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Abstract
The diversity of hundreds of thousands of potential organic pollutants and the lack of (publicly available)
information about many of them is a huge challenge for environmental sciences, engineering, and
regulation. Suspect screening based on high-resolution liquid chromatography-mass spectrometry (LC-
HRMS) has enormous potential to help characterize the presence of these chemicals in our environment,
enabling the detection of known and newly emerging pollutants, as well as their potential transformation
products (TPs). Here, suspect list creation (focusing on pesticides relevant for Luxembourg, incorporating
data sources in 4 languages) was coupled to an automated retrieval of related TPs from PubChem based
on high con�dence suspect hits, to screen for pesticides and their TPs in Luxembourgish river samples. A
computational work�ow was established to combine LC-HRMS analysis and pre-screening of the
suspects (including automated quality control steps), with spectral annotation to determine which
pesticides and, in a second step, their related TPs may be present in the samples. The data analysis with
Shinyscreen (https://git-r3lab.uni.lu/eci/shinyscreen/), an open source software developed in house,
coupled with custom-made scripts, revealed the presence of 162 potential pesticide masses and 135
potential TP masses in the samples. Further identi�cation of these mass matches was performed using
the open source MetFrag (https://msbi.ipb-halle.de/MetFrag/). Eventual target analysis of 36 suspects
resulted in 31 pesticides and TPs con�rmed at Level-1 (highest con�dence), and �ve pesticides and TPs
not con�rmed due to different retention times. Spatio-temporal analysis of the results showed that TPs
and pesticides followed similar trends, with a maximum number of potential detections in July. The
highest detections were in the rivers Alzette and Mess and the lowest in the Sûre and Eisch. This study (a)
added pesticides, classi�cation information and related TPs into the open domain, (b) developed
automated open source retrieval methods - both enhancing FAIRness (Findability, Accessibility,
Interoperability and Reusability) of the data and methods; and (c) will directly support “L’Administration
de la Gestion de l’Eau” on further monitoring steps in Luxembourg.

1 Introduction
Human and ecosystem exposure to a broad range of substances, including a multitude of new chemicals
introduced into the environment necessitates careful and increasingly high throughput characterization
and examination of their effects.1 One substance group of high relevance for human health (both via
food production but also for exposure) is pesticides. Despite their usefulness, they pose potential risks to
food safety, the environment, and living organisms.2,3,4 For this reason, there is an increasing need for
approaches to detect and identify them in environmental samples. Once pesticides are released to the
environment, they (parent compounds) may be degraded by biotic or abiotic processes into one or more
pesticide transformation products (TPs).5,6 Generally these compounds are thought to have lower toxicity
to biota than the parent compounds, however in some instances TPs are more persistent, more mobile,
and sometimes more toxic than the parent compound itself.6,7 Although parent compounds are assessed
in detail in many regulatory schemes, the requirements for the assessment of TPs are less well
developed.6 While their occurrence and signi�cance are now reasonably well-known in research circles, it
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is still surprisingly di�cult to access information on TPs in a central and “FAIR” (Findable, Accessible,
Interoperable and Reusable 8,9) manner, with much valuable information documented as detailed reaction
schemes (e.g. as images) or descriptive text in regulatory reports that are not always easily or publicly
accessible. In this study, not only is the presence of pesticides in samples investigated, but also the
presence of their documented TPs in openly available information sources, as well as in the samples.

Previous work by Moschet et al.10 and Kiefer et al.11 both characterised the relevance of pesticide
transformation products in their �ndings and shared their lists afterwards (SWISSPEST12 and
SWISSPEST1913, respectively) on the NORMAN Suspect List Exchange (NORMAN-SLE)14, thus making
them more “FAIR”8. The SWISSPEST suspect list was a starting point for the pesticide suspect list
developed in this work, with additional chemicals of local relevance added as described below (note:
SWISSPEST19 was published in parallel during the early stages of this work).

For the identi�cation of unknown contaminants in the environment, a technology that is sensitive, fast,
and accurate is required, capable of con�dently identifying chemical contaminants emerging at trace
concentrations in complex environmental and biological matrices. High resolution mass spectrometry
(HR-MS) coupled with liquid chromatography has become an established technique for the monitoring of
thousands of chemicals in water (and other) samples.15,16 Various computational approaches can help
screen non-target HR-MS measurements for large numbers of suspect chemicals using suspect lists
and/or mass spectral libraries15,17, or to discover and identify new, previously unknown chemicals in the
environment.15,18 These two non-targeted analysis strategies are called suspect screening and non-
targeted screening, respectively.10 Suspect screening, the strategy used in this study, uses only the
information of the chemical structure and its mass (and/or spectrum) a priori and is, therefore, a very
promising approach for the e�cient tentative identi�cation of compounds.10,19 Consequently, suspect
screening can be used to perform extensive analytical screening for speci�c chemicals suspected to be in
the samples without necessarily the need for reference standards in advance.10

Targeted analysis is a more classical approach for quanti�cation providing high sensitivity and high
selectivity that requires preselection of the chemicals in advance and the availability of reference
standards. Nevertheless, this approach is the only way to verify and quantify the tentative candidates in
the end. The increasing number of chemicals of interest in environmental and exposomics studies makes
it practically impossible for target analyses dependent on individual standards to cover all potentially
occurring chemicals.10 Thus, suspect screening methods are therefore developed to reveal a fuller picture
of occurring chemicals and can be performed with suspect chemical lists,10,15,16 allowing for eventual
prioritization for target analysis and con�rmation efforts.10

