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Abstract—In this work, we consider secure communications
in wireless multi-user (MU) multiple-input single-output (MISO)
systems with channel coding in the presence of a multi-antenna
eavesdropper (Eve), who is a legit user trying to eavesdrop other
users. In this setting, we exploit machine learning (ML) tools to
design soft and hard decoding schemes by using precoded pilot
symbols as training data. The proposed ML frameworks allow
an Eve to determine the transmitted message with high accuracy.
We thereby show that MU-MISO systems are vulnerable to such
eavesdropping attacks even when relatively secure transmission
techniques are employed, such as symbol-level precoding (SLP).
To counteract this attack, we propose two novel SLP-based
schemes that increase the bit-error rate at Eve by impeding the
learning process. We design these two security-enhanced schemes
to meet different requirements regarding runtime, security, and
power consumption. Simulation results validate both the ML-
based eavesdropping attacks as well as the countermeasures, and
show that the gain in security is achieved without affecting the
decoding performance at the intended users.

Index Terms—Physical-layer security, symbol-level precoding,
machine learning, channel coding, and multi-user interference.

I. INTRODUCTION

While fifth generation (5G) cellular networks are currently
being provisioned worldwide, its successor generation, named
6G wireless system, is being proposed to overcome several
limitations in 5G [1]-[3]. By 2023, there will likely be 5.7
billion total mobile users (71% of the world population) [4].
In such a crowded environment, unintended receivers, e.g., an
eavesdropper (Eve), may decode sensitive information given
the broadcasting nature of the wireless channel [5]. As a result,
security is of primary importance in next generation networks.
In particular, physical-layer security (PLS) stands out as a
powerful technology to complement encryption-based methods
[6], including application-layer encryption.

The essence of PLS is to exploit the characteristics of the
wireless channel, i.e., fading, noise, interference, and diversity,
to attain an acceptable decoding performance at intended users
while obstructing the correct decoding at Eve. Alternatively,
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the aim of PLS is to increase the gap of correct decoding rates
between intended users and Eve [7]. PLS is foreseen to be
used as a complementary layer of protection, in addition to the
existing cryptography-based security methods. As the rise of
quantum computing [8], [9] is threatening both symmetric and
asymmetric cryptography, non-cryptographic-based methods
such as PLS are needed [10]-[12]. In this setting, the artificial
noise (AN) scheme [13] and its extensions [14]-[17] have been
proposed to improve PLS.

In this context, symbol-level precoding (SLP) [18]-[20] has
been introduced as a new way for attaining PLS [21]. Although
not originally conceived as a PLS method, SLP is more secure
than block-level precoding, like zero-forcing (ZF) [22], as
the precoder is redesigned for each symbol period (SP). In
[23], [24], secure SLP precoding schemes were proposed in
the context of a multiple-input single-output (MISO) wiretap
channel while considering only a single-antenna Eve. In [25],
the authors proposed to exploit the statistical characteristics
of the received signal at Eve in order to improve its detection
performance. To counter this vulnerability, the authors in [25]
proposed secure SLP-based precoding schemes to degrade
Eve’s performance.

Machine learning (ML) has attracted significant interest in
the area of wireless communications [26]. ML is a core subset
of artificial intelligence (AI), which is an ensemble of tools
and algorithms intended for making predictions or decisions
through learning patterns from data [27]. In other words, based
on a dataset, ML algorithms build a mathematical model in
order to make predictions or decisions.

Al has been envisioned by several researchers as the most
prominent feature of 6G [28], since it is an efficient tool for
several contemporary complex scenarios. For instance, ML
techniques can be categorized into two distinct objectives
related to extracting patterns from data: first, performance
improvement, in which ML is used to optimize the operating
parameters at the lower layers; second, information processing
of the huge data generated by wireless devices at the applica-
tion layer [29].

Nevertheless, the potential of ML is not fully exploited
in PLS, although ML for PLS has been explored in some
recent works [30]-[32], [32]. In [30], the authors proposed
an attack where ML is used to determine the underlying
modulation scheme. In [31], the authors employed ML for
wiretap code design considering Gaussian channels under
finite block length, and a similar idea was proposed in [32].

In the context of multi-user (MU) MISO systems, a related
PLS work is [33], where we proposed an ML-based attack in



uncoded systems, in which an Eve can use ML to improve its
detection performance via pilot symbols. Since most commu-
nication systems employ forward-error correction (FEC), it is
important to investigate eavesdropping in systems that feature
FEC. To that end, in our present work, we go beyond [33]
by considering a practical scenario where channel coding is
employed. It is worth mentioning that the Eve can exploit the
redundancy induced by channel coding to improve its decoding
capabilities during the attack.

Herein, in a FEC-enabled MU-MISO system with a multi-
antenna Eve, who is a registered user, we first propose ML
frameworks that allow an Eve to soft/hard decode the trans-
mitted message with good accuracy, i.e., coded FER at Eve
around 1073. After introducing these two decoding attacks,
we validate them in the aforementioned MU-MISO system,
and show that even conventional SLP-based schemes [21]
are vulnerable to such attacks. As a countermeasure to these
attacks, we propose two novel security-enhanced SLP-based
schemes that impair the ML training process, thus enhancing
security. Simulation results show the efficacy of the ML-based
attacks against conventional precoders, i.e., very low bit-error
rate (BER) at Eve, indicating good decoding performance,
and the effectiveness of the proposed countermeasures, i.e.,
high BER at Eve even with numerous antennas, implying poor
decoding performance. The primary contributions of the paper
are listed below:

1) We introduce eavesdropping attacks in MU-MISO sys-
tems with FEC by proposing novel ML-based soft and
hard decoding schemes, where a multi-antenna Eve can
use ML and the knowledge of pilot symbols as well
as the added redundancy related to channel coding to
decode the transmitted data with high accuracy.

2) We introduce the soft decoding scheme by proposing an
ML framework that can be used by an Eve to correctly
soft-decode messages sent to a particular user in an MU-
MISO system. Furthermore, we also propose an ML-
based hard decoding scheme at the Eve. We design the
ML framework of this scheme to directly predict the
coded bits.

3) To counteract these eavesdropping attacks, we propose
two security-enhanced SLP-based schemes that aim to
increase the BER at Eve by impeding the learning
process. This is performed by either embedding ran-
domness in Eve’s received signal or minimizing Eve’s
received power. We note that the proposed schemes
assume perfect knowledge of Eve’s channel at the BS
[34]-[37], which is the case when Eve is part of the
system trying to eavesdrop other users.

