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Thermofield dynamics: Quantum chaos versus decoherence

Zhenyu Xu ,1 Aurelia Chenu,2,3,4,5 Tomaž Prosen ,6 and Adolfo del Campo 2,3,4,7

1School of Physical Science and Technology, Soochow University, Suzhou 215006, China
2Department of Physics and Materials Science, University of Luxembourg, L-1511 Luxembourg, Grand Duchy of Luxembourg

3Donostia International Physics Center, E-20018 San Sebastián, Spain
4IKERBASQUE, Basque Foundation for Science, E-48013 Bilbao, Spain

5Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
6Faculty of Mathematics and Physics, University of Ljubljana, Jadranska ulica 19, 1000 Ljubljana, Slovenia

7Department of Physics, University of Massachusetts, Boston, Massachusetts 02125, USA

(Received 9 September 2020; revised 20 January 2021; accepted 25 January 2021; published 19 February 2021)

Quantum chaos imposes universal spectral signatures that govern the thermofield dynamics of a many-body
system in isolation. The fidelity between the initial and time-evolving thermofield double states exhibits as a
function of time a decay, dip, ramp, and plateau. Sources of decoherence give rise to a nonunitary evolution
and result in information loss. Energy dephasing gradually suppresses quantum noise fluctuations and the dip
associated with spectral correlations. Decoherence further delays the appearance of the dip and shortens the span
of the linear ramp associated with chaotic behavior. The interplay between signatures of quantum chaos and
information loss is determined by the competition among the decoherence, dip, and plateau characteristic times,
as demonstrated in the stochastic Sachdev-Ye-Kitaev model.
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I. INTRODUCTION

In an isolated many-body quantum system, quantum chaos
imposes universal spectral signatures such as the form of the
eigenvalue spacing distribution. The latter changes from a
Poissonian to a Wigner-Dyson distribution as the integrability
of the system is broken to make it increasingly chaotic. Such
a change in the properties of the system can often be induced,
e.g., in many-body spin systems, by changing a control pa-
rameter [1–4].

The Fourier transform of the eigenvalue distribution was
soon recognized as a convenient tool to diagnose quantum
chaos [5–8]. The partition function of the system analytically
continued in the complex-temperature plane has more recently
been considered [9–11], and it reduces to the former for a
purely imaginary inverse temperature β = it . The quantity
Z (β + it ) is indeed the complex Fourier transform of the
density of states and its absolute square value is related to the
spectral form factor. It is also related to the Loschmidt echo
[12–14] and quantum work statistics [15–18].

Complex partition functions take a new meaning in the
context of thermofield dynamics [19]. Given an equilibrium
thermal state of a single copy of a quantum system, it is often
convenient to consider its purification in an enlarged Hilbert
space, which is given by a specific entangled state between
the original and a second copy of the system. The resulting
thermofield double (TFD) state was recognized early on to be
useful in estimating thermal averages of observables [19]. The
TFD also plays a prominent role in the description of eternal
black holes and wormholes in AdS/CFT. The fidelity between
a given TFD and its time evolution under unitary dynamics

is precisely described by the complex Fourier transform of
the eigenvalue distribution, specifically, by the absolute square
value of the partition function with complex-valued tempera-
ture [11,20].

Unitarity imposes important constraints on the thermofield
dynamics. The time-evolved state may exhibit highly nontriv-
ial quantum correlations, but the information encoded in the
initial state, once scrambled, can in principle be recovered by
reversing the dynamics in an idealized setting. As a result, the
von Neumann entropy of the system remains constant during
the evolution. This feature still holds for mixed states resulting
from averaging over a Hamiltonian ensemble. The spectral
form factor in an isolated chaotic system displays a decay
from unit value leading to a dip, also known as a correlation
hole, a subsequent ramp, and a saturation at an asymptotic
plateau, in systems characterized by a finite Hilbert space di-
mension [9–11,21]. Its somewhat simpler structure in Floquet
many-body systems is only recently becoming analytically
explained [22–24]. Yet, isolated quantum systems are an ide-
alization and any realistic quantum system is embedded in a
surrounding environment. Decoherence stems from the inter-
action between the system and the surrounding environment,
which leads to the buildup of quantum correlations between
the two, and their entanglement. The environment is generally
expected to be complex and its degrees of freedom unavail-
able. Information loss in the system can be traced back to the
leakage of information into the inaccessible environment. The
dynamics of the system is nonunitary and its von Neumann
entropy is no longer constant [25,26].

The interplay between spectral signatures of quan-
tum chaos, decoherence, and information loss is thus a
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long-standing open problem [2,27–30]. We focus on its role
in thermofield dynamics, with applications ranging from
nonequilibrium many-body physics to machine learning with
quantum neural networks in noisy intermediate-scale quantum
computers and simulators [31]. As we shall see, (energy) de-
coherence washes out short-time signatures of quantum chaos,
such as the dip in the spectral form factor (correlation hole),
while it preserves its long-time ramp, conditioned by a com-
petition of characteristic timescales that we elucidate. As a
test bed, we consider the Sachdev-Ye-Kitaev (SYK) model of
Majorana fermions involving all-to-all four-body interactions
with quenched disorder [32,33]. This system saturates the
bound on chaos and admits a gravitational dual, making it a
prominent example [34,35] of holography [36].