Con�dence in HR-MS-based identi�cations inherently varies between compounds, since it is not always
possible or reasonable to synthesize each substance or con�rm them via complementary methods (e.g.
nuclear magnetic resonance) at very low environmental concentrations and in complex mixtures.20 These
varying levels of con�dence and the need for a standardized manner to report the results were motivating
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reasons for a level system that was introduced in 2014.20 The system contains �ve identi�cation
con�dence levels, which can be achieved through experimental and computational analysis of the
compound(s) measured in HR-MS experiments, with the objective to achieve the highest possible
identi�cation level that is realistic with the available evidence. Suspect screening can generally be
considered to start at an identi�cation con�dence of Level-3 (tentatively detected candidates following
pre-screening; see below), and through data analysis compounds can obtain the con�dence Level-2a, i.e.
probable structures via a high-quality spectral library match. Should target analysis reveal a suitable
match with a reference standard measured in house with the same method, this results in a Level-1
con�rmed identi�cation.

Since a suspect list is often set up based on a substance class (or classes) of interest, there is no
guarantee that the suspects are present in the sample. Thus, a pre-screening step helps to determine
which suspects may be present with matching MS1 and MS2 spectra of su�cient quality for further data
analysis. This step was performed using Shinyscreen (https://git-r3lab.uni.lu/eci/shinyscreen/)21, a semi-
automated, open-source alternative to vendor software for peak inspection, with built in quality control
criteria as described recently by Lai et al.22 Potential suspects with MS1 and MS2 spectra passing the
Shinyscreen pre-screening were promoted to further for additional identi�cation efforts via MS2 spectra
annotation using the open source in silico fragmentation approach MetFrag (https://msbi.ipb-
halle.de/MetFrag/).23 MetFrag combines compound database searching and fragmentation prediction
plus other experimental and metadata terms for molecule identi�cation using HR-MS2 fragmentation
information.23 Given a single MS2 spectrum of a suspect and the neutral mass of the parent ion, MetFrag
�rst selects matching candidates from databases, such as PubChem
(https://pubchem.ncbi.nlm.nih.gov/)24 and CompTox (https://comptox.epa.gov/dashboard/)25, before
each of the retrieved candidates is fragmented in silico using a bond-disconnection method and ranked
using various scoring terms (see methods for further details).23 For this study, the US Environmental
Protection Agency (US EPA) CompTox Chemicals Dashboard was used as the main compound database,
consistent with Lai et al.22, because of its relatively small size (~ 880,000 chemicals), and the extensive
environmentally-relevant metadata such as toxicity, exposure, and presence integrated in CompTox from
various information sources.25 The recently-released PubChemLite for Exposomics collection26, which
demonstrated very good performance particularly for agrochemicals (pesticides) was under development
at the time that this work was performed.

The main goals for this study were (a) establishing a new high-throughput suspect screening work�ow
based on open resources coupled with semi-automatic screening and annotation steps (b) the discovery
and FAIRi�cation of TP information based on their parent compounds using text-mining methods and (c)
application of these combined approaches on surface water samples to gain an overview of the pesticide
and pesticide TP presence in Luxembourgish rivers. The resulting suspect lists, classi�cation and
permission information were uploaded to various open databases and repositories to contribute to open
and “FAIR” data management for exposomics.
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2 Material And Methods
The high-throughput suspect screening work�ow developed here is shown in Figure 1 and explained in
the following sections.

2.1 Experimental Methods

2.1.1 Sampling and Solid Phase Extraction
Different river surface water samples, collected throughout Luxembourg, were selected by the
“L'Administration de la Gestion de l'Eau” (the Luxembourgish Water Administration, hereafter AGE) for
chemical monitoring; pesticides and their TPs are the speci�c focus of these efforts (additional activities
are ongoing). Nine different locations (Fig. 2 and Supplementary Materials (SM) Table S1) covered the
various river catchments, and the data used in this study were sampled monthly between April 2019 and
October 2019 (no sampling in June 2019).

The surface water samples were �lled in 1000 mL amber bottles and stored for up to one week at 5°C (± 
3°C) in darkness until extraction. To assess possible contamination from sample handling, ultrapure
water was analogously enriched and analysed as blank samples.

For the solid-phase extraction, Atlantic® HLB SPE Disks from Horizon (Salem, NH, USA) with a 47 mm
diameter were used. The disks were conditioned twice for 1 minute (min) with acetonitrile, and then twice
for 1 min with Milli-Q water. 1000 mL of sample was pumped through each disk at a �ow rate of roughly
30 mL/min, using the SPE-DEX 47900 system from Horizon. Sample loading was followed by washing
the disks twice for 1 min with Milli-Q water and drying by air�ow for 15 min. The analytes were eluted for
1 min with cyclohexane, followed by an acetone elution for 1 min, then 4 times for 1 min with acetonitrile.
After each elution step, the disks were air-dried for 1 min. The combined extracts were dried under
nitrogen �ow in a water bath heated to 40°C. The samples were resuspended in 2 mL acetonitrile/water
(10/90) by sonication for 5 min and remaining particles were removed by passing the extracts through a
0.7 µm glass-�bre �lter (Sartorius, Brussels, Belgium).

