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Abstract. In the Bayes paradigm and for a given loss function, we
propose the construction of a new type of posterior distributions for es-
timating the law of an n-sample. The loss functions we have in mind are
based on the total variation distance, the Hellinger distance as well as
some Lj-distances. We prove that, with a probability close to one, this
new posterior distribution concentrates its mass in a neighbourhood of
the law of the data, for the chosen loss function, provided that this law
belongs to the support of the prior or, at least, lies close enough to it.
We therefore establish that the new posterior distribution enjoys some
robustness properties with respect to a possible misspecification of the
prior, or more precisely, its support. For the total variation and squared
Hellinger losses, we also show that the posterior distribution keeps its
concentration properties when the data are only independent, hence not
necessarily i.i.d., provided that most of their marginals are close enough
to some probability distribution around which the prior puts enough
mass. The posterior distribution is therefore also stable with respect to
the equidistribution assumption. We illustrate these results by several
applications. We consider the problems of estimating a location param-
eter or both the location and the scale of a density in a nonparametric
framework. Finally, we also tackle the problem of estimating a density,
with the squared Hellinger loss, in a high-dimensional parametric model
under some sparcity conditions. The results established in this paper
are non-asymptotic and provide, as much as possible, explicit constants.

1. Introduction

Observe n i.i.d. random variables X1, . . . , Xn with values in a measurable
space (E, E) and assume that their common distribution P ? belongs to a
family M of candidate probabilities, or at least lies close enough to it in
a suitable sense. Our aim is to estimate P ? from the observation of X =
(X1, . . . , Xn) and to evaluate the performance of an estimator with values
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in M , we introduce a loss function ` from P×M with values in R+, where
P denotes a suitable set of probabilities containing P ?.

The loss functions we have in mind are based on distances such as the
Hellinger or the total variation one. Given two probabilities P,Q on (E, E),
we recall that the total variation ‖P −Q‖ and the squared Hellinger distance
h2(P,Q) between P and Q are respectively given by the formulas

(1) ‖P −Q‖ = 1
2

∫
E

∣∣∣∣dPdµ − dQ

dµ

∣∣∣∣ dµ
and

(2) h2(P,Q) = 1
2

∫
E

Ç 
dP

dµ
−
 
dQ

dµ

å2

dµ

where µ dominates both P and Q, the result being independent of the choice
of the reference measure µ.

Our approach to solve the problem has a Bayesian flavour since we endow
M with a σ-algebra A and a probability measure π on (M ,A) that plays
the same role as the prior in the Bayes paradigm. Our aim is to design
a posterior distribution π̂X , solely based on X and the choice of `, that
concentrates its mass, with a probability close to one, on an `-ball, i.e. a set
of the form

B(P ?, r) = {P ∈M , `(P ?, P ) 6 r} with r > 0.
This means that with a probability close to 1, a point which is randomly
drawn according to our (random) distribution π̂X is likely to estimate P ?
with an accuracy (with respect to the loss `) not larger than r.

The classical Bayes posterior distribution has been studied at length by
van der Vaart and his co-authors — see for example Ghosal, Ghosh and
van der Vaart (2000). They show that it concentrates around P ? as n
tends to infinity provided that the prior π puts enough mass on sets of the
form K(P ?, ε) = {P ∈ M , K(P ?, P ) < ε} where ε is a positive number
and K(P ?, P ) the Kullback-Leibler divergence between P ? and P . This
assumption is unfortunately quite restrictive since such sets may be empty,
and the condition therefore unsatisfied, when the probabilities in M are
not equivalent. The situation is even worse when the probability P ? does
not belong to M , even in the favourable situation where it lies close to it,
since the quantity K(P ?, P ) can be very large and possibly infinite even
when the total variation distance between P ? and P is very small. It is
actually well-known that Bayes estimators are not robust with respect to a
misspecification of the model. This weakness is due to the fact that they are
based on the log-likelihood function which can be unstable when an outlier
belongs to the data set.

In order to overcome this issue and propose more stable posterior distri-
butions, some authors have replaced the log-likelihood function by another
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one, leading to quasi-posterior distributions. This is the strategy that is
proposed in Baraud and Birgé (2020) (see also the references therein). The
authors proposed a surrogate to the Bayes posterior distribution that is
called the ρ-posterior distribution in reference to the theory of ρ-estimation
that was developped in the series of papers Baraud et al (2017) and Baraud
and Birgé (2018). The ρ-posterior distribution preserves some of the nice
features of the classical Bayes one but also possesses the property of being
robust with respect to the presence of outliers and contaminated data among
the sample. They show that it concentrates on a Hellinger ball around P ? as
soon as the prior puts enough mass around a point which is close enough to
P ?. This key property confers to the ρ-posterior distribution the robustness
the authors were looking for.

However, the ρ-posterior distribution is difficult to compute and therefore
mainly of theoretical interest. It provides a benchmark to compare against.
These difficulties are linked to the calculations of some suprema of empirical
processes that are involved in the definition of the density of the ρ-posterior
distribution. More deceiving is the fact that the authors do not show any
improvement of their Bayes-like approach as compared to the frequentist
one based on ρ-estimation. For a suitable choice of the prior, an estimator
based on the ρ-posterior distribution would satisfy similar risks bound as
those established for ρ-estimators. As a consequence, ρ-Bayes estimators do
not seem to benefit from any gain that would result from a good choice of
a prior as compared to the frequentist approach that presumes nothing.

Closer to our approach are the aggregation methods and PAC-Bayesian
technics that have been popularized by Olivier Catoni in statistical learning
(see Catoni (2004)). This approach has mainly been applied for the pur-
pose of empirical risk minimization and statistical learning (see for example
Alquier (2008)) and our aim is to extend it toward a versatile tool that can
solve our estimation problem for various loss functions simultaneously.

The problem of designing a good estimator of P ? for a given loss function `
was solved in a frequentist way in Baraud (2021). There, the author provides
a general framework that enables one to deal with various loss functions of
interest among which the total variation, 1-Wasserstein, Hellinger, and Lj-
losses among others. His approach relies on the construction of a suitable
family of robust tests and lies in the line of the former work of Le Cam (1973),
Birgé (1983) and Birgé (2006). The aim of the present paper is to transpose
this theory from the frequentist to the Bayesian paradigm.

For very general models M , we prove that π̂X concentrates around P ?

(for the desired loss) at a rate r = r(n) which usually corresponds to the
minimax one when π puts enough mass around P ? or, at least, around
an element P which is close enough to P ?. We therefore show that the
posterior distribution π̂X enjoys some optimality and robustness properties
with respect to the choices of M and of the prior π. In fact, we also show
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that the posterior distribution is robust to the equidistribution assumption
we started from. In particular, when ` is the total variation or the squared
Hellinger loss, the concentration properties of π̂X remain valid as long as
the data are independent and most of their marginals lie close enough to P .
This result contrasts sharply with the instability of the classical Bayesian
posterior distribution that we mentioned earlier.

Quite surprisingly, the concentration properties that we establish here
require almost no assumption on P ? and M . They mostly depend on the
prior π and the loss function ` that have been chosen. More precisely, for a
suitable element P which belongs to the model M and lies close enough to
P ?, these properties depend on the minimal value of r over which the ratio
π(B(P, 2r))/π(B(P, r)) becomes large enough. This ratio was introduced
earlier in Birgé (2015) for the purpose of analyzing the behaviour of the
classical posterior distribution in the Bayes paradigm. In our Bayes-like
paradigm, we show that the choice of the prior completely encapsulates the
complexity of the model M . In particular, no assumption on the VC nor on
the metric dimension of the model M is required. From this point of view,
the results we establish here are of different nature than those obtained in
the frequentist and Bayesian paradigms in Baraud (2021) and Baraud and
Birgé (2020) which do require such assumptions.

Another difference with Baraud and Birgé (2020) lies in the construc-
tion of the posterior distribution. In the present paper, it does not involve
any suprema of empirical processes but only integrals. It is therefore eas-
ier to compute even though the calculations of these integrals may not be
necessarily easy, especially in high dimension.

The present paper is organized as follows. We present our statistical
setting in Section 2. Unlike what has been described in this introduction,
we actually consider independent but not necessarily i.i.d. data in order to
analyse the behaviour of the posterior distribution with respect to a possible
departure from equidistribution. Our main assumptions on the loss function
are given and commented on in Section 3. In the remaining part of the
paper, we shall mainly focus on the total variation and squared Hellinger
losses. The construction of the posterior and its properties are presented in
Section 4. Applications can be found in Section 5. There, we consider the
problems of estimating a density in a location-scale family as well as that
of a high-dimensional parameter in a parametric model under a sparcity
constraint. We also show how our estimation strategy may lead to unusual
rates of convergence for estimating a translation parameter in a non-regular
statistical model. Finally, Section 6 is devoted to the proofs of the main
theorems and Section 7 to the other proofs.
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2. The statistical setting

Let X = (X1, . . . , Xn) be an n-tuple of independent random variables
with values in a measurable space (E, E) and joint distribution P? =

⊗n
i=1 P

?
i .

The probabilities P ?i are assumed to belong to a given set P of probability
measures on (E, E). Even though this might not be true, we pretend that
the Xi are i.i.d. and our aim is to estimate their (presumed) common dis-
tribution P ? from the observation of X. To do so, we introduce a family
M that consists of candidate probabilities or merely finite signed measures.
We endow M with a σ-algebra A and a probability measure π, that we
call a prior, and we refer to the resulting pair (M , π) as our model. The
model (M , π) plays here a similar role as in the classical Bayes paradigm. It
encapsulates the a priori information that the statistician has on P ?. Nev-
ertheless, we do not assume that P ?, if it ever exists, belongs to M nor
that the true marginals P ?i do. We rather assume that the model (M , π) is
approximately correct in the sense that most of the P ?i are close enough to
some point P in M around which the prior π puts enough mass. In order
to be more specific, we introduce a loss function `, which is a mapping from
(P ∪M )×M into R+, and write

`(P?, Q) = 1
n

n∑
i=1

`(P ?i , Q) for all Q ∈M .

In order to avoid trivialities, we assume that ` is not constantly equal to
0 on (M ∪ P) ×M . Even though ` may not be a genuine distance in
general, we assume that it shares some similar features and we interpret
it as if it were. For this reason, we call `-ball (or ball for short) centered
at P ∈ M with radius r > 0 the subset of M defined and denoted by
B(P, r) = {Q ∈M , `(P,Q) 6 r}. By extension, we set

B(P?, r) = {Q ∈M , `(P?, Q) 6 r} for all r > 0.

Our aim is to built a posterior distribution π̂X on (M ,A), hence depending
on our observation X, which concentrates with a probability close to 1 on
an `-ball of the form B(P?, rn) where we wish the value of rn > 0 to be
small.

Throughout this paper, we use the following notations. The subsets of
R,Rk will be equipped with their Borel σ-algebras. The cardinality of a
set A is denoted |A| and the elements of Rk with k > 1 are denoted
with bold letters, e.g. x = (x1, . . . , xk) and 0 = (0, . . . , 0). For x ∈ Rk,
|x|∞ = maxi∈{1,...,k} |xi| while |x| denotes the Euclidean norm of x. For
all suitable functions f on (En, E⊗n), E [f(X)] means

∫
En fdP? while for

f on (E, E), ES [f(X)] denotes the integral
∫
E fdS with respect to some

measure S on (E, E). For x ∈ R, (x)+ = max(x, 0) and (x)− = max{−x, 0}.
For j ∈ [1,+∞), we denote by Lj(E, E , µ), the set of measurable functions
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f on (E, E) such that ‖f‖j,µ = [
∫
E |f |jdµ]1/j < +∞. Finally, ‖f‖∞ =

supx∈E |f(x)| is the supremum norm of a function f on E.

3. Our main assumptions on the loss function

Assumption 1. For all P ∈P ∪M , the mapping
`(P, ·) : (M ,A) −→ R+

Q 7−→ `(P,Q)
is measurable and there exists a positive number τ such that for all P ∈P
and P ,Q ∈M

`(P,Q) 6 τ
[
`(P, P ) + `(P ,Q)

]
(3)

`(P,Q) > τ−1`(P ,Q)− `(P, P ).(4)

Under such an assumption, `-balls are measurable, i.e. belong to A. When
` is a genuine distance, inequalities (3) and (4) are satisfied with τ = 1
since they correspond to the triangle inequality. When ` is the square of a
distance, these inequalities are satisfied with τ = 2.

The construction of the posterior distribution not only depends on the
prior π but also on the loss function `. For this reason, we introduce a
family T (`,M ) =

{
t(P,Q), (P,Q) ∈M 2} of functions on (E, E) with the

following properties.

Assumption 2. The elements t(P,Q) of T (`,M ) satisfy:

(i) The mapping
t : (E ×M ×M , E ⊗ A⊗A) −→ R

(x, P,Q) 7−→ t(P,Q)(x)
is measurable.
(ii) For all P,Q ∈M , t(P,Q) = −t(Q,P ).
(iii) there exist positive numbers a0, a1 such that, for all S ∈P and
P,Q ∈M ,

(5) ES
[
t(P,Q)(X)

]
6 a0`(S, P )− a1`(S,Q).