In Sec. II, we generalize the spectral form factor to open
systems. We then demonstrate its use with a paradigmatic
instance of the quantum chaotic SYK model in Sec. III. An
experimental protocol for the implementation of the spectral
form factor in open systems is finally discussed in Sec. IV.

II. THE SPECTRAL FORM FACTOR IN OPEN SYSTEMS

Consider a system described by a Hamiltonian H , with
spectral decomposition in the system Hilbert space H given
by H = ∑d

n=1 En|n〉〈n|, En being the energy eigenvalues. A
canonical thermal state of the system at inverse temperature
β is described by the operator ρth = e−βH/Z (β ), the partition
function of the system being Z (β ) = Tr(e−βH ). The thermal
density matrix can be obtained from a pure, entangled state
in an enlarged Hilbert space H̃ = H ⊗ H. Namely, a sec-
ond copy of the system is used to create the state known
as the thermofield double (TFD) state [19] and defined as
|TFD〉 = ∑

n
√

pn|nn〉 where pn = e−βEn/Z (β ) and |nn〉 =
|n〉 ⊗ |n〉 in H̃. The reduced density matrix obtained by trac-
ing over any one of the two copies,

∑
n〈n|TFD〉〈TFD|n〉,

corresponds to the single-copy canonical thermal state ρth.
Note that the TFD is not invariant under the unitary
Ut = exp[−it (H ⊗ 1 + 1 ⊗ H )], taking h̄ = 1.

The fidelity between the initial TFD state and its evolution
provides a measure of quantum chaos [11,20]:

Ft = |〈TFD|Ut |TFD〉|2 =
∣∣∣∣Z (β + i2t )

Z (β )

∣∣∣∣
2

. (1)

In the presence of decoherence, the evolution is not unitary
and can generally be associated with a quantum channel �t

that maps the initial density matrix to the time-evolved state,
i.e., ρt = �t [ρ0]. The fidelity between two mixed states ρ0

and ρt generalizes the notion of overlap between pure states. It
is defined as (Tr

√√
ρ0ρt

√
ρ0)2 and takes a particularly simple

form when the initial state is pure. We shall thus be interested
in the fidelity between the initial (pure) TFD state and its
evolution, i.e.,

Ft = 〈TFD|�t [ρ̃0]|TFD〉, (2)

where ρ̃0 = |TFD〉〈TFD| is of dimension d2. Said differently,
Ft equals the probability to find the state ρ̃t at time t in the
initial state; i.e., it is the survival probability of the TFD
state. Note that under unitary evolution, �t [ρ̃0] = Ut ρ̃0U

†
t and

Eq. (1) is recovered.

For the sake of illustration, we shall consider the quantum
channel associated with energy diffusion processes that occur
independently in each of the copies. The total Hamiltonian
H̃ = H ⊗ 1 + 1 ⊗ H is perturbed by independent real Gaus-
sian white noise in each copy, H → (1 + √

γ ξt )H , where γ is
a positive real constant and ξt is the noise parameter. Perform-
ing the stochastic average, the evolution of ρ̃t is described by
the master equation [37,38]

˙̃ρt = −i[H̃, ρ̃t ] − γ

2

∑
k=1,2

[Vk, [Vk, ρ̃t ]], (3)

with the Lindblad operators V1 = H ⊗ 1 and V2 = 1 ⊗ H .
For the initial TFD state, the exact time evolution of the

density matrix is given by

ρ̃t =
∑
m,n

e− β(Em+En )
2

Z (β )
e−2it (Em−En )−γ t (Em−En )2 |mm〉〈nn|, (4)

and the fidelity (2) of the evolved mixed state reads

Ft = 1

Z (β )2

∑
m,n

e−β(Em+En )−2it (Em−En )−γ t (Em−En )2
. (5)

From this expression it is apparent that in the absence of
degeneracies in the energy spectrum, the asymptotic value of
the fidelity is given by Fp = Z (2β )/Z (β )2, i.e., the purity of a
single-copy thermal state at inverse temperature β. This value
also corresponds to the long-time asymptotics under unitary
evolution, which can be obtained from Eq. (1) by coarse-
graining in time [11,39]. In the infinite-temperature case, the
value Fp = 1/d reflects the finite Hilbert space dimension.
Thus, Fp is insensitive to the presence of information loss.