2.1.2 LC-HRMS Analysis
Reversed-phase chromatography was accomplished using an Acquity Ultra Performance Liquid
Chromatography (UPLC) BEH C18 column (dimensions: 1.7 µm, 2.1 x 150 mm) from “Waters”. The �ow
was set to 0.20 mL/min using water (0.1 % formic acid, A) and methanol (B) as the mobile phase. The
mobile phase gradient started at 90 % of A and 10 % of B at 0 min and was kept for 2 min before linearly
ramping to 100 % B at 15 min. This condition was kept for another 5 min before bringing back to starting
mobile phase conditions after 21 min. The column was allowed to re-equilibrate for 9 min before the next
injection.

The mass spectrometer Q Exactive™ HF (Thermo Scienti�c) was used in both positive and negative
electrospray ionization. The following: full MS/data dependent (dd) MS2 settings were used: resolution
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(1.2×105 at m/z 200), automatic gain control (AGC) target (1.0×106), maximum injection time (IT): (70
ms), and scan range (m/z = 60–900). For the dd-MS2/ddSIM (data dependent selected ion monitoring)
the following were used: resolution (3.0×104 at m/z 200), AGC target (5.0×105), maximum IT (70 ms),
loop count (5), Top N (5), isolation window (1.0 Da), (N)CE (30). Lastly the following dd settings were
used: minimum AGC target (8.0×103, intensity threshold (1.1×105), apex trigger (4–6 s), exclude isotopes
(On), and dynamic exclusion (10 s). The instrument was calibrated and optimized every time an analysis
was performed using manufacturer settings to ensure consistent performance throughout the whole
study.

2.2 Computational Methods

2.2.1 Pesticide Substance Selection
The plant protection product list from the Luxembourgish “Administration des Services Techniques de
l'Agriculture” (ASTA)27 and the SWISSPEST list of registered insecticides and fungicides in Switzerland10

were used as starting points for the suspect list. Several (multilingual) documents provided by
collaborators in the Clinical & Experimental Neuroscience group at the Luxembourg Centre for Systems
Biomedicine as part of previous work28 were also included, as documented in the “LUXPEST” dataset
available on Zenodo29 and brie�y below.

The �nal LUXPEST pesticide suspect list included 386 pesticides,29 classi�ed into different classes along
with information about their use authorisation in Luxembourg.30,31,32 Out of the 386 pesticides, 196 are
permitted to be used in Luxembourg whereas 169 are not, while for 21 pesticides,no permission
information was available. The classi�cation efforts revealed that most of them were fungicides and
herbicides (96 and 93 respectively); 49 were already classi�ed as pesticide TPs (SM Figure S1). As a part
of "FAIRifying" this dataset, the LUXPEST list is openly available on the NORMAN-SLE14, PubChem24 and
CompTox25,33 websites, and the detailed classi�cation information was added to the PubChem NORMAN-
SLE Classi�cation Browser (https://pubchem.ncbi.nlm.nih.gov/classi�cation/#hid=101) and into the
individual records for the pesticides (see SM Figures S2 and S3)

2.2.2 Suspect Screening of Pesticides and Transformation
Products

2.2.2.1 Pre-screening with Shinyscreen
Pre-screening was performed using Shinyscreen21 with the following settings for extraction and
automatic quality control (explained in greater detail in Lai et al.22): coarse precursor m/z error ± 0.5 Da,
�ne precursor m/z error ± 2.5 ppm, extracted ion chromatogram m/z error ± 0.001 Da, retention time (RT)
tolerance ± 0.5 min, an MS1 intensity threshold of 1.0 x 105 and an MS2 intensity threshold relative to the
MS1 peak intensity of 0.05. Features that ful�lled the following four criteria were considered as passing
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the quality control: 1) MS1 peak intensity > 1x105, 2) presence of MS2 spectrum, 3) alignment of MS1
and MS2 peaks within the RT tolerance, 4) signal to noise ratio > 3.

2.2.2.2 Candidate Identi�cation with MetFrag
The features that passed the quality control were then analysed using MetFrag23 coupled to
CompTox25,34 to achieve tentative identi�cations23, generally consistent with Lai et al.22 Candidates were
retrieved using an (exact mass + 10 ppm) window, where the exact mass settings included the measured
ion mass plus adduct species ([M + H]+ for positive and [M-H]− for negative mode, automatically detected
from the Shinyscreen mode output) for internal correction to neutral mass in MetFrag for candidate
retrieval. The InChIKey �ltering (default setting) was left on, i.e., candidates that vary only in the
stereochemistry are merged in the output, and the highest scoring candidate is considered. Several
MetFrag scoring terms were included. The two most relevant scoring terms for this study are the MetFrag
in silico fragmentation score (settings: mzabs = 0.001; frag_ppm = 5; adduct setting as per candidate
retrieval) and the MoNA (MassBank Of North America) score.35 While MetFrag compares the
experimental results with in silico fragmentation results, it also searches the experimental data with
online mass spectral records from a public spectral library, MoNA, and presents these outcomes to users
via the MoNA spectral similarity scoring term (hereafter "MoNA Score"). Several additional metadata
terms were used in the MetFrag calculation (generally consistent with Lai et al.22) but were not
considered further here, yielding in the end a maximum score of 10 where every scoring term has the
same weight (10 scoring terms each with a weight of 1). However, as described below, the MoNA Score
became the primary decision-making criterion in this work. The additional scoring terms were
CPDAT__COUNT, PUBMED_ARTICLES, DATA_SOURCES, PUBCHEM_SOURCES,
TOXCAST_PERCENT_ACTIVE_BIOASSAYS, PREDICTED_EXPOSURE, KEMIMARKET_EXPO and
KEMIMARKET_HAZ.

