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ABSTRACT: This paper presents a new method for

fitting a digital line or plane to a given set of points in a

2D or 3D image in the presence of noise by

maximizing the number of inliers, namely the 

consensus set. By using a digital model instead of a

continuous one, we show that we can generate all

possible consensus sets for model fitting. We present a

deterministic algorithm that efficiently searches the 

optimal solution with time complexity ���� ����� for
dimension � , where � � �� 	 , together with space

complexity ���� where � is the number of points. 

Key words: line fitting; plane fitting; digital geometry;

discrete optimization; consensus set

I. Introduction

Line fitting and plane fitting are essential tasks in the 

field of image analysis and computer vision. For

instance, these procedures are useful for shape

approximation (��������	 ABC	 ��AADDA��AEFA�	 �����

�����B�B	 �D	 A���	 ����), image registration ���D��A ABC	

���  �E�	 ���!� ����	 �D	 A���	 "##$%�	 ABC	 ��A��

 ����BDAD��B	 (&' D�E ABC	 �\(ABB�	 �����	 &�B�����	 �D

A���	���\)), and considered as the problem of (AEA��D�E

� D��AD��B	 (Hartley ABC	��  �E�AB�	���!%. There exist

several optimal methods for fitting such as least-s\ quare

fitting, least-absolute-value fitting or least median of

s\ quares (LMS) (Boyd and Vandenberghe, 2004; Press 

et al., 2007). In these methods, a continuous line or

plane model is used, defined respectively by

� � ���� �� � 	�AA� B � B B � CC� (1)

D � �E���� F� � 		AA� B B� B � B F � CC� (2)

where A� B� � � 	 . The fitting is carried out through
optimizing different cost functions. For instance, least-

s\ quares minimizes the sum of the geometric distances 

from all given points to the model. The solution can be

obtained analytically, however it is not robust to the

presence of outliers, namely points which do not fit the

model. Least-absolute values uses the vertical 

distances, instead of the geometric distances, for its 

minimization. Some efficient iterative algorithms have

been proposed in the literature. However, if there are

outliers, the solution is known to be unstable. In

contrast, Least Median of S\ quares (LMS) minimizes

the median of the vertical/geometric distances of all

given points to the model. Thus, the fitting is robust as

long as fewer than half of the given points are outliers

(*��  �����	"#\)�%.

In this paper, we present a novel globally optimal

method that, given an arbitrary cloud of 2D or 3D

points, finds the line or plane that minimizes the 

number of outliers, or alternatively maximizing the

number of inliers, namely points which do fit the 

model, also called the consensus set. The idea of using

such consensus sets was proposed for the RANdom 
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Sample Consensus (RANSAC) method (�� ����E	 ABC	

����� , 1981), which is one of the most widely used in 

the field of computer vision. However RANSAC (and

its variations) is inherently probabilistic in its

approach, and do not guarantee any optimality while 

our method is both deterministic and optimal in the size

of the consensus set. In order to guarantee the 

optimality of consensus sets, we follow a digital 

geometry methodology �&��DD� ABC	 *� �B+��C�	 ����%

by using a digital line and plane models (&��DD� ABC	

*� �B+��C�	 ����� Reveilles, 1991) instead of (1) and

(2). This methodology is in fact natural given the 

assumption that our inputs are digital images. Besides,

such a digital model allows us to distinguish between

digitization-induced noise and actual noise. Related

work using digital line or plane models can be found in 

works such as digital line or plane recognition (Buzer,

2003; Buzer, 2006; ,�EAEC	 �D	 A���	 ���$), digital curve

polygonalisation (��������	ABC ��AADDA��AEFA� �����

Debled Rennesson et al., 2006), and digital surface

polyhedrization (Provot et al., 2006; Sivignon et al., 

2004) with and without the presence of noise. 

However, to the best of our knowledge, outliers, 

namely points which do not fit the model, have never

been studied in the field of digital geometry.

This work is an extension of our previous papers on

digital line fitting (Zrour et al., 2009) and digital plane

fitting (Zrour et al., 2009). We can treat both the 2D 

and 3D problems by considering them in the dual space

of the dual transform �-� ��E��	 ���)%. Indeed, we

show that digital plane fitting in 3D can be treated with

a similar methodology to the one for digital line fitting

in 2D because it can be viewed as a 2D problem. We

present an algorithm that has a time complexity of 

���� ����� for the dimension � � �� 	 , with � the 
number of points, and a space complexity ����. Note
that the space complexity is not affected by the

dimension. We also point out that there are degenerate

cases since our inputs are only integers and all

computations can be executed by using rational 

numbers alone, and present how we can deal with 

them.   

The rest of the paper is as follows: in section II we

expose the framework of our digital model. In section 

III we prove the optimality of our result. In sections IV

and V, we provide an algorithm for the computation of

the line fit in 2D and an extended algorithm for the 

plane fit in 3D, respectively. Section VI provides a

method for extracting the parameters from the fit.

Sections VII is devoted to 2D and 3D results and 

applications respectively. Finally Section VIII states 

some conclusions and perspectives.