4) We design these two PLS schemes in such a way
that different requirements for security, runtime, and
power consumption are met, to provide the base station
(BS) with options to choose the most suitable scheme
depending on the desired criteria.

5) We validate the eavesdropping attacks as well as the
countermeasures through extensive simulations, where
we show the vulnerability when using non-secure pre-
coding schemes and the drastic security gains when
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Fig. 1: Downlink MU-MISO system comprised of: a BS with V¢
antennas, K single-antenna users, and one Eve with M antennas.

using our proposed PLS schemes.

The rest of the paper is organized as follows: Section II
describes the system model. In Section III, we introduce the
ML-based attacks, whereas in Section IV, we propose our
novel SLP-based schemes as countermeasures to this attack.
Simulation results are discussed in Section V, followed by the
conclusion in Section VI.

Notations: ||-|| represents the Euclidean norm. R™*™ and
C™*™ represent the set of m x n real matrices, and the set
of m x n complex matrices, respectively. The superscript ()
the transpose operator, whereas Re{-} and Im{-} denote the
real and the imaginary parts of a complex number. Upper
and lower boldface symbols are used to denote matrices and
column vectors, respectively.

II. SYSTEM MODEL

As depicted in Fig. 1, we consider a single-cell MU-MISO
downlink system, where the BS is equipped with Ny transmit
antennas serving K single-antenna users, with K < N;, and
one multi-antenna Eve with M antennas. We assume a block
fading channel h;, € C!*t between the transmit BS antennas
and the k-th user. The received coded signal by the k-th user
at the symbol slot n can be expressed as

yk[n] = hyxaln] + zx[n], (1)

where x4[n] € CNeX! is the transmitted coded vector from
the IV; transmit antennas, and zx[n] € C is the additive white
Gaussian noise (AWGN) at the k-th user with variance Uf.
The above model can be rewritten in a matrix form by col-
lecting the received signal at all users in vector y[n] € CK*!

as

y[n] = Hxq[n] + z[n], 2)

where H = [hil.. hil]H e CE*MN represents the system
channel matrix and z[n] € CX*1 collects the independent
AWGN components of all users.

Similarly, the received signal at Eve, y.[n] € CM*!, can
be expressed as follows:



ye[n] = Hexaln] + ze[n], 3)

where He = [hgl; ... th]H € CMxNe represents the system
channel matrix between the BS and the multi-antenna Eve, and
z.[n] € CM*! agsembles the independent AWGN components
at the M antennas, with a variance of UZ each.

We note that the pilot symbols, also being referred to
as reference signals, are an integral part of communication
systems that are known entities to all parties. In particular,
they are commonly used for channel-state information (CSI)
and signal-to-interference-plus-noise ratio (SINR) estimation.
Specifically, non-precoded pilot symbols are used for CSI
estimation while precoded pilot signals are intended for SINR
estimation [38]. In this work, we are interested in the latter
case, precoded! pilot symbols, which uses the same modula-
tion and coding scheme (MCS) used for precoding the data.
In this context, we define N as the number of precoded pilot
symbols used within a frame. We also note that these N pilot
symbols are interleaved with data symbols in a frame that fits
within the channel coherence time 7T'. In this setting, we define
the input data symbols intended for the K users as d € R¥ <1,
with dj being the symbol intended for user k.

In the case of block-level precoding, we define 1 as the
mean power. For the SLP case, we define v, as the target SINR
for the k-th user with v = [y1...vx] € RE*! representing
the target SINR for all users. For ease of notation, we drop
the time index n in the remainder of the paper.

III. ML-BASED ATTACKS

In this section, we will propose two ML eavesdropping at-
tacks, where a multi-antenna Eve uses precoded pilot symbols
as training data to accurately hard/soft decode the transmitted
symbols. We start by presenting the motivation of our work
along with the adversarial model. Next, we present the ML
frameworks for the proposed soft and hard decoding schemes.
We note that our proposed ML framework is valid in all
cases where the transmitter sends also pilot symbols, which is
actually the case for a standard downlink MU-MISO system,
the one considered in this paper.

A. Motivation

To motivate our work, we study the received signal at Eve
when the BS sends precoded pilot signals to the intended users.
We investigate the case when the BS uses a conventional
block-level precoder, i.e., ZF [22] as well as the case of a
conventional SLP precoder, i.e., the constructive interference
for sum power minimization (CISPM) approach in [39].

To that end, we first examine a special case scenario for
illustration purposes. Afterwards, we present a more general
scenario that represents a typical downlink MU-MISO system.

In the illustrative special case scenario, we consider the
following toy example: an MU-MISO system with Ny = 15,
K = 6,02 = 1, one channel realization, and quadrature phase-
shift keying (QPSK) as a modulation scheme, where the BS

'We note that, we refer to precoded pilot symbols by the symbols that will
be precoded before transmission [38].
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Fig. 2: Symbols used in the two pilot signals intended for user k.

sends to each user two precoded pilot signals of N = 150
symbols each. In this setting, a multi-antenna Eve attempts to
eavesdrop a specific user k.

To better understand the example visually, the BS sends
the same symbols to user k& while it sends pseudo-random se-
quences to the remaining users. The two symbols constructing
the two pilot signals intended for user k are plotted in Fig. 2.

When the BS precodes the aforementioned pilot signals with
ZF precoding of mean power of 5 dB, the noiseless received
signals at user k and the Eve are respectively given as in
Fig. 3(a) and Fig. 3(b), respectively. We note that the channel
to the K users and Eve were generated randomly.

As depicted in Fig. 3(a), the received signal at user k
shows no inter-user interference as it was cancelled by the
ZF precoder. However, the received signal at Eve is spread
due to the inter-user interference effect, as Eve’s channel
is different from user’s k£ channel. Still, we can observe a
precoding pattern that applies to both received signals, i.e.,
the red squares are mostly positioned on the top right of the
blue circles.

A more inherently-secure precoding scheme, which does
not depict patterns of the precoding used, is SLP precoding
[39]. This particular SLP scheme is designed to exploit the
multi-user interference for power gains. In other words, this
scheme propels the intended users’ received signals deeper
into the correct detection region of the desired symbol for
each intended user. The corresponding optimization problem
is defined as

x4(d, H, v)=arg min [|x||* ©)
subject to

Re{hyx} < o,/ xRe{ds}, Yk
Im{hyx} < o./rIm{ds}, VE,

where the operator < guarantees that the real/imaginary parts
of received signal lie in the same detection region as the data
symbols di. In the case of QPSK constellation, for instance,
when di = 1 + 17, the operator < simplifies to > for both
constraints.