(iv) For all P,Q ∈M ,
sup
x∈E

t(P,Q)(x)− inf
x∈E

t(P,Q)(x) 6 1.

Under assumption (ii), t(P,P ) = 0 and we deduce from (5) that a0`(S, P )−
a1`(S, P ) > 0, hence that a0 > a1 since ` is not constantly equal to 0.

Many classical loss functions (among which the total variation distance,
the 1-Wasserstein distance, the squared Hellinger loss, etc.) can be associ-
ated to families T (`,M ) satisfying our Assumption 2 — see Baraud (2021)
—. Some of them possess the additional property given below.



FROM ROBUST TESTS TO BAYES-LIKE POSTERIOR DISTRIBUTIONS 7

Assumption 3. Additionally to Assumption 2, there exists a2 > 0 such that

(iv) for all S ∈P and P,Q ∈M ,

VarS
[
t(P,Q)(X)

]
6 a2 [`(S, P ) + `(S,Q)] .

This assumption is typically satisfied when ` behaves as the square of a
distance.

In the proposition below we provide families T (`,M ) that do satisfy our
requirements for some loss functions ` of interest. These results have been
established in Baraud (2021) except for the squared Hellinger loss for which
we refer to Baraud & Birgé (2018)[Proposition 3]. The list below is not
exhaustive and other losses can also be considered, especially those that can
be defined by a variational formula of the form

`(P,Q) = sup
f∈F

ï∫
E
fdP −

∫
E
fdQ

ò
where F is a suitable class of bounded functions. We refer to Baraud (2021)
for more details on the way the families T (`,M ) can be obtained from the
loss functions `.

Proposition 1. The following holds:

(1) Total variation. Let P be the set of all probability measures on
(E, E), M a subset of P dominated by some reference measure µ
and for P,Q ∈P, `(P,Q) = ‖P −Q‖ the total variation loss (TV-
loss for short) between P and Q. The family T (`,M ) of functions
t(P,Q) defined for P = p · µ,Q = q · µ ∈M by

(6) t(P,Q) = 1
2 [1lq>p −Q(q > p)]− 1

2 [1lp>q − P (p > q)]

satisfies Assumption 2 with a0 = 3/2 and a1 = 1/2. If T (`,M ) sat-
isfies Assumption 2 whatever the model M , it may also occasionally
satisfy Assumption 3 for some specific M . An example of such a
model is given Section 5.2.

(2) Hellinger distance. Let P be the set of all probability measures on
(E, E), M a subset of P dominated by some reference measure µ
and for P,Q ∈P, `(P,Q) = h2(P,Q) the squared Hellinger distance
between P and Q. Besides, let ψ be the function defined by

ψ : [0,+∞] −→ [−1, 1]

x 7−→


x− 1
x+ 1 if x ∈ [0,+∞)

1 if x = +∞.
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The family T (`,M ) of functions t(P,Q) defined for P = p · µ,Q =
q · µ ∈M by

(7) t(P,Q) = 1
2ψ
Å…

q

p

ã
(with the conventions 0/0 = 1 and x/0 = +∞ for all x > 0) satisfies
Assumption 3 with a0 = 2, a1 = 3/16, a2 = 3

√
2/4.

(3) Lj-loss with 1 < j < +∞. For j ∈ (1,+∞), let Pj be the set
of finite and signed measures on (E, E) of the form P = p · µ with
p ∈ Lj(E,µ) ∩L1(E,µ) and M = {P = p · µ, p ∈M} be a subset
of Pj. Assume that the familyM of densities satisfies

(8) ‖p− q‖∞ 6 R ‖p− q‖µ,j for all p, q ∈M and some R > 0.

For P = p · µ and Q = q · µ in M , define

f(P,Q) =
(p− q)j−1

+ − (p− q)j−1
−

‖p− q‖j−1
µ,j

when P 6= Q and f(P,P ) = 0.

The family T (`,M ) of functions t(P,Q) defined for P,Q ∈M by

(9) t(P,Q) = 1
2Rj−1

ï∫
E
f(P,Q)

dP + dQ

2 − f(P,Q)

ò
satisfies Assumption 2 with a0 = 3/(4Rj−1) and a1 = 1/(4Rj−1)
for the loss ` = `j with `j(P,Q) = ‖p− q‖µ,j for all P = p · µ and
Q = q · µ in Pj.

When j = 2, (8) is typically satisfied when M is a subset of a linear
space enjoying good connections between the L2 and the supremum norms.
Many finite dimensional linear spaces with good approximation properties
do satisfy such connections (e.g. piecewise polynomials of a fixed degree on a
regular partition of [0, 1], trigonometric polynomials on [0, 1) etc.). We refer
the reader to Birgé and Massart (1998)[Section 3] for additional examples.
The property may also hold for infinite dimensional linear spaces as proven
in Baraud (2021).

4. Construction of the posterior distribution and main results

4.1. Construction of the posterior distribution. It relies on two posi-
tive numbers β and
(10) λ = (1 + c)β with c > 0 such that c0 = (1 + c)− c(a0/a1) > 0.
Given the family T (`,M ), we set

T(X, P,Q) =
n∑
i=1

t(P,Q)(Xi) for all P,Q ∈M
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and define π̃X(·|P ) as the probability on (M ,A, π) with density
π̃X(·|P )
dπ

: Q 7→ exp [λT(X, P,Q)]∫
M exp [λT(X, P,Q)] dπ(Q) .

Then, for P ∈M we set

T(X, P ) =
∫

M
T(X, P,Q)dπ̃X(Q|P )

=
∫

M
T(X, P,Q) exp [λT(X, P,Q)] dπ(Q)∫

M exp [λT(X, P,Q)] dπ(Q)
and finally define the posterior distribution π̂X on (M ,A, π) with density

(11) π̂X
dπ

: P 7→ exp [−βT(X, P )]∫
M exp [−βT(X, P )] dπ(P ) .

Our Assumption 2-(i) ensures that π̃X(·|P )/dπ is a measurable function of
(X, P,Q) and π̂X/dπ a measurable function of (X, P ).

4.2. The influence of the prior. The Bayesian paradigm offers the pos-
sibility to favour some elements of M as compared to others. In order
to evaluate how much the prior π advantages or disadvantages an element
P ∈M , we fix some number γ > 0, introduce the set

R(β, P ) =
®
r >

1
nβa1

,
π
(
B(P , 2r)

)
π
(
B(P , r)

) > exp (γnβa1r)
´

with the convention a/0 = +∞ for all a > 0 and finally define
(12) rn(β, P ) = supR(β, P ) with sup∅ = 1/(nβa1).
It follows from the definition of rn(β, P ) that

0 < π
(
B(P , 2r)

)
6 exp (γnβa1r)π

(
B(P , r)

)
for all r > rn(β, P ).(13)

Letting r decrease to rn(β, P ), we derive that (13) holds for r = rn(β, P ).
In particular, π

(
B(P , r)

)
> 0 for r = rn(β, P ).

We shall see below that the performance of the posterior π̂X depends on
those P ∈M such that rn(β, P ) is small enough. The connection between
the behaviour of the prior π in the vicinity of an element P ∈ M and the
quantity rn(β, P ) can be made as follows. Clearly, if the prior puts no mass
on the `-ball B(P , r) then rn(β, P ) > r and rn(β, P ) is therefore large if r
is large. In the opposite case, if the prior puts enough mass on B(P , r) in
the sense that
(14) π

(
B(P , r)

)
> exp (−γnβa1r) ,

then for all r′ > r,
π
(
B(P , r′)

)
> exp (−γnβa1r) > exp

(
−γnβa1r

′)
> exp

(
−γnβa1r

′)π (B(P , 2r′)
)
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which implies that rn(β, P ) 6 r and rn(β, P ) is therefore small if r is small.
Although (14) is not equivalent to (13) (it is actually stronger), the previous
arguments provide a partial view on the relationship between π and rn and
conditions to decide whether P is favoured by π or not, according to the
size of rn(β, P ).

4.3. A first result on the concentration property of the posterior
distribution. Following the above discussion, when the set
(15) M (β) =

{
P ∈M , rn(β, P ) 6 a−1

1 β
}

is non-empty, it gathers the most favoured elements of the model (M , π) at
level a−1

1 β. The set M (β) can alternatively be defined as

M (β) =
{
P ∈M , sup

r>a−1
1 β

ñ
1

γna1r
log
Ç
π
(
B(P , 2r)

)
π
(
B(P , r)

) åô 6 β} .(16)

It is sometimes easier to use this latter form for the calculations. The set
M (β) will play a crucial role in our first result below.

Theorem 1. Let Assumptions 1 and 2 be satisfied, fix γ < (c0∧c)/(2τ) and
let β > 1/

√
n be chosen in such a way that the set M (β) defined by (15)

is not empty. Then, the posterior distribution π̂X defined by (11) possesses
the following property. Given ξ > 0, there exists a number κ0 > 2 depending
only on c, τ, γ, ξ and the ratio a0/a1 such that, for any distribution P?,

E [π̂X (cB(P?, κ0r))] 6 2e−ξ with r = inf
P∈M (β)

`(P?, P ) + a−1
1 β.(17)

In particular,

P
î
π̂X (cB(P?, κ0r)) > e−ξ/2

ó
6 2e−ξ/2.

A suitable choice for κ0 is given by (81) and it is of the form A + Bξ
where A and B only depends on c, τ, γ and a0/a1. It therefore only depends
on ξ linearly and on the choice of our loss function ` but not on the prior
π. Hence, given a loss function ` and a confidence level 1 − 2e−ξ, κ0 is a
numerical constant.

Our posterior distribution depends on the parameter λ = (1 + c)β where
c > 0 satisfies (10). By Proposition 1, this constraint is satisfied for any
c ∈ (0, 1/2) when ` is the TV or an `j loss. For the choice c = 1/3, c0 = c
and our condition on γ becomes γ 6 (6τ)−1.

When the data are truly i.i.d. and the prior puts enough mass around
their common distribution P ?, in the sense that P ? ∈ M (β), then r =
a−1

1 β. When this ideal situation is not met, either because the data are not
identically distributed or because P ? does not belong to M (β), r increases
by at most an additive term of order infP∈M (β) `(P?, P ). When this quantity
remains small as compared to a−1

1 β, the value of r does not deteriorate too
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much as compared to the previous situation. The concentration properties
of the posterior distribution is therefore stable with respect to a possible
misspecification of the model and a departure from the equidistribution
assumption.

The value of r given by (17) depends on the choice of the parameter β.
Since the set M (β) is increasing with β (for the inclusion), the two terms
infP∈M (β) `(P?, P ) and a−1

1 β vary in opposite directions when β increases.
The set M (β) must be large enough to provide a suitable approximation of
P?, and therefore include as many elements of M as possible since P? is
unknown, but β must not be too large in order to keep a−1

1 β to a reasonable
size.

In order to illustrate and comment further on the choice of the parameter
β, let us consider the following simple example.

Example 1. Assume that the data are truly i.i.d. with distribution P ?

and that M is a parametric model on which π behaves like the uniform
distribution on a suitable bounded subset of RD. More precisely, assume
that for all P ∈M and r > 0

(Ar)D ∧ 1 6 π (B(P, r)) 6 (Br)D ∧ 1

for some positive numbers A 6 B and D > 1. Note that this assumption
implies that π

(
B(P,A−1)

)
= 1 for all P ∈ M so that the diameter of the

support of π is bounded by 2τA−1. Then,

(18) π (B(P, 2r))
π (B(P, r)) 6

Å2B
A

ãD
for all P ∈M and r > 0

which implies that for all P ∈M

sup
r>a−1β

ï 1
γna1r

log
Å
π (B(P, 2r))
π (B(P, r))

ãò
6

D

γnβ
log
Å2B
A

ã
and we note that the right-hand side is not larger than β > 1/

√
n for

(19) β =
 
D log(2B/A)

γn
∨ 1√

n
.

This means that for such a value of β, P ∈M (β), and since P is arbitrary
we obtain that M (β) = M . We derive from Theorem 1 that the distribution
π̂X concentrates on an `-ball centered at P? with a radius of order

r = inf
P∈M

`(P?, P ) + a−1
1

…
D

n
.

In particular we derive, using Proposition 1, that for the TV-loss

r = inf
P∈M

ñ
1
n

n∑
i=1
‖P ?i − P‖

ô
+ 1

2

…
D

n
.
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Provided that M is of the form M = {P = p · µ, p ∈M} with M sat-
isfying (8), we also derive that for the `j-loss and any distribution P? =⊗n

1=1(p?i · µ) with p?1, . . . , p?n ∈ Lj(E, E , µ),

rn = inf
p∈M

ñ
1
n

n∑
i=1
‖p?i − p‖µ,j

ô
+ 4Rj−1

…
D

n
.

This example shows that in the context of Theorem 1, the parameter β
must be tuned as a suitable function of n, that depends on the properties
of the prior distribution, in such a way that all (or most) of the elements of
M belong to M (β).

Quite surprisingly, the situation changes drastically when Assumption 3
is met as we shall see in the next section.