All the chemicals that achieved a MoNA Score greater than or equal to 0.9 (scoring range between 0 and
1) were assigned as Level-2a compounds according to the scheme described by Schymanski et al.20 and
as described above. In this study, four different MoNA score scenarios were de�ned in the context of the
results available, also in line with commonly used thresholds in the community. The four scenarios were
de�ned as the following: 1) “very good” describes the cases with a MoNA score equal or greater to 0.9,
i.e., a Level-2a, 2) “good” describes the cases with a MoNA score between 0.7 and 0.9, which can be
considered in some cases su�cient for Level-2a but based on experience not always su�cient; 3) “poor”
describes the cases with a MoNA score between greater than 0 and smaller than 0.7 and 4) “no spectrum”
describes the cases with a MoNA score equal to 0. The �rst scenario led to a Level-2a as described above
and the three other scenarios remained at a Level-3 for further inspection.

2.2.3 Extracting Pesticide Transformation Product
Information

2.2.3.1 Transformations
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In a collaborative effort between PubChem and the NORMAN-SLE, several lists of chemicals including
parent-TP information were mapped up into a standardized format and added into PubChem as
“Transformations”, as described elsewhere26 (see Fig. 3).

The so-called “parents” were termed “predecessor” to avoid terminology clashes (as the term “parent” has
a different meaning in PubChem), and the TPs or metabolites were termed “successors” in PubChem. At
the time this study was performed, the NORMAN-SLE lists included were S60 SWISSPEST1913 and S66
EAWAGTPS36. The deposition of “Transformation” information in PubChem is automated through the
NORMAN-SLE via Zenodo depositions37 and mapping �les in GitLab38. The retrieval of this information is
made possible through PubChem via a structured data query (SDQ) per PubChem Compound Identi�er
(CID), which can be performed e.g., through the web interface via the download button (Figure 3 top right)
or via scripting queries. Custom-made R functions were designed to access this as a part of this work.39

2.2.3.2 Hazardous Substance Database (HSDB) Metabolites
A further information source of TPs within PubChem is the “Metabolism and Metabolites” section which,
unlike the table above, are human-readable text excerpts from several data sources, including the
Hazardous Substance Database (HSDB) from the US National Library of Medicine (NLM), recently fully
integrated within PubChem. As a pilot project as part of this work, a data extraction work�ow was
designed based on the HSDB annotation �le (available in JavaScript Object Notation - JSON format). In
short, text excerpts are automatically screened for recognized synonyms PubChem-side and, where
detected, hyperlinked (shown as blue text in Figure 4, and recognizable in the annotation �le by CID).

This information can be automatically retrieved from the JSON �le. Additionally, the text also contains
many descriptive reactions that are not suitable for automated synonym recognition, but interpretable by
chemists. Thus, information was automatically extracted in a tabular form for manual curation (e.g.,
removal of irrelevant matches, addition of new chemicals) with full provenance suitable for conversion
into a “Transformations” table, coupled with an accompanying structure �le to deposit new structures in
PubChem. Chemical drawing and curation were performed in Chemistry Development Kit (CDK) using
CDK Depict (https://www.simolecule.com/cdkdepict/depict.html)40,41. To describe the challenges
visually, the predecessor (Fig. 4, atrazine) is circled in purple and was automatically extracted, along with
two TPs 2-hydroxyatrazine (red; two different synonyms mapping to the same structure) and 2-
hydroxydesethylatrazine (orange, three synonyms; not each synonym was recognised fully). Text-mined
entries retrieved in this manner are circled in full lines. Desethylatrazine was not automatically recognised
(no blue hyperlink present) but was curated and added in manually (blue dotted lines). The synonym
“hydroxy” was automatically mapped (blue hyperlink, green dashed circle) but removed in the manual
curation step as an artefact of the mapping.

All HSDB TPs extracted in this manner were added to a new suspect list S68 HSDBTPS42 and full
provenance of the curation is available on the Environmental Cheminformatics GitLab repository43.
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2.3 Veri�cation and Quanti�cation using Reference
Standards
All the pesticides at a Level-2a were selected for further veri�cation via reference standards analysed with
the same chromatographic parameters and procedures as for the sample analysis. Several reference
standards came from the in house available ENTACT mixtures, obtained from participation in the EPA’s
Non-Targeted Analysis Collaborative Trial.44 Retention times were considered a match if the difference
was less than ± 0.2 min. Additional reference standards were purchased where possible (SM Table S2).
Where reference standards were available, the concentration of the pesticides and TPs were quanti�ed
using an external calibration curve ranging from 1ppb to 1000ppb spanning the linear dynamic range for
the compounds quanti�ed. Thermo Scienti�c TraceFinder™ Software (version 5.1) was used for
automatic peak integration and generation of the calibration curve. Concentrations below 1ppb were
reported to be below the quanti�able range.

3 Results
The numbers that will be explained in detail in the next sections are summarized in a table (SM Table S3),
to provide an overview of the number of cases and/or compounds for each step of the work�ow.

3.1 Tentatively Detected Pesticides
Shinyscreen was run with the 386 LUXPEST29 suspects (SM Table S4) on river water samples from nine
locations over six months and for two modes (positive and negative), comprising 20,844 cases for the
automated quality control protocol. In total, there were 3,006 cases deemed suitable for further
identi�cation with MetFrag, corresponded to 162 unique compounds (SM Table S5). Figure 5 illustrates
the number of cases for each location and for each month.