As shown in (4), the CISPM scheme minimizes the transmit
power while guaranteeing a certain target SINR at the intended
users through constructive interference (CI) constraints.

Thus, the CISPM precoding takes inputs: the channel to
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(b) Noiseless received signals at Eve

Fig. 3: Noiseless received signals at user k and Eve when the BS
uses ZF precoding with a mean power of 5 dB.

the intended users, H, the input data to be transmitted to the
intended users, d, the target SINR for all intended users, -,
and the noise variance at the users af. Herein, the transmitted
waveform is designed so as to align the interference construc-
tively at the receiver side, pushing the symbols deeper into
the detection region in accordance with the CI constraints.
The objective function’s goal is to minimize the total trans-
mit power while applying CI constraints to each user. The
constraints’ aim is to place the real/imaginary parts of the
noiseless received signal at the kth user, hyx, in the detection
region of the real/imaginary parts of the kth corresponding
data symbol. Specifically, using a minimum value of o/
to guarantee a pre-defined target SINR value for each user.

Now we consider the aforementioned toy example of trans-
mitted pilot signals illustrated in Fig. 2, but with the BS using
CISPM precoding with a target SINR value of 5 dB for each
user. The corresponding results of this example are illustrated
in Fig. 4.

Fig. 4(a), represents the noiseless received signal at user
k. As expected when using SLP precoding, the inter-user
interference is transformed into power gains, resulting in
deviations of the received signal deeper into the detection
region while guaranteeing a specific target SINR value. The
noiseless received signal at Eve when the aforementioned
signals are transmitted is plotted in Fig. 4(b). As opposed to
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Fig. 4: Noiseless received signals at user k and Eve when the BS
uses CISPM precoding.
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Fig. 5: Received signal at Eve when BS sends pseu-random sequences
to every user.

Fig. 3(b) where the blue circles are always below and to the
left of the red boxes, in Fig. 4(b) there is no apparent fixed
pattern.

This discrepancy is due to the randomness of the input data
to transmit d, which changes at each symbol slot resulting
in xq to vary accordingly. Even though Eve is trying to
eavesdrop user k whose received symbols do not change, what
Eve receives provides no apparent insights about what was
transmitted.

In a more general scenario representing a typical downlink



MU-MISO system, the BS is not constrained to send pilot
signals where one user’s pilots are constructed with the same
symbol. In this case, the received signal will exhibit even more
apparent randomness, as illustrated in Fig. 5, since the actual
pilots are pseudo-random sequences for all users. Hence, since
Eve does not know the CSI, using conventional detection
techniques to directly decode the received signals will result
in a poor performance.

Thus, in this work we propose to use ML to model the non-
linear mappings underlying this apparent randomness, so that
Eve can decode with an acceptable BER. Since the symbols
used for the precoded pilots are known in communication
standards to all parties, we propose to use ML to leverage
this knowledge and decode the transmitted data to a particular
user with decent accuracy. To that end, we propose ML-based
soft and hard decoding schemes that can accurately decode
the transmitted signal by using the precoded pilot symbols as
training data.

B. Adversarial model

Contrary to the adversarial wiretap channel model proposed
in [40] that considers active adversaries, herein, we consider
a passive eavesdropper that can listen to the wireless medium
with fading and noise effects.

Concerning Eve’s environment, Eve is part of the downlink
MU-MISO system that comprises of the sender, i.e., the BS,
intended users, and Eve. Since Eve is a registered user of the
MU-MISO system, the BS knows its CSI H, the same way it
knows the CSI of the intended users H. We highlight that Eve
does not know H, nor H. On the other hand, Eve knows the
pilot symbols transmitted, the modulation scheme used, and
the FEC parameters.

As for Eve’s profile and capabilities, we consider Eve to
have: 1) unlimited computation power, and 2) access to state-
of-the-art machine-learning tools and algorithms. Contrary to
the intended users who are single-antennas receivers, Eve is
equipped with M antennas.

Next we present our proposed ML-based soft and hard
decoding schemes. For a thorough explanation of our proposed
ML-based decoding schemes, in the following, we use ZF
precoding as an example. However, the proposed decoding
frameworks are valid for any precoding technique used at the
BS.

C. ML framework for the proposed soft decoding scheme

As illustrated in Fig. 6, the ML framework for soft-
decoding encompasses two steps: 1) training phase, where the
ML model is trained by using the precoded pilot symbols;
2) prediction phase, where probabilities are estimated and
employed to calculate the LLRs which are consequently fed
to a soft decoder.

1) Training phase: As pointed out earlier, the BS sends
the pilot symbols p € CK*! as training data, which are
pseudo-random sequences for all users. For one SP, the overall
received pilot signal at Eve’s all antennas, y? € CMx1 can
be written as

ys = Hexp + Ze, (5)

where x, € CM*1 is the transmitted precoded pilot signal
from the INV; BS’s transmit antennas.

As depicted in Fig. 6, the transmitted signal x,, depends
on all the users’ symbols. Thus, Eve could target any user
individually by retraining the ML model according to the pilot
sequences used for each user. As such, Eve would create a
mapping between the received signal y% and the pilot symbols
pk corresponding to the targeted user k. We note that the
subscript s in p¥ stands for “soft”, where the pilot symbols
are represented in bits, i.e., p¥ € {“00”, “017, “11”, “10”} in
the case of QPSK modulation.

We note that, as the number of antennas at Eve, M,
increases, the number of received signals at Eve increases
accordingly, which often leads to better accuracy. In essence,
each antenna at Eve receives a different distorted version of
the same transmitted signal x; the more different copies of
xp, received by Eve, the better the performance.

Hence, the training set Dy 1is the collection of
{yP[n],pEn)},n € {1,...,N}, where yP[n] represents
the received pilot signal at Eve during the n-th SP, while
pk[n] is the corresponding pilot symbol of user k. Therefore,
the training set Dy can be written in a more compact form as

D, = {Yp7 p§}7 (6)

e

where Y? € CV*M are the received pilot symbols at Eve
during N SPs and p* € CV*! are the corresponding trans-
mitted pilot symbols to the k-th user. Using ML terminology,
YP represents the features?> while p¥ represents the labels,
where both constitute the training dataset. For non-binary
modulation schemes, this ML problem is considered as a
multi-label classification (MLC) problem [41], [42] as more
than 1 bit is required to encode the symbols. Namely, MLC
is a supervised learning problem where an observation, i.e, a
scalar or a vector of features, is associated with multiple labels.
Hence, as depicted in Fig. 6, the training dataset is fed to the
MLC fitting module which will in turn output a trained ML
model, that will subsequently be used in the prediction phase.