4.4. The concentration property of the posterior distribution un-
der Assumption 3. Let us define the mapping

(20)
φ : (0,+∞) −→ R+

z 7−→ φ(z) = 2 (ez − 1− z)
z2 .

The function φ is increasing on (0,+∞) and tends to 1 when z tends to
0.

Theorem 2. Assume that Assumptions 1 and 3 hold and define
c1 = c0 − βa2a

−1
1 τ2φ [β(1 + 2c)] (1 + 2c(1 + c));(21)

c2 = c− βa2a
−1
1 τ2φ [β(1 + 2c)] c2;(22)

c3 = (2 + c)− βa2a
−1
1 τ2φ [β(3 + 2c)] (2 + c)2.(23)

Let γ < (c1∧c2∧c3)/(2τ) and β0 be the value of β for which c1∧c2∧c3 = 0.
Then, for β ∈ (0, β0) and n > 1/(βa1), the posterior distribution π̂X defined
by (11) satisfies the following property. Given ξ > 0, there exists a number
κ0 depending only on a0, a1, a2, c, τ, β, γ and ξ such that, for any distribution
P?,

E [π̂X (cB(P?, κ0r))] 6 2e−ξ with r = inf
P∈M

[`(P?, P ) + rn(β, P )] .(24)

In particular,

P
î
π̂X (cB(P?, κ0r)) > e−ξ/2

ó
6 2e−ξ/2.

It follows from the proof that one may take κ0 given by (93), which is of
the form (A′+B′ξ)r with A′ and B′ depending only on a0, a1, a2, c, τ, β and
γ. Note that the constraints on c, β and γ that are required in our Theorem 2
only depend on a0, a1 and a2, hence on the choice of the loss function `, but
not on the model (M , π). In particular, unlike Theorem 1, the value of β
can be chosen as a universal constant for a given loss function. For example,
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when ` = h2, we know from Proposition 1 that a0 = 2, a1 = 3/16 and
a2 = 3

√
2/4, and we may take c = 0.05, β = 0.01, γ = 0.01 and τ = 2 in (3).

In order to illustrate this new result and compare it with that of Theo-
rem 1, let us go back to the framework of Example 1.

Example 2 (Example 1 continued). Assume that ` = h2 is the squared
Hellinger loss and that the quantities c, β and γ have been chosen as above.

We see that that the right-hand side of (18) is not larger than exp(γna1βr)
provided that

r >
D log(2B/A)

γna1β
.

For γ 6 D log(2B/A), the right-hand side of this latter inequality is not
smaller than 1/(nβa1) and we derive from the definition (12) of rn(β, P )
that

rn(β, P ) 6 D log(2B/A)
γna1β

for all P ∈M .

By applying Theorem 2 we obtain that the posterior distribution π̂X con-
centrates on an `-ball with radius of order infP∈M `(P?, P ) +D/n, hence at
rate 1/n when the data are i.i.d. with distribution P ? ∈M .

Applying our Theorem 1 under the only Assumption 2 and ignoring the
fact that the loss ` = h2 additionally satisfies Assumption 3, would lead, by
arguing as for the TV-loss, to the weaker result that the posterior distribu-
tion concentrates on an `-ball with radius of order infP∈M `(P?, P )+

√
D/n.

We conclude that Theorem 2 leads to a stronger result on the concentra-
tion properties of π̂X as compared to Theorem 1 when the loss function `
satisfies Assumption 3 on the model M .

5. Applications

5.1. How big is the set M (β) in a translation model? In this section,
we consider the translation model M = {Pθ = p(·− θ) ·µ, θ ∈ R} associated
to a density p on R with respect to the Lebesgue measure µ. Given a density
q on the real line and a scale parameter σ, we estimate the location parameter
θ by choosing the prior νσ with density qσ : θ 7→ σ−1q(θ/σ) with respect to
µ. The prior π on M is the image of νσ by the mapping θ 7→ Pθ and we use
the total variation distance to measure the quality of an estimator of Pθ.

By Theorem 1, we know that the concentration properties of the posterior
π̂X depend on the size of the set M (β) given by (16). Given a compact
interval I ⊂ R, our aim is to find a value of β > 1/

√
n for which M (β)

contains the subset {Pθ, θ ∈ I} ⊂M . We assume the following.
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Assumption 4. The density q is positive, symmetric and decreasing on R+.
Besides, there exists L ∈ (0,+∞] such that the mapping H defined by

(25) H : [0, L) −→ [0, 1)
t 7−→ ‖Pt − P0‖

is bijective.

Under Assumption 4, H is necessarily increasing on [0, L) and we may
define its inverse G : [0, 1)→ [0, L). We set

(26) Γ = max
®ñ

sup
0<r61/4

G(2r)
G(r)

ô
q(0), 1

2G(1/4)

´
and assume that this quantity is finite. Note that Γ only depends on the
choices of p and q. For example, when p(x) = (1/2)e−|x|, L = +∞, H : t 7→
1−exp [−t/2], G : r 7→ −2 log(1−r) and since the mapping r 7→ [G(2r)/G(r)]
is increasing,

Γ = 1
log(4/3) max

ß
q(0) log 2, 1

4

™
.

If p : x 7→ (α/2)(1−|x|)−1+α1l|x|<1 with α > 0, L = 2, H : t 7→ 1−(1−t/2)α,
G : r 7→ 2[1 − (1 − r)1/α]. Since G(r) ∼ 2r/α in a neighbourhood of 0, the
mapping r 7→ G(2r)/G(r) is continuous on [0, 1/4] and therefore bounded.
Given q(0), Γ is therefore a finite number.

The following result is proven in Section (7.1).

Proposition 2. Let Assumption 4 hold, Γ the quantity defined by (26),
γ 6 log 4 and t a positive number such that ν1([t,+∞)) 6 1/4. The set
M (β) contains the subset {Pθ, θ ∈ [−σt, σt]} if

(27) β >

√
1
nγ

max
®

log
Ç

Γ (σ ∨ 1)
q(2t)

å
, log 4

´
.

Note that the interval I = [−σt, σt] can be enlarged by increasing the
value of σ or that of t. In the first case, increasing σ makes the prior νσ
flatter and for a fixed value of t > 0, the right-hand side of (27) increases as√

log σ when σ becomes larger than 1. In the other case, for a fixed value
of σ, the right-hand side of (27) increases as

√
log(1/q(2t)). When q is the

density of a standard Gaussian random variable,
√

log(1/q(2t)) is of order
t, while for the Laplace and the Cauchy distributions it is of order

√
t and√

log t respectively.

5.2. Fast rates. We go back to the statistical framework described in Sec-
tion 5.1 in the special case where p is the density x 7→ αxα−11l(0,1] with
α ∈ (0, 1]. As before, we choose the TV-loss. Since ` is a distance we may
take τ = 1 in Assumption 1. Besides, we have seen in Proposition 1 that
the family T (M , `) given by (6) satisfies our Assumption 2 with a0 = 3/2
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and a1 = 1/2. In fact, it turns out that in the specific situation we consider
here, the TV-loss also satisfies Assumption 3 with a2 = 1. This means that
from a more statistical point of view, the TV-loss rather behaves here as the
square of a distance. In addition, some simple calculations show that
(28) ‖Pθ − Pθ′‖ =

∣∣θ − θ′∣∣α ∧ 1 for all θ, θ′ ∈ R.
These facts are proven in Baraud (2021) [Examples 5 and 6].

Since Assumption 3 holds true, we may apply Theorem 2 and the reader
can check that the constants c = 0.3, β = 0.1 and γ = 0.01 satisfy the
requirements of this theorem.

To estimate the location parameter θ, we choose a prior νσ = σ−1q(·/σ)·µ
associated to a density q that satisfies the requirements of Assumption 4 so
that, by (28), this assumption holds true with L = 1, G : r → r1/α and

Γ = 21/α max
¶
q(0), 2(1/α)−1

©
.

We prove in Section 7.2 the following result.

Proposition 3. Let t0 be the third quartile of ν1. If the density q is positive,
symmetric and decreasing on [0,+∞), for all θ ∈ R,

rn(β, Pθ) 6
2000
n

max
ß

log
(
Γ (σ ∨ 1)

)
− log

Å
q

ï
2
Å |θ|
σ
∨ t0
ãòã

, log 4
™
.

By applying Theorem 2, we conclude that for all ξ > 0, with a probability
at least 1− 2e−ξ/2, the posterior distribution satisfies

π̂X
(
B(P?, κ′0r)

)
> 1− e−ξ/2

for some some κ′0 > 2 only depending on ξ, α, q(0) and for

r = inf
θ∈R

ñ
1
n

n∑
i=1
‖P ?i − Pθ‖+ 1

n

ï
1− log

Å
q

ï
2
Å |θ|
σ
∨ t0
ãòã

+ log(σ ∨ 1)
òô
.

In particular, when the data are i.i.d. with distribution Pθ? , with proba-
bility close to 1, an element P

θ̂
drawn randomly according to the posterior

distribution π̂X satisfies with a probability close to 1,∣∣∣θ? − θ̂∣∣∣α ∧ 1 =
∥∥∥Pθ? − Pθ̂∥∥∥ 6 C(ξ, α, q, θ?, σ)

n
.

This inequality implies, at least for n large enough, that∣∣∣θ? − θ̂∣∣∣ 6 C1/α(ξ, α, q, θ?, σ)
n1/α .

The parameter is therefore estimated at rate n−1/α which is much faster than
the usual 1/

√
n-parametric one that is reached by an estimator based on a

moment method for instance. Since the densities are unbounded, note that
the maximum likelihood estimator does not exist and is therefore useless.
It is well-known, mainly from the work of Le Cam, that is impossible to



16 YANNICK BARAUD

estimate a distribution in a translation model at a rate faster than 1/n for the
TV-loss. Because of (28), the rate we get is not only optimal for estimating
Pθ? but also for estimating θ? with respect to the Euclidean distance. An
alternative optimal estimator for estimating θ? is that given by the minimum
of the observations. This estimator is unfortunately obviously non-robust to
the presence of an outlier among the sample. Our construction provides an
estimator which possesses the property of being both optimal and robust.

It is also interesting to see how the critical radius r behaves under a
misspecification of the prior νσ, i.e. when the size of the parameter θ? is
large compared to σ. When q is Gaussian, r increases by a factor of order
(θ?/σ)2 while for the Laplace and Cauchy distributions it is of order |θ?|/σ
and log(|θ?|/σ) respectively.

5.3. A general result under entropy. In this section, (E, E) = (Rk,B(Rk))
that we equip with the Lebesgue measure µ and the norm |·|∞. We consider
the TV-loss ` and the location-scale family

(29) M =
ß
P(p,m,σ) = 1

σk
p
( · −m

σ

)
· µ, p ∈M0, m ∈ Rk, σ > 0

™
,

whereM0 is a set of densities on (Rk,B(Rk), µ) that satisfies the following
entropy condition:

Assumption 5. Let ‹D be a continuous non-increasing mapping from (0,+∞)
to [1,+∞) such that limη→+∞ η

−2‹D(η) = 0. For all η > 0, there exists a
finite subsetM0[η] ⊂M0 satisfying

(30) |M0[η]| 6 exp
î‹D(η)

ó
and for all p ∈M0, there exists p ∈M0[η] such that

(31) `
(
P(p,0,1), P(p,0,1)

)
= 1

2

∫
Rk
|p− p| dµ 6 η.

Besides, we assume that there exist A,α > 0 such that for all p ∈ M0,
m ∈ Rk and σ > 1,

(32) `
(
P(p,0,1), P(p,m,σ)

)
6
ï
A

Å(∣∣∣m
σ

∣∣∣
∞

)α
+
Å

1− 1
σ

ãαãò∧
1.

For η, δ > 0, we define

Θ[η, δ] =
¶(
p, (1 + δ)j0δj, (1 + δ)j0

)
, (p, j0, j) ∈M0[η]× Z× Zk

©
and for θ = θ(p, j0, j) ∈ Θ[η, δ], set

(33) Lθ = (k + 1)L+ log |M0[η]|+ 2
k∑
i=0

log(1 + |ji|)
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with L = log
[
(π2/3)− 1

]
. It is not difficult to check that

∑
θ∈Θ[η,δ] e

−Lθ = 1,
and we may therefore endow M with the prior π defined as

(34) π({Pθ}) = e−Lθ for all θ ∈ Θ[η, δ].

Corollary 1. Let ξ > 0, K > 1, ` be the TV-loss and M the family of
probabilities given by (29) where M0 satisfies Assumption 5. Consider the
parameters

ηn = inf Dn with Dn =
ß
η > 0, ‹D(η) 6 nη2

24

™
(35)

δ = δn =
( ηn

2A

)1/α
,(36)

β = βn = 1
2

[
Kηn + 2

 
18.6(k + 1)

n

]
(37)

and the subset Mn(K) of M that gathers the elements P(p,m,σ) such that

(38) | log σ| ∨
∣∣∣m
σ

∣∣∣
∞
6 Λn = exp

ï(K2 − 1)nη2
n

48(k + 1) + log log(1 + δn)
ò
.