II. The problem of digital line and plane

fitting

A line � and a plane D in the Euclidean space 	� , 
� � �� 	, are defined by (1) and (2). In this paper, we
use digital models, instead of continuous ones, for lines

and planes in a discrete space �� for � � �� 	, where �
is the set of all integers. We contend that using digital 

models is natural when our input data is a set of points 

in a digital space. 

A digital line �E�� that is the digitization of � is
defined by the set of discrete points satisfying two 

inequalities: 

�E�� � �E�� �� � ��A C � A� B � B B � �C (3)

where � is a given constant value. Geometrically, 
�E�� is a set of discrete points lying between two
parallel lines A� B � B B � C and A� B � B B � � , 
and � specifies the vertical distance between them. 
From the digital geometrical viewpoint �&��DD� ABC

*� �B+��C�	����� *������� �	"##"%, � should not be less
than 1 if we expect that �E�� to be 8-connected. In
other words, 1 is the minimum distance to keep the

connectivity of a digital line. We can also fix the

horizontal distance, instead of the vertical one, between

the two parallel lines. In that case, we simply exchange

� and � in (3). 
A digital plane �ED� that is the digitization of D is
defined by

�ED� � ���� �� F� � �	A C � A� B B� B F B � �
�C (4)

and similar discussions on the value setting for � and 
its direction choice among the � -, � - and F -axis
directions, namely, the permutation of �, � and F in (4),
are also valid for �ED�. 
Using the above digital line and plane models, our 

fitting problem is then described as follows: given a

finite set of discrete points such that

� � ��� � �� A � � D� ��� ��C,
we would like to find a digital line �E�� for � � �
(resp. a digital plane �ED� for � � 	) such that �E��



(resp. �ED�) contains the maximum number of points 
in �. Points �� � � are called inliers if �� � � � ����
(resp. �� � � � ��D� ); otherwise, they are called
outliers.

III. Digital models and their consensus sets

Our approach is focusing on inlier sets, also called 

consensus sets. Since the size of � is finite and each
element � � � has finite coordinates, we easily notice
that the number of different consensus sets for the 

digital line or plane fitting of � is finite as well. Thus,
if we can find all different consensus sets � from a
given �, we just need to verify the size of each � and
find the maximum one (ones if there are several) as the 

optimal solution. 

Then the following question comes up naturally: is it

possible to find all the consensus sets of �? If the
answer is positive, how can we do it? In this section, 

we will answer these questions. For the followings, we

give some notions related to digital lines and planes. 

Two parallel lines (resp. planes) that are given by the

equations in (3) (resp. (4)) are called the support lines 

(resp. planes) of a digital line (resp. plane). Discrete 

points that are on support lines (resp. planes) are called 

critical points of a digital line (resp. plane). 

A. Digital lines and their consensus sets

We first attack the 2D case of digital line fitting.  

Proposition 1 Let � be a consensus set of � for a
digital line. It is possible to find a new digital line

whose consensus set is the same as � such that it has at
least two critical points. 

Proof  Let � be an initial digital line that contains all
points of � as its inliers. Then, the following three
cases can be considered when studying the critical 

points of �.
1. Suppose that � has more than one critical 
points, then the proposition is already

established in this case. 

2. Suppose that � has one critical point � . In 
this case, we apply a rotation to D around � 
until finding another point �� in � so that ��
becomes a critical point. The rotation is

accomplished in such a way as to maintain the

distance � between the support lines, and so 
that the support line on which there is not � is

rotated around the point � 
! that is the

projection of � on the line. Figure 1 shows an
example of a rotated digital line. Note that we

can rotate � either clockwise or

counterclockwise.

3. Suppose that � has no critical point. In this
case, we first apply a translation to � in order 
to find a first critical point � . Note that a
translation can be made to any direction and 

the two support lines shall maintain the

distance " between them. During such a

translation, if more than one points are detected 

as critical points, then the proof is complete. If

just one point � is detected, as illustrated in 
Figure 2, then a rotation is made around � as
mentioned in the previous case, in order to 

obtain a second critical point ��.
From this proposition, we see that we can find a digital 

line ���� for any consensus set � of � such that it has
at least two critical points. This is intuitively

understandable, because when we move a digital line

���� in the image plane, its consensus set � will
change when a critical point goes out from ���� ,
namely, becomes an outlier, due to the motion of the

line. Indeed, such a digital line ���� can be
constructed from a pair of points chosen from � such
that they become critical points of ����. Consequently, 
we can find all � from those ���� constructed from 
pairs of points in �. 

B. Digital planes and their consensus sets

Similarly to digital lines, we have the following

proposition for digital planes.

Proposition 2 Let � be a consensus set of � for a
digital plane. It is possible to find a new digital plane

whose consensus set is the same as � such that it has at
least three critical points. 

Proof Let � be an initial digital plane that contains all
points in � as its inliers. Then, the following four cases 
can be considered when observing the critical points of

�.
1. Suppose that � has more than two critical 
points, then the proposition is correct in this 

case. 



2. Suppose that � has two critical points and

, which may be located on one side or either 

side of the two parallel support planes of � . 

