
Privacy-Preserving PayString Service
Flaviene Scheidt de Cristo∗, Wazen M. Shbair∗, Lucian Trestioreanu∗, Aanchal Malhotra† and Radu State∗

∗ University of Luxembourg, SnT, 29, Avenue J.F Kennedy, L-1855 Luxembourg
Email:{flaviene.scheidt, wazen.shbair, lucian.trestioreanu, radu.state}@uni.lu
† Ripple, 315 Montgomery Street, San Francisco, CA 94104, United States

Email: amalhotra@ripple.com

Abstract—PayString is an initiative to make payment iden-
tifiers global and human-readable, facilitating the exchange of
payment information. However, the reference implementation
lacks privacy and security features, making it possible for anyone
to access the payment information as long as the PayString
identifier is known. We propose an innovative solution, named
PayStringSecure, for this issue by integrating a privacy layer
based on Self-Sovereign Identity (SSI), Decentralized Identifier
(DID) and Verifiable Credential (VC) to the PayString protocol.
A working prototype has been developed to enrich the protocol
with the new features.

Index Terms—PayString, DID, Verifiable Credential, Self-
Sovereign Identity

I. INTRODUCTION

International payment systems are siloed and disconnected;
fiat transfers for example often take days to be fulfilled,
without direct feedback from the receiver to the sender, and
oftentimes incurring high fees. Although several Distributed
Ledger Technologies (DLT)1 seek to address aspects of inter-
connectivity, payment speed, fees and feedback. To our knowl-
edge the same is not true concerning the ease and freedom of
usage for the end-user, when dealing with complex payment
end-point descriptors, and especially when the banking sys-
tems and the bank account formats are different.

PayString [1] - a new service from Ripple - is a web-
based protocol designed to facilitate the exchange of pay-
ment information. The aim is to close the gap by replacing
complicated bank account numbers and cryptocurrency wallet
addresses with an easy to memorize identifier. As such, users
can use a single address linked to several bank accounts or
wallet addresses. However, there is still room for improvement
concerning the security and privacy of user’s data. Our solution
aims to solve this issue by adding a layer over the usual
protocol implementation. This layer comprises technologies
such as Self-Sovereign Identity (SSI), Descentralized Identifier
(DID) and Verifiable Credentials (VC) to achieve the desired
outcome.

Identity management and authentication have been an issue
since the beginning of the Internet, however only recently the
idea of giving the user ownership of its digital identity aired
with strength; the surge of DLTs, such as Blockchains, gave
this movement an engine on which to work over. Bokkem [2]

1Like, for example, Ripple, Quorum (JP Morgan), Ethereum, Hyperledger
Fabric and projects like Interledger (Ripple), Stella (EU and Japan) and more

dissects some SSI based solutions present on the market until
2019 and some problems they try to solve. CanDID [3], for
example, tackles the problem of the lost key - in which if one
does lose its private keys, one can’t prove his identity anymore
and consequently lose access to the system - and tries to solve
it by using oracles.

In a more practical sphere, we can take a look at the
work of [4], an initiative between the Delft University of
Technology and the Dutch Government that aims to create
a system based on SSI and biometric data for the issuance
of paperless passports. Also important to mention is uPort
[5], a platform that provides tools, libraries and protocols for
developers aiming to create user-centric solutions based on
SSI. uPort also uses the concepts of DIDs and VCs, but it
does not have its blockchain, being built over Ethereum.

The operation of PayString is quite simple; Alice wishes
to transfer money to Bob. Bob already registered his payment
information on the PayString Server, so he only needs to send
his easy-to-remember PayString address (bob$example.com) to
Alice. She will request the payment information to the server.
The server will then send the payment information: a pointer
to Bob’s wallet. Alice will use this pointer to transfer money
from her wallet to Bob’s wallet.