Then, the posterior distribution π̂X associated to the value λ = 4β/3, the
prior π given by (34) and the family T (`,M ) given by (6) possesses the
following property: there exists κ0 > 2 only depending on ξ such that

(39) E [π̂X (cB(P?, κ0r))] 6 2e−ξ

with

(40) r = inf
P∈Mn(K)

`(P?, P ) +Kηn +
…
k + 1
n

.

To comment on Condition (32), let us assume that the setM0 consists of
densities p that are supported on [0, 1]k, satisfies supp∈M0 ‖p‖∞ 6 L0 and

(41) sup
p∈M0

∣∣p(x)− p(x′)
∣∣ 6 L1

∣∣x− x′
∣∣α for all x,x′ ∈ Rk

for some constants L0, L1 > 0 and α ∈ (0, 1]. For all p ∈ M0, σ > 1 and
m ∈ Rk, the supports of the functions x 7→ p(x/σ) and x 7→ p((x−m)/σ) are
included in the set K = [0, σ]k ∪ {m + x, x ∈ [0, σ]k} the Lebesgue measure
of which is not larger than 2σk. Consequently, using (41), we deduce that
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for all p ∈M0, σ > 1 and m ∈ Rk,

`
(
P(p,0,1), P(p,m,σ)

)
6 `

(
P(p,0,1), P(p,0,σ)

)
+ `

(
P(p,0,σ), P(p,m,σ)

)
= 1

2

∫
Rk

∣∣∣∣p(x)− 1
σk
p
(x
σ

)∣∣∣∣ dx + 1
2σk

∫
Rk

∣∣∣∣p(x
σ

)
− p

(x−m
σ

)∣∣∣∣ dx

6
1
2

∫
Rk

∣∣∣∣p(x)− 1
σk
p (x)

∣∣∣∣ dx + 1
2σk

∫
Rk

∣∣∣p(x)− p
(x
σ

)∣∣∣ dx

+ 1
2σk

∫
Rk

∣∣∣∣p(x
σ

)
− p

(x−m
σ

)∣∣∣∣ dx

6
1
2

∫
Rk

∣∣∣∣p(x)− 1
σk
p (x)

∣∣∣∣ dx + 1
2σk

∫
[0,1]k

∣∣∣p(x)− p
(x
σ

)∣∣∣ dx

+ 1
2σk

∫
[0,σ]k\[0,1]k

∣∣∣p(x
σ

)∣∣∣ dx + 1
2σk

∫
K

∣∣∣∣p(x
σ

)
− p

(x−m
σ

)∣∣∣∣ dx

6
1
2

Å
1− 1

σk

ã
+ 1

2σk
∫

[0,1]k
L1

Å
1− 1

σ

ãα
|x|α dx

+ 1
2

∫
[0,1]k\[0,1/σ]k

|p(x)| dx + L1
2σk

∫
K

∣∣∣m
σ

∣∣∣α dx

6
1
2

Å
1− 1

σk

ã
+ L1k

α/2

2σk

Å
1− 1

σ

ãα
+ L0

2

Å
1− 1

σk

ã
+ L1

∣∣∣m
σ

∣∣∣α
6

1
2
î
1 + L1k

α/2 + L0
ó Å

1− 1
σ

ãα
+ L1

∣∣∣m
σ

∣∣∣α
and (32) is therefore satisfied with A = L1 ∨ [(1 + L1k

α/2 + L0)/2].
In Lemma 1 below, we show that (32) may also be satisfied in a situation

where the densities inM0 are irregular and possibly discontinuous. It makes
it possible to consider the following example.

Example 3. We consider here the situation where k = 1 andM0 is the set
of all non-increasing densities on [0, 1] that are bounded by B > 1. Then,
M consists of all the probabilities whose densities are non-increasing and
supported on intervals I with positive lengths and which are bounded by
B/µ(I). Birman and Solomjak (1967) proved that M0 satisfies Assump-
tion 5 with ‹D(η) of order (1/η) ∨ 1 (up to some constant that depends on
B) and consequently ηn is of order n−1/3. Besides, it follows from Lemma 1
below that (32) is satisfied with A = B and α = 1. We may therefore apply
Corollary 1. For a value of K large enough compared to 1, Λn defined by
(38) is larger than exp

î
CK2n1/3

ó
for some constant C > 0 (depending on

A). In particular, if X1, . . . , Xn are i.i.d. with a density of the form

x 7→ p?(x) = 1
σ?
p

Å
x−m?

σ?

ã
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where p ∈M0, |m?/σ?| 6 exp
î
CK2n1/3

ó
and

exp
î
− exp

î
CK2n1/3

óó
6 σ? 6 exp

î
exp
î
CK2n1/3

óó
,

the posterior distribution π̂X satisfies for all ξ > 0, with a probability at
least 1− 2e−ξ/2, π̂X

î
B(P ?, C ′n−1/3)

ó
> 1− e−ξ/2 where the constant C ′ >

0 only depends on ξ,K,B but not on m? and σ?. This means that the
concentration properties of π̂X hold true over a huge range of translation
and scale parameters when n is large enough.

Lemma 1. Let p be a non-increasing density on (0,+∞). For all σ > 1

(42) 1
2

∫
R

∣∣∣∣ 1σp(xσ)− p(x)
∣∣∣∣ dx 6 Å1− 1

σ

ã
.

If, furthermore, p is bounded by B > 1, for all m ∈ R,

(43) 1
2

∫
R
|p(x)− p(x−m)| dx 6 (|m|B) ∧ 1.

In particular, for all m ∈ R and σ > 1,

(44) 1
2

∫
R

∣∣∣∣ 1σp(x−mσ )
− p(x)

∣∣∣∣ dx 6 ïB ∣∣∣mσ ∣∣∣+
Å

1− 1
σ

ãò
∧ 1.

5.4. Estimating a parameter under sparcity. Let us consider a family
of distributions M =

{
Pθ = pθ · µ, θ ∈ Rk

}
that are parametrized by Rk

where the dimension k is large. We presume, even though this might not
be true, that the data are i.i.d. with a distribution Pθ? ∈M associated to a
parameter θ? the coordinates of which are all zero except, maybe, a small
number of these. For m ⊂ {1, . . . , k}, m 6= ∅, we introduce the sub-family
Mm that gathers the distributions Pθ ∈ M for which the coordinates of
θ = (θ1, . . . , θk) are all zero except those with an index i ∈ m. We denote
by Θm the set of such parameters so that Mm = {Pθ, θ ∈ Θm} for all
m ⊂ {1, . . . , k}, m 6= ∅.

Throughout this section we consider the squared Hellinger loss and, given
some R > 0, we assume that there exist α ∈ (0, 1] and a positive number
Bk = Bk(R) possibly depending on k and R, although we do not specify the
dependency with respect toR, such that for all θ,θ′ ∈ Rk with |θ|∞∨

∣∣θ′∣∣∞ 6
R

(45) h (Pθ, Pθ′) 6
√
Bk
∣∣θ − θ′∣∣α∞ .

As a consequence, the mapping θ 7→ Pθ is continuous. We endow M with
the Borel σ-algebra A associated to the Hellinger distance so that, for all
probabilities P on (E, E), the mapping Q 7→ `(P,Q) = h2(P,Q) is con-
tinuous, hence measurable, on (M ,A), and Assumption 1 is satisfied with
τ = 2.

Given a nonempty subset m of {1, . . . , p}, we endow Θm with the uniform
distribution νm on the cube Θm(R) = {θ ∈ Θm, |θ|∞ 6 R}. This leads



20 YANNICK BARAUD

to a prior πm = πm(R) on Mm defined as the image of νm by the mapping
θ 7→ Pθ. For m = ∅, we set Θ∅ = Θ∅(R) = {0} and we endow it with the
Dirac mass at 0 so that M∅ = {P0} and π∅ is the Dirac mass at P0. We
finally define our prior π = π(R) on (M ,A) as

(46) π =
∑

m⊂{1,...,k}
e−Lmπm with Lm = |m| log k + k log

Å
1 + 1

k

ã
.

It is not difficult to check that
∑
m⊂{1,...,k} e

−Lm = 1, hence that π is a
genuine probability on (M ,A).

The following result holds.

Corollary 2. Let ` = h2 be the squared Hellinger distance, M = {Pθ = pθ ·
µ, θ ∈ Rk} a dominated statistical model satisfying (45) and the assumption
that the mapping

p : E × Rk −→ R+
(x,θ) 7−→ pθ(x)

is measurable. We assume that RB1/(2α)
k > 1 and endow M with the prior

π = π(R) defined by (46) and define the posterior distribution π̂X by (11)
with β = 0.01, λ = 1.05β and the family T (`,M ) given by (7). Then there
exists κ0 > 2, only depending on the value of ξ > 0, such that

E [π̂X (cB(P?, κ0r))] 6 2e−ξ

where

(47) r = inf
m⊂{1,...,k}

[
inf

θ∈Θm(R)
`(P?, Pθ) +

|m| log
Ä
2kR(nBk)1/(2α)

ä
+ 1

n

]
.

Let us now comment on and illustrate this result.
When Bk does not increase faster than a power of k, r only depends

logarithmically on the dimension k, as expected.
Since the mapping

R 7→ sup
®
h (Pθ, Pθ′)∣∣θ − θ′∣∣α∞

∣∣∣ θ,θ′ ∈ Rk,θ 6= θ,′ |θ|∞ ∨
∣∣θ′∣∣∞ 6 R

´
is non-decreasing, our condition RB1/(2α)

k > 1 holds for R large enough.
For illustration, assume that Pθ is the Gaussian distribution with mean

θ ∈ Rk and covariance matrix σ2Ik where Ik denotes the k × k identity
matrix. Then,

h2(Pθ, Pθ′) = 1− exp
ñ
−
∣∣θ − θ′∣∣2

8σ2

ô
6

∣∣θ − θ′∣∣2
8σ2 6

k
∣∣θ − θ′∣∣2∞

8σ2
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and we obtain that (45) is satisfied with Bk = k/(8σ2) and α = 1. In
particular, our condition RB1/(2α)

k > 1 is equivalent to R > 2σ
√

(2/k). In
this case, we obtain that the value of r given by (47) is of order

inf
m⊂{1,...,k}

ï
inf

θ∈Θm(R)
`(P?, Pθ) + |m| log (knR/σ) + 1

n

ò
.

More generally, when M = {Pθ,θ ∈ Rk} is a regular statistical model
with Fisher information I(θ) at θ, we know from the book of Ibragimov
and Has’minskĭı (1981)[Theorem 7.1 p.81] that for all θ,θ′ ∈ Rk such that
|θ|∞ ∨

∣∣θ′∣∣∞ 6 R
h2(Pθ, Pθ′) 6

∣∣θ − θ′∣∣2
8 sup

θ′′∈Rk,|θ′′|∞6R
tr
(
I(θ′′)

)
.

Then, Assumption (45) holds with α = 1 and

Bk = k

2
√

2
sup

θ′′∈Rk,|θ′′|6R

»
%
(
I(θ′′)

)
where %

(
I(θ′′)

)
denotes the largest eigenvalue of the matrix I(θ′′). It is well

known that this value is independent of θ′′ when M is a translation model.

6. Proofs of Theorems 1 and 2

Throughout this section we fix some P ∈M , r, β > 0 and use the follow-
ing notations: c1 = 1 + c, c2 = 2 + c,

V(π, P ) =
{
r > 0, π

(
B(P , r)

)
> 0
}

and for r ∈ V(π, P ) , B = B(P , r) and πB = [π(B)]−1 1lB · π.

6.1. Preliminary results. The proofs of our main results rely on the fol-
lowing lemmas.

Lemma 2. Let (U, V ) be a pair of random variables with values in a product
space (E×F, E⊗F) and marginal distributions PU and PV respectively. For
all measurable function h on (E × F, E ⊗ F),

EU
ï 1
EV [exp [−h(U, V )]]

ò
6
ï
EV
ï 1
EU [exp [h(U, V )]]

òò−1
.

This lemma is proven in Audibert and Catoni (2011) [Lemma 4.2, P. 28].

Lemma 3. For P,Q ∈M , we set

M(P,Q) = log
ï∫

M
E
[
exp

[
β
(
cT(X, P,Q′)− c1T(X, P,Q)

)]
dπ(Q′)

]ò
.
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For all r ∈ V(π, P ) and P ∈M ,

E [exp [−βT(X, P )]] 6 1
π(B)

ï∫
B

exp [−M(P,Q)] dπB(Q)
ò−1

.(48)

Proof. Let r ∈ V(π, P ). For P,Q ∈M , we set

I(X, P,Q) = c1βT(X, P,Q)− log
∫

M
exp

[
cβT(X, P,Q′)

]
dπ(Q′).