First, we take the projections (resp. ) of

(resp. ) on the other support plane where

(resp. )  does not exist in the F -axis

direction. We then apply a rotation to � in such 

a way as to maintain the distance between the

support planes until finding another point in

so that becomes a critical point. To

achieve this to the support plane where and

exist, we apply a rotation around the line

going through and , as illustrated in

Figure 3. To the other support plane, we apply a

rotation around the line going through and 

, as illustrated in Figures 3. In the case of 

Figure 4, similarly, to the support plane where

(resp. � exists, we apply a rotation around 

the line going through and (resp.   and

). Note that we can rotate � either clockwise 
or counterclockwise. 

3. Suppose that � has one critical point . In this 

case, we also consider the projection of , . 

We then apply a rotation to each support plane

until finding another point in so that 

becomes a critical point, as illustrated in Figure

5. The support plane where (resp. ) exists

is rotated around any line going through 

(resp. ) on the support plane. If just one point

is found as a second critical point after the 

rotation, then another rotation is made, as

mentioned in the previous case, in order to 

obtain a third critical point . 

4. Suppose that � has no critical point. In this

case, we first apply a translation to � in order 

to find a first critical point . Note that a

translation can be made in any direction while

the two support planes maintain a constant

distance between them. During such a

translation, if more than two points are found as

critical points, then the proof is complete. If just

one point is found, as illustrated in Figure 6, 

then we follow the previous case.

From this proposition, similarly to the 2D case, we

see that we can find a digital plane ��D� for any
consensus set � of � such that it has at least three

critical points. Consequently, we can find all �
from ��D� constructed from all possible triplets of
points in �.

IV. Digital line fitting algorithm

We first describe the digital line fitting problem in the 

dual space of the duality transform (-� ��E��	 ���)%, 

because our algorithm works in the dual space. We

then present an algorithm to exhibit the optimal

consensus set (or sets if the solution is not unique) that

maximizes the number of inliers of a fitted digital line

from a given set � of 2D discrete points, step by step. 
We also describe special treatments for degenerate

cases; it should be noted that digital images likely

present many degenerate cases that must be processed 

separately.

A. Digital line fitting in the dual space

Our algorithm is inspired by the algorithm of LMS

(����A�B�	ABC �D����, 1987) working in the dual space

of the following duality transform (-� ��E��	���)%: let 

� � ������� be a 2D point in the primal space �����
then the dual of � is the line:

$�C � %EA� B�A��A B B B �� � C&
in the dual space �A� B�. Likewise, the dual of a non-
vertical line A� B � B B � C in the primal space is the 

point �A� B� in the dual space. 
Now, let us consider the dual-space interpretation of a

digital line in the primal space, defined by (3). A

digital line is regarded as a set of two parallel lines 

whose slopes are -A, and whose �-intercepts are at -B
and �-B. It corresponds, in the dual space, to a vertical 
line segment of length � which is the distance between 
two parallel lines of the digital line, as illustrated in 

Figure 7. Because points in � in the primal space are
represented by lines in the dual space, the problem of

finding the optimal consensus set in the primal set is

equivalent to searching the best position of the vertical

line segment of length � such that it intersects with as
many lines as possible in the dual space, as illustrated

in Figure 7.

B. Strips made from a critical point

Obviously, we cannot search everywhere in the dual

space to find the best line segment. From Proposition 1,

we know that, for any consensus set, there exists a

digital line that features at least two critical points.



Therefore, we first take one point � �, and consider 
it to be the first critical point of such a fitted digital 

line. Because � corresponds to a line $�C in the dual 
space, all digital lines for which � is a critical point
correspond to the set of all the vertical line segments of 

length � having one of its endpoints on $�C in the dual
space, as shown in Figure 8. The set of such digital 

lines, therefore, forms two strips in the dual space; one

of them is bounded by $�C and $�D , and another is
bounded by $�C and $�� , where
$�D � %EA� B� ' ��A B B B �� B � � C&,

(5)

$�� � %EA� B� ' ��A B B B �� (� � C&,
(6)

as illustrated in Figure 8. For simplification, we focus 

on the strip bounded by $�C and $�D , because the
following discussion is also valid for another strip

bounded by $�C and $�� . 

C. Digital lines with critical point pairs

According to Proposition 1, we choose a point  

) � �E��C to be the second critical point of a fitted
digital line such that �) * �� ; the case of �) � �� will
be discussed later. Any point ) in the primal space is 
represented by the line $)C in the dual space, as shown
in Figure 9. We see in this figure that $)C intersects 
each of the strip boundaries, $�C and $�D , if it is not 
parallel to $�C ; the parallel case occurs when �) � ��, 
and it will be dealt with separately as a degenerate case

in Section F. The intersections between $)C and $�� , 
+)� � �A)� � B)� � , for � � C� D , are calculated. 

Geometrically, the vertical line segment in the strip,

one of whose endpoints is one of the intersections +)� , 
in the dual space corresponds to a digital line with the

two critical points � and ) in the primal space. This 
shows that the digital lines corresponding to the 

vertical line segments between the two intersections +)C

and +)D in the strip always contain ) as an inlier. 