2) Prediction phase: As depicted in Fig. 6, in each SP,
the BS sends the symbols d € CK*! to the K users after
precoding them using the same precoding scheme employed
in the previous phase. The received signals at Eve in each SP,
yd € CM*1 can be written as

ys = Hcxq + 2, (N

where xq € CN¢*! represents the transmitted precoded data
from the NN, transmit antennas, intended for all the users
during one SP. If we assume that there are 7' symbols in one
coherence time, Y& € C(T=N)*M represents the collection of
all received signals at Eve during one coherence time of the
transmitted (7' — N) data symbols. In ML nomenclature, Y
is commonly being referred to as the test/evaluation dataset.”

2We note that the input features in Y are complex-valued and cannot be
directly processed by ML algorithms in general. Usually, this is addressed by
considering real and imaginary parts separately.
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Fig. 6: Overview of the ML-based soft decoding scheme.

In principle, the goal of classification is to predict labels. In
this context, however, we are not interested in the labels (hard
outputs) but rather in the corresponding probabilities (soft
outputs) to be used subsequently for LLR computation. Before
tackling the computation of these probabilities, we first provide
an overview of LLRs computation based on probabilities. We
start by recalling some fundamental definitions in the context
of LLR computation in binary detection [43].

Let U be a binary random variable (RV), acting as the
correct hypothesis, with possible values {ag, a1} and a priori
probabilities py and p;. Let V be an RV with conditional
probability density fy |y (v]a,,) that is finite and non-zero
for all v € R and m € {0,1}. In our context, V' models
the received signal at Eve at a fixed time instant. We note
that the conditional densities fy |y (v|an),m € {0,1}, are
called likelihoods. The marginal density of V is given by
fv(v) = pofviv(vlao) + p1fyjv(vlar). Hence, the a pos-
teriori probability of U can be expressed as

_ meV|U(U‘am)
fv(v)
where m € {0,1}. To maximize the probability of correct

detection, the maximum a posteriori (MAP) rule can be written
as

®)
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where U denotes the decision on the RV U. Rearranging (9)
and canceling fy (v), we obtain the likelihood ratio
_ fviu(v]ao) U;“) p1

_fV\U(U|a1) = po’

A(v) (10)

U=a;

where the quantity Z—; is called the threshold and depends
only on the a priori probabilities. Hence, the log-likelihood
ratio LLR(v) can be expressed as follows:

fVU('UlaO)]
fviw(vlar) |

As depicted in Fig. 6, to obtain the likelihoods in eq. (11),
we feed the test dataset and the trained ML model to the MLC
prediction module. A common and efficient implementation of
predicting these probabilities is the Platt scalling approach in
[44]. This method is used to transform the uncalibrated outputs
of the classification module into probabilities. Platt scaling
works by fitting a logistic regression model to the classifier’s
scores. The probabilities fy |7 (v|a,,) according to the Platt

LLR(v) =1n [ (11)



scaling algorithm can be computed as

1
T 14 exp(Af,(am) + B)’

where f,(a.,) is the classifier score and scalars A and B
are the sigmoid parameters [44] learned by the algorithm,
which are calculated using a cross-entropy loss function and
an internal threefold cross-validation to prevent overfitting.

Once the likelihoods fy|i7(v]a,,) are obtained, the LLRs
can be computed using eq. (11), after which Eve can simply
feed the computed LLRs to the soft decoder to obtain the
transmitted message to user k.

fviu(vlam) (12)

D. ML framework for the proposed hard decoding scheme

The proposed ML-based hard decoding scheme also com-
prises of two phases: 1) training phase, where the ML model
is trained by using the precoded pilot symbols; 2) prediction
phase, where the module directly predicts the transmitted
symbols to a particular user, which are in turn mapped into
bits to finally be fed to a hard decoder to obtain the transmitted
bits to user k.

1) Training phase: As depicted in Fig. 7, for each SP, the
BS first sends pilot symbols p € CKX*! to the K users, which
after precoding become the signal x, € CNex1 Eve receives
yP[n] € CM*! from all its antennas at the n-th SP, as in eq.
(5).

For Eve to eavesdrop user k, it creates a mapping between
the received signal y® and the pilot symbols pf corresponding
to the targeted user k. We note that the subscript h in pf
stands for “hard”, which defines the decimal representation of
the pilot symbols, for instance, pﬁ € {0,1,2,3} in the case of
QPSK modulation.

Thus, the training set Dy is the collection of
{y®?[n],pfn]},n € {1,...,N}, where pf[n] is the pilot
symbol of user k corresponding to the received pilot signal
yP[n] at the n-th SP. Thus,

Dh - {Y§7pﬁ}7

where YP € CV*M are the received pilot signals at Eve and
pﬁ € CNV*1 are the transmitted pilot symbols, represented in
decimals, to the k-th user, both during N SPs.

For non-binary modulation schemes, this problem is
a single-label multi-class classification (MCC) problem.
Namely, MCC is a supervised learning problem where an
observation, i.e, a scalar or a vector of features, is associ-
ated with a single-label with multiple classes. Considering a
modulation order M, the label space is {0,1,..., M, — 1}
with M, total classes. Thus, as depicted in Fig. 7, the training
dataset Dy, is fed to the MCC fitting module that in sequence
outputs a trained ML model, which will be used thereafter in
the prediction phase.

2) Prediction phase: As depicted in Fig. 7, the BS trans-
mits d € CK*! data symbols to the K users in each SP in
the form of the precoded signal xq4 € CN¢*!, We note that
the precoding at BS herein uses the same precoding scheme
employed in the training phase. The corresponding received
signals at Eve is yd € CM*1, as detailed in eq. (7).

(13)

Considering a coherence time of 7' symbols, there are
(T — N) symbols dedicated to data transmission. Thus Y< €
C(T=N)XM represents the collection of all received data
signals at Eve during one coherence time, which constitutes
the test/evaluation dataset.

Contrary to the proposed soft decoding scheme, herein we
are interested in predicting the labels, i.e., hard outputs. As
depicted in Fig. 7, to obtain the labels, we feed the test dataset
and the trained ML model to the MCC prediction module. We
note that the labels are in the form of decimals, i.e., the same
nature of the labels used in the training phase. Once the labels
are predicted, they will be first mapped into bits and then fed
to the hard decoder for decoding to finally obtain the bits
transmitted to user k.