There is some risk attached to the PayString server, being
it an always-online system: an attacker could hijack or imper-
sonate the server, sending different payment information for a
given pointer to deviate the funds to the attacker’s wallet. The
impersonation attack is considered to be of high risk when
the keys used by the PayString server to sign the payment
information are compromised. There is less risk if only the
keys used for establishing secure channels are endangered.

Besides the server, an attacker may try to impersonate an
entity, registering different payment information in the name
of an entity that still did not register its true information.
The attacker may also change the information of an already
existing entity’s pointer if the keys got compromised. To close
some of those gaps, we propose PayString Secure, which is
detailed on the next section.

II. PAYSTRING SECURE

PayString is a solution for simplifying payments in nowa-
days scenarios, where users need to deal with multiple pay-
ment methods, currencies, and identifiers. However, it does
not integrate privacy by design concepts. With this purpose in978-0-7381-1420-0/21/$31.00 ©2021 IEEE

mind we enriched the protocol with novel privacy and security
features.

The first issue we tackled was the fact that anyone could
access the payment information of a given user by knowing
their PayString identifier. Let’s say Bob needs to receive some
payment from his friend, Alice. Bob then sends his PayString
to Alice. Somehow an anonymous and malicious third party
guesses Bob’s payment information. This third party now
knows the bank where Bob holds his account and sends several
phishing e-mails to capture Bob’s bank account credentials.

The immediate answer to this problem is to implement
an Access Control List (ACL), allowing Bob to grant and
deny access to his payment information. Considering that Bob
wishes to receive only payments on fiat currency from Alice,
there is no need to give her access to his XRP wallet address.

With the ACL integration to the PayString server, we solve
the primary privacy issue encountered on the protocol. But
how do we verify the identity of the user that requests access to
another user’s payment information? We can verify identities
using asymmetric cryptography. So Alice needs to send her
public key to Bob, which will include this key in his ACL.
When requesting the payment information, Alice needs to sign
the request using her private key.

This solution works well but makes us fall again into
the issue we are trying to avoid: the non-human-readable
identifiers. To address this problem we decided to use SSI
in the form of DID and VC.

SSI turns the user in the sole provider and authenticator of
his/her own identity and the trust providers are the entities
that provide trustfulness for these identities [6]. DIDs [7]
are unique identifiers for decentralized verifiable identities.
And lastly, VCs [8] are credentials whose authenticity can be
verified by trustable authorities.

By using DIDs and VCs, the Blockchain serves as a single
source of truth, enabling transparency, security and trust. Alice
is now able to prove her identity to the PayString Server
using a DID instead of a long sequence of random characters
facilitating the entire process of payment.

As the foundation layer on which PayString Secure is
built, we used Hyperledger Indy [9], a distributed ledger that
provides tools and libraries for supporting the development
and integration of solutions based on distributed identities. On
top of that, we have extended the reference implementation of
PayString server with two new modules, the ACL - explained
above - and the Credential Manager, which stores and verifies
the credentials. We also built the PayString Digital Notary,
which is the entity that issues the VCs.

Figure1 shows an example of the interaction between
the modules and entities using PayString Secure, to safely
exchange payment information between two users: Al-
ice and Bob. Alice knows Bob’s PayString identifier,
(bob$example.com), and wishes to make a payment to Bob
using fiat currency. (1) Alice asks the Notary for a new VC; for
that, she needs to provide her PayString and DID identifiers;
(2) The Notary issues the VC and send it to Alice’s wallet,
where the VC will be stored. Possessing the VC, Alice makes

PayString
Secure
Server

Alice

alice$example.com
DID: 89SGH7UI90M612

(4) GetInformation(bob$example.com)

(1) issue VC
(PayString, DID)

Sender: alice$example.com

Digital
Notary

(5) Bob’s payment information

HYPERLEDGER INDY

(2)

(3)

Encrypted using Alice’s DID

Fig. 1: The workflow involving the Notary, PayString Secure
server and Alice

a request; (3) Alice presents her VC to the PayString server,
which uses the Credential Manager module to store them
locally for future requests; (4) Alice sends a new request for
Bob’s payment information; (5) The PayString server validates
the VC and then check the ACL to see if Alice is authorized
to see Bob’s information. If she is, the server encrypts Bob’s
payment information using Alice’s DID and sends her the
encrypted message that she shall be able to decrypt using her
private key.