For arbitrary time t , an explicit expression of the
fidelity can be obtained using the density of states
�(E ) = ∑

δ(E − En) written in the integral form, �(E ) =∫
dτeiτE Tr(e−iτH )/(2π ), as shown in Appendix A. Use of the

Hubbard-Stratonovich transformation,

e−γ t (Em−En )2 = 1

2
√

πγ t

∫ +∞

−∞
dye− y2

4γ t e−iy(Em−En ), (6)

allows us to recast the fidelity (5) in terms of the analytic
continuation of the partition function,

Ft = 1

2
√

πγ t

∫ +∞

−∞
dτe−( τ−2t

2
√

γ t )2

gβ (τ ), (7)

as the spectral form factor is given by

gβ (τ ) ≡ |Z (β + iτ )|2
Z2(β )

, (8)

and equals the fidelity under unitary dynamics at τ = 2t ; see
Eq. (1). The latter is an even function of the parameter τ , i.e.,
gβ (−τ ) = gβ (τ ). This quantity contains information about
the correlation of eigenvalues with different energies. At late
times, it forms a plateau, with a value Z (2β )/Z (β )2 in absence
of degeneracies in the energy spectrum, that characterizes the
discreteness of the spectrum [9].

The expression (7) paves the way to a systematic study of
the interplay between quantum chaos and information loss,
provided the energy spectrum of the system is known. In addi-
tion, it shows that noise-induced decoherence is equivalent to
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coarse-graining in time the spectral form factor with a specific
Gaussian kernel. The quantity

√
γ t determines the contribu-

tion of the spectral form factor to the integral at any time t ,
i.e., to the fidelity. In the unitary limit, γ = 0, the Gaussian is
sharply peaked and tends to a Dirac delta around 2t , leading
to the recovery of the spectral form factor in Eq. (1). For
γ > 0, information is lost. Yet, at long times of evolution,
the behaviors with and without decoherence agree. This is
consistent with the fact that the long-time asymptotic plateau
is associated with a state diagonal in the energy eigenbasis.
The later is the fixed point under the nonunitary dephasing
dynamics considered but it also emerges effectively under
unitary dynamics with coarse-graining in time. The effect
of dephasing is thus crucial in the time region γ t ∼ 1. This
behavior is universal in that it arises from the open quantum
dynamics considered (3) and is independent of the specific
choice of the nondegenerate system Hamiltonian.

III. THE STOCHASTIC SACHDEV-YE-KITAEV MODEL

In what follows we shall use as a test bed the SYK model
with Hamiltonian [32,33]

H =
∑

1�k<l<m<n�N

Jklmnχkχlχmχn, (9)

describing N Majorana fermions, χk = χ
†
k fulfilling the anti-

commutation relation {χk, χl} = δkl , with an all-to-all random
quartic interaction, and couplings independently sampled
from a Gaussian distribution P(Jklmn) ∝ exp(− N3

12J2 J2
klmn),

centered at zero, Jklmn = 0, with variance J2
klmn = 3!J2

N3 . The
results that follow always include the disorder average. We set
J = 1 for convenience. Being a test bed for holography and
quantum chaos, it is amenable to digital quantum simulation
in a variety of platforms including trapped ions, superconduct-
ing qubits, and NMR experiments [40–42]. Its study in analog
simulators has also been proposed [43–46]. Spectral proper-
ties of the SYK model can be captured by different random
matrix ensembles depending on the value of N [9,47,48]. We
consider N = 26 in the numerics, when spectral features are
captured by the Gaussian unitary ensemble (GUE) [49].

We first characterize the role of the open dynamics on the
logarithmic negativity, an entanglement monotone defined as

EN (ρ̃t ) = log2

∥∥ρ̃�L
t

∥∥
1 (10)

in terms of the trace norm of the partial transpose of the
density matrix ρ̃

�L
t , e.g., with respect to the left copy. If the

initial state is the TFD state, the logarithmic negativity can be
written as

EN (ρ̃t ) = log2

[
1

Z (β )

∑
k


e−β(Ek+E
 )/2−γ t (Ek−E
 )2

]
. (11)

Figure 1 shows that as a function of time this quantity ex-
hibits a monotonic decay, signaling the loss of entanglement
between the two copies of the TFD state. By contrast, EN (ρ̃t )
remains constant under the unitary evolution with γ = 0. The
loss of entanglement is accompanied by information loss,
manifested by the monotonic growth of the second Rényi

FIG. 1. Logarithmic negativity and Rényi entropy of the stochas-
tic SYK model. A log-linear plot of the (a) logarithmic negativity and
(b) Rényi entropy (n = 2) displayed as a function of time for different
decoherence coefficients γ in the stochastic SYK model with N = 26
Majorana fermions. The data are built from 100 independent samples
and β = 1.

entropy,

S2(ρ̃t ) = − log2 Tr
(
ρ̃2

t

)
, (12)

which is

S2(ρ̃t ) = − log2

[
1

Z (β )2

∑
k,


e−β(Ek+E
 )−2γ t (Ek−E
 )2

]
, (13)

for an initial TFD state. The loss of entanglement stems exclu-
sively from the nonunitary features of the dynamics encoded
in the dissipator; see Fig. 1. Thus, the growth of the logarith-
mic negativity implies the decay of the second Rényi entropy,
and vice versa, i.e.,