D. Finding the largest consensus set in a

strip

In order to know the number of inliers within the

digital lines with a critical point � , we check the

intersections +)C and +)D of $)C for all ) � �E��C with 
the strip boundaries, $�C and $�D . We use two values ,)�

for � � C� D, which is set to be 1 if $)C enters the strip 
from $�� ,  and -1 if $)C leaves the strip from $�� . 
Once the intersections +)� � �A)� �B)� � , and the
associated value ,)� for � � C� D are calculated for all

) � �E��C , we sort all the triples �A)� � B)� �,)�� in 
increasing order by using A)� as keys. As for
determining the location of the maximum number of

inliers, a function -�A� is used; after initially setting 
-EA� � D for every A, since we already know that � is 
an inlier, then the value ,)� is added to -�A� for A . A)�

in the above sorted order. By looking for the maximum

value of -�A� , we obtain the parameter set �A� B�
corresponding to the maximum optimal consensus set

for a critical points �. In this section, we consider that 
all $)C , enter or leave a strip at different A . The
degenerate cases such that many lines $)C enter or leave
a strip at the same A will be described in Section F. 

E. Algorithm

We now present Algorithm 1 in Figure 10. Input is a

set � of discrete points and a distance value � of our 
digital line model. Output is a set / of parameter
values �A0 � B0� corresponding to the fitted digital lines
of that give the optimal consensus sets. In the 

algorithm, we consider another strip bounded by $�C

and $�� as well, as seen in Steps 4, 9 and 21. We remark
that, because B)� is not used for the sorting step and can 
be calculated from A)� , we do not have to store it for
each intersection. Simply for a candidate of the optimal

consensus set, we calculate it as shown in Steps 21 and 

22. Note that, depending on the strip, we calculate

different B0 because of the translation difference �
between the two strips. We also remark that Algorithm

1 provides us with the set of parameter pair values 

�A0 � B0� of all the fitted digital lines of (3) that give the 
optimal consensus sets. 

The time complexity of the algorithm is ���� �����, 
because we have � points in � and each � � � needs
the complexity ��� �����, for sorting at most �� ( �
different values A)� for ) � �, ) * �, and � � C�D. The



space complexity is ���� because for each sorting we
have at most �� ( � different pairs �A1 �,1�.  
Because all inputs can be given as integers or rational

numbers, all computations in Algorithm 1 can be made

by using only rational numbers. This guarantees that all

results obtained by Algorithm 1 contain no numerical

error. However, degenerate cases may occur, which are

discussed in the followings. 

F. Degenerate cases

In this section, we deal with degenerate cases, which 

are not considered in Algorithm 1. They are

summarized as follows:

- Suppose that � and ) such that �) � �� ; $)C is 
parallel to $�C . If ; $)C is between $�C and $�D

(resp. $�� ), then we set the initial value of the
function -�A� to 2 when 2 � D (resp. 2 � � ) 

because ) is an inlier for any A. Otherwise, we
set it to 1, as described in Algorithm 1, because

) is an outlier for any A. 
- When many lines $) enter or leave a strip at the 
same moment A , all the positive values ,)� of
that moment must be added to the function 

-�A� at once (Step 17 in Algorithm 1), and the
value -�A� is compared with the current
maximum value 3A� (Step 18 in Algorithm 1).
Note that all the negative valued ,)� of the same
moment A must be added after the comparison 
to the function -�A� . Indeed such a point )
must be considered as an inlier until that

moment.

Obviously, those modifications affect neither the time 

nor space complexity of the algorithm.

V. Digital plane fitting algorithm

The algorithm is based on a similar idea to the one for

2D digital line fitting, presented in the previous

section. The key idea for the extension to 3D digital 

plane fitting is treating the 3D problem as a 2D

problem. In this section, we show how to reduce the 

dimension from three to two, and obtain an algorithm

providing a ���	 ����� time and ���� space
complexity. 

A. Digital plane fitting in the dual space

A point � � ����� F� in the primal space associates to a
non-vertical plane

4� � �EA� B� ��A�A B �B B � B F � CC
(7)

in the dual space. Conversely, a non-vertical plane in 

the primal space associates to a point in the dual space. 

Similarly to a digital line, a digital plane defined by (4)

is regarded as a set of non-vertical parallel planes 

whose normal vectors are �A� B� D� and whose F -
intercepts are between (� and � ( � , and it forms a
vertical line segment of length � in the dual space as 
illustrated in Figure 11. The problem of finding the

optimal consensus set for digital plane fitting in the

primal space is then equivalent to searching the 

position of the vertical line segment of length � such 
that it intersects with the maximum number of planes 

in the dual space. 

We now need a search procedure for an optimal

segment. Thanks to Proposition 2, we know that, for

any consensus set, there exists a digital plane featuring 

at least three critical points, among which at least two 

are on one of the support planes. Thus, taking two 

different points � , ) from � in the primal space, we
first consider all the digital planes on which both � and 
) are critical points on the same support plane. In the
dual space, digital planes having two critical points �, 
) forms two strips, which will be described in Section
B. We then explain how digital planes with two critical 

points �, ) appear in the strips when they have a third
critical point 5, so that the sub-problem becomes the
same as the 2D sub-problem.  