We note that the proposed soft and hard decoding schemes
are also valid for other constellations, including higher-order
quadrature amplitude modulation (QAM). For instance, in 16-
QAM, 4 bits are needed to represent the symbols as opposed
to 2 in the QPSK case. Consequently, for the soft scheme
in Fig. 6, the pilot symbols of user k will contain 4 bits
instead and the prediction module will generate 4 uncalibrated
outputs as a result. However, for the hard scheme in Fig. 7,
the pilot symbols of user k£ will be represented using 16
classes, and therefore the prediction module will output a
label in the set {0,1,...,15}. Therefore, the proposed soft
and hard decoding frameworks are valid for any constellation,
where the modulation order determines the number of bits
used in pilot/data symbols and also defines the number of
labels/classes employed, all the rest of the processing remain
unchanged.

IV. COUNTERMEASURE: PHYSICAL-LAYER SECURITY

In this section, we propose novel security-enhanced SLP
schemes that yield high BER at Eve. Similar to [45] and
[33], the idea is to design the transmitted signal x4 to have
constructive interference at the intended users, while at the
same time, increasing the BER at Eve. We note that the CSI
to Eve is available at the BS.?> This assumption is reasonable
when Eve is a legitimate user attempting to eavesdrop other
users. It gives Eve the advantage to access the control signaling
of the BS and obtain the modulation and coding parameters
used, which further improves its detection performance.

A. PLS random scheme

We design this scheme to have constructive interference
at the intended users and destructive interference at Eve. To
that end, we align the transmitted signal to the corresponding
detection regions of the intended users using their CSI while
we force Eve’s received signal to lie at the boundaries of the
detection regions using Eve’s CSI.

In order to illustrate the idea, consider the QPSK constella-
tion in Fig. 8. The aim here is to propel the received signals

3We follow the same methodology used in the relevant PLS work in [34]—
[37], which assumed the knowledge of Eve’s CSI at the transmitter. However,
we intend to extend our work to a more general eavesdropper, by considering
no Eve’s CSI at the BS [46].
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Fig. 7: Overview of the ML-based hard decoding scheme.

Fig. 8: Intended user’s and Eve’s received signals in the case of PLS
random scheme.

deeper into the detection regions, which are illustrated by the
gray squares (actually, those regions are unbounded).

On the other hand, we design Eve’s received signal to lie in
the strapped region, which is centered at the boundary of the
detection regions. The strapped region’s width is governed by
the parameter 6. The smaller the J, the tighter the strapped
region, leading to higher probability of landing into the
opposite region when noise adds up, resulting in higher BER
at Eve.

Inspired by the boundary scheme presented in [33, §IV.B

eq. (11)], we propose to embed randomness in Eve’s received
signal by randomly selecting the boundary region, either
horizontal or vertical, as depicted in Fig. 8. We decompose the
non-convex strapped region in Fig. 8 into two convex regions:
the vertical part and the horizontal one. And at each SP and
for each antenna at Eve, we randomly choose between the
two regions, so that on average, Eve’s received signals would
lie evenly on both regions, assuming the symbol distribution
is equiprobable. We refer to this scheme as “PLS random
scheme”.

The optimization problem for this scheme can be formulated
as

Xd(dea hev7757b):argmin”XH2 (14)

subject to

Re{hyx} < o./vRe{dr}, Yk (15)
Im{hyx} < o.\/veIm{dr}, Vk (16)
biRe{ye}+(1-bi)Im{yc}=6,vi  (17)

where hyx is the k-th user’s noiseless received signal, y; =
hix is the noiseless received signal at Eve’s i-th antenna,
b; € {0, 1} is the realization of a binary RV that represents the
boundary region to use for Eve’s i-th antenna, b is the vector
collecting the b; realizations, which select the corresponding
strapped sub-region in Fig. 8 — either vertical (b; = 1)
or horizontal (b; = 0) —, of the M antennas at Eve, and
0 > 0 is the distance parameter controlling the width of the
boundary region. This problem is convex and can be solved
efficiently using standard optimization toolboxes such as CVX
[47]. Algorithm 1 details the process of signal design of the



PLS random scheme, which is executed for every symbol slot.

Algorithm 1 PLS random scheme

Input: d,H,He,'y,Uz,(Zb;
1: Do: solve problem (14) as follows:

2 Satisfy CI constraints in (15) and (16)

3 for Each antenna ¢ at Eve do

4: if b; = 1 then

5 Push 4 to the vertical boundary region

6 else

7 Push 4 to the horizontal boundary region

Output: x4

As demonstrated in Algorithm 1, the PLS random scheme
designs Eve’s received signal to have no pattern as to which
boundary region it will fall into, thus it will be extremely
difficult for a ML-based engine to find relationships between
the known pilot symbols and Eve’s received signals.

The advantages of this scheme are: 1) enhance PLS as
the detection decisions at the Eve will be mostly made on
the basis of noise, and 2) save the transmit power since
this scheme involves only a small deviations of the targeted
received constellation points at Eve.

B. PLS Eve-min-power scheme

Targeting a computationally simpler scheme, herein we take
the basic SLP scheme for constructive interference at the
intended users, the CISPM, and change the cost function to
achieve PLS. Specifically, we do not include any PLS related
constraints. To attain security with the CISPM scheme, in
addition to minimizing the transmit power, we also minimize
the power of Eve’s noiseless received signal simultaneously,
hence the name “PLS Eve-min-power”.

Compared to the PLS random scheme that has the strict
constraint of forcing Eve’s received signal to lie in the bound-
ary region, in the PLS Eve-min-power, we allow Eve’s signal
to lie anywhere in the plane but as close to zero as possible,
whatever the degrees of freedom at the transmitter allow. This
scheme can be formulated as follows:

xa(d, H, He,v)=arg min |[xq|| + [[Hexa|| (18)
Xd

subject to
Re{hkxa}<o.\/cRe{d:}, Vk
Im{hixaq}<o./elm{di}, Vk.

19)
(20)

As shown in (18), the PLS Eve-min-power scheme mini-
mizes the sum of the transmit power and the noiseless received
power at Eve, while guaranteeing a certain target SINR at
the intended users through constructive interference constraints
(19) and (20). Similarly, this problem is convex and can be
solved efficiently using standard optimization toolboxes.

We note that this PLS scheme leads to higher security than
the CISPM, as it makes it considerably harder for an ML-
enabled Eve to correctly detect the low-power signal induced
by minimizing the power at Eve.

We note that, low-complexity and computationally efficient
SLP design was developed for practical and real-time im-
plementations [48], [49]. For instance, an FPGA-accelerated
design of computationally efficient SLP for high-throughput
communication systems was proposed in [48], which enables
real-time operation and provides a high symbol throughput
for multiple receive terminals. In [49], a low-complexity
FPGA design for SLP was proposed for MU-MISO downlink
communication systems, by developing an approximate yet
computationally-efficient closed-form solution to alleviate the
excessive complexity incurred by the SLP design.