ĖN (ρ̃t (2β, 2γ )) = −Ṡ2(ρ̃t (β, γ )). (14)

Again, this quantity is invariant under unitary dynamics.
The relevant timescale governing their evolution is the de-
coherence time that can be extracted from the short-time
asymptotics of the purity, Pt = Tr(ρ̃2

t ), which is invariant un-
der unitary dynamics. The timescale τD governs its short-time
asymptotics according to Pt = 1 − t/τD + O(t2) [37,50,51].
The same behavior, replacing τD by 2τD, rules the early decay
of the fidelity due to the nonunitary character of the evolu-
tion, i.e., Ft = 1 − t/(2τD) + O(t2) [52,53]. The timescale in
which the TFD becomes diagonal in the energy eigenbasis is
set by [37]

1

τD
= 4γ

d2

dβ2
ln [Z (β )]. (15)

Using a Gaussian approximation for the density of states �(E )
at large N [47,54,55], one finds τD � 1/(γ N ), as shown in
Eq. (B34). Because EN (ρ̃t ) and S2(ρ̃t ) decay monotonically,
they are not suited to investigate the competition between
quantum chaos signatures and information loss. To this end,
we instead rely on the fidelity Ft .

Under unitary evolution, the fidelity of the TFD state in the
SYK model exhibits the typical features of chaotic quantum
systems [9–11], namely a decay, dip, ramp, and plateau. The
existence of a plateau is a consequence of the Hilbert space
finite dimension, in which the energy spectrum is discrete.
It is absent in systems with a continuous spectrum, where
the decay is uninterrupted and continues to a vanishing value
[51,56]. As a function of the time of evolution, the behavior

064309-3



XU, CHENU, PROSEN, AND DEL CAMPO PHYSICAL REVIEW B 103, 064309 (2021)

FIG. 2. Fidelity of the stochastic SYK model. Top: A log-log plot
of fidelity with different decoherence coefficients γ in the stochastic
SYK model of N = 26 Majorana fermions. The data were taken by
single and 100 independent samples and β = 1. Bottom: The dip
time t (γ )

d , the plateau time t (γ )
p , the decoherence time γ τD, and γ τD/td

are shown as functions of N . The data were obtained by sampling
over 100 independent realizations and β = 0.1.

of the fidelity is first dominated by (i) the density of states
and decays from unity until it reaches a minimum value at a
dip occurring at the dip time td ∼ √

d , where d is the Hilbert
space dimension of a single copy of the system. In the SYK,
we estimate the dip time as

td ∼
(√

π exp (−Nβ2/4)

c3/2
N

√
2N

)1/4√
d, (16)

with cN a constant (see Appendix B). The subsequent time
evolution is dominated by correlations in the eigenvalue spac-
ing and leads to (ii) a ramp that eventually saturates in (iii) a
plateau with value Fp = Z (2β )/Z (β )2 onset at the Heisenberg
or plateau time tp ∼ d . Specifically, for the SYK model we
find

tp � α

√
2π

N
d, (17)

with α = 2 − δ4,N mod 8, as shown in Eq. (B39). This late
stage is characterized by fluctuations around the plateau value,
sometimes referred to as quantum noise in this context [39] to
be distinguished from the kind of quantum noise that gives
rise to decoherence [57]. The characteristic times τD, td , and
tp govern the competition between decoherence and quantum
chaos.

Figure 2 shows the evolution of the fidelity for a finite-
temperature TFD in a single realization and the disorder
average over Jklmn. As the dephasing strength γ is increased,
the features of the fidelity Ft manifested in the unitary case
are gradually washed out. Prominently, for large dephasing
strengths, τD � tp, the existence of the dip and ramp are
completely suppressed and the fidelity decays monotonically

from unit value toward the asymptotic one Fp. Between these
extremes, the features that are most sensitive to information
loss are those associated with quantum noise, e.g., the dynam-
ical phase accumulated by the total Hamiltonian.