B. Strips made from a critical point pair

Let � � ������� F�� and ) � ��)��)� F)�. In the dual
space, they represent two planes 4� and 4), defined by
(7). They intersect in a line $�)C if � and ) are chosen
such that ��� ( �)�� B ��� ( �)�� * C ; otherwise, 4�
and 4) are parallel, and no intersection line can be
found. The intersection line $�)C   is represented by the
following equation: 

$�)C � �6 � EA� B� �� ' 6 � 7B 89� 8 � 	C,
where

� � ������� D� : ��)��)� D� � ��� ( �)� �) (
��� ���) ( �)���,



and � � A � B � �� ; is a chosen point on C . For

example, if ���) * �)��, by fixing ;� � C, ;A and ;B
are automatically found since 7 is on both 4� and 4).  
Once $�)C   is found, then, all the digital planes on which 
both � and ) are critical points on the same support 
plane in the primal space correspond to the set of all

the vertical line segments of length � having one of its
endpoints on $�)C in the dual space, as shown in Figure
12. We see in the figure that the set of such digital 

planes, therefore, forms two strips in the plane <�) that 
contains $�)C and the direction parallel to the � -axis.
Taking the �-axis in <�) as the orthogonal one to the
� -axis, such <�) is illustrated in Figures 12 and 13. 
Each strip on <�) illustrated in Figure 13 is bounded 
by two parallel lines, $�)C and $�)�   for � � D� �, which 

are represented by: 

$�)D � �6 � EA� B� �� ' 6 � 7B =B 89� 8 � 	C,
$�)� � �6 � EA� B� �� ' 6 � 7 ( =B 89� 8 � 	C,

where > � �C�C���. Note that they correspond to $�C

and $�� of (5) and (6) for the 2D case. 

C. Digital planes with critical point 

triplets

Hereafter, we focus on one of the strips in <�), because
the following discussion is valid for both strips. Let us

consider the strip bounded by $�)C and $�)D , as

illustrated in Figure 13. According to Proposition 2, we

choose a point 5 � �E���)C to be the third critical 
point of a fitted digital plane such that 5 is not colinear 
with � and ) ; the colinear case will be handled 
separately as a degenerate case in Section F. Any point

5 in the primal space is represented by the line $5 in 
<�) in the dual space, which is the intersection
between 45 and <�), as shown in Figure 13. We see in
this figure that $5 intersects each of the strip 
boundaries, $�)C and $�)D , if it is not parallel to $�)C ; the
parallel case will be also dealt with separately as a

degenerate case in Section F. The intersections

between $5 and $�)� , +5� � �A5� � B5� � �5� �, for � � C� D, are

calculated from $�)� and 45. Geometrically, the vertical 
line segment in the strip, one of whose endpoints is one

of the intersections +5� , in the dual space corresponds to
a digital plane with three critical points �, ) and 5 in

the primal space. This indicates that the digital planes 

corresponding to the vertical line segments between the 

two intersections +5C and +5D in the strip always contain
5 as an inlier. This structure is already seen for the 2D 
case.  

D. Finding the largest consensus set in a

strip

Similarly to digital line fitting, in order to know the 

number of inliers within the digital planes with two 

critical points � and ), we check the intersections +5C

and +5D of $5 for all 5 � �E���)C with the strip 
boundaries, $�)C and $�)D . We use the similar function
,5� for 5 � �E���)C� � � C�D, and sort the quadruples

�A5� � B5� � �5� � ,5��, instead of the triples for the 2D case, in 
increasing order by using either A5� or B5� as keys; if <�)
is not perpendicular to the A -axis, we use A5� ; 
otherwise, we use B5� . As for determining the location
of the maximum number of inliers, we also use the 

similar function -�A� (resp. -�B� depending on the key
selection) after initially setting -EA� � � for every A. 
We obtain the parameter set �A� B� �� corresponding to 
the maximum optimal consensus set for a pair of

critical points � and ). The degenerate cases such that 
many lines $5 enter or leave a strip at the same
intersection will be treated in the same manner as the

2D case.

E. Algorithm

We now present Algorithm 2 in Figure 14, which is 

easily obtained by modifying Algorithm 1. Input is a

set � of discrete points and a distance value � of our 
digital plane model. Output is a set / of parameter 
values �A0 � B0 � �0� corresponding to the fitted digital 
planes that represent the optimal consensus sets. In the

algorithm, we consider another strip bounded by $�)C

and $�)� in Steps 5, 10 and 22. We remark that, because
�5� is not used for the sorting step and can be calculated
from A5� and B5� , we do not have to store it for each
intersection. 

In Steps 11 and 15, we only show the case where A1 is
used as keys for sorting. However, if <�) is 
perpendicular to the A-axis, all A1 has the same value. 
In such a case, as mentioned above, we use B1as keys,
instead of A1 . The time complexity of the algorithm is



���	 �����, because we have � points in � and each 
pair of � and ) in � needs the complexity ��� �����
for sorting at most �� ( F different values A5� for
5 � �E���)C and � � C�D . The space complexity is

���� because for each sorting we have at most �� ( F
different triples �A1 � B1 �,1�.
All computations in Algorithm 2 can be also performed 

using only rational numbers since all inputs can be

given as integers or rational numbers. This causes the 

following degenerate cases. 

