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Abstract

Our working hypothesis is that key factors in COVID-19 imaging are the avail-
able imaging data and their label noise and confounders, rather than network
architectures per se. Thus, we applied existing state-of-the-art convolution neu-
ral network frameworks based on the U-Net architecture, namely nnU-Net [3],
and focused on leveraging the available training data. We did not apply any
pre-training nor modified the network architecture.
First, we enriched training information by generating two additional labels for
lung and body area. Lung labels were created with a public available lung seg-
mentation network and weak body labels were generated by thresholding. Sub-
sequently, we trained three different multi-class networks: 2-label (original back-
ground and lesion labels), 3-label (additional lung label) and 4-label (additional
lung and body label). The 3-label obtained the best single network performance
in internal cross-validation (Dice-Score 0.756) and on the leaderboard (Dice-
Score 0.755, Haussdorff95-Score 57.5).
To improve robustness, we created a weighted ensemble of all three models, with
calibrated weights to optimise the ranking in Dice-Score. This ensemble achieved
a slight performance gain in internal cross-validation (Dice-Score 0.760). On the
validation set leaderboard, it improved our Dice-Score to 0.768 and Haussdorff95-
Score to 54.8. It ranked 3rd in phase I according to mean Dice-Score.
Adding unlabelled data from the public TCIA dataset in a student-teacher man-
ner significantly improved our internal validation score (Dice-Score of 0.770).
However, we noticed partial overlap between our additional training data (al-
though not human-labelled) and final test data and therefore submitted the
ensemble without additional data, to yield realistic assessments.
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