Under unitary dynamics, these fluctuations are exhibited
around the dip and at long times: The decay toward the
dip is typically characterized by a power law given that the
density of states is bounded from below, i.e., the existence
of a ground state [11] (given this effect can be removed by
smooth spectral filtering [58]). As a precursor of the dip, an
oscillatory behavior is often present that can be understood as
the interference of the power-law contribution and the ramp
contribution stemming from correlations in the level spacing
distribution. Whenever τD � td , information loss leads to the
suppression of these fluctuations. Regarding the presence of
quantum noise at long times, whenever τD < tp, Eq. (5) shows
that information loss associated with decoherence suppresses
the fluctuations around the plateau value Fp. Importantly, the
suppression of quantum noise fluctuations is already manifest
at the level of a single realization of the SYK Hamiltonian,
without averaging over Jklmn or ensembles of system Hamil-
tonians. As shown in Appendix B, the behavior of the SYK
models is in qualitative agreement with that of random-matrix
ensembles. While under unitary dynamics this correspon-
dence is only established at long times, its onset is facilitated
by the presence of information loss. The decoherence time
τD scales with 1/γ and the inverse energy variance. It thus
decreases with temperature and the system size, as shown for
the SYK in Fig. 2. In the presence of information loss, the
dip not only becomes shallower, but it shifts to later times;
see Fig. 2. For moderate values of the dephasing strength
γ the subsequent ramp is essentially unaffected with respect
to the unitary dynamics, beyond the suppression of quantum
noise. The timescale tp in which the plateau appears remains
essentially constant. Thus, the ramp and plateau are shared by
isolated and decohering systems exhibiting information loss.

IV. DISCUSSION AND SUMMARY

An experimental test of the interplay between quantum
chaos and decoherence can be envisioned given advances in
the quantum simulation of open systems by digital methods
[59] and tailored noise. It could be probed via the quan-
tum simulation of the SYK Hamiltonian [40–43] but it is
generally expected in an arbitrary quantum chaotic system.
While the preparation of the TFD state is being pursued
[60–63] this requirement can be relaxed for the study of
some observables, such as the fidelity of a TFD state, as
its expectation value can be related to that of a coherent
Gibbs state |ψβ〉 = ∑

n e−βEn/2|n〉/√Z (β ) involving a single
copy of the system. Indeed, under unitary time evolution
Ft = |〈ψβ | exp(−itH )|ψβ〉|2 = |Z (β + it )/Z (β )|2 that can be
measured by single-qubit interferometry [64]. Its general
time evolution can be described by a quantum channel ρt =
�t [|ψβ〉〈ψβ |] and the fidelity between the initial state and its
evolved form is analogously given by Ft = 〈ψβ |ρt |ψβ〉. The
measurement of the latter can be simplified using quantum
algorithms for the estimation of state overlaps [65,66].

In summary, the ubiquity of noise sources gives rise to
a competition between the signatures of quantum chaotic
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dynamics expected for a many-body system in isolation and
the presence of information loss resulting from decoherence.
Such competition can be quantified by the fidelity between
a thermofield state at a given time and its subsequent
time evolution. For a quantum chaotic system in isolation
this quantity equals the spectral form factor showing a
dip-ramp-plateau structure which is suppressed by the loss
of information induced by decoherence. In particular, our
definition of the decoherence time is universal for any
Lindblad master equation and is not restricted to energy
dephasing. Thus the competition of the three timescales
could be straightforwardly extended to any open chaotic
quantum system. The interplay between information loss
and chaos in open quantum complex systems should find
broad applications in quantum computation, simulation, and
machine learning in the presence of noise."
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APPENDIX A: FIDELITY IN TERMS OF DENSITY
OF STATES AND FORM FACTOR

In this Appendix, we make explicit the connection between
the fidelity, the density of states, and the spectral form factor.
The density of states is defined as

�(E ) =
∑

n

Nnδ(E − En), (A1)

where Nn denotes the degeneracy of the energy level En.
The thermal state of a single copy can be written as

ρth = 1

Z (β )

∫
dE�(E )e−βE |E〉〈E |. (A2)

Its purification is given by the thermofield double state

|�〉 = 1√
Z (β )

∫
dE

√
�(E )e−βE/2|E , E〉. (A3)

The initial density matrix associated with the thermofield dou-
ble state can then be written using a basis of continuous energy
eigenstates as

ρ̃0(E , E ′) =
∫

dEdE ′ e
−β(E+E ′ )/2

Z (β )

√
�(E )�(E ′)|E , E〉〈E ′, E ′|.

(A4)

In turn, the time-evolved density matrix reads

ρ̃t (E , E ′) =
∫

dEdE ′ e
−β(E+E ′ )/2

Z (β )

√
�(E )�(E ′)e−2it (E−E ′ )e−γ t (E−E )′2/2|E , E〉〈E ′, E ′|

=
√

1

4πγ t

∫
dEdE ′

∫ ∞

−∞
dye− y2

4γ t
e−β(E+E ′ )/2

Z (β )

√
�(E )�(E ′)e−2it (E−E ′ )e−iy(E−E ′ )|E , E〉〈E ′, E ′| (A5)

and the fidelity becomes

Ft =
√

1

4πγ t

∫ ∞

−∞
dye− y2

4γ t
1

Z (β )2

∣∣∣∣
∫

dE�(E )e−(β−2it+iy)E

∣∣∣∣
2

. (A6)

The evaluation of such expression generally requires the use of numerical methods due to the lack of techniques to evaluate
the average of the quotient of partition functions, each of which involving the Hamiltonian over which the average is performed.
Under the annealed approximation, this average is approximated by the quotient of the averages. This approximation is generally
valid at high temperature and fails at low temperature. Using it, the average fidelity reads