To validate the proposed schemes, we have conducted
numerical simulations according to the same methodology
as [46]. Future extensions of our work include adapting and
optimizing the SLP technique for real-time validation similar
to [48], [49]. To that end, since the formulations of the
proposed and benchmark SLP precoding schemes are convex,
in the numerical results we use the CVX modeling framework
to solve the SLP precoders’ underlying optimization problems.
CVX’s employed solvers rely on primal-dual interior point
methods to solve the problems. However, the time complexity
analysis of the SLP precoders employed in this paper depends
heavily on the solver used and its implementation, which
makes it challenging to obtain a closed-form big O represen-
tation of it. Nevertheless, we resort to runtime [50] analysis
of the implementations, where we measure the total time it
takes for the algorithm to solve the optimization problem (in
milliseconds). We present the runtime analysis of the proposed
and benchmark schemes in the following section.

V. NUMERICAL RESULTS

To make this section more comprehensive, we split it into
three parts: 1) Parameters, metrics, and benchmarks where we
defined the simulations’ setting, 2) selection of ML algorithms
for Eve attack in which we experiment with several algorithms
and select the most performing, and 3) comparisons and
insights to assess the performance of our proposed schemes
in terms of security, power consumption, and runtime.

A. Parameters, metrics, and benchmarks

As a benchmark to the proposed SLP-based PLS schemes,
we employed the CISPM [39] and ZF precoding [22] schemes.
We note that in the following simulations, for a fair compari-
son, we set 7 =~y such that all the examined schemes have
the same transmit power.

Regarding the metrics used to evaluate the different
schemes, we use the BER at Eve to assess the security offered
by a particular decoding scheme for a given precoding design.
The lower the BER at Eve, the lower the security and vice
versa. In a similar way, we also evaluate the frame-error rate
(FER) at Eve since we have channel coding in the system,
which is defined as the ratio of frames in error (one altered
bit suffices to make the entire frame erroneous) to the total
number of frames received. We also evaluate the BER/FER
at the intended user to examine the impact of using the PLS
schemes on the intended user’s performance. Finally, we define
the total transmit power by the BS antennas as Pio; = ||x4]|%.



Parameters Values
Code rates Vs, Va
Constraint length 7
Frame Size 150
Number of frames 100
Trace-back length 96
Decoder decision technique | Hard, Soft

TABLE I: Channel coding parameters used for the simulations

In the simulations, we take the average of the above quantity
over a large number of symbol slots to obtain the frame-
level total transmit power, which is then averaged over a large
number of channel realizations.

In the following simulations, we use QPSK modulation. For
the PLS random scheme, we set § = o2/10 to make sure that
the noise will push Eve’s received signal outside the boundary
region, i.e., to cause higher error rates at Eve. For simplicity,
we consider unitary noise variance oZ. As for the channel
coding part, we use convolutional coding [51] and Viterbi
decoding [52] with the parameters in Table I. We note that
low coding rates are chosen in order to consider a worst case
eavesdropping scenario, where Eve can take advantage of the
redundancy to correct as much errors as possible.

B. Selection of ML algorithms for the Eve attack

For the MLC modules used for the ML-based soft decoding
scheme, in this simulation, we adopt problem transformation
methods that remodel our MLC problem into single-label
problem(s). Since our labels are bits, the MLC problem will
be decomposed into k binary classifiers, where k& = log, M,
is the number of bits constructing each symbol.

Herein, we use two transformation methods, binary rele-
vance (BR) [41] and classifier chain (CC) [42]. BR is the most
simple and efficient method to solve MLC problems, which
trains the k binary classifiers independently; its only drawback
is that it does not consider labels correlation. CC, however,
takes into account the correlation between labels by using the
outputs of the previously trained classifiers as features for the
subsequent ones in the chain, except for the first classifier. We
refer to these soft-decoding implementation by “Soft - BR”
and “Soft - CC” accordingly.

Concerning the MCC module used for the ML-based hard
decoding scheme, it does not require any transformation or
specific approach. It can be solved using any classifier. We
refer to this scheme subsequently by “Hard”. It is worth
mentioning that the ML-based decoding schemes apply only
to Eve, whereas the intended users employ conventional (not
ML-based) soft and hard decoding techniques.

To make Eve as sophisticated as possible, we experiment
with several state-of-the-art classifiers and choose the one
with the best performance. In Table II, we compare the
prediction accuracy of the proposed soft* and hard decoding
schemes, considering ZF and CISPM precoding as well as

4In the table, we did not show results for Soft - BR to avoid redundancy,
as its results were almost the same as Soft - CC.

the proposed PLS precoding schemes. The parameters used
for this simulation are: Ny = 15, K = 6, M = 9, and
n = v, = 6 dB. We note that these results represent the
averaged results over 100 different channel realizations. We
also note that this accuracy applies before channel decoding,
i.e., by comparing the ML predicted labels to the actual coded
transmitted symbols to user k.

As observed in Table II, the logistic regression classifier
achieves the highest prediction accuracy among all the pre-
coding and decoding schemes. Therefore, in the following
simulations, we use this classifier in our proposed ML-based
decoding schemes.

C. Comparison and insights

We note that a BER value of 0.5 indicates full confusion.
Regarding the target FER values at the intended users, it varies
depending on the application scenario. For instance, enhanced
mobile broadband (eMBB) in 5G requires an FER on the
order of 10~ while massive machine-type communications
(mMTC) require only 10! [53]. In this section, we will
validate the eavesdropping attacks by showing the FER at Eve
to be in the order of the intended users’ FER values.