For example, in April 2019 the river “Sûre” in Erpeldange revealed 44 cases that passed the quality check
in Shinyscreen. These were subsequently analyzed and annotated with MetFrag to assign an
identi�cation con�dence level.

3.2 Pesticide Annotation with MetFrag
The 3,006 cases were categorized into four different scenarios depending on their MoNA score, as shown
in Figure 6.

3.3 Pesticide Transformation Products Suspect List
Out of the 386 compounds, 162 different pesticides were found (tentatively, at Level-2a or Level-3
con�dence) in either one or more locations over six months. Since the manual curation of HSDB content
is complex and time-consuming, only the 36 previously selected Level-2a pesticides (suspects with a
MoNA sore > 0.9) were selected (SM Table S6) for further retrieval of TP information from PubChem. Of
the 36 pesticides, there were 30 that already had information in the “Transformations” section. In
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addition, 22 pesticides had further information in the HSDB Metabolism and Metabolites section, while
no information was available for only 3 pesticides. There were 19 pesticides that had information in both
the HSDB and “Transformations” section.

In the end, a new suspect list of 181 transformation products and their parent compounds was created,
including the 36 parent compounds (the Level-2a cases identi�ed earlier) and 173 TPs related to these 36
pesticides that were added in this step. Although the parent compounds were already analysed
previously, they were retained for a direct comparison between the presence of the parent compounds
and their TPs (see discussion). This table is given in the SM, Table S6.

After manual curation, the merged data �le of TPs extracted from HSDB was added to Zenodo as
HSDBTPS42 and the newly generated information was also provided to PubChem as “Transformation”
tables to update this section as well (also included in the Zenodo deposition). The HSDBTPS list is also
available in CompTox.45

3.4 Suspect Screening for the Pesticide TPs
Shinyscreen was run again for all samples with 181 pre-selected compounds (SM Table S7), resulting in
a total of 19,548 cases. Of these, there were 1,275 cases in negative mode and 2,159 cases in positive
mode that were able to pass the quality check. Since some suspects were detected in different locations
in positive and negative ionization mode, these 3,434 cases corresponded to 99 transformation products
(SM Table S8) and the 36 parent compounds (135 different compounds in total). The number of cases
for each location and month is available in the SM, Figure S4.

The MS2 spectra of 135 tentatively identi�ed suspects were then processed using MetFrag with the same
databases and scoring terms as before and the identi�cation con�dence levels were determined based on
the MoNA scores (SM Figure S5). Out of the 3,434 cases, there were 1,190 were able to achieve a MoNA
score above 0.9 corresponding to eight unique additional TPs (SM Table S8).

3.5 Veri�cation of the Tentative Candidates and Their
Quanti�cation
The 36 Level-2a pesticide identi�cations were selected for further con�rmation efforts with reference
standards (SM Table S9). Of these, 26 of these were veri�ed using single standards and 10 compounds
were veri�ed with reference standards contained in the ENTACT mixtures (the work on the TPs had not
yet been performed when this selection was made).

Out of the 36 parent compounds, there were 31 chemicals that achieved a Level-1, while �ve could not be
con�rmed (different retention times, see SM Table S9). Of the 31 Level-1 compounds, only 20 were
present at quanti�able amounts (within the scope here), as presented in Fig. 7 (see also SM Table S10
and Table S11).
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The classi�cation and Luxembourgish permission information for the 20 quanti�ed compounds are
summarized in SM Figure S6.

3.6 Spatial and Temporal Distribution
Figure 8 visualizes: (A) the nine different river locations that were selected with the average number of
detections; and (B) the number of detections over the six months. The green lines show the pesticide
suspects (Level-1 through Level-3), the yellow the TP suspects (Level-1 through Level-3) and the red lines
indicate the con�rmed identi�cations (all 20 Level-1 compounds that were additionally quanti�ed).

4 Discussion
This work aims for a more dynamic experience of suspect screening in non-target environmental HR-MS
measurements, using open cheminformatics approaches and tentative detections in samples, while using
Luxembourgish river samples as an example. The discussion will look into how the coupling of parent
and TP information can support interpretation using the example of terbutylazine, then look at the overall
implications of these results for Luxembourg, before delving into the FAIRi�cation of TP data and the
implications for further efforts.

4.1 Example of Pesticide-TP Screening: Terbutylazine
The following example of terbutylazine and three TPs visualizes how the coupling of suspect screening
for pesticides and transformation products can be automated and visualized in Shinyscreen. Figure 9
shows three different plots belonging to one parent compound (terbutylazine, top, suspect list ID N° 3)
with three TPs, 2-hydroxyterbutylazine (ID N° 11), desethyl-2-hydroxyterbutylazine (ID N° 4), and
desethylterbutylazine (ID N° 2).

The parent compound was found in the months May, July and September at the identi�cation Level-2a,
retention time of ~ 17.41 min, with two isobars found at ~ 16.00 and 14.63 min. These isobars are
speculated to be other compounds in this case; MetFrag suggested for both the compound propazine,
due to highest metadata scores with the selected scoring terms in CompTox (speci�cally due to higher
toxicity concerns and some higher reference counts); propazine was also reported as a suspect by many
in the 2015 NORMAN Collaborative Trial46, although it has not been permitted for use for many years.
Interestingly, the use of PubChemLite with the optimized default scoring terms26 resulted in terbutylazine
appearing ahead of propazine in the metadata ranking; further addition of the "agrochemicals" category26

helps up-prioritize the potentially most relevant alternative isobars for further consideration at a later
stage (e.g. sebutylazine). The importance of the choice of the various CompTox metadata terms and the
resulting consequences in interpretation are discussed in detail in Lai et al.22 and thus not discussed
further here.

