to loss of performance.

Several authors in literature have discussed multiple
beamforming and direction-of-arrival (DOA) estimation
algorithms. The authors of [6] build on compact antenna
structures with fast beamforming capabilities and, by
combining them with a simple training procedure, en-
hance the average throughput of a multiuser system. The
authors of [7] consider (DoA) estimation problem using
electronically steerable parasitic array radiator (ESPAR)
antenna based on compressive sensing. The authors of
[8] propose a conformal circular beam-steering array with
omnidirectional coverage and unidirectional beam.

Focusing on beam footprint design, the authors of [5]
have proposed a Fixed Beam Footprint (FBF) method-
ology where the footprints are designed equidistant from
each other. However, the users in a Dense Urban-eMBB
environment are highly mobile and have different Quality-
of-Service requirements. Hence their distribution and QoS
demands change with time. This adds a challenge in FBF
design, such that some beams will be overloaded and some
will be underused.

Hence, in this paper, we consider a novel alternative
approach for Adaptive Beam Footprint (ABF) design that
is focused on network design where each beam covers
an area with multiple users and hence independent of
feedback failures. Furthermore, by the introduction of
adaptability, we simplify the Radio resource management
(RRM) procedures such as power allocation and user
scheduling.

First, we consider the user locations and their traffic
demand in previously mentioned Dense Urban-eMBB test
environment and group the users into clusters based on



Fig. 1: Dense urban-eMBB layout

their positions and demand. Subsequently, we determine
the optimal steering direction of the beams for every
cluster that could best reduce the co-channel interference
and meet the traffic demand of all the users in the cell.
Furthermore, numerical results show that by the proposed
ABF design, we can distribute the demand across all the
beams more evenly.

II. System Model
We consider a Dense Urban-eMBB test environment

[5] like the one illustrated in Figure 1, which shows an
example of three fixed beams that are spatially placed
equidistant from each other. The macro sites of the macro-
layer are regular hexagonal grid-like structure. A macro-
layer base station is placed such that it serves three
macro sites. The height of BS antenna is 25 meters. The
distance between two macro-layer base station in 200
meters. The users in a macro-layer of the Dense Urban-
eMBB environment include mobile users (both pedestrian
and vehicular users) whose number, position and QoS
requirements change with time. The device deployment
include 80% indoor users and 20% outdoor (in-car) users
who are randomly and uniformly distributed over the area
under macro-layer. The mobility model includes fixed and
identical speed of all users of the same mobility class in
a random and uniformly distributed direction. The users
speed of interest is assumed to be 3 km/hour for indoor
users and 30 km/hour for outdoor (in-car) users [5].

III. Proposed Adaptive Beam Footprint Design
The benchmark FBF design outlined in [5] defines three

sites around a macro base station where each site rep-
resents a macro cell. Accordingly, the antenna bearing
orientation proposed in the benchmark has three fixed
beams whose centre directions of the main antenna lobe
have 120 degrees separation from each other. This en-
sures omnidirectional (360 degrees) coverage using three
directional beams and serves the total coverage region.
However, users across the macro cells are not uniformly
distributed and the traffic demand for a pedestrian user
defers from a vehicular user. Also, as the users are mobile,
their geographic positions vary with time.
Hence, in this section, we discuss steps involved in

achieving proposed Adaptive Beam Footprint design. The
dynamic and adaptive nature is introduced in both, finding

the number of beams and also in designing the beam
locations and footprint.

1) Firstly, we find the best value for the number of
beams K using the CH criteria.

2) Then, with an adapted value of K, we obtain cluster
sets that evenly distributes the traffic throughput
demand across all the beams. Then, we define the
cluster centres as beam centres.

3) Lastly, we compute the Elevation and Azimuth an-
gles at the base station for the beam centres defined
in previous step.

A. Evaluate the optimal number of clusters
The authors of [5] suggest in having three fixed beams

and does not comment on optimizing over the number of
beams. Hence, choosing the number of beams defined as K
is not standardized and left for operators implementation
preference. Accordingly, choosing fewer number of beams
creates beam overload and does not fully exploit the
spatial diversity. On the other hand, choosing too many
beams will result in higher inter-beam interference due to
the overlap of main beam with adjacent beams’ side-lobes.
Also, having fixed beams for a dynamic demand scenario
is not the optimal approach. Hence there is a need for
effective algorithm to define Optimal number of beams.