Fig. 9 depicts the coded BER at Eve as a function of its
number of antennas M. We compare the proposed hard and
soft decoding schemes. The parameters used in the simulation
are: v = 1/3, Ny = 15, K = 6, and ) = 7 = 6 dB. Fig. 9(a)
represents the non-secure precoding schemes, ZF and CISPM.
For our hard and soft decoding schemes, we observe that the
more antennas at Eve, the lower is the BER, i.e., the more
antennas at Eve, the higher the prediction accuracy (more
versions of the same signal, hence more features used for
training and prediction), leading to lower BER. In addition,
our Soft technique outperforms the Hard one, where Soft -
BR and Soft - CC are equivalent. Moreover, with 9 antennas
at Eve, the BER at Eve is so low to the point that it could be
compared to an intended user’s decoding performance, leading
to a big vulnerability in systems that use ZF and CISPM
precoding. In addition, as expected, CISPM is more secure
than ZF as predicted in Sec. III. As for the case of the PLS
random scheme in Fig. 9(b), we observe the same pattern as in
Fig. 9(a), the more antennas at Eve, the lower is the BER, with
Soft decoding outperforming the Hard one. However, when
M values are lower or equal to 9, the BER at Eve is at 0.5,
indicating total equivocation. In fact, even for higher values
than 9, the BER at Eve is still very high compared to ZF
and CISPM schemes, i.e., PLS random scheme is offering a
significant security gain when compared to the latter ones.
Similarly, for the PLS Eve-min-power scheme in Fig. 9(c),
we observe the same behavior as for PLS random scheme,
with the PLS Eve-min-power scheme BER going lower than
PLS random, i.e., PLS Eve-min-power is less secure than PLS
random. However, when compared to non-secure precoding
schemes, ZF and CISPM, PLS Eve-min-power still offers a
drastic security gain.

Fig. 10(a) depicts the distribution of the estimated LLRs for
Soft - CC decoding scheme. We note that for this particular
plot, we used 1000 symbols to obtain a smooth histogram. We



Classifiers ZF CISPM PLS random PLS Eve-min-power
Soft - CC | Hard | Soft - CC | Hard | Soft - CC | Hard | Soft - CC Hard
Gaussian_NB 0.8338 0.8378 0.8271 0.8298 0.5431 0.5429 0.5708 0.5712
Log_Reg 0.9375 0.9374 0.8935 0.8929 0.5427 0.5433 0.5732 0.5732
SVM 0.9370 0.9361 0.8925 0.8931 0.5429 0.5426 0.5697 0.5718
R_Forest 0.8831 0.8798 0.8538 0.8491 0.5382 0.5354 0.5669 0.5650
KNN 0.9047 0.8994 0.8623 0.8570 0.5265 0.5245 0.5474 0.5454
Decision_Tree 0.8101 0.7951 0.7738 0.7571 0.5178 0.5207 0.5372 0.5374
Extra_Trees 0.9017 0.8970 0.8669 0.8644 0.5387 0.5377 0.5670 0.5679
LightGBM 0.8998 0.8958 0.8655 0.8611 0.5359 0.5356 0.5645 0.5629
XGB 0.8983 0.8946 0.8633 0.8609 0.5326 0.5349 0.5598 0.5605

TABLE II: Prediction accuracy of our proposed ML-based decoding schemes with several classifiers when using ZF, CIPSM, PLS random,

and PLS Eve-min-power precoding at the BS.

recall that a probability of 0.5 indicates that the predictor is not
sure whether the predicted bit should be 0 or 1; a value close
to 1 means the predictor is very sure that it is a 1, whereas
a probability close to 0 indicates the opposite, i.e., it is very
sure that it is not a 1. As expected, the LLRs values for the
case of 9 antennas at Eve are distributed mostly away from
0, indicating high quality LLRs. Namely, the corresponding
probabilities are mostly different than 0.5, thus yielding a
high prediction accuracy. Using a higher number of antennas
entails more features that can be employed in both training and
prediction phases, therefore leading to higher accuracy when
estimating the likelihoods. However, when Eve uses only 1
receive antenna, the LLRs are close to 0 as their probabilities
are close to 0.5, implying poor quality LLRs. Therefore, we
conclude that higher number of antennas at Eve leads to higher
prediction accuracy, and therefore lower BER.

Fig. 11 depicts the coded BER at Eve as a function of
1/, [dB], which we set to the same value for all users for
simplicity. The parameters used in the simulation setup are:
r =1/ Ny =15, K = 6, and M = 11. Concerning ZF
and CISPM schemes in Fig. 11(a), with the proposed soft and
hard decoding approaches we notice that the higher the values
of 1/7, the lower the BER. Particularly, higher n/v; values
leads to higher transmit power, which cause higher received
power at Eve, thus better decoding performance. Moreover,
Soft decoding is outperforming the Hard one. Additionally,
CISPM precoding is more secure than ZF, i.e. BER at Eve for
CISPM is higher than the one of ZF. As for the use of the
PLS random scheme, in Fig. 11(b), we notice that, similarly,
the higher the values of 7)/vj, the lower the BER. We also
observe that soft decoding is the most performing with the
difference being that using PLS random scheme offers much
higher security compared to ZF and CISPM scheme, with
high BER values at Eve even when using 11 antennas at Eve.
Concerning the PLS Eve-min-power scheme in Fig. 11(c), it
depicts the same behavior as PLS random. However, the latter
scheme is more secure because of its incurred randomness
in the precoding design, while PLS Eve-min-power scheme
is designed with Eve’s channel in the objective function that
lowers the received power at Eve.

Fig. 12 depicts the coded FER at Eve as a function of 7/~
[dB]. The parameters used in the simulation are: r = 1/,

Ny = 15, K = 6, and M = 11. In Fig. 12(a), for ZF and
CISPM precoding, we notice that the higher the values of
1/, the lower the FER, which is due to the increase of the
transmit power. Particularly, soft decoding outperforms hard
decoding, with FER values decently low, which validates the
eavesdropping attack for ZF and CISPM precoding schemes,
with CISPM being more secure. In Fig. 12(b) however, when
we use the PLS random scheme, we notice that the higher the
values of 7/, the lower the FER. Particularly, the high FER
values validate the security of the PLS random scheme. Lastly,
when using the PLS Eve-min-power scheme, in Fig. 12(c), we
observe the same behavior as in the case of the PLS random
scheme, with FER values at Eve lower than ones for the PLS
random approach. This validates the high security exhibited by
the PLS random scheme, which outperforms the PLS Eve-min-
power scheme’s security performance. Yet, the FER values for
the PLS Eve-min-power are still very high compared to the
non-secure schemes, i.e., ZF and CISPM schemes.

Next, we investigate the FER at user k£ as a function of
1/v, [dB] by comparing ZF and CISPM schemes with the
PLS schemes. The parameters used in the simulation setup are:
r=1/3, N; = 15, K = 6, and M = 11. We found out that the
values of the FER at user k are all zeros for all of the schemes
even when M = 11, which was the reason to omit the plot in
the manuscript. With such a low code rate, we do not obtain
a single error for the entire range of /v, € {0, 1,2, 3}. This
happens in both schemes since we align the transmitted signal
to the intended users’ channels, which in turn will receive
their intended symbols in the corresponding detection regions.
Thus, the proposed PLS schemes provide much higher security
without impacting the intended user’s performance.