Then,
E [exp [−I(X, P,Q)]]

= E
ï
exp
ï
−c1βT(X, P,Q) + log

∫
M

exp
[
cβT(X, P,Q′)

]
dπ(Q′)

òò
= E
ï∫

M
exp

[
cβT(X, P,Q′)− c1βT(X, P,Q)

]
dπ(Q′)

ò
= exp [M(P,Q)] .(49)

Since λ = c1β = (1 + c)β, it follows from the convexity of the exponential
that

E [exp [−βT(X, P )]] = E
ï
exp
ï∫

M
[−βT(X, P,Q)]dπ̃X(Q)

òò
6 E
ï∫

M
exp [−βT(X, P,Q)] dπ̃X(Q)

ò
= E
ï ∫

M exp [cβT(X, P,Q)] dπ(Q)∫
M exp [c1βT(X, P,Q)] dπ(Q)

ò
6 E
ï ∫

M exp [cβT(X, P,Q)] dπ(Q)∫
B exp [c1βT(X, P,Q)] dπ(Q)

ò
.

Hence,

E [exp [−βT(X, P )]] 6 E
ï 1∫

B exp [I(X, P,Q)] dπ(Q)

ò
= 1
π(B)E

ï 1∫
B exp [I(X, P,Q)] dπB(Q)

ò
.

Applying Lemma 2 with U = X, V = Q with distribution πB, and h(U, V ) =
−I(X, P,Q), we obtain that

E [exp [−βT(X, P )]]

6
1

π(B)

ï∫
B

1
E [exp [−I(X, P,Q)]]dπB(Q)

ò−1

and (48) follows from (49). �

Lemma 4. For P,Q ∈M , we set

L(P,Q) = log
∫

M
E
[
exp

[
β
(
c2T(X, P,Q′)− c1T(X, P,Q)

)]]
dπ(Q′).
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For all r ∈ V(π, P ),

E
ï 1∫

M exp [−βT(X, P )] dπ(P )

ò
6

1
π2(B)

ï∫
B2

exp [−L(P,Q)] dπB(P )dπB(Q)
ò−1

.

Proof. Let r ∈ V(π, P ). For P,Q ∈M , we set

H(X, P,Q) = βc1T(X, P,Q)− log
ï∫

M
exp

[
c2βT(X, P,Q′)

]
dπ(Q′)

ò
.

Then,

E [exp [−H(X, P,Q)]]

= E
ï
exp [−βc1T(X, P,Q)]

∫
M

exp
[
c2βT(X, P,Q′)

]
dπ(Q′)

ò
= E
ï∫

M
exp

[
β
(
c2T(X, P,Q′)− c1T(X, P,Q)

)]
dπ(Q′)

ò
= exp [L(P,Q)] .(50)

It follows from the convexity of the exponential and the fact that λ = c1β
that for all P ∈M ,

E [exp [βT(X, P )]] = E
ï
exp
ï∫

M
[βT(X, P,Q)]dπ̃X(Q)

òò
6 E
ï∫

M
exp [βT(X, P,Q)] dπ̃X(Q)

ò
= E
ï∫

M exp [c2βT(X, P,Q)] dπ(Q)∫
M exp [c1βT(X, P,Q)] dπ(Q)

ò
= E
ï 1∫

M exp [H(X, P,Q)] dπ(Q)

ò
.

Applying Lemma 2 with U = X and V = Q with distribution π we obtain
that

E [exp [βT(X, P )]] 6
ï∫

M

1
E [exp [−H(X, P,Q)]]dπ(Q)

ò−1
.

We deduce from (50) that for all P ∈M

E [exp [βT(X, P )]] 6
ï∫

M
exp [−L(P,Q)] dπ(Q)

ò−1

6
1

π(B)

ï∫
B

exp [−L(P,Q)] dπB(Q)
ò−1

.(51)
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Applying Lemma 2 with U = X, V = P with distribution π and h(U, V ) =
βT(X, P ), gives

E
ï 1∫

M exp [−βT(X, P )] dπ(P )

ò
6
ï∫

M

1
E [exp [βT(X, P )]]dπ(P )

ò−1

6
1

π(B)

ï∫
B

1
E [exp [βT(X, P )]]dπB(P )

ò−1

which together with (51) leads to the result.
�

The proofs of Theorems 1 and 2 rely on suitable bounds on the Laplace
transforms of sums of independent random variables and on a summation
lemma. These results are presented below.

Lemma 5. For all β ∈ R and random variable U with values in an interval
of length l ∈ (0,+∞),

(52) logE [exp [βU ]] 6 βE [U ] + β2l2

8 .

Lemma 6. Let U be a squared integrable random variable not larger than
b > 0. For all β > 0,

(53) logE [exp [βU ]] 6 βE [U ] + β2E
[
U2]φ(βb),

where φ is defined by (20).

The proofs of Lemmas 5 and 6 can be found on pages 21 and 23 in
Massart (2007).

Lemma 7. Let J ∈ N, γ > 0 and P ∈M . If r satisfies nβa1r > 1 and (13),
for all γ0 > 2γ ∫

cB(P ,2Jr)
exp

[
−γ0nβa1`(P , P )

]
dπ(P )

6 π (B) exp
î
Ξ− (γ0 − 2γ)nβa12Jr

ó
(54)

with

Ξ = −γ + log
ï 1

1− exp [− (γ0 − 2γ)]

ò
Besides, ∫

M
exp

[
−γ0nβa1`(P , P )

]
dπ(P ) 6 π(B) exp

[
Ξ′
]

(55)

with
Ξ′ = log

ï
1 + exp [− (γ0 − γ)]

1− exp [− (γ0 − 2γ)]

ò
.
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Proof. From (13), we deduce by induction that for all j > 0

π
(
B(P , 2j+1r)

)
6 exp

[
γnβa1r

j∑
k=0

2k
]
π (B)

= exp
[
(2j+1 − 1)γnβa1r

]
π (B)

Consequently,∫
cB(P ,2Jr)

exp
[
−γ0nβa1`(P , P )

]
dπ(P )

=
∑
j>J

∫
B(P ,2j+1r)\B(P ,2jr)

exp
[
−γ0βna1`(P , P )

]
dπ(P )

6 π (B)
∑
j>J

π
(
B(P , 2j+1r)

)
π (B) exp

[
−γ0nβa12jr

]
6 π (B)

∑
j>J

exp
[
γnβa1(2j+1 − 1)r − γ0nβa12jr

]
= π (B) exp [−γnβa1r]

∑
j>J

exp
[
− (γ0 − 2γ)nβa12jr

]
= π (B) exp [−γnβa1r]

∑
j>0

exp
î
− (γ0 − 2γ)nβa12j2Jr

ó
.

Since 2j > j + 1 for all j > 0 we obtain that∫
cB(P ,2Jr)

exp
[
−γ0nβa1`(P , P )

]
dπ(P )

6 π (B) exp [−γnβa1r]
∑
j>0

exp
î
− (γ0 − 2γ)nβa1(j + 1)2Jr

ó
6 π (B) exp

î
−γnβa1r − (γ0 − 2γ)nβa12Jr

ó∑
j>0

exp
î
−j (γ0 − 2γ)nβa12Jr

ó
= π (B) exp [−γnβa1r]

1− exp [− (γ0 − 2γ)nβa12Jr] exp
î
− (γ0 − 2γ)nβa12Jr

ó
.

which leads to (54) since nβa12Jr > nβa1r > 1. Finally, by applying this
inequality with J = 0 we obtain that∫

M
exp

[
−βna1γ0`(P , P )

]
dπ(P )

=
∫

B
exp

[
−βna1γ0`(P , P )

]
dπ(P ) +

∫
cB

exp
[
−βna1γ0`(P , P )

]
dπ(P )

6 π(B)
ï
1 + exp [−γ − (γ0 − 2γ)nβa1r]

1− exp [− (γ0 − 2γ)]

ò
6 π(B)

ï
1 + exp [− (γ0 − γ)]

1− exp [− (γ0 − 2γ)]

ò
,

which is (55). �
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6.2. Main parts of the proofs of Theorems 1 and 2. Throughout the
proofs of these two theorems, we fix some arbitrary element P ∈ M and
r > rn(β, P ). It follows from the definition of rn(β, P ) that r satisfies both
nβa1r > 1 and inequality (13). For a positive number z, that will be chosen
later as well, we set

A =
ß∫

M
exp [−βT(X, P )] dπ(P ) > z

™
.

It follows from the definition (11) of π̂X that, given J ∈ N,

E
î
π̂X
Ä

cB(P , 2Jr)
äó

= E
î
π̂X
Ä

cB(P , 2Jr)
ä

1lcA

ó
+ E
î
π̂X
Ä

cB(P , 2Jr)
ä

1lA
ó

6 P(cA) + 1
z
E
ï∫

cB(P ,2Jr)
exp [−βT(X, P )] dπ(P )

ò
= P(cA) + 1

z

∫
cB(P ,2Jr)

E [exp [−βT(X, P )]] dπ(P ).(56)

In a first step, we prove that for some well chosen values of β, z, r and for J
large enough, each of the two terms in the right-hand side of (56) is not larger
than e−ξ. To achieve this goal, we bound the first term of the right-hand
side of (56) by first applying Markov’s inequality

P(cA) = P
ï∫

M
exp [−βT(X, P )] dπ(P ) 6 z

ò
= P
ñï∫

M
exp [−βT(X, P )] dπ(P )

ò−1
> z−1

ô
6 zE

ï 1∫
M exp [−βT(X, P )] dπ(P )

ò
and then by using Lemma 4. This leads to

P(cA) 6 z

π2(B)

ï∫
B2

exp [−L(P,Q)] dπB(P )dπB(Q)
ò−1

.(57)

To show that the first term in the right hand-side of (56) is not larger than
e−ξ we therefore prove that this is the case of the right-hand side of (57) for
z small enough. We bound the second term of (56) by using Lemma 3.

We then finish the proofs of Theorems 1 and 2 as follows. In the context
of Theorem 1, we finally establish that for a suitable value of J and all
P ∈M (β),

E
î
π̂X
Ä

cB(P , 2Jr)
äó
6 2e−ξ with r = r(P ) = `(P?, P ) + a−1

1 β.

By (3), B(P ?, 2Jr) ⊂ B(P?, τ`(P?, P ) + τ2Jr) for all P ∈ M (β), and
consequently E [π̂X (cB(P?, r)] 6 2e−ξ with

r = r(P ) = τ
î
`(P?, P ) + 2Jr

ó
= τ
î
(1 + 2J)`(P?, P ) + 2Ja−1

1 β
ó
.
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We obtain (17) by monotone convergence, taking a sequence (PN )N>0 ⊂
M (β) such that `(P?, PN ) is non-increasing to infP∈M (β) `(P?, P ), so that

lim
N→+∞

r(PN ) = τ

ñ
(1 + 2J) inf

P∈M (β)
`(P?, P ) + 2Ja−1

1 β

ô
6 τ(1 + 2J)

ñ
inf

P∈M (β)
`(P?, P ) + a−1

1 β

ô
and (17) holds provided that κ0 > τ(2J + 1).

In the context of Theorem 2, we show that for some suitable value of J
and all P ∈M ,

E
î
π̂X
Ä

cB(P , 2Jr)
äó
6 2e−ξ with r = `(P?, P ) + rn(P , β),

and we get (24) by arguing similarly.

6.3. Proof of Theorem 1. For all i ∈ {1, . . . , n} and P,Q,Q′ ∈M , let us
set

Ui = c
(
t(P,Q′)(Xi)− E

[
t(P,Q′)(Xi)

])
(58)

− c1
(
t(P,Q)(Xi)− E

[
t(P,Q)(Xi)

])
Vi = c2

(
t(P,Q′)(Xi)− E

[
t(P,Q′)(Xi)

])
(59)

− c1
(
t(P,Q)(Xi)− E

[
t(P,Q)(Xi)

])
.

The random variables Ui are independent and under Assumption 2-(iv),
they takes their values in an interval of length l1 = c + c1 = 1 + 2c. The
Vi are also independent and they takes their values in an interval of length
l2 = c1 + c2 = 3 + 2c. Applying Lemma 5, we obtain that

n∏
i=1

E [exp [βUi]] 6 exp
ï
l21nβ

2

8

ò
(60)

and
n∏
i=1

E [exp [βVi]] 6 exp
ï
l22nβ

2

8

ò
.(61)

By using Assumption 1 and the fact that c0 = c1 − ca0/a1 > 0,

c
(
a0`(P?, P )− a1`(P?, Q′)

)
− c1 (a1`(P?, P )− a0`(P?, Q))

= − (c1a1 − ca0) `(P?, P )− ca1`(P?, Q′) + c1a0`(P?, Q)
6 −c0a1

[
τ−1`(P , P )− `(P?, P )

]
− ca1

[
τ−1`(P ,Q′)− `(P?, P )

]
+ τc1a0

[
`(P?, P ) + `(P ,Q)

]
= e0a1`(P?, P )− τ−1c0a1`(P , P )− τ−1ca1`(P ,Q′) + τc1a0`(P ,Q)(62)
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with

(63) e0 = c0 + c+ τc1a0
a1

.