The best value for the number of beams is indistinct,
and the possible values depend on the shape and scale of
user distribution. Therefore, in this work, we use cluster
analysis [9], [10] to define the optimal number of beams as
K. There exist a plethora of literature [10] on clustering
methods with application in computer vision and pattern
recognition. The use of such clustering methods based on
partition for Macro-Cell beam footprint design in Dense
urban-eMBB layout 5G systems, which we propose in this
paper, is a novel approach.

Generally, increasing the value K will reduce the
amount of error in the user clustering. Hence, zero error
could be achieved when each user is considered as a
cluster. However, having a beam for every user is not
an Optimal solution. Such solutions fail to exploit spatial
diversity benefits and cause inter-beam interference. Hence
the optimal decision of K is a balance between the highest
compression of the users using a single cluster, and the
highest efficiency by assigning each user to its own cluster.
Authors of [11]–[13] have focused on finding the best
number of clusters for a given data set. However, in our
case, we consider the Calinski-Harabasz (CH) criterion [14]
and define an optimization problem as,

maximize
K

(M −K)
∑K

k=1 nk‖Mk −M‖
(K − 1)

∑K
k=1

∑
m∈Gk

‖xm −Mk‖
; (1a)

subject to K ≤M, (1b)

which maximizes the CH criteria for an optimal value ofK.
M is the total number of users, nk is the number of users in
a cluster k, Mk is the centroid of the cluster k, M is the



mean geographical location of all the users, ‖Mk −M‖
is the Euclidean distance between the two vectors and
xm is the user position of the user m. The constraint
(1b) ensures that the number of beams do not exceed
the total number of users. We choose Calinski-Harabasz
(CH) criterion because it is one of the accurate ways
to compute K for clustering methods that use squared
Euclidean distance. The larger the CH ratio, the better
is the data partitioning and hence we solve (1a) to find
any value of K that maximizes Calinski-Harabasz index
value and chose it as the optimal number of beams. As the
number of users in a Dense urban-eMBB layout is small,
we solve this problem using simple exhaustive search.

B. Clustering of distributed users
In the benchmark design, irrespective of change in the

number of users in a beam/ beam-demand, the position
of the beams are fixed. Hence, the offered throughput
remains relatively similar across all the beams. Therefore,
such rigid plans will fail to distribute traffic demand across
all the beams evenly and result in either under-use the
offered throughput (beam capacity is unused) or overload
the beam (beam demand is unmet). Also, a beam with
very high demand suffers power limitations from system
hardware. Furthermore, it is important to support the
regulatory standards by not exceeding EMF radiations in
beams with higher demand. Hence, a beam footprint has
to be designed such that the occurrence of unbalanced
aggregated-beam demand is avoided. To do so, we first
need to consider the users in a euclidean sense and cluster
them into sets of adjacent users. This clustering should
distribute the total system demand evenly among all the
sets. Then we find the Euclidean centroids of these clusters
and direct the main antenna lobes of the K beams at these
centroids.
To do so, we consider metric spaces and endow universe
N with a metric space (X , r) such that N ⊆ X , where X
is a set of all points in a 2D Euclidean space and r is a
distance metric on X . Then, we define, Dk =

∑
m∈Gk dm,

as the demand of beam k and, Dsys =
∑M

m=1 dm, as
system demand, where dm is the requested traffic demand
of user m, and Gk represents the clustered users belonging
to beam k. Accordingly, we define the clustering problem
as,

minimize
{G1,G2...GK}

K∑
k=1

∑
m∈Gk

r(xm, cGk )
(
Dk

Dsys

)
; (2a)

subject to
K⋃

k=1
Gk = N , (2b)

Gi ∩ Gj = ∅,∀i 6= j, (2c)
Gi 6= ∅,∀i, (2d)

cGk = 1∑
m∈Gk

dm

∑
m∈Gk

dmxm, (2e)

whose objective function is to minimise the weighted
distance of each cluster member from the cluster center,
where r(xm, cGk ) = ((xm − cGk )(xm − cGk )′) is the
Euclidean distance between any user m and the cluster
center cGk . Weights are added to distribute the demand
evenly among all the beams and are defined as the ratio
of beam demand to the system demand .

The first constraint in (2b) ensures that all the users are
under the coverage region. The second constraint in (2c)
assures that any user will be served by only one beam. The
third constraint mentioned in (2d) ensures that the beams
have at least one user and to avoid planning beams with
zero demand. In the constraint (2e), cGk is two element
vector in the 2D Euclidean space representing the weighted
cluster centroid of the cluster k.
Distributing the total traffic demand across all the

antenna beams evenly is not a straightforward solution
because of the mobile nature of the users. Hence, we group
the users into clusters and serve them under a beam. In
other words, we partition the M users into K number
of clusters {G1,G2...GK} with {cG1 , cG2 ...cGK} as cluster
centres with each cluster to be converted to a beam in a
later stage. We use the same number K for the number of
clusters and beams, since each beam will serve one cluster.