A prototype of PayString Secure was built for the PayString
Block-Sprint Hackathon, winning the grand prize2 and show-
ing that the implementation of the security and privacy layer is
feasible. More than that, it shows how important does features
are for the community.

III. CONCLUSION AND FUTURE WORK

We propose a security and privacy extension for the
PayString protocol. Our security and privacy extension con-
cerns the access control mechanism of PayString, so we
propose both a formal model and a way to integrate it with
DID to use VCs.

Future work concerns making a full analyses addressing
how much of an overhead does the security and privacy layer
add to the protocol. Would be also interesting to investigate
the usage of Distributed Hash Tables (DHT) to improve the
service reliability; integrity of information is also a potential
challenge for those who will run a server because while the
data will be accessible to clients, the service providers will
know nothing about what is happening inside the server.

ACKNOWLEDGMENTS

We thankfully acknowledge the support from the RIP-
PLE University Blockchain Research Initiative (UBRI) for
our research. In addition, this work is partially supported
by the Luxembourg National Research Fund through grant
PRIDE15/10621687/SPsquared.

2Demo: https://youtu.be/nrej87tb7zQ

REFERENCES

[1] A. Malhotra and D. Schwartz, “Verifiable payid protocol internet
draft,” https://github.com/PayString/rfcs/blob/master/dist/spec/
verifiable-payid-protocol.txt accessed on 14/12/2020, Ripple, Tech.
Rep., 2020.

[2] D. van Bokkem, R. Hageman, G. Koning, L. Nguyen, and N. Zarin, “Self-
sovereign identity solutions: The necessity of blockchain technology,”
arXiv preprint arXiv:1904.12816, 2019.

[3] D. Maram, H. Malvai, F. Zhang, N. Jean-Louis, A. Frolov, T. Kell, T. Lob-
ban, C. Moy, A. Juels, and A. Miller, “Candid: Can-do decentralized
identity with legacy compatibility, sybil-resistance, and accountability,”
IACR Cryptol ePrint Arch, 2020.

[4] Q. Stokkink and J. Pouwelse, “Deployment of a blockchain-based self-
sovereign identity,” in 2018 IEEE International Conference on Internet
of Things (iThings) and IEEE Green Computing and Communications
(GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom)
and IEEE Smart Data (SmartData). IEEE, 2018, pp. 1336–1342.

[5] “Helping you build user centric apps on blockchains,” https://developer.
uport.me/overview/index accessed on 24/11/2020, uPort, 2020.

[6] A. Tobin and D. Reed, “The inevitable rise of self-
sovereign identity,” https://sovrin.org/wp-content/uploads/2018/
03/The-Inevitable-Rise-of-Self-Sovereign-Identity.pdf accessed on
27/10/2020, Sovrin Foundation, Tech. Rep., 2016.

[7] D. Reed, M. Sporny, D. Longley, C. Allen, R. Grant, M. Sabadello,
and J. Holt, “Decentralized identifiers (dids) v1.0,” https://www.w3.org/
TR/2020/WD-did-core-20201108/ accessed on 20/11/2020, W3C, Tech.
Rep., 2020.

[8] M. Sporny, D. Longley, and D. Chadwick, “Verifiable credentials
data model 1.0,” https://www.w3.org/TR/vc-data-model/ accessed on
20/11/2020, W3C, Tech. Rep., 2020.

[9] “Hyperledger indy,” https://indy.readthedocs.io/en/latest/ accessed on
20/11/2020, 2020.