Fig. 13 shows the total transmit power P, in dBW, as a
function of 7/~x, which we set to the same value for all users
for simplicity. We compare ZF and CISPM schemes with the
PLS ones. The parameters used in the simulation are: Ny = 15,
K =6, and M = {1,13}. As explained above, the higher
the 7/~ values, the higher is the transmit power, for all the
schemes. For the CISPM scheme, we observe that P, is lower
than the target SINR at the intended users, which is due to
the constructive interference turning into power gains at the
receivers, hence less transmit power is required to attain the
desired SINR value. However for ZF precoding, as predicted,
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Fig. 9: BER at Eve vs. number of antennas at Eve, with r = 1/3,
Ny =15, K =6, and n = =, = 6 dB.

P;ot is the same as the mean power 7, as it has been set. As
for the PLS schemes, P;,+ depends on the number of antennas
at Eve M, higher M leads to higher P;.¢. This increase is due
to the fact that more antennas at Eve imply more constraints
in the case of PLS random that result in the observed big
increase in P for M = 13. To elaborate more, this behavior
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Fig. 10: LLRs distribution of the Soft - CC decoding scheme with
r=1/3and M € {1,9}.

is due to the fact that, the more we constrain our signal design
problem, the more power is required to solve it. However, in
the case of PLS Eve-min-power, the higher M, the higher
the power consumption, i.e., the more antennas at Eve, the
Eve-related part of the objective function tends to have higher
values due to the higher degrees of freedom at the Eve’s side,
thus higher power consumption; even for M = 13, PLS Eve-
min-power does not consume as much power as PLS random,
its consumption is in fact equivalent to ZF scheme in Pios.
However, for M = 1, the two proposed PLS schemes consume
the same power.

Next, we investigate the impact of pilot overhead on our
proposed ML-based attacks and countermeasures. We refer to
[54] for some practical pilot overhead values. Fig. 1 in [54]
shows the ergodic spectral efficiency as a function of pilot
overhead in a high velocity setting. We observe that maximum
spectral efficiency is achieved when using 0.1 pilot overhead.
Thus, we evaluate our proposed Soft - CC decoding scheme
using such value and lower.

Fig. 14 plots the coded BER at Eve using Soft - CC as
a function of the pilot overhead. The parameters used in the
simulation are: r =1/3, Ny =15, K =6, M =11, n =, =
6 dB, and a frame size of 900 symbols. When the BS uses
the non-secure schemes, ZF and CISPM, we observe that the
higher the pilot overhead, the lower the BER, in particular,
with a pilot overhead value of 0.1 the BER at Eve is as low
as 1073, which is a sufficiently small BER that threatens the
communication security. Thus, this validates again our ML-
based attack even with pilot overhead values as low as 0.1.
However, when the BS uses PLS schemes, the BER at Eve
remains high, which again validates our countermeasures.

Lastly, in Fig. 15 we plot the runtime per SP [ms] as a
function of the number of antennas at Eve M of the proposed
and benchmark SLP schemes. The parameters used in the
simulation are: Ny = 15, K = 6, and v, = 6 dB, and a frame
size of 900 symbols. We observe that for both PLS Eve-min-
power and CISPM schemes, the runtime does not depend on
M because both schemes do not have Eve-related constraints.
And as expected, the PLS Eve-min-power scheme’s runtime is
a bit higher than the CISPM’s one because of the extra Eve-
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related term in the PLS Eve-min-power scheme’s objective
function in eq. (18). However, the runtime of PLS random
increases with M and is higher than the runtime of PLS Eve-
min-power. This increase is due to the Eve-related constraints
in eq. (17) of the PLS random scheme, where in addition to
the CI constraints in eqgs. (15) and (16), there will be M Eve-
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related constraints. Thus, the higher M, the more constraints
in the PLS random optimization problem, and therefore the
higher the runtime.

We conclude this section by summarizing the insights from
the numerical results.

1) Soft decoding schemes always outperform hard decod-
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ing, i.e., soft values carry extra information that is used
by the decoder to better estimate the original data.

2) Soft — CC and Soft — BR performance is the same
because of the lack of label-correlation, due to the
random nature of data to be transmitted.

3) Our proposed soft decoding schemes operates well with
pilot overhead values as low as 0.1.

4) CISPM precoding is more secure than ZF because the
precoding pattern changes at each symbol-period while
ZF precoding is fixed throughout the whole coherence
time.

5) Proposed PLS schemes are much more secure than
CISPM and ZF, with PLS random being the most secure
because of its induced randomness in the signal design
that makes it harder for Eve to learn the precoding
pattern.

6) Tremendous security gains are offered by the PLS Eve-
min-power scheme when compared to the benchmark
SLP scheme, CISPM, at the expense of only a marginal
extra runtime.

7) PLS random scheme offers higher security than PLS
Eve-min-power, however, its runtime increases linearly
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Fig. 15: Runtime per SP [ms] vs. M of proposed and benchmark
schemes with Ny = 15, K = 6, 7% = 6 dB, and a frame size of
900 symbols.

with the number of antennas at Eve.

8) Logistic regression is the most performing classifier
amongst the tested state-of-the-art classifiers.

9) The system parameters that directly affect the BER/FER
at Eve are: the number of antennas at Eve, the total
transmit power, and the coding rate.

10) PLS schemes offer significant security gains compared
to ZF and CISPM precoding schemes at the expense of
additional power consumption at the transmitter.

11) More importantly, these security gains are achieved
without affecting the performance at the intended users.

VI. CONCLUSIONS

In this paper, we proposed ML-based decoding schemes
for a multi-antenna Eve in the context of a FEC-enabled
MU-MISO systems. The proposed eavesdropping attacks use
precoded pilot symbols as training data and enable an Eve to
soft/hard decode a message with high accuracy. As a coun-
termeasure to these attacks, we proposed two novel security-
enhanced SLP precoders that seek to obstruct the learning
process at Eve. Numerical results validated both the attacks as
well as the countermeasures, where the soft decoding scheme
always outperforms the hard decoding one. In addition, our
proposed PLS schemes outperform ZF and CISPM precoding
in security at the expense of additional power consumption at
the transmitter, with PLS random scheme offering the highest
security. Thus, the proposed PLS schemes provide different
trade-offs between security, runtime, and power consumption,
which would give the BS the option to select the most suited
scheme depending on the required criteria. Notably, despite all
the security gains offered by our proposed PLS schemes, their
use does not affect the performance at the intended user. Future
research topics would include investigating secure precoding
schemes that assume imperfect Eve’s CSI knowledge at the BS
and developing secure schemes for the case when the channel
to Eve is unknown to the BS.
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