One of the main TPs, desethylterbutylazine (ID N° 2, 4th chromatogram in the Figure 9) involves the loss
of the ethyl group and is detected at 15.6 min at high intensity in July and October. Since one ethyl is lost,
a lower (but not dramatically lower) retention time than the parent would be expected on a reverse phase
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column, thus the detection at 15.6 min is considered more plausible than other peaks reported at 9.0 min
for other months. The fact that the TP peak does not occur at the same time as the parent rules out the
possibility of an in-source fragmentation from the parent. After the veri�cation with reference standards,
it became clear that the retention time of desethylterbutylazine is indeed 15.67 min (the isobar, simazine,
was con�rmed at RT of 15.24 min, see SM Table S9). The third TP, desethyl-2-hydroxyterbutylazine (ID N°
4) is detected at 9 minutes in May, July, August and September (at Level-3), which coincides with parent
detections plus another month where the parent was not detected. Since the chlorine has been replaced
by an oxygen, combined with the ethyl group, the dramatic reduction of retention time relative to the
parent is plausible, as both transformations increase the polarity and thus reduce the retention time. The
last TPs of terbutylazine is terbutylazine-2-hydroxy (ID N° 11) containing an oxygen instead of a chorine
as well. This compound was found for all months and since this TP can be a degradation compound
from different parent compounds (e.g. terbutylazine found at Level-3 and terbutryn found at Level-1
amongst others, it could be present due to the transformation from both, see
https://pubchem.ncbi.nlm.nih.gov/compound/135495928#section=Transformations).

4.2 Pesticides and TPs in Luxembourgish Surface Waters
The fact that half of the detected and quanti�ed suspects are not permitted for use in Luxembourg (see
SM Figure S6) will be investigated further by AGE. Several reasons could contribute to this: either these
pesticides were allowed in the past and their presence is due to historical use; or these pesticides are
applied without permission (considered unlikely based on the results here); �ve of the entries were TPs
that are not permitted for use. Looking at the permission information of their parent compounds revealed
that for some banned TPs (e.g. 2-hydroxyatrazine) the parent compound is banned as well (atrazine), but
for others (e.g. desethylterbutylazine) the parent compound is permitted (terbutylazine). As an example,
the low levels of atrazine detected here (< 100 ppt) are likely to be due to historical applications still
seeping into the surface waters; fresh applications would likely yield higher levels.

As shown in Fig. 7 (all the concentrations are available in the SM, Table S10), the pesticide TP succinic
acid was found in highest concentrations (maximum concentrations found: 773.52 parts per trillion = 
0.77 ng/L) in the river samples. This high concentration is most probably due to the fact that this
chemical has several "roles" in the environment and can come from both natural and anthropogenic
sources. For instance, succinic acid is involved in several processes in the body (e.g., generated in
mitochondria via the citric acid cycle) and is also a food additive47; thus alternative sources are likely to
be much higher contributors to the overall concentrations than this being a documented TP of the
pesticides sulcotrione (present in the LUXPEST list but did not pass the pre-screening) and linuron (not
present in the LUXPEST list). This shows the importance of having information about the multiple roles
of chemicals available in an easily accessible and readable manner. The overall lowest concentrations
were found for the compounds desethylatrazine, 2-hydroxyatrazine and simazine (minimal
concentrations around 0.001 ng/L). Returning to the example from the section before (Sect. 4.1),
desethylterbutylazine was con�rmed in 8 out of 9 river samples (except for the river Alzette from Mersch-
Berschbach), in all the 6 months (SM Table S10).
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As shown in Fig. 8, the overall lowest average number of compounds were found in the rivers Eisch and
Sûre, which is reassuring in the context of Luxembourg as about one-third of the drinking water originates
in the river Sûre.48

The temporal patterns (Fig. 8B) show that there is a spike in detections in late spring/beginning of the
summer, with an additional smaller spike in September. The overall lowest average number of
compounds was found in April, re�ecting the expected seasonality of the pesticide application. All
screening results presented here have been communicated with AGE for consideration in their subsequent
monitoring efforts; while this article presents the results from April-October 2019, these collaborative non-
target screening efforts are also still continuing.

4.3 Pre-screening and Annotation Work�ow
During pre-screening, all the �les were loaded into Shinyscreen, corresponding to a total of 41,688 cases
and graphs (386 pesticides times two modes times six months times nine locations: 386 x 2 x 6 x 9 = 
41,688) that were analysed. The manual inspection revealed that for the majority of cases, an empty
graph was obtained leading to the conclusion that most suspects were not present in the samples. This
demonstrates the need for such a semi-automated procedure, since it makes visualizing and checking the
experimental data very e�cient and easy. In the end, there were 3,006 cases retained that passed the
quality checks were retained, leading to a �nal set of 162 different tentatively identi�ed compounds. This
means that 42 % of the compounds that were screened with Shinyscreen may be present in at least one
of the samples.