Among the various available clustering algorithms such
as k-means, k-medoids, Partitioning Around Medoids
(PAM) and Clustering LARge Applications (CLARA)
[15], we employ weighted k-means clustering using itera-
tive Lloyd’s algorithm [16] approach. The weighted version
of the k-means considers both user geographical positions
and demand requirements and hence provides better de-
mand distribution among all the beams. Also, Lloyd’s
algorithm is known as a centroid tessellation, which is
beneficial for the beam design, since the beam center is
likely to point in the direction of the dominant group of
users. Hence, the demand can be better satisfied. The steps
of Lloyd’s Iteration Partition Clustering is shown in the
Algorithm 1.

In Step-1 of the Algorithm 1, we chose the cluster seeds
or the initial K cluster centres using the k-means++
algorithm [17] for faster computation which converges
better than random seeding. In Step-2, we compute dis-
tance matrix (RK×M ) using the Distance Metric (using a
Weighted Euclidean Distances (WED) expressed as,

WED(xm,cGk) = ((xm − cGk)(xm − cGk)′)


∑

m∈Gk
(dm)

M∑
m=1

(dm)

 ,

(3)
where dn is the broadband traffic demand of any user
n.) between all the users and the cluster centres. Then
using the distance matrix RK×M , we group the users
into clusters to their nearest cluster centre. The WED
will ensure that the clustering is based not only on their



geographical location but also on their broadband traffic
demand. In Step 4, we compute a weighted version of the
mean user position as a cluster centre cGk using,

cGk = 1∑
m∈Gk

dm

∑
m∈Gk

dmxm. (4)

The Step-2 to Step-4 are repeated in Lloyd’s iteration
fashion for better clustering. The algorithm stops either
when the cluster assignments do not change or when the
maximum number of iterations are reached. Upon the
termination of the algorithm, all the broadband users will
be grouped into K clusters {G1,G2...GK}.

Algorithm 1 Loyd’s Iteration Partition Clustering Algo-
rithm
procedure Clustering(K,X, d,DK×I , Cs, DM,M) {
K= Total number of beams,
X = {x1,x2...xM} = Broadband user set,
d = {d1, d2...dM} = User demand in Mbps,
Cs = {cG1 , cG2 ...cGk} = Initial seeds for cluster centres,
DM = Distance Metric,
RK×M = distance matrix,
I = Maximum number of iterations
}
[Step 1] Choose initial cluster centres/ seeds
{cG1 , cG2 ...cGk} as per k −means+ + Algorithm.

while (Cluster assignments do not change) OR (I is not
reached) do

[Step 2] Compute distance RK×M between each of
{cG1 , cG2 ...cGk} and all of {x1,x2...xM} using DM shown
in (3).

[Step 3] Assign {x1,x2...xM} users to K clusters
{G1,G2...GK} based on the minimum distance between the
users and cluster centre using RK×M .

[Step 4] Compute new cluster centres {cG1 , cG2 ...cGk}
by using (4).

end while
end procedure

C. Elevation and Azimuth angle computation
In this step, we express the previously obtained cluster

centres using Azimuth and Elevation angle. Azimuth angle
can be defined using the Figure 2 as a sector angle. In the
benchmark, for three beam scenario, this angle is fixed
and 120 degrees apart. The Elevation angle can be defined
using the Figure 2 as a tilt angle and is again fixed in the
benchmark.
However, in the proposed case, the adaptive Azimuth

angle can be obtained from the cluster center position
using θ′ = arcsin( OL

OC ). The value θ′ takes the value
Azimuth angle θ differently in different quadrants. This
can be understood using the Figure 3 where OL is the
distance between the latitude (in degrees) of the macro
base station and the latitude (in degrees) of the cluster

Fig. 2: Azimuth angle and Elevation angle in Dense urban-
eMBB layout

Fig. 3: Azimuth angle computation

center. The distance OC is the distance between the center
of macro base station and center of the cluster.

The adaptive Elevation angle can be obtained from
Figure 4 using φ′ = arctan OC

h , and φ = 180−φ′, where h is
the height of the macro base station (25 meters suggested
in [5]). Thus the obtained θk and ψk could be used to
position a beam k.

IV. Simulation and result analysis
A. Configuration Parameters

We consider a dense Urban-eMBB environment with
the base station at Interdisciplinary Centre for Security,
Reliability and Trust (SnT) (49.6276-degree latitude and
6.1594-degree longitude). We define the coverage region
of 100 meters around the base station. We consider 15
random users in the coverage region and demand of the
users varies from 15 mbps to 35 mbps.