F. Degenerate cases

We consider the following three degenerate cases, 

where the second and third ones were already

discussed for the 2D case in the previous section. 

- If three points � , ) and 5 are colinear in the 
primal space, their associated planes 4�, 4), and 
45 have a line intersection in the dual space. 
Therefore, for any digital plane having � and )
as its critical points also has 5 as its another 
critical point. Thus, the function -�A� initially
set to 2 for the inclusion of � and ) as inliers
will be automatically increased by 1 because of

the inclusion of 5. 
- Suppose that � , ) and 5 are not colinear, but 
there is no intersection between $�)C and $5 in 
<�) ; $5 is parallel to $�)C . We treat it in the
same manner as the first degenerate case of

digital line fitting; if $5 is between $�)C and $�)D

(resp. $�)� ), then we set the initial value of -�A�
to 3 when 2 � D (resp. 2 � �); otherwise, we set
it to 2. 

- When many lines $5 enter or leave a strip at the
same moment A, we apply the same procedure
as the second degenerate case of digital line

fitting. 

Those modifications affect neither the time nor space

complexity of the algorithm.

VI. Feasible digital line and plane

parameters

Once we obtained an optimal consensus set � for
digital line or plane fitting to a given point set �, we
need the parameters of digital lines and planes fitted to 

� for many applications. In general, the continuous line

and plane model such as (1) and (2) are used for

estimating them, for example, by applying the least 

squared method (.AED��F ABC	 ��  �E�AB�	 ���!% to �. 
However, we must be careful because this may change

inliers. In such a case, a new � should be recalculated
from a new estimated line or plane, so that the iterative

procedure may be necessary for renewing � with 
consecutive re-estimated line or plane parameters. 

In our case, however, since we use the digital model 

such as (3) and (4) instead of (1) and (2), we do not 

need such an estimation procedure, and we need not to

worry that parameter values obtained by � may
produce a different � . We can obtain all feasible
solutions for the parameters of digital lines (resp. 

planes) fitted to an obtained optimal � . By simply
looking for all feasible solutions �A� B� (resp. �A� B� ��), 
that satisfy the inequalities of (3) (resp. (4)) for all

E���� � � (resp. E�� �� F� � �). 
Such feasible solutions of digital lines and planes are

called preimages. It is known that preimages of digital 

lines have interesting properties. For instance, a

preimage of a digital line forms a convex polygon in 

the dual space that has at most four vertices (Dorst and

Smeulders, 1984). However for digital planes, the 

structure of their preimages are more complex than that 

of digital lines (Gerard et al., 2008); we even do not 

know the maximum number of vertices or facets of a

convex polyhedron that constitutes a preimage of a

digital plane. 

VII. Experiments

This section presents the 2D and 3D experiments.

We cannot avoid using colors in the figures shown 

in this section, which can be seen correctly at the 

on-line version of the paper.

A. 2D noisy image of digitized lines

We first tested our method with an image of size

102 � 102 originally made from two digital lines 

defined by a set of points E���� � ?� satisfying either
0 � D

�
� B � B �C � � or 0 � ( F

�
� B � B �C � � , 

�=0.999. We then randomly added and removed 2000
points as noise for the image, and finally obtained 1800

points. Our method is applied to fit a digital line to

these points. The optimal consensus set is found using

our method, as shown in Figure 15; it has 87 inliers.



From those 87 inliers, we also calculated a set of

feasible parameters of fitted digital lines; it is given as 

the convex polygon in the parameter space EA� B� of (3)

whose vertices are (
D

��
�

F��D

��
�, (C� F� �, (C� F� �, 

(
D

��
�

F���

��
�.

We compared our result with that of RANSAC. For

comparison, the tolerance of RANSAC is set to 0.5;

this value specifies the maximum distance of inliers

from a fitted line. In this experiment, we use the 

continuous line model of A� B B� B � � C as in
conventional RANSAC methods, and the vertical or

horizontal distance as well as our method. Figure 16 

shows the RANSAC results after 37587 iterations. The

number of inliers is 34 and the parameters of the line

are: A � (C�D	DD��� B � C�DF��CF� � �
(C������D��It should be noted that with our method
all the feasibility parameters can be exactly computed

from the inliers, while RANSAC finds only one

parameter set. Moreover, the 34 inliers obtained by

RANSAC are far from the optimal result of our digital 

line. In fact, this is due to the fact that RANSAC is

based on a random sampling, which provides no

guarantee of optimality. However, the computation

time is relatively rapid, thanks to its probabilistic

strategy. Thus, in cases where there is a lot of noise,

RANSAC should be avoided, whereas the use of

RANSAC may be justified when it is sufficient to

obtain an approximate solution for practical reasons,

B. 2D real image

We then tested our method with respect to a real image, 

as shown in Figure 17 (left), whose size is 520�693. 
Before applying our method, edge detection and 

mathematical morphological filtering are done for this

image; the number of points in the image after this pre-

processing is 5572 points. Our method is then applied

in order to fit a digital line to the set of points. Figure

17 (right) shows the optimal consensus set, which 

includes 602 inliers, for digital line fitting. The 

distance � was set to 1. 