It follows from Assumptions 2-(iii) and (62) that

n−1 {cE [T(X, P,Q′)
]
− c1E [T(X, P,Q)]

}
6 c

[
a0`(P?, P )− a1`(P?, Q′)

]
− c1 [a1`(P?, P )− a0`(P?, Q)]

6 e0a1`(P?, P )− τ−1c0a1`(P , P )− τ−1ca1`(P ,Q′) + τc1a0`(P ,Q).(64)

Since a0 > a1 and c2 > c1, c′0 = c2(a0/a1) − c1 > 0 and by arguing as
above, we obtain similarly that

n−1 {c2E
[
T(X, P,Q′)

]
− c1E [T(X, P,Q)]

}
6 c2

(
a0`(P?, P )− a1`(P?, Q′)

)
− c1 (a1`(P?, P )− a0`(P?, Q))

= c′0a1`(P?, P )− c2a1`(P?, Q′) + c1a0`(P?, Q)
6 τc′0a1

[
`(P?, P ) + `(P , P )

]
− c2a1

[
τ−1`(P ,Q′)− `(P?, P )

]
+ τc1a0

[
`(P?, P ) + `(P ,Q)

]
6 (e1 + c2) a1`(P?, P ) + τc′0a1`(P , P )
− τ−1c2a1`(P ,Q′) + τc1a0`(P ,Q),(65)

with

(66) e1 = τ
[
c′0 + c1a0/a1

]
= τ [c2(a0/a1) + c1 (a0/a1 − 1)] .

Using (60) and (64), we deduce that for all P,Q,Q′ ∈M

E
[
exp

[
β
(
cT(X, P,Q′)− c1T(X, P,Q)

)]]
=

n∏
i=1

E
[
exp

[
β
(
ct(P,Q′)(Xi)− c1t(P,Q)(Xi)

)]]
= exp

[
β
(
cE
[
T(X, P,Q′)

]
− c1E [T(X, P,Q)]

)] n∏
i=1

E [exp [βUi]]

6 exp
[
nβ
[
∆1(P,Q)− τ−1ca1`(P ,Q′)

]]
(67)

with

∆1(P,Q) = e0a1`(P?, P ) + τc1a0`(P ,Q) + l21β

8 − τ
−1c0a1`(P , P ).(68)

Using (61) and (65), we obtain similarly that for all P,Q,Q′ ∈M

E
[
exp

[
β
(
c2T(X, P,Q′)− c1T(X, P,Q)

)]]
6 exp

[
nβ
[
∆2(P,Q)− τ−1c2a1`(P ,Q′)

]]
(69)



FROM ROBUST TESTS TO BAYES-LIKE POSTERIOR DISTRIBUTIONS 29

with

∆2(P,Q) = (e1 + c2) a1`(P?, P ) + τc′0a1`(P , P ) + τc1a0`(P ,Q)

+ l22β

8 .(70)

Since 2γ < τ−1c < τ−1c2, we may apply Lemma 7 with γ0 = τ−1c and
γ0 = τ−1c2 successively which leads to∫

M
exp

[
−τ−1cnβa1`(P ,Q′)

]
dπ(Q′) 6 π (B) exp [Ξ1](71)

and ∫
M

exp
[
−τ−1c2nβa1`(P ,Q′)

]
dπ(Q′) 6 π (B) exp [Ξ1](72)

with

Ξ1 = log
ñ
1 +

exp
[
−
(
τ−1c− γ

)]
1− exp [− (τ−1c− 2γ)]

ô
(73)

> log
ñ
1 +

exp
[
−
(
τ−1c2 − γ

)]
1− exp [− (τ−1c2 − 2γ)]

ô
.

Putting (69) and (72) together leads to

exp [L(P,Q)] =
∫

M
E
[
exp

[
β
(
c2T(X, P,Q′)− c1T(X, P,Q)

)]]
dπ(Q′)

6 exp [nβ∆2(P,Q)]
∫

M
exp

[
−τ−1c2nβa1`(P ,Q′)

]
dπ(Q′)

6 π (B) exp [Ξ1 + nβ∆2(P,Q)] ,

and since, for all (P,Q) ∈ B2, by definition (70) of ∆2(P,Q),

∆2(P,Q) 6 (e1 + c2) a1`(P?, P ) +
[
τc′0a1 + τc1a0

]
r + l22β

8

= (e1 + c2) a1`(P?, P ) + e1a1r + l22β

8 = ∆2(74)

we derive thatï∫
B2

exp [−L(P,Q)] dπB(P )dπB(Q)
ò−1
6 π (B) exp [Ξ1 + nβ∆2] .

We deduce from (57) that

P(cA) 6 z

π (B) exp [Ξ1 + nβ∆2] .

In particular, P(cA) 6 e−ξ for z satisfying

log
Å1
z

ã
= ξ + log 1

π(B) + Ξ1 + nβ∆2.(75)
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Putting (67) and (71) together, we obtain that

exp [M(P,Q)]

=
∫

M
E
[
exp

[
β
(
cT(X, P,Q′)− c1T(X, P,Q)

)]]
dπ(Q′)

6 exp [nβ∆1(P,Q)]
∫

M
exp

[
−τ−1cnβa1`(P ,Q′)

]
dπ(Q′)

6 π (B) exp [Ξ1 + nβ∆1(P,Q)] .

It follows from the definition (68) of ∆1(P,Q) that for all P ∈ M and for
all Q ∈ B,

∆1(P,Q) 6 e0a1`(P?, P ) + τc1a0r + l21β

8 − τ
−1c0a1`(P , P ),

and consequently, for all P ∈M and Q ∈ B

exp [M(P,Q)]

6 π (B) exp
ï
Ξ1 + nβ

Å
e0a1`(P?, P ) + τc1a0r + l21β

8 − τ
−1c0a1`(P , P )

ãò
.

We derive from Lemma 3 that

E [exp [−βT(X, P )]]

6
1

π(B)

ï∫
B

exp [−M(P,Q)] dπB(Q)
ò−1

6 exp
ï
Ξ1 + nβ

Å
e0a1`(P?, P ) + τc1a0r + l21β

8 − τ
−1c0a1`(P , P )

ãò
,

hence, ∫
cB(P ,2Jr)

E [exp [−βT(X, P )]] dπ(P )(76)

6 exp
ï
Ξ1 + nβ

Å
e0a1`(P?, P ) + τc1a0r + l21β

8

ãò
×
∫

cB(P ,2Jr)
exp

[
−τ−1c0nβa1`(P , P )

]
dπ(P ).

Applying Lemma 7 with γ0 = τ−1c0 > 2γ and setting e2 = τ−1c0 − 2γ, we
get∫

cB(P ,2Jr)
exp

[
−τ−1c0nβa1`(P , P )

]
dπ(P ) 6 π (B) exp

î
Ξ2 − e2nβa12Jr

ó
with

(77) Ξ2 = −γ + log
ï 1

1− exp [−e2]

ò
,
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which together with (76) leads to

log
∫

cB(P ,2Jr)
E [exp [−βT(X, P )]] dπ(P )

6 log [π (B)] + Ξ1 + Ξ2

+ nβ

ï
e0a1`(P?, P ) + τc1a0r + l21β

8 − e2a12Jr
ò
.(78)

Using the definitions (75) of z and (74) of ∆2 we deduce from (78) that

log
ï1
z

∫
cB(P ,2Jr)

E [exp [−βT(X, P )]] dπ(P )
ò

6 log
Å1
z

ã
+ log [π (B)] + Ξ1 + Ξ2

+ nβ

ï
e0a1`(P?, P ) + τc1a0r + l21β

8 − e2a12Jr
ò

= ξ + log 1
π(B) + Ξ1 + nβ∆2 + log [π (B)] + Ξ1 + Ξ2

+ nβ

ï
e0a1`(P?, P ) + τc1a0r + l21β

8 − e2a12Jr
ò

= nβ

ï
(e1 + c2 + e0) a1`(P?, P ) + e1a1r + l22β

8 + +τc1a0r + l21β

8

ò
+ ξ + 2Ξ1 + Ξ2 − e2nβa12Jr

= nβ

ï
(e0 + e1 + c2) a1`(P?, P ) +

ï
e1 + τc1a0

a1

ò
a1r + (l21 + l22)β

8

ò
+ ξ + 2Ξ1 + Ξ2 − e2nβa12Jr.(79)

Setting,
C1 = e0 + e1 + c2 and C2 = e1 + τc1a0

a1
,

we see that the right-hand side of (79) is not larger than −ξ, provided that

e2nβa12Jr > 2ξ + 2Ξ1 + Ξ2 + nβ

ï
C1a1`(P?, P ) + C2a1r + (l21 + l22)β

8

ò
or equivalently if

2J > 1
e2

ñ
2ξ + 2Ξ1 + Ξ2

βna1r
+ C1`(P?, P ) + C2r

r
+
[
l21 + l22

]
β

8a1r

ô
.(80)

For P ∈M (β) and the choice r = `(P?, P ) + a−1
1 β > rn(β, P ) > 1/(na1β),

(80) is satisfied if

2J > 1
e2

Ç
2ξ + 2Ξ1 + Ξ2 + C1 + C2 +

[
l21 + l22

]
8

å
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and the requirement κ0 > τ(2J + 1) if

(81) κ0 = τ

ñ
1 + 2

e2

Ç
2ξ + 2Ξ1 + Ξ2 + C1 + C2 +

[
l21 + l22

]
8

åô
.

6.4. Proof of Theorem 2. The proof follows the same lines as that of The-
orem 1. Under Assumption 2-(iv), the random variables Ui and Vi defined
by (58) and (59) are not larger than with b = c+c1 = l1 and b = c2 +c1 = l2
respectively. Since under Assumption 3, for all i ∈ {1, . . . , n}

E
[
U2
i

]
6 2

[
c2 Var

[
t(P,Q′)(Xi)

]
+ c2

1 Var
[
t(P,Q)(Xi)

]]
6 2a2

[
(c2 + c2

1)`(P ?i , P ) + c2`(P ?i , Q′) + c2
1`(P ?i , Q)

]
and

E
[
V 2
i

]
6 2a2

[
(c2

2 + c2
1)`(P ?i , P ) + c2

2`(P ?i , Q′) + c2
1`(P ?i , Q)

]
we may apply Lemma 6 and using the notations Λ1 = τφ(βl1), Λ2 = τφ(βl2)
as well as Assumption 1, we get

1
nβ

log
ñ
n∏
i=1

E [exp [βUi]]
ô

6 2φ(βl1)βa2
[
(c2 + c2

1)`(P?, P ) + c2`(P?, Q′) + c2
1`(P?, Q)

]
6 2Λ1βa2

[
c2 + c2

1
]
`(P?, P )

+ Λ1βa2
[
(c2 + c2

1)`(P , P ) + c2`(P ,Q′) + c2
1`(P ,Q)

]
(82)

and

1
nβ

log
ñ
n∏
i=1

E [exp [βVi]]
ô

6 2Λ2βa2
[
c2

2 + c2
1
]
`(P?, P )

+ Λ2βa2
[
(c2

2 + c2
1)`(P , P ) + c2

2`(P ,Q′) + c2
1`(P ,Q)

]
.(83)

It follows from (64) that

E1 = n−1 {cE [T(X, P,Q′)
]
− c1E [T(X, P,Q)]

}
+ 2Λ1βa2

[
c2 + c2

1
]
`(P?, P )

+ Λ1βa2
[
(c2 + c2

1)`(P , P ) + c2`(P ,Q′) + c2
1`(P ,Q)

]
=
[
e0a1 + 2Λ1βa2

(
c2 + c2

1
)]
`(P?, P )

−
[
τ−1c0a1 − Λ1βa2(c2 + c2

1)
]
`(P , P )

−
[
τ−1ca1 − Λ1βa2c

2] `(P ,Q′)
+
[
τc1a0 + Λ1βa2c

2
1
]
`(P ,Q).
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Using the definitions (21) of τ−1c1 and (22) of τ−1c2 and setting

e3 = e0 + 2Λ1β
a2
(
c2 + c2

1
)

a1

e4 = 1
a1

[
τc1a0 + Λ1βa2c

2
1
]

and arguing as in the proof of inequality (67), we deduce from (82) that
E
[
exp

[
β
(
cT(X, P,Q′)− c1T(X, P,Q)

)]]
6 exp [nβE1]

= exp
[
nβa1

(
e3`(P?, P )− τ−1 [c1`(P , P ) + c2`(P ,Q′)

]
+ e4`(P ,Q)

)](84)

It follows from (65) that
E2 = n−1 {c2E

[
T(X, P,Q′)

]
− c1E [T(X, P,Q)]

}
+ 2Λ2βa2

[
c2

2 + c2
1
]
`(P?, P )

+ Λ2βa2
[
(c2

2 + c2
1)`(P , P ) + c2

2`(P ,Q′) + c2
1`(P ,Q)

]
6 (e1 + c2) a1`(P?, P ) + τc′0a1`(P , P )− τ−1c2a1`(P ,Q′)

+ τc1a0`(P ,Q) + 2Λ2βa2
[
c2

2 + c2
1
]
`(P?, P )

+ Λ2βa2
[
(c2

2 + c2
1)`(P , P ) + c2

2`(P ,Q′) + c2
1`(P ,Q)

]
=
[
(e1 + c2) a1 + 2Λ2βa2

(
c2

2 + c2
1
)]
`(P?, P )

+
[
τc′0a1 + Λ2βa2(c2

2 + c2
1)
]
`(P , P )

−
[
τ−1c2a1 − Λ2βa2c

2
2
]
`(P ,Q′)

+
[
τc1a0 + Λ2βa2c

2
1
]
`(P ,Q).