〈Ft 〉 =
√

1

4πγ t

∫ ∞

−∞
dye− y2

4γ t
1

〈Z (β )2〉
∫

dEdE ′e−ν(y)E−ν̄(y)E ′ 〈�(2)(E , E ′)〉, (A7)

where

ν(y) = β − 2it + iy, ν̄(y) = β + 2it − iy. (A8)

The two-level correlation function 〈�(2)(E , E ′)〉 = 〈�(E )�(E ′)〉 can be expressed in terms of the connected two-level correlation
function 〈�(2)

c (E , E ′)〉 〈
�(2)

c (E , E ′)
〉 = 〈�(E )�(E ′)〉 − 〈�(E )〉〈�(E ′)〉. (A9)

Assuming no degeneracies

Ft = G(β )

Z (β )2
+ 1

Z (β )2

∑
k �=


e−β(Ek+E
 )+i2t (Ek−E
 )−γ t (Ek−E
 )2
, (A10)
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where

G(β ) =
∑

n

N2
n e−2βEn =

∫
dE〈�(2)(E , E )〉e−2βE (A11)

reduces to Z (2β ) in the absence of degeneracies expected for chaotic systems, i.e., when Nn = 1.

APPENDIX B: ENSEMBLE AVERAGE OF THE FIDELITY

The ensemble average over the fidelity of Eq. (7) in the main text can be written as

〈Ft 〉 = 1

2
√

πγ t

∫ +∞

−∞
dτe−( τ−2t

2
√

γ t )2〈gβ (τ )〉, (B1)

where the averaged spectral form factor in terms of annealing approximation is given by

〈gβ (τ )〉 .= 〈|Z (β + iτ )|2〉
〈Z (β )〉2 . (B2)

Note that the annealing approximation is valid at high temperature (also see discussion at the end of Appendix B 1).
Then the denominator and numerator of Eq. (B2) can be written as

〈Z (β )〉 =
∫

dE〈�(E )〉e−βE (B3)

and

〈|Z (β + iτ )|2〉 =
∫

dE〈�(E )2〉e−2βE +
∫

dEdE ′〈�(E )�(E ′)〉e−(β+iτ )E e−(β−iτ )E ′
, (B4)

where the two-point correlation function can be expressed as

〈�(E )�(E ′)〉 = 〈
�(2)

c (E , E ′)
〉 + 〈�(E )〉〈�(E ′)〉, (B5)

in terms of the connected two-point correlation function 〈�(2)
c (E , E ′)〉.

In the following, we consider two examples: one is the GUE, and the other is the SYK model.

1. GUE-averaged fidelity

For GUE ensembles, there is no degeneracy of the energy levels, so Eq. (B4) can be further written as

〈|Z (β + iτ )|2〉GUE = 〈Z (2β )〉GUE + |〈Z (β + iτ )〉GUE|2 + 〈
gc

β (τ )
〉
GUE, (B6)

where 〈
gc

β (τ )
〉
GUE

=
∫

dEdE ′〈�(2)
c (E , E ′)

〉
GUEe−(β+iτ )E e−(β−iτ )E ′

. (B7)

The joint probability density of H ∈ GUE is proportional to exp(− 1
2σ 2 trH2), where σ is the standard deviation of the random

(off-diagonal) matrix elements of H . Note that in Ref. [49], σ = 1/
√

2, and in Ref. [9], σ = 1/
√

d . To calculate Eq. (B6), we
have to know the spectral density and the two-point correlation function. The eigenvalue density averaged over the GUE is given
by

〈�(E )〉GUE = 1√
2σ

Kd (Ẽ , Ẽ ), and Ẽ := E√
2σ

, (B8)

with the kernel Kd (x, y) defined by

Kd (x, y) =
d−1∑
l=0

φl (x)φl (y), and φl (x) := e− x2

2 Hl (x)√√
π2l l!

, (B9)

where Hl (x) are the Hermite polynomials. Furthermore, the two-point correlation function averaged over the GUE takes the
form

〈�(E , E ′)〉GUE = 1

2σ 2
det

[(
Kd (Ẽ , Ẽ ) Kd (Ẽ , Ẽ ′)

Kd (Ẽ ′, Ẽ ) Kd (Ẽ ′, Ẽ ′)

)]
, (B10)
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and thus the connected two-level correlation function averaged over the GUE reads〈
�(2)

c (E , E ′)
〉
GUE = − 1

2σ 2
[Kd (Ẽ , Ẽ ′)]2. (B11)

According to the orthogonality of Hermite polynomials∫
dxe−(x+a)2

Hk (x)Hl (x) = √
π2p p!(−2a)|k−l|L(|k−l|)

p (−2a2), (B12)

where L(α)
n (·) are the associated Laguerre polynomials and p := min{k, l}, the first two items of Eq. (B6) and the denominator

of Eq. (B2) are expressed as

〈Z (x)〉GUE = e
σ2x2

2 L(1)
d−1(−σ 2x2). (B13)

By Eqs. (B11) and (B12), the third term of Eq. (B6) is

〈
gc

β (τ )
〉
GUE

= −eσ 2(β2−τ 2 )
d−1∑

k,l=0

p!