Some of these 162 compounds were detected in multiple locations and the comparison between the
retention times for the different locations revealed two general trends. The �rst trend shows a subtle
difference (e.g., ± 0.5 min) in the retention times, which is probably the consequence of �uctuations in the
liquid chromatography. The second trend shows wide differences in retention times (several minutes)
leading to the conclusion that only one of these signals could potentially belong to the suspect, whereas
the other signals most likely belong to different (isobaric, i.e., same mass) substances. For example,
Shinyscreen suggested that the compounds 3-hydroxybenzoic acid and 4-hydroxybenzoic acid (both
isobaric) are present in the samples and the automatic retrieved retention time was equal to 14.89 min
(default behaviour extracts the retention time of the most intense peak). However, in the end, through the
veri�cation with reference standards, the results showed that the compound in the sample was salicylic
acid since only the reference standard for this compound had a retention time of 14.9 min and the ones
from 3-hydroxybenzoic acid and 4-hydroxybenzoic acid differed (12.04 min and 10.83 min respectively).
Shinyscreen has subsequently been upgraded to offer more extensive isobar handling during pre-
screening (release 1.0.0, 2nd April 2021); the MetFrag post-processing has also been correspondingly
updated and, as discussed above, the metadata scoring terms integrated into PubChemLite have also
made data interpretation of relevant isobars both easier and more powerful26.

During the analysis of the MetFrag results, the months, modes and locations were considered together. At
�rst, the MoNA score is investigated and out of the 3,006 cases: 719 cases obtained a very good, 118 a
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good, and 663 a poor MoNA score. Additionally, in 1,506 cases the MoNA score was equal to 0 (no
spectrum matching or available in the library). In consequence, for 719 cases an identi�cation of Level-2a
can be achieved and for the remaining 2,287 cases, a Level-3 is attained (Fig. 6). When looking at the
level of unique pesticides, out of the 162 pesticides, there are 140 that remain at an identi�cation of
Level-3, while 36 obtained a Level-2a based on MoNA scores and further metadata analyses (SM Table
S5).

For the TPs, there were 19,548 cases and graphs (181 pesticides times two modes times six months
times nine locations) were analyzed. Out of these, there were 3,434 cases that passed the quality check
and kept for further analysis. This leads to a �nal number of 99 newly identi�ed compounds (135
compounds in total − 36 known pesticides = new compounds 99). When excluding the 36 parent
compounds, this led to eight TPs with a very good, one with a good, and nine with a poor MoNA score.
The remaining 81 pesticides (out of 99) had no spectrum available in MoNA, showing the importance of
additional community contributions to open resources to help �ll these data gaps in the future.

For the tentative identi�cation with MetFrag, only the spectral-based scoring terms were investigated here,
namely the MetFrag in silico fragmentation and primarily the MoNA similarity score. None of the
additional metadata scores were used, as prioritization was done purely based on achieving a very good
MoNA score for highest con�dence. The work described here also helped contribute to the conceptual
design of the PubChemLite for Exposomics collection, where the category of chemical (e.g.
agrochemical/pesticide or pharmaceutical) can be used in interpretation and even scoring. The
performance described elsewhere26 demonstrated that the interpretation of results can be improved with
this additional information, achieving up to 90 % annotation success for the agrochemicals (pesticides)
in the benchmarking set. Efforts are underway to streamline the coupling of suspect + TP screening
together with Shinyscreen, MetFrag and PubChemLite in a smooth work�ow on the foundation of the
work described here, including the collapsing of many "Cases" into unique compounds much earlier in the
work�ow.

4.4 Open Pesticide and Transformations Data
Out of the 386 selected pesticides, 196 are permitted and 169 are forbidden in Luxembourg (SM Table
S4) and could be classi�ed into six main categories (SM Figure S1). This information can be browsed in
PubChem under LUXPEST at https://pubchem.ncbi.nlm.nih.gov/classi�cation/#hid=101 (SM Figure S2)
and this information is incorporated into the individual records in PubChem (Example in the SM Figure
S3). This information �ow helps create the annotation categories that form the PubChemLite for
Exposomics collection (see Schymanski et al.26 Fig. 1) and provide PubChem users with additional expert
knowledge for interpretation of their results. Ensuring this continual �ow of information is a major
motivating factor for increasing the FAIRness of datasets and thus the upload of the datasets to different
open access databases (CompTox, PubChem) and repositories (NORMAN-SLE, Zenodo), as well as the
integration of the classi�cation (SM Figure S2) and regulation information in Luxembourg into PubChem.
Since the NORMAN-SLE compound lists are “FAIR” due to the Zenodo deposition with explicit license
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declaration, they can be used by PubChem directly to create automatic work�ows to build the
Transformations section; other users and resources are also able (and encouraged) to re-use this data as
they wish. By adding chemical identi�ers to the historical information retrieved from the HSDB via text-
mining methods and adding this as a new suspect list to the NORMAN-SLE, the original source (HSDB)
can be credited, and the value-added data fed back into PubChem as transformations for improved
automated retrieval in future screening activities, so that this information is now available in both human
and machine-readable forms.