Using the definition (23) of τ−1c3, setting

e5 = e1 + c2 + 2Λ2β
a2
(
c2

2 + c2
1
)

a1

e6 = τc′0 + Λ2β
a2(c2

2 + c2
1)

a1

e7 = 1
a1

[
τc1a0 + Λ2βa2c

2
1
]
,

and arguing as in the proof of (69), we deduce from (83) that
E
[
exp

[
β
(
c2T(X, P,Q′)− c1T(X, P,Q)

)]]
6 exp [nβE2]
= exp

[
nβa1

(
e5`(P?, P ) + e6`(P , P )− τ−1c3`(P ,Q′) + e7`(P ,Q)

)]
.(85)

Under our assumption on β, we know that the quantities τ−1c2 and τ−1c3
are positive and that 2γ < τ−1 (c2 ∧ c3). We may therefore apply Lemma 7
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with γ0 = τ−1c2 and γ0 = τ−1c3 successively and get∫
M

exp
[
−τ−1c2nβa1`(P ,Q′)

]
dπ(Q′) 6 π (B) exp

[
Ξ1
]

(86)

and ∫
M

exp
[
−τ−1c3nβa1`(P ,Q′)

]
dπ(Q′) 6 π (B) exp

[
Ξ1
]

(87)

with

(88) Ξ1 = log
ñ

1 +
exp

[
−
(
τ−1(c2 ∧ c3)− γ

)]
1− exp [− (τ−1(c2 ∧ c3)− 2γ)]

ô
.

Putting (85) and (87) together, we obtain that for all (P,Q) ∈ B2

exp [L(P,Q)]

=
∫

M
E
[
exp

[
β
(
c2T(X, P,Q′)− c1T(X, P,Q)

)]]
dπ(Q′)

6 exp
[
nβa1

(
e5`(P?, P ) + e6`(P , P ) + e7`(P ,Q)

)]
×
∫

M
exp

[
−τ−1c3nβa1`(P ,Q′)

]
dπ(Q′)

6 π (B) exp
[
Ξ1 + nβa1

(
e5`(P?, P ) + e6`(P , P ) + e7`(P ,Q)

)]
6 π (B) exp

[
Ξ1 + nβa1

(
e5`(P?, P ) + (e6 + e7)r

)]
.

Consequently,ï∫
B2

exp [−L(P,Q)] dπB(P )dπB(Q)
ò−1

6 π (B) exp
[
Ξ1 + nβa1

(
e5`(P?, P ) + (e6 + e7)r

)]
.

We deduce from (57) that

P(cA) 6 z

π (B) exp
[
Ξ1 + nβa1

(
e5`(P?, P ) + (e6 + e7)r

)]
.

In particular, P(cA) 6 e−ξ for z satisfying

log
Å1
z

ã
= ξ + log 1

π(B) + Ξ1 + nβa1
[
e5`(P?, P ) + (e6 + e7)r

]
.(89)

Putting (84) and (86) together, we obtain that for all Q ∈ B

exp [M(P,Q)]

=
∫

M
E
[
exp

[
β
(
cT(X, P,Q′)− c1T(X, P,Q)

)]]
dπ(Q′)

6 exp
[
nβa1

(
e3`(P?, P )− τ−1c1`(P , P ) + e4`(P ,Q)

)]
×
∫

M
exp

[
−τ−1c2nβa1`(P ,Q′)

]
dπ(Q′)

6 π(B) exp
[
Ξ1 + nβa1

(
e3`(P?, P ) + e4r − τ−1c1`(P , P )

)]
.
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We derive from Lemma 3 that
E [exp [−βT(X, P )]]

6
1

π(B)

ï∫
B

exp [−M(P,Q)] dπB(Q)
ò−1

6 exp
[
Ξ1 + nβa1

(
e3`(P?, P ) + e4r − τ−1c1`(P , P )

)]
,

and consequently,∫
cB(P ,2Jr)

E [exp [−βT(X, P )]] dπ(P )

6 exp
[
Ξ1 + nβa1

(
e3`(P?, P ) + e4r

)]
×
∫

cB(P ,2Jr)
exp

[
−τ−1c1nβa1`(P , P )

]
dπ(P ).(90)

Since under our assumptions, τ−1c1 > 0 and 2γ < τ−1c1 we may apply
Lemma 7 with γ0 = τ−1c1, which leads to∫

cB(P ,2Jr)
exp

[
−τ−1c1nβa1`(P , P )

]
dπ(P ) 6 π (B) exp

î
Ξ2 −

(
τ−1c1 − 2γ

)
nβa12Jr

ó
.

with

(91) Ξ2 = −γ + log
ï 1

1− exp [− (τ−1c1 − 2γ)]

ò
,

which together with (90) leads to∫
cB(P ,2Jr)

E [exp [−βT(X, P )]] dπ(P )

6 π (B) exp
î
Ξ1 + Ξ2 + nβa1

Ä
e3`(P?, P ) + e4r −

(
τ−1c1 − 2γ

)
2Jr
äó
.

(92)

Using the definition (89) of z, we deduce that

log
ï1
z

∫
cB(P ,2Jr)

E [exp [−βT(X, P )]] dπ(P )
ò

6 log
Å1
z

ã
+ log π(B) + Ξ1 + Ξ2 + nβa1

Ä
e3`(P?, P ) + e4r −

(
τ−1c1 − 2γ

)
2Jr
ä

= ξ + log 1
π(B) + Ξ1 + nβa1

[
e5`(P?, P ) + (e6 + e7)r

]
+ log π(B) + Ξ1 + Ξ2 + nβa1

Ä
e3`(P?, P ) + e4r −

(
τ−1c1 − 2γ

)
2Jr
ä

= ξ + 2Ξ1 + Ξ2 + nβa1
[
(e3 + e5) `(P?, P ) + (e4 + e6 + e7)r

]
−
(
τ−1c1 − 2γ

)
nβa12Jr.

The right-hand side is not larger than −ξ provided that

2J > 1
τ−1c1 − 2γ

ñ
2ξ + 2Ξ1 + Ξ2

nβa1r
+
ñ

(e3 + e5) `(P
?, P )
r

+ e4 + e6 + e7

ôô
.
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Choosing r = `(P?, P ) + rn(β, P ) > 1/(nβa1), this inequality is satisfied as
soon as

2J > 1
τ−1c1 − 2γ

[
2ξ + 2Ξ1 + Ξ2 + e3 + e5 + e4 + e6 + e7

]
and the requirement κ0 > τ(2J + 1) if

(93) κ0 = τ

ï
1 + 2

τ−1c1 − 2γ
(
2ξ + 2Ξ1 + Ξ2 + e3 + e5 + e4 + e6 + e7

)ò
.

7. Other proofs

7.1. Proof of Proposition 2. Let |θ| 6 σt and Fσ be the distribution
function of νσ. For conveniency, when L is finite, we define H(x) = 1 for all
x > L. Since the total variation distance is translation invariant,∥∥Pθ − Pθ∥∥ =

∥∥∥Pθ−θ − P0
∥∥∥ =

∥∥∥Pθ−θ − P0
∥∥∥ = H

(∣∣θ − θ∣∣)
for all θ, θ ∈ R. We distinguish between two cases
Case 1: r0 = H(σt) 6 1/4. Since q is symmetric, positive and decreasing
on R+, for all r 6 r0, G(r) 6 σt and

π(B(Pθ, 2r))
π(B(Pθ, r))

=
νσ
({
θ ∈ R,

∥∥Pθ − Pθ∥∥ 6 2r
})

νσ
({
θ ∈ R,

∥∥Pθ − Pθ∥∥ 6 r}) =
νσ
({
θ ∈ R, H

(∣∣θ − θ∣∣) 6 2r
})

νσ
({
θ ∈ R, H

(∣∣θ − θ∣∣) 6 r})
=
νσ
({
θ ∈ R,

∣∣θ − θ∣∣ 6 G(2r)
})

νσ
({
θ ∈ R,

∣∣θ − θ∣∣ 6 G(r)
}) 6 2qσ(0)G(2r)

2qσ(|θ|+G(r))G(r)

6
qσ(0)G(2r)

qσ(|θ|+G(r0))G(r) 6
qσ(0)G(2r)

qσ(|θ|+ σt)G(r) 6
qσ(0)G(2r)
qσ(2σt)G(r)

= q(0)G(2r)
q(2t)G(r) 6

Γ
q(2t) .

For all r0 < r < 1, |θ| 6 σt = G(r0) 6 G(r), hence Fσ(|θ|−G(r)) 6 Fσ(0) =
1/2 and Fσ(|θ|+G(r)) > Fσ(G(r)) > Fσ(σt) = F1(t) > 3/4. Consequently,
π(B(Pθ, 2r))
π(B(Pθ, r))

6
1

νσ
({
θ ∈ R,

∣∣θ − θ∣∣ 6 G(r)
}) = 1

Fσ
(
|θ|+G(r)

)
− F (|θ| −G(r))

6
1

3/4− 1/2 = 4.

Case 2: r0 > 1/4. Arguing as before, we obtain that for all r 6 1/4 < r0,
π(B(Pθ, 2r))
π(B(Pθ, r))

6
2qσ(0)G(2r)

2qσ(|θ|+G(r))G(r) = qσ(0)G(2r)
qσ(|θ|+G(r0))G(r)

6
qσ(0)G(2r)
qσ(2σt)G(r) 6

Γ
q(2t) .
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For all r ∈ (1/4, 1), G(r) > G(1/4) and G(1/4) 6 σt

π(B(Pθ, 2r))
π(B(Pθ, r))

6
1

νσ
({
θ ∈ R,

∣∣θ − θ∣∣ 6 G(r)
})

6
1

νσ
({
θ ∈ R,

∣∣θ − θ∣∣ 6 G(1/4)
})

6
1

2qσ(|θ|+G(1/4))G(1/4)

6
1

2qσ(2σt)G(1/4) 6
Γσ
q(2t) .

We obtain that in any case, for all r ∈ (0, 1) and θ ∈ [−σt, σt],

log
Ç
π(B(Pθ, 2r))
π(B(Pθ, r))

å
6 max

®
log
Ç

Γ (σ ∨ 1)
q(2t)

å
, log 4

´
,(94)

hence, for all r > a−1
1 β

1
nγa1r

log
Ç
π(B(Pθ, 2r))
π(B(Pθ, r))

å
6

1
nγβ

sup
r>0

log
Ç
π(B(Pθ, 2r))
π(B(Pθ, r))

å
6

1
nγβ

max
®

log
Ç

Γ (σ ∨ 1)
q(2t)

å
, log 4

´
.

The right-hand side is not larger than β provided that it satisfies (27) and
this lower bound is not smaller than 1/

√
n under the assumption η 6 log 4.

We conclude by using (16).

7.2. Proof of Proposition 3. Let us take t = (|θ|/σ)∨t0. For such a value
of t, θ ∈ [−σt, σt] and ν1([t,+∞)) 6 1/4. Since Assumption 4 is satisfied,
(94) holds true and we deduce from (12) that

rn(β, Pθ) 6
1

γna1β
max

®
log
Ç

Γ (σ ∨ 1)
q(2t)

å
, log 4

´
and the result follows from our specific choices of a1, γ and β.

7.3. Proof of Corollary 1. Throughout this proof, a0 = 3/2, a1 = 1/2,
τ = 1, A the σ-algebra generated by all the subsets of M so that, Assump-
tions 1 and 2 hold. The constants c = 1/3, hence λ = 4β/3, and γ = 1/6
satisfy the constraints of Theorem 1. We may therefore apply it with these
choices. Besides, we set δ = δn, η = ηn, β = βn and Θ = Θ[η, δ] for short
and

(95) Jn = exp
ï(K2 − 1)γτ4a2

1nη
2
n

2(k + 1)

ò
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so that Mn(K) gathers the elements P = P(p,m,σ) of M such that

| log σ| ∨
∣∣∣m
σ

∣∣∣
∞
6 log(1 + δ)Jn.

Hereafter we fix P = P(p,m,σ) ∈Mn(K). There exist θ = θ(P ) = (p,m, σ) ∈
Θ with σ = (1 + δ)j0 , m = σδj, (j0, j) ∈ Z× Zk such that

(96) σ

(1 + δ) 6 σ < σ and mi = jiσδ 6 mi < mi + σδ,

for all i ∈ {1, . . . , k}. Consequently,

0 6
(

1− σ

σ

)
6

δ

1 + δ
< δ and

∣∣∣∣m−m
σ

∣∣∣∣
∞
6 δ,(97)

and we infer from (31) and (32) and the fact that the total variation loss is
translation and scale invariant that Pθ satisfies

`
(
P(p,m,σ), Pθ

)
6 `

(
P(p,m,σ), P(p,m,σ)

)
+ `

(
P(p,m,σ), P(p,m,σ)

)
6 `

(
P(p,0,1), P(p,0,1)

)
+ `

(
P(p,0,1), P(p,m−m

σ
,σ
σ

)

)
6 η +

ï
A

Å∣∣∣∣m−m
σ

∣∣∣∣α
∞

+
(

1− σ

σ

)αãò
∧ 1

6 η + 2Aδα = 2η.