C. 2D Polygonal contour images

We also tested polygonalisation using our method. It is 

tested using an iterative procedure by applying our

method; after each iteration, we take the inliers off and 

apply our method to the remaining points. Figure 18

(left) shows the original polygonal contour image

containing some noise whose size is 497�456. Figure
18 (right) shows the result after six iterations of

applying our method for the polygonalisation. The

consensus set obtained after each iteration is colored in

red, blue, yellow, pink, cyan and green, respectively.

The number of all points is 1960, and the sizes of the 

consensus sets are 297, 264, 186, 180, 119, and 104, 

respectively. The distance � is set to be 1. 

D. 3D real images

For the 3D experiments, we applied our proposed

method to two example data, such as a 3D discrete 

point cloud and a 3D binary digital image.

The first example is a 3D discrete point cloud in Figure

19, which is obtained after a planar surface

segmentation of a range image of blocks (Kenmochi et

al., 2008). The number of points in the cloud is 12859,

and they are segmented into thirteen planar surfaces,

which are illustrated in Figure 19 with points in

different colors, except for those colored in light green

that are detected as edge points. For each of these

thirteen sets, we fitted a digital plane. We see the 

corresponding planes in Figure 20, and the number of

points for each segmented surface and the size of its 

optimal consensus set in Table 1. In Figure 21, we also 

see that the fitted plane for the blue segmented surface

points in Figure 19: inliers are colored blue while 

outliers are in pink.

We also applied our method to a 3D image extracted 

from a polymer foam observed in X-ray micro-

tomography, on which homotopic thinning and surface

decomposition were applied �/�����B��B	 �D A��

����0%%. Figure 22 shows a cross section of the original

image and Figure 23 shows a 3D binary image

obtained after homotopic thinning and surface

decomposition; the image is cut into two parts for

visualization. Among around 400 sets of points

forming surfaces in the entire image, we choose a part,

as illustrated in Figure 24, including 17 decomposed

surfaces for digital plane fitting. We show the fitted 

planes in Figure 25, and the number of points and the

optimal consensus set size for each segmented surface

in Table 2. For both the examples, we set � � D.

VIII. Conclusions



In this paper we have exposed a new method for line

and plane fitting on discrete data such as bitmap 

images using a digital geometry (DG) approach. The

DG approach allows practitioners to separate effects

due to digitization on the one hand and noise on the

other. Using our approach, we have proposed an

optimal fitting method from the point of view of the

maximal consensus set: we are guaranteed to fit a

digital line or plane with the least amount of outliers.

The 3D algorithm is based on the same idea as the 2D 

algorithm however some extensions are done to adapt 

the algorithm to a 2D dual problem and to cope with 

the different degenerate cases. The 2D and 3D

algorithms has a complexity that are identical to 

parameter-less traditional plane-fitting algorithms such 

as least median of squares regression (Rousseeuw,

1984), but allows us to define a digital line or plane

exactly, in the presence of outliers. Future work will

include improving algorithmic complexities and more

complete applications such as optimal polygonalization

or polyhedrization by choosing a good value for

automatically, and image registration considering all

feasible digital line and plane parameters.
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Fig. 1. A digital line that has one critical point and its rotated digital line with a second critical point .

Fig. 2. A digital line that has no critical point and its translated digital line with one critical point .

Fig. 3. A digital plane with two critical points and on one of its support planes and its rotated digital plane 

that also has a third critical point .

Fig. 4. A digital plane with two critical points and on distinct support planes and its rotated digital plane that

also a the third critical point .

Fig. 5. A digital plane with one critical point and its rotated digital plane that also has a second critical point .

Fig. 6. A digital plane with no critical point and its translated digital plane that has one critical point .

Fig. 7. A digital line of width in the primal space (left) corresponds to a vertical line segment of length in the

dual space (right).

Fig 8. Digital lines on which a point is a critical point in the primal space (left), and those corresponding vertical

line segments of length in the dual space (right). In the dual space, a set of all such digital lines forms two 

strips, each of which is bounded by two lines and for .

Fig. 9. Three points , , in the primal space (left), and the corresponding lines , and in the dual space,

with their intersections , for (right).

Fig. 10. Algorithm 1: digital line fitting.

Fig. 11. A digital plane in the primal space (left) corresponds to a vertical line segment of length in the dual

space (right).



Fig. 12. All the digital planes with two critical points and in the primal space (left) correspond to a set of

vertical line segments of length having one of its endpoints on the intersection line of the two planes and

(right).

Fig. 13. Four points , , and in the primal space (left), and their interpretations in the cross-section of the

dual space (right). is made as the plane that contains the intersection line of and and the parallel

direction to the -axis, as illustrated in Figure 12. In , all the digital planes having , and as critical points are

represented by the strips each of which is bounded by and either of its parallel lines and . The other

points and in the primal space are represented by the two lines and in .

Fig. 14. Algorithm 2 : digital plane fitting.