q!
[σ 2(β2 + τ 2)]|k−l|∣∣L(|k−l|)

p [−σ 2(β + iτ )2]
∣∣2

, (B14)

where q := max{k, l}.
With Eqs. (B13) and (B14), the spectral form factor is finally obtained,

〈gβ (τ )〉GUE
.=

eσ 2β2
L(1)

d−1(−4σ 2β2) + e−σ 2τ 2[∣∣L(1)
d−1

(−σ 2β2
τ

)∣∣2 − ∑d−1
k,l=0

p!
q! (σ 2|βτ |2)|k−l|∣∣L(|k−l|)

p

(−σ 2β2
τ

)∣∣2]
L(1)

d−1(−σ 2β2)2 , (B15)

with βτ := β + iτ for short. Note again, one should replace τ

with 2t when directly analyzing the spectral form factor.
To have a rough estimation of the dip and plateau time, we

will consider an approximated connected two-level correla-
tion function of Eq. (B11) when the dimension of the GUE is
large, i.e.,

〈
�(2)

c (E , E ′)
〉
GUE � − 1

π2

(
sin[(E − E ′)

√
d/σ ]

E − E ′

)2

. (B16)

By defining new variables r = E − E ′ and ω = (E + E ′)/2,
Eq. (B7) is given by

〈
gc

β (t )
〉
GUE

� − 1

π2

∫
dωe−2βω

∫ ∞

−∞
dr

(
sin(r

√
d/σ )

r

)2

e−2itr,

(B17)

where we have replaced τ with 2t . The first integration
is divergent. For estimation, the integration is replaced
with ∫

dω →
∫ ω0

−ω0

dω. (B18)

Since the spectral density can be approximated by Wigner’s
semicircle in the large-d limit, i.e.,

〈�(E )〉GUE =
√

d

σπ

√
1 −

(
E

2σ
√

d

)2

, and |E | � 2σ
√

d,

(B19)
thus 〈�(0)〉GUE = √

d/(σπ ). According to the normalization
of 〈�(E )〉GUE, we have 2ω0〈�(0)〉GUE � d , and

ω0 � σπ
√

d

2
, (B20)

with which the first integration reads∫
dωe−2βω � sinh(

√
dπβσ )

β
. (B21)

The second integration in Eq. (B17) is the Fourier transform

∫ ∞

−∞
dr

(
sin(r

√
d/σ )

r

)2

e−2itr

=
{
π (

√
d/σ − t ), t �

√
d/σ,

0, t >
√

d/σ.
(B22)

Equation (B17) finally takes the form

〈
gc

β (t )
〉
GUE

�
{

− sinh (
√

dπβσ )
πβ

(
√

d/σ − t ), t �
√

d/σ,

0, t >
√

d/σ.

(B23)
According to the above equation, it is easy to observe that the
plateau time is

tp =
√

d/σ. (B24)

With Wigner’s semicircle law of Eq. (B19), the partition
function averaged over the GUE ensembles is approximated
by

〈Z (x)〉GUE =
√

dI1(2σ
√

dx)

σx
, (B25)

where In(·) is the modified Bessel function of the first kind and
order n. When β � 1 and t is large, the asymptotic expansion
of the second part of Eq. (B6) reads

|〈Z (β + i2t )〉GUE|2 �
√

d[1 − sin(8σ
√

dt )]

16πt3σ 3
. (B26)
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FIG. 3. Spectral form factor of GUE. Analytical Eqs. (B15) and (B28) are in comparison with numerical calculations for β = 0, 0.1,
1, 2, and d = 10, 30. The standard deviation of the random variables of H is selected as σ = 1/

√
d . The numerical calculations use 1000

independent realizations.

By equating Eqs. (B26) and (B23), the dip time can be esti-
mated as

td � 1

2

( √
dβ

σ 3 sinh(
√

dπβσ )

) 1
4

� 1

2π1/4σ
− dπ7/4σ

48
β2 + O(β3). (B27)

The spectral form factor in the large-d limit is obtained as

〈gβ (t )〉GUE �
√

dI1(4σ
√

dβ )
2σβ

+
√

d[1−sin(8σ
√

dt )]
16πt3σ 3 + Eq. (B23)(√

dI1(2σ
√

dβ )
σβ

)2
.

(B28)

In Fig. 3, the spectral form factor with Eqs. (B15) and (B28)
is compared with the numerical calculations. Note that when
the dimension d increases, the valid domain of β by annealing
approximation becomes larger.