Fig. 4: Elevation angle computation



Fig. 5: Benchmark Fixed Beam Footprint design (K=8)

Fig. 6: Proposed Adaptive Beam Footprint design (K=8)

B. Demand Distribution
The beam demand Dk (in bps) of a beam k is the

summation of traffic demand of all the users belonging
to the beam k. The total system demand (in bps) is the
summation of all the beam demand that has to be met by
macro base station.
Using the proposed ABF plan, the optimum number of

beams K, changes in every iteration. However, to have
a fair comparison of demand distribution between the
benchmark FBF plan and the proposed ABF plan, we use
K = 8. Figure 5 is the benchmark Fixed Beam Footprint
design where the 8 beams are placed equidistant from each
other. For any uneven distribution of users (denoted by red
dots), it can be noticed that certain beams are overloaded
while some are unused. The beams 1 and 5 does not have
any users (zero demand to be met) and hence the beam
capacity is unused while the beam 4 and 8, have relatively
more number of users and hence overloaded. Figure 6 is
the proposed Adaptive Beam Footprint design where the
8 beams are directed towards the cluster centroids. It can
be seen that we have no beams with zero demand and
also the users are more evenly distributed among all the
beams.
The main objective of this work is to distribute Dsys

evenly amongK beams. To verify this, we have to compute
beam demands Dk∀k for both benchmark Fixed design
and proposed Adaptive design. We run the simulation for

Fig. 7: Demand Distribution across 8 beams

1000 iterations for evaluation.
We can see in Figure 7 that the Fixed Footprint Design

distributes the demand most unevenly. We also simulated
the experiment for an adaptive design using only k-means
algorithm which considers only the geographical locations
of the user for Adaptive Beam Design. We can see that
Adaptive design using only k-means performs better than
the Fixed footprint design. However, the proposed Adap-
tive Beam Footprint design, which considers both user
location and demand has clearly reduced beam demand
for beams with high demands and distributed it to the
beams with relatively lower demand. In other words, the
proposed design distributes the total system demand more
evenly and ensures that beams are always assigned with an
adequate beam demand that have to be met. Furthermore,
it ensures that no beam is planned with zero demand. This
is majorly because in rigid fixed plan, the geographical user
locations and their traffic demand is ignored and hence
some beams are pointed to geographic locations where no
users are present.

The Jain’s Fairness Index (J) [18] is a well-known
fairness metric, which in this context measures how evenly
the demand is distributed across all the beams and is
defined as, J = (

∑K
k=1 Dk)2/(K

∑K
k=1 D

2
k). The value

ranges between 1
K and 1, where 1

K signifies that the
system is least fair and 1 signifies that the system is
most fair. The Jain’s fairness index is computed for both
benchmark fixed plan and proposed adaptive design for
1000 iterations and as shown in Figure 8. It is evident
that the proposed adaptive design performs better with
higher value in comparison to the benchmark fixed design
for all iterations.

C. Mean Absolute Error
Mean Absolute Error (MAE) is a measure of er-

rors between ideal demand distribution and observed
demand distribution and is expressed as, MAE =
1
K

∑K
k=1

∣∣∣Dk − Dsys

K

∣∣∣ . The MAE values for both bench-
mark FBF design and proposed ABF design is computed
for 1000 iterations and a cumulative distribution function
is plotted as shown in Figure 9. The CDF plots shows



Fig. 8: Jains Fairness Index

Fig. 9: Empirical Cumulative Distribution Function
(CDF) of MAE

that the error between the ideal demand distribution and
observed demand distribution is less in the proposed ABF
design than the benchmark FBF design.

V. Conclusions and Future Work
This paper proposes a novel Adaptive Beam Footprint

(ABF) design where, instead of steering the beams to
fixed locations, the macro base stations steer the beams
adaptively to the positions proposed by ABF design. The
proposed ABF design is highly successful in distributing
the traffic demand evenly among all the beams and hence
avoiding beam overloading or underuse of a beam. The
algorithm has been simulated in a Report ITU-R proposed
Dense 5G urban-eMBB test environment with mobile
pedestrian and vehicular users whose user density and
traffic loads vary spatio-temporally. Numerical simulations
conducted shows the benefit of using the ABF design
instead of FBF design. A possible extension of this work
would be to design beamforming vectors to generate di-
rectional beams for the proposed adaptive footprint and
furthermore, verify the user satisfaction by computing the
offered capacity to the users.
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