Fig. 15. The optimal consensus set (87 red points) obtained by our method for digital line fitting to a noisy image

of digitized lines containing 1800 points.

Fig. 16. A consensus set (34 red points) obtained by RANSAC for line fitting ��������	A� B�����BCDE� to the same

image of Figure 15.

Fig. 17. An original image (left), and its optimal consensus set, in red color, of digital line fitting (right).

Fig. 18. A polygonal contour image with noise (left), and its result after six iterations of applying our method: the

optimal consensus set obtained after each iteration is in red, blue, yellow, pink, cyan and green, respectively 

(right).

Fig. 19. Planar surface segmentation of a 3D discrete point cloud: the number of points is 12859, and they are

segmented into thirteen planar surfaces whose points are in different colors, except for those colored in light

green that are detected as edge points.



Fig. 20. Fitted planes of segmented planar surface in Figure 19.

Fig. 21. The fitted plane with its optimal consensus set for the blue segmented surface points in  Figure 20: inliers 

are colored blue while outliers are colored pink.

Fig. 22. A cross section of a 3D image extracted from a polymer foam observed in X-ray micro-tomography.

Fig. 23. The 3D binary image obtained after homotopic thinning and surface decomposition applied on the image

in Figure 22: the image is cut into two parts for visualization.

Fig. 24. Selected decomposed surfaces, which is a part of the 3D binary image in Figure 23, for digital plane

fitting.

Fig. 25. Fitted digital planes for decomposed surfaces shown in Figure 24.

Table 1. The number of points for each segmented surface in Figure 20 and the size of its optimal consensus set�

Table 2. The number of points and the optimal consensus set size for each decomposed surface in Figure 25�



Fig. 1. A digital line that has one critical point and its rotated digital line with a second critical point .

Fig. 2. A digital line that has no critical point and its translated digital line with one critical point .

Fig. 3. A digital plane with two critical points and on one of its support planes and its rotated digital plane 

that also has a third critical point .



Fig. 4. A digital plane with two critical points and on distinct support planes and its rotated digital plane that

also a the third critical point .

Fig. 5. A digital plane with one critical point and its rotated digital plane that also has a second critical point .

Fig. 6. A digital plane with no critical point and its translated digital plane that has one critical point .

Fig. 7. A digital line of width in the primal space (left) corresponds to a vertical line segment of length in the

dual space (right).



Fig 8. Digital lines on which a point is a critical point in the primal space (left), and those corresponding vertical

line segments of length in the dual space (right). In the dual space, a set of all such digital lines forms two 

strips, each of which is bounded by two lines and for .

Fig. 9. Three points , , in the primal space (left), and the corresponding lines , and in the dual space,

with their intersections , for (right).



Fig. 10. Algorithm 1: digital line fitting.

Fig. 11. A digital plane in the primal space (left) corresponds to a vertical line segment of length in the dual

space (right).



Fig. 12. All the digital planes with two critical points and in the primal space (left) correspond to a set of

vertical line segments of length having one of its endpoints on the intersection line of the two planes and

(right).

Fig. 13. Four points , , and in the primal space (left), and their interpretations in the cross-section of the

dual space (right). is made as the plane that contains the intersection line of and and the parallel

direction to the -axis, as illustrated in Figure 12. In , all the digital planes having , and as critical points are

represented by the strips each of which is bounded by and either of its parallel lines and . The other

points and in the primal space are represented by the two lines and in .



Fig. 14. Algorithm 2 : digital plane fitting.



Fig. 15. The optimal consensus set (87 red points) obtained by our method for digital line fitting to a noisy image
of digitized lines containing 1800 points.

Fig. 16. A consensus set (34 red points) obtained by RANSAC for line fitting ��������	A� B�����BCDE� to the same

image of Figure 15.



Fig. 17. An original image (left), and its optimal consensus set, in red color, of digital line fitting (right).

Fig. 18. A polygonal contour image with noise (left), and its result after six iterations of applying our method: the

optimal consensus set obtained after each iteration is in red, blue, yellow, pink, cyan and green, respectively 

(right).



Fig. 19. Planar surface segmentation of a 3D discrete point cloud: the number of points is 12859, and they are

segmented into thirteen planar surfaces whose points are in different colors, except for those colored in light

green that are detected as edge points.

Fig. 20. Fitted planes of segmented planar surface in Figure 19.

Fig. 21. The fitted plane with its optimal consensus set for the blue segmented surface points in  Figure 20: inliers 

are colored blue while outliers are colored pink.



Fig. 22. A cross section of a 3D image extracted from a polymer foam observed in X-ray micro-tomography.

Fig. 23. The 3D binary image obtained after homotopic thinning and surface decomposition applied on the image

in Figure 22: the image is cut into two parts for visualization.

Fig. 24. Selected decomposed surfaces, which is a part of the 3D binary image in Figure 23, for digital plane

fitting.



Fig. 25. Fitted digital planes for decomposed surfaces shown in Figure 24.

Table 1. The number of points for each segmented surface in Figure 20 and the size of its optimal consensus set�
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Table 2. The number of points and the optimal consensus set size for each decomposed surface in Figure 25�
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