2. Spectral form factor of the SYK model

For the SYK model with N mod 8 �= 0, the energy
spectrum has a uniformly double degeneracy (Nn = 2).
Equation (B4) can be written as

〈|Z (β + i2t )|2〉SYK = 2〈Z (2β )〉SYK + |〈Z (β + i2t )〉SYK|2

+ 〈
gc

β (t )
〉

SYK
, (B29)

where〈
gc

β (τ )
〉
SYK

=
∫

dEdE ′〈�c(E , E ′)〉SYKe−(β+2t i)E e−(β−2t i)E ′
.

(B30)
To calculate the first two items of Eq. (B29), we need to know
the spectral density of the SYK model, which has been derived
by the method of moments

〈�(E )〉SYK = 1

2π

∫
dte−iEt 〈Tr(eiHt )〉SYK. (B31)

In this part, we are going to roughly estimate the dip and
plateau time; therefore, the spectral density can be approxi-
mated in a Gaussian type when N is large [47,54,55],

〈�(E )〉SYK �
√

2

πN
d exp

(
−2E2

N

)
. (B32)

The partition function is

〈Z (x)〉SYK � d exp

(
Nx2

8

)
. (B33)

With such equation, the decoherence time can be estimated by

γ τD � 1

4 d2

dβ2 ln [〈Z (β )〉SYK]
= 1

N
. (B34)

The late-time behavior of the SYK model is governed by
Gaussian orthogonal ensemble (GOE), GUE, and Gaussian
symplectic ensemble (GSE) statistics according to the number
of Majorana fermions modulo 8. For simplicity, we first con-
sider the connected part of the two-point correlation function
of the GUE (i.e., N mod 8 = 2 or 6) as

〈
�(2)

c (E , E ′)
〉
SYK � −

(
sin[2πr〈�(ω)〉SYK]

πr

)2

, (B35)

with r = E − E ′ and ω = (E + E ′)/2 defined in above sub-
section. Then〈
gc

β (t )
〉
SYK

�
∫

dEdE ′〈�c(E , E ′)〉SYKe−(β+2it )E e−(β−2it )E ′

= −
∫

dωe−2βω

∫
dr

(
sin[2πr〈�(ω)〉SYK]

πr

)2

e−irt

=
⎧⎨
⎩

√
N〈Z (2β )〉SYK√

2πd
t − 2〈Z (2β )〉SYK, t � 2

√
2π
N d,

0, t > 2
√

2π
N d.

(B36)
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FIG. 4. Spectral form factor of SYK model. Analytical Eq. (B37) is compared with numerical calculations (β = 0.1).

With Eqs. (B33) and (B36), the spectral form factor of the
SYK reads (see Fig. 4)

〈gβ (t )〉SYK � |〈Z (β + i2t )〉SYK|2
〈Z (β )〉2

SYK

+
⎧⎨
⎩

√
N

2
√

2πd
〈gβ (∞)〉SYKt, t � 2

√
2π
N d,

〈gβ (∞)〉SYK, t > 2
√

2π
N d,

(B37)

where 〈gβ (∞)〉SYK is the spectral form factor in the long-time
limit,

〈gβ (∞)〉SYK = 2〈Z (2β )〉SYK

〈Z (β )〉2
SYK

� 2

d
exp

(
Nβ2

4

)
. (B38)

Note that when N mod 8 = 0, i.e., the GOE case, there is no
degeneracy, and the plateau height would be exp (Nβ2/4)/d .
From Eq. (B37), the plateau time is given by

tp � 2

√
2π

N
d. (B39)

For the GOE (N mod 8 = 0) and GSE (N mod 8 = 4),
the calculations would become rather lengthy. Since we
only aim to roughly estimate the timescale, we still use the

GUE, and modify the plateau time according to the numer-
ical results. For the GSE, the plateau time is around tp �√

2π/Nd . Unlike the GUE and GSE, the ramp and plateau
connect smoothly for the GOE, so it is hard to strictly define
the plateau time; for simplicity, we still use Eq. (B39) for
estimation.

Before the dip time, the edges of the spectrum cannot be
omitted; thus Eq. (B33) is no longer applicable. Thus, we will
replace it with 〈Z (x)〉SYK � x−3/2 [9,47,54], and the first part
of Eq. (B37) is given by

|〈Z (β + i2t )〉SYK|2
〈Z (β )〉2

SYK

� β3

(β2 + cNt2)3/2
, (B40)

with cN � N/400 fitted by numerical calculations. Then, the
dip time is roughly estimated as

td ∼
(√

π exp (−Nβ2/4)

c3/2
N

√
2N

)1/4√
d ∝

√
d. (B41)

Although Eqs. (B39) and (B41) are derived when β is
small, they are still valid for low temperature for estimation,
just as shown in Fig. 5.

FIG. 5. Fidelity of the stochastic SYK model for different temperatures. A log-log plot of the fidelity of stochastic SYK model (N = 26)
under different temperature. The variation of the temperature has a negligible effect on the dip and plateau time.
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