Several transformations tables have now been added to PubChem, including HSDBTPS as a part of this
work. The manual curation involved with the text-mined information was the most time-consuming part
of this process and was thus only performed on the 36 Level-2a pesticides that were selected from the
�rst analysis due to their very good MoNA score. Of these, it was possible to generate transformation
products for 33 compounds (no compounds were found in HSDB or the “Transformation” table in
PubChem for the remaining three compounds). In the end, there were 22 entries from HSDB extracted and
manually curated (�les available from GitLab49), resulting in 226 new transformation reactions with full
literature provenance, and �ve new structural records in PubChem (CIDs 146035700, 146035701,
146035702, 146035703 and 146037633). In the end, a total of 145 transformation products were added
to the 36 pesticides, which results in a suspect list of 181 compounds. Since this work was performed
several other datasets have been added to the Transformations tables including MetXBioDB50 from
BioTransformer51 and it is highly likely that the numbers of pesticide TPs retrieved for screening would be
higher now.

This work was only possible through the exchange of information between the NORMAN-SLE and
PubChem and, at this pilot stage, willingness on both sides to develop unconventional work�ows not
originally foreseen for either resource. While the R scripts developed are certainly functional, several
optimizations are possible. In hindsight, the created work�ow with this integrated script helped the
authors discover and upload relationships between pesticides and their TPs to PubChem as well as
identifying areas to improve the information �ow in the future. Future efforts are already underway to
streamline this further based on this pilot project, to develop even more automated forms of this work�ow
and to ensure easy, fast and accurate suspect and TP list generation from their parent compounds. All
data transfer between the NORMAN-SLE and PubChem includes full provenance to the original literature
sources. Since all "Transformations" entries were based on existing suspect lists or resources, it is quite
resource intensive to add existing knowledge involving only a few entries. As a result, a new list,
REFTPS52 (currently only with very few entries) has been created to provide a pathway to add single or
small numbers of transformations resulting from individual studies, such as 6PPD-quinone from Tian et
al.53 Overall, these pilot efforts have already caught the interest of several other work�ows and are being
integrated into the open source HR-MS work�ow patRoon18, amongst others.

5 Conclusion
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This study describes open cheminformatics approaches to screen for emerging contaminants (in this
case pesticides) and their TPs in non-target HR-MS measurements. The coupling of major open resources
such as the environmental knowledge within the NORMAN-SLE with the largest open chemical database
PubChem has enabled the exchange and enhancement of information on pesticides and their TPs both in
the context of Luxembourg and in the context of dynamic suspect screening (i.e., the automated retrieval
of TPs related to suspects detected at a Level-2a or more for subsequent screening and recognition).
Through the detailed annotation content added to PubChem, it would now also be feasible to perform
this in reverse, i.e., form a suspect list purely on known TPs for screening proactively in samples, without
the explicit presence of the parent, expanding the window beyond what was done here. The coupling of
extensive suspect lists with an e�cient pre-screening method such as Shinyscreen with tentative
annotation approaches such as MetFrag will pave the way for higher throughput screening of
exposomics samples in many contexts, as showcased here for pesticides.

In terms of local outcomes, these efforts (and parallel efforts investigating other substances classes) are
continuing and the results are being exchanged with AGE to help improve monitoring efforts and thus
human and environmental health in Luxembourg, above and beyond the current EU requirements.

Supplementary Material
Two supplementary data �les are provided, a document containing Figures S1 through to S8, and an
excel �le containing Tables S1 to S11. For details about the code, software, suspect list and raw �le
availability, see Data Statement.
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Figures

Figure 1

The newly created high-throughput suspect screening work�ow, including experimental (top, grey) and
computational steps. Both suspect and target screening were performed.
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Figure 2

The Luxembourgish map with the eight selected rivers and nine sampling locations (Alzette has 2
sampling locations) marked. The sampling locations were selected by the "L'administration de la gestion
de l'eau" (AGE) from Luxembourg as part of their 2019 surface water monitoring efforts. Source: LCSB.
Note: The designations employed and the presentation of the material on this map do not imply the
expression of any opinion whatsoever on the part of Research Square concerning the legal status of any
country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or
boundaries. This map has been provided by the authors.
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Figure 3

The “Transformations” section for Terbutylazine-2-hydroxy, CID: 135495928
https://pubchem.ncbi.nlm.nih.gov/compound/135495928#section=Transformations.

Figure 4

Automatic text mining (top) and manual curation (bottom) of HSDB content using one example from
atrazine (https://pubchem.ncbi.nlm.nih.gov/compound/Atrazine#section=Metabolism-Metabolites).
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Figure 5

The results of pre-screening with Shinyscreen, showing how many pesticides passed the quality check for
each sampling location and per month (positive and negative modes are visualized together).

Figure 6

The results of MetFrag spectra annotation. The graph represents the 3,006 cases (162 pesticides)
regrouped according to the four MoNA score scenarios for the six months (positive and negative mode
together).
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Figure 7

Boxplots showing the range of log (10) concentrations (original concentration units: parts per trillion =
ppt) for the different pesticide and transformation products across all months and sampling locations in
2019. Compounds on the x-axis are sorted in ascending order of median log (10) concentration.
Concentration values that were below the respective quanti�cation range were excluded. All compounds
were measured in positive mode except for those marked with an asterisk, which were measured in
negative mode.

Figure 8

The spatial (A) and temporal (B) distribution of the tentatively detected pesticides and transformation
products as well as for the veri�ed and quanti�ed compounds. No samples were available for June.
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Figure 9

The spectra of the parent compound terbutylazine (top, suspect 3) with its three TPs 2-
hydroxyterbutylazine (next, suspect 11), desethyl-2-hydroxyterbutylazine (next, suspect 4) and
desethylterbutylazine (bottom, suspect 2) in positive mode (screenshots from Shinyscreen). The
structures are shown to the right.
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