Besides, the parameters (j0, j) ∈ Z×Zk can be controlled in the following
way. Using that σ 6 σ, the inequality log(1 + δ) 6 δ and (97), we obtain
that for all i ∈ {1, . . . , k},

|ji| =
∣∣∣∣mi

σδ

∣∣∣∣ = 1
σδ
|mi −mi +mi| 6

1
σδ

[
σδ + σ

∣∣∣mi

σ

∣∣∣] 6 1 + 1
log(1 + δ)

∣∣∣mi

σ

∣∣∣ .
Besides,

j0 = log σ
log(1 + δ) = 1

log(1 + δ)

[
− log

(
1 + σ

σ
− 1
)

+ log σ
]

6
1

log(1 + δ)

ï
− log

Å
1− δ

1 + δ

ã
+ | log σ|

ò
= 1

log(1 + δ) [log (1 + δ) + | log σ|] 6 1 + | log σ|
log(1 + δ)

and using the inequality log(1+2x) 6 2 log(1+x), which holds for all x > 0,
we obtain that

j0 >
log σ

log(1 + δ) > −
| log σ|

log(1 + δ) > −
ï
1 + | log σ|

log(1 + δ)

ò
.

Putting these inequalities together and using the fact that P ∈Mn(K), we
get

(98) |(j0, j)|∞ 6 1 + 1
log(1 + δ)

[
| log σ| ∨

∣∣∣m
σ

∣∣∣
∞

]
6 1 + Jn.
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For all r > 0, e−Lθ 6 π (B(Pθ, r)) 6 1 and these two inequalities together
with the definition (35) of η and Assumption 5 imply that for all r > 0

π (B(Pθ, 2r))
π (B(Pθ, r))

6 exp [Lθ] 6 exp
[‹D(η) + 2

k∑
i=0

ï
L

2 + log(1 + |ji|)
ò]

6 exp
[
γτ4a2

1nη
2 + (k + 1) [L+ 2 log(1 + |(j0, j)|∞)]

]
.

Using (98), the definition (95) of Jn and the fact that log(2+x) 6 log 3+log x
for all x > 1, we derive that

π (B(Pθ, 2r))
π (B(Pθ, r))

6 exp
[
γτ4a2

1nη
2 + (k + 1)L+ 2(k + 1) log(2 + Jn)

]
,

6 exp
[
K2γτ4a2

1nη
2 + (k + 1) (L+ log 9)

]
and since γ = 1/6 6 L′ = L+ log 9 < 3.1,

1
nβa1

6 rn(β, Pθ) 6
1

γnβa1

[
K2γτ4a2

1nη
2 + (k + 1)L′

]
= 1
a1β

ï
K2τ4a2

1η
2 + (k + 1)L′

γn

ò
.

For the choice of β = βn given by (37),

β >

 
K2τ4a2

1η
2 + (k + 1)L′

γn
>

1√
n

hence, rn(β, Pθ) 6 a−1
1 β and Pθ ∈M (β). This implies that

inf
P ′∈M (β)

`(P?, P ′) + a−1
1 β 6 `(P?, Pθ) + a−1

1 β

6 τ`(P?, P ) + τ`(P, Pθ) + a−1
1 β

6 τ`(P?, P ) + 2τη +
[
Kτ2η + 1

a1

 
(k + 1)L′

γn

]
,

and the result follows from Theorem 1 and the fact that P is arbitrary in
Mn(K).

7.4. Proof of Lemma 1. By doing the change of variables u = x − m
in (43) if ever necessary, we may assume with no loss of generality that
m > 0. Then, since p is non-increasing in (0,+∞) and vanishes elsewhere
p(x −m) > p(x) for all x > m and p(x) > p(x −m) = 0 for all x ∈ (0,m).
Consequently,∫

R
|p(x)− p(x−m)| dx =

∫ m

0
p(x)dx+

∫ +∞

m
[p(x−m)− p(x)] dx

= 2
∫ m

0
p(x)dx+

∫ +∞

m
p(x−m)dx−

∫ +∞

0
p(x)dx

6 2mB + 1− 1,
and we obtain (43).
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Since σ > 1, p(x/σ) > p(x) and p(x)/σ 6 p(x) for all x > 0. Hence,∫
R

∣∣∣∣ 1σp(xσ)− p(x)
∣∣∣∣ dx

6
∫
R

∣∣∣∣ 1σp(xσ)− 1
σ
p(x)

∣∣∣∣ dx+
∫
R

∣∣∣∣ 1σp (x)− p(x)
∣∣∣∣ dx

= 1
σ

∫
R

(
p
(x
σ

)
− p(x)

)
dx+

∫
R

Å
p(x)− 1

σ
p (x)

ã
dx

= 2
Å

1− 1
σ

ã
,

which leads to (42).
Finally, by combining (43) and (42) we deduce that for all m ∈ R and

σ > 1
1
2

∫
R

∣∣∣∣ 1σp(x−mσ )
− p(x)

∣∣∣∣ dx
= 1

2

∫
R

∣∣∣∣ 1σp(x−mσ )
− 1
σ
p
(x
σ

)∣∣∣∣ dx+ 1
2

∫
R

∣∣∣∣ 1σp(xσ)− p(x)
∣∣∣∣ dx

= 1
2

∫
R

∣∣∣p(u− m

σ

)
− p(u)

∣∣∣ du+ 1
2

∫
R

∣∣∣∣ 1σp(xσ)− p(x)
∣∣∣∣ dx

6 B
∣∣∣m
σ

∣∣∣+
Å

1− 1
σ

ã
which yields to (44).

7.5. Proof of Corollary 2. It follows from Proposition 1 and our condition
on p that the family T (`,M ) satisfies Assumption 2 with a0 = 2, a1 = 3/16
and a2 = 3

√
2/4 for the loss ` = h2. Besides, Assumption 1 holds true with

τ = 2 and the constants γ = 0.01, β = 0.01, λ = (1 + c)β with c = 0.05
satisfy the constraints of Theorem 2.

We also use the following lemma the proof of which is postponed to Sec-
tion 7.6.

Lemma 8. Let θ ∈ Rk be such that |θ|∞ 6 R. For all m ⊂ {1, . . . , k} and
r > 0

νm
Ä¶
θ′ ∈ Rk,

∣∣θ′ − θ∣∣∞ 6 r©ä
=


1

2|m|
∏
i∈m

ïÅ
1− |θi|

R

ã
∧ r

R
+
Å

1 + |θi|
R

ã
∧ r

R

ò
if |θi| 6 r for all i 6∈ m

0 otherwise,

with the convention
∏

∅ = 1. In particular, if θ ∈ Θm(R) and

(99) νm
Ä¶
θ′ ∈ Rk,

∣∣θ′ − θ∣∣∞ 6 r©ä > 1
2|m|

( r
R
∧ 1
)|m|
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and for all K > 1

(100)
νm
({
θ′ ∈ Rk,

∣∣θ′ − θ∣∣∞ 6 Kr})
νm
({
θ′ ∈ Rk,

∣∣θ′ − θ∣∣∞ 6 r}) 6 K |m|.
Let us set B = Bk for short and define m as the subset of {1, . . . , k} that

minimizes over those m ⊂ {1, . . . , k} the mapping

m 7→ inf
θ∈Θm(R)

`(P?, Pθ) +
|m| log

Ä
2kR(nB)1/(2α)

ä
+ 1

γnβa1
.

Finally, let θ for some arbitrary element of Θm(R).
It follows from (45) and (99) that for all r > 0,

1 > πm
(
B(Pθ, r)

)
= νm

Ä¶
θ ∈ Rk, h2(Pθ, Pθ) 6 r

©ä
> νm

Ä¶
θ ∈ Rk,

∣∣θ − θ∣∣∞ 6 (r/B)1/(2α)
©ä

>
1

2|m|

Ç
(r/B)1/(2α)

R
∧ 1
å|m|

>
1

2|m|

Ç
(r ∧ 1)1/(2α)

RB1/(2α)

å|m|
,(101)

where the last inequality holds true under the assumption that RB1/(2α) > 1.
We deduce from (101) that for all r > 0

π
(
B(Pθ, 2r)

)
π
(
B(Pθ, r)

) 6 1
π
(
B(Pθ, r)

)
6

1∑
m⊂{1,...,k} e

−Lmνm
({
θ ∈ Rk,

∣∣θ − θ∣∣∞ 6 (r/B)1/(2α)
})

6
eLm

νm
({
θ ∈ Θm,

∣∣θ − θ∣∣∞ 6 (r/B)1/(2α)
})

6 exp
ñ
Lm + |m| log

Ç
2RB1/(2α)

(r ∧ 1)1/(2α)

åô
= exp

ï
|m| log

Ä
2kRB1/(2α)

ä
+ k log

Å
1 + 1

k

ã
+ |m|2α log

Å1
r
∨ 1
ãò

.(102)

Provided that

r >
|m| log

Ä
2kR(nB)1/(2α)

ä
+ 1

γnβa1
>

1
n
,
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|m| log
Ä
2kRB1/(2α)

ä
+ k log

Å
1 + 1

k

ã
+ |m|2α log

Å1
r
∨ 1
ã

6 |m| log
Ä
2kRB1/(2α)

ä
+ k log

Å
1 + 1

k

ã
+ |m| log

Ä
n1/(2α)

ä
6 |m| log

Ä
2kR(nB)1/(2α)

ä
+ 1 6 γnβa1r

and we deduce from (102) that rn(β, Pθ) defined by (12) satisfies

1
nβa1

6 rn(β, Pθ) 6
|m| log

Ä
2kR(nB)1/(2α)

ä
+ 1

γnβa1
.

By applying Theorem 2, we conclude that (24) holds with

r 6 `(P?, Pθ) +
|m| log

Ä
2kR(nB)1/(2α)

ä
+ 1

γnβa1

and the conclusion follows from the definition of m and the fact that θ is
arbitrary in Θm(R).

7.6. Proof of Lemma 8. Let θ ∈ R and ν be the uniform distribution on
[−R,R]. For all θ ∈ [−R,R] and r > 0,

ν ([θ − r, θ + r]) = 1
2R [(θ + r) ∧R− (θ − r) ∨ (−R)]+

= 1
2R [(r + θ) ∧R+ (r − θ) ∧R]+

= 1
2R [(r + |θ|) ∧R+ (r − |θ|) ∧R]+

= 1
2

ïÅ
1− |θ|

R

ã
∧ r

R
+
Å

1 + |θ|
R

ã
∧ r

R

ò
.

Let now θ ∈ Rk such that |θ|∞ 6 R. For all m ⊂ {1, . . . , k}, m 6= ∅,

νm
({
θ′ ∈ Θm,

∣∣θ′ − θ∣∣∞ 6 r}) = 0

if there exists i 6∈ m such that |θi| > r. Otherwise

νm
Ä¶
θ′ ∈ Rk,

∣∣θ′ − θ∣∣∞ 6 r©ä = νm

Åß
θ′ ∈ Θm, max

i∈m

∣∣θ′i − θi∣∣ 6 r™ã
=
∏
i∈m

ν ([θi − r, θi + r])

= 1
2|m|

∏
i∈m

ïÅ
1− |θi|

R

ã
∧ r

R
+
Å

1 + |θi|
R

ã
∧ r

R

ò
.

If m = ∅,
ν∅
Ä¶
θ′ ∈ Rk,

∣∣θ′ − θ∣∣∞ 6 r©ä = 1l|θ|∞6r.
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Let us now turn to the proof of (100). Since θ ∈ Θm(R), for all K ′ ∈
{1,K}

νm
Ä¶
θ′ ∈ Rk,

∣∣θ′ − θ∣∣∞ 6 K ′r©ä
= νm

Åß
θ′ ∈ Θm, max

i∈m

∣∣θ′i − θi∣∣ 6 K ′r™ã
=
∏
i∈m

ν
(
[θi −K ′r, θi +K ′r]

)
,

It is therefore enough to show that for all r > 0 and θ ∈ [0, R]

∆(r) = ν ([θ −Kr, θ +Kr])
ν ([θ − r, θ + r]) 6 K.

This is what we do now by distinguishing between several cases.
When θ+Kr 6 R, θ−Kr > 2θ−R > −R and consequently, ∆(r) = K.

When θ +Kr > R and −R 6 θ −Kr,

∆(r) = R− (θ −Kr)
(θ + r) ∧R− (θ − r) =


R− θ +Kr

R− θ + r
when θ + r > R

R− θ +Kr

2r when θ + r 6 R,

and the conclusion follows from the facts that 0 6 R − θ 6 Kr. When
θ +Kr > R and θ −Kr < −R, r > (θ +R)/K > R/K, hence R + r − θ >
2R/K and R 6 Kr. Consequently,

∆(r) = 2R
(θ + r) ∧R− (θ − r) ∨ (−R)

=



2R
2R = 1 when θ + r > R and θ − r < −R

2R
R+ r − θ

6 K when θ + r > R and θ − r > −R

2R
2r 6 K when θ + r 6 R,

which concludes